EQUIVARIANT CW COMPLEXES AND SHAPE THEORY

Dedicated to Professor Masahiro Sugawara on his 60th birthday

By

Takao Matumoto

The aim of this note is to study a discrete group equivariant shape theory by associating an inverse system in the homotopy category of equivariant CW complexes.

1. Introduction

Let G be a discrete group and X a G-space. For a subgroup H of G we denote $X^{H}=\{x \in X ; g x=x$ for every $g \in H\}$. For a G-map $f: X \rightarrow Y$ of X to another G-space Y, we denote $f^{H}=f \mid X^{H}: X^{H} \rightarrow Y^{H}$. Let \mathscr{H}_{G} denote the category of G-spaces and G-homotopy classes of G-maps and \mathscr{W}_{G} the full subcategory of \mathscr{I}_{G} consisting of G-spaces which have the G-homotopy types of G-CW complexes.

Theorem 1. There is a functor \check{C}_{G} from \mathscr{H}_{G} into the pro-category pro- \mathscr{W}_{G} of \mathscr{W}_{G} so that $\check{C}_{G}(X)=\left(X_{\lambda},\left[p_{\lambda \lambda^{\prime}}^{x}\right]_{G}, \Lambda\right)$ has the universal property for the equivariant shape theory with a system G-map $p^{X}=\left(\left[p_{\lambda}^{X}\right]_{G}\right): X \rightarrow \breve{G}_{G}(X)$, that is, $p^{X}: X \rightarrow \check{C}_{G}(X)$ is a G-CW expansion of X.

When G is a finite group, we know that a G-ANR has the G-homotopy type of a G-CW complex and vice versa. Also any numerable covering has a refinement of numerable G-equivariant covering. So, we have

Tneorem 2. Let G be a finite group and X a G-space.
(1) Any G-ANR expansion of X is equivalent to $p^{x}: X \rightarrow \check{C}_{G}(X)$.
(2) The expansion $p^{X}: X \rightarrow \check{C}_{G}(X)$ is a (non-equivariant) CW expansion of X. Moreover, if X is a normal G-space, then $p^{X, H}=\left(\left[p_{\lambda}^{X, H}\right]\right): X^{H} \rightarrow \check{C}_{G}(X)^{H}=$ ($X_{\lambda}^{H},\left[p_{\lambda, \lambda^{\prime}}^{X}, H, \Lambda\right.$) is a CW expansion for every subgroup H of G.
(3) Let $f: X \rightarrow Y$ be a G-map between normal G-spaces. Then, $\check{C}_{G}(f): \check{G}_{G}(X)$ $\rightarrow \check{C}_{G}(Y)$ is an isomorphism in pro- \mathscr{W}_{G} if and only if $f^{H}: X^{H} \rightarrow Y^{H}$ is a shape

[^0]equivalence for every subgroup H of G.
The case when G is a finite group is also treated by Pop [10]. But he did not mention on (2) and (3) of Theorem 2. We note also that Antonian-Mardešić [1] defined the equivariant ANR shape for compact groups. Our treatment in the case when G is not a discrete group will be discussed elsewhere.

2. A quick review of shape theory

The general references are [3], [4] and [8]. Borsuk (1968) defined the shape for compact metric spaces, Mardesić-Segal (1971) for compact Hausdorff spaces, Fox (1972) for metric spaces, and Mardešić (1973) and K. Morita (1975) for topological spaces.

Let $\boldsymbol{X}=\left(X_{\lambda}, p_{\lambda 2^{\prime}}, \Lambda\right)$ and $\boldsymbol{Y}=\left(Y_{\mu}, q_{\mu \mu^{\prime}}, M\right)$ be inverse systems in a category c. A system map of X to Y consists of $\theta: M \rightarrow \Lambda$ and morphisms $f_{\mu}: X_{\theta(\mu)}$ $\rightarrow Y_{\mu}$ in \mathcal{C} satisfying $q_{\mu \mu^{\prime}} f_{\mu^{\prime}} p_{\theta\left(\mu^{\prime}\right) \lambda}=f_{\mu} p_{\theta(\mu) \lambda}$ for $\mu \leqq \mu^{\prime}, \theta\left(\mu^{\prime}\right) \leqq \lambda$ and $\theta(\mu) \leqq \lambda$. Two system maps $\left(f_{\mu}, \theta\right)$ and $\left(f_{\mu}^{\prime}, \theta^{\prime}\right)$ are said to be equivalent if each $\mu \in M$ admits a $\lambda \in \Lambda, \lambda \geqq \theta(\mu)$ and $\lambda \geqq \theta^{\prime}(\mu)$, such that $f_{\mu} p_{\theta(\mu) \lambda}=f_{\mu}^{\prime} p_{\theta^{\prime}(\mu) \lambda .}$. The procategory pro- \mathcal{C} of the category \mathcal{C} is defined by Obj (pro- \mathcal{C}) $=$ all inverse systems in \boldsymbol{C} and $\operatorname{Mor}(\boldsymbol{X}, \boldsymbol{Y})=$ equivalence classes of system maps of \boldsymbol{X} to \boldsymbol{Y}. Let \mathscr{D} be a full subcategory of \mathcal{C}. A \mathscr{D}-expansion $p=\left(p_{2}\right): X \rightarrow X$ of X is a system map which is characterized by the following universal properties due to Mardešić [4, Ch. I, Th. I]:
(0) $X_{\lambda} \in \mathscr{D}$ for each $\lambda \in \Lambda$.
(1) For any map $f: X \rightarrow K$ with $K \in \mathscr{D}$ there exists a morphism $h_{\lambda}: X_{\lambda} \rightarrow K$ such that $f=h_{\lambda} p_{\lambda}$.
(2) If $f=g_{\lambda} p_{\lambda}$ then there is a $\lambda^{\prime} \geqq \lambda$ such that $h_{\lambda} p_{\lambda \lambda^{\prime}}=g_{\lambda} p_{\lambda \lambda^{\prime}}$.

We give an exact definition of Čech expansion and Čech system due to Morita. Let \mathscr{W} be the homotopy category of spaces which have homotopy type of CW complexes.

For a space X we associate an inverse system $\check{C}(X)=\left(X_{\lambda},\left[p_{\lambda \lambda^{\prime}}^{X}\right], \Lambda\right)$ in W by

$$
\begin{aligned}
& \left\{U_{\lambda}\right\}_{\lambda \in \Lambda}=\text { all numerable coverings of } X, \lambda^{\prime} \geqq \lambda \text { iff } U_{\lambda^{\prime}}<U_{\lambda} ; \\
& X_{\lambda}=N\left(U_{\lambda}\right) \text { and } p_{\lambda^{\prime} \lambda^{\prime}}^{X}: N\left(\Psi_{\lambda^{\prime}}\right) \rightarrow N\left(U_{\lambda}\right),
\end{aligned}
$$

where $N\left(U_{\lambda}\right)$ is the nerve of $U_{\lambda}=\left\{U_{\alpha}^{\lambda}\right\}$ and $p_{\lambda^{\prime}{ }^{\lambda}}^{x}$ is a simplicial map defined by choosing $\tilde{p}=p_{\lambda^{\prime} \lambda^{\prime}}^{X}$ so that $U_{\alpha}^{\lambda^{\prime}} \subset U_{\tilde{p}(\alpha)}^{\lambda}$. The homotopy class [$p_{\lambda^{\prime} k^{\prime}}^{X}$] is independent of the choice of \tilde{p}. Then the inverse system $\check{C}(X)$ in pro- \mathscr{W} well-defined and
is called the Čech system of X. Here a pointwise finite covering $\mathcal{U}=\left\{U_{\alpha}\right\}$ of X is called numerable if it admits a locally finite partition of unity $\left\{\rho_{\alpha}\right\}$ i. e., a family of continuous functions $\rho_{\alpha}: X \rightarrow[0,1]$ with $\Sigma \rho_{\alpha}=1$ and $\rho_{\alpha}^{-1}(0,1] \subset U_{\alpha}$ such that $\left\{\rho_{\alpha}^{-1}(0,1]\right\}$ is a locally finite covering of X. By the locally finite partition of unity $\left\{\rho_{\alpha}\right\}$ subordinate to \mathscr{V}_{λ} we have a map $p_{\lambda}^{x}: X \rightarrow X_{\lambda}$ defined by $p_{\lambda}^{X}(x)=\Sigma \rho_{\alpha}(x)\left\langle U_{\alpha}\right\rangle$ where $\left\langle U_{\alpha}\right\rangle \in X_{\lambda}$ is the vertex corresponding to U_{α}. A different choice of the locally finite partition of unity gives another map contiguous to p_{λ}^{X}. So, the homotopy class of p_{λ}^{X} depends only on U_{λ} and $p_{\lambda^{\prime}}^{X} p_{\lambda^{\prime}}^{X}$ $\simeq p_{\lambda}^{x}$. Then $p^{x}=\left(\left[p_{\lambda}^{X}\right]\right): X \rightarrow \check{C}(X)$ is a \mathscr{W}-expansion and called the Čech expansion of X.

Any \mathscr{W}-expansion $X \rightarrow X$ is equivalent to the Čech expansion $p^{x}: X \rightarrow \check{C}(X)$. The equivalence class of \mathscr{W}-expansion of X is called the shape of X.

3. Equivariant Čech system $\check{\boldsymbol{C}}_{\boldsymbol{G}}(X)$ (Proof of Theorem 1)

Let G be a discrete group and X a G-space. An open covering $U=\left\{U_{\alpha}\right\}$ of X is called a numerable G-equivariant covering if $g U_{\alpha}=U_{g \alpha} \in Q$ for each $U_{\alpha} \in \mathcal{U}$ and $g \in G$ and if Q has a locally finite partition of unity $\left\{\rho_{\alpha}\right\}$ such that $\rho_{g \alpha}(x)=\rho_{\alpha}\left(g^{-1} x\right)$ for any $g \in G$ and the following three sets have finite differences:

$$
\left\{g \in G ; g \alpha=\alpha \text { i. e., } \rho_{g \alpha}=\rho_{\alpha}\right\} \subset\left\{g \in G ; g U_{\alpha}=U_{\alpha}\right\} \subset\left\{g \in G ; g U_{\alpha} \cap U_{\alpha} \neq \varnothing\right\} .
$$

The nerves $X_{\lambda}=N\left(U_{\lambda}\right)$ of the numerable G-equivariant coverings U_{λ} of X induce an inverse system $\check{C}_{G}(X)=\left(X_{\lambda},\left[p_{\lambda \lambda^{\prime}}^{X}\right]_{G}, \Lambda\right)$ in \mathscr{W}_{G} with a system G-map $p^{X}=\left(\left[p_{\lambda}^{X}\right]_{G}: X \rightarrow X_{\lambda}\right)$ such that $p_{\lambda}^{X} \simeq_{G} p_{\lambda^{\prime}}^{X} p_{\lambda^{\prime}}^{X}$. The G-homotopy classes $\left[p_{\lambda}^{X}\right]_{G}$ and $\left[p_{\left\langle\lambda^{\prime}\right.}^{X}\right]_{G}$ are also well-defined by the argument using contiguity as in the non-equivariant case.

For a G-map $f: X \rightarrow Y$ a system G-map $\quad \check{C}_{G}(f)=\left(\left[f_{\mu}\right]_{G}, \theta\right): \check{C}_{G}(X)=$ $\left(X_{\lambda},\left[p_{k \lambda^{\prime}}^{X}\right] G, \Lambda\right) \rightarrow \check{C}_{G}(Y)=\left(Y_{\mu},\left[p_{\mu \mu^{\prime}}^{X}\right]_{G}, M\right)$ is defined so that $p_{\mu}^{Y} f \simeq_{G} f_{\mu} p_{\theta(\mu)}^{X}$. In fact, a numerable G-equivariant covering $\mathcal{V}_{\mu}=\left\{V_{\beta}^{\mu}, \rho_{\beta}\right\}$ of Y induces a covering $f^{-1} V_{\mu}=\left\{f^{-1}\left(V_{\beta}^{\mu}\right), \rho_{\beta} f\right\}$ of X, which is numerable G-equivariant and may be denoted by $\mathscr{Q}_{\theta(\mu)}$, and $f_{\mu}: N\left(f^{-1} \mathcal{V}_{\mu}\right) \rightarrow N\left(\mathcal{V}_{\mu}\right)$ defined by the natural inclusion satisfies the required G-homotopy equality.

Hereafter we will omit [] $]_{a}$ to avoid complexity of notation.
Lemma 3.1. Let K be a G-CW complex. Then, the system G-map $p^{K}: K \rightarrow$ $\check{C}_{G}(K)$ is an isomorphism in pro- \mathcal{W}_{G}.

Lemma 3.2. For a G-space X we take a G-map $p_{\lambda}^{x}: X \rightarrow X_{\lambda}$ in the system

G－map $p^{x}=\left(p_{\lambda}^{X}\right): X \rightarrow \check{C}_{G}(X)$ and consider a system G－map $\check{C}_{G}\left(p_{\lambda}\right)=\left(\left(p_{\lambda}^{X}\right)_{\mu}, \varphi_{\lambda}\right):$ $\check{C}_{G}(X) \rightarrow \check{C}_{G}\left(X_{\lambda}\right)$ ．Then，there is a ν with $\nu \geqq \lambda$ and $\nu \geqq \varphi_{\lambda}(\mu)$ such that $p_{\mu}^{\lambda} p_{\lambda \nu}^{\chi} \simeq{ }_{G}$ $\left(p_{\lambda}^{X}\right)_{\mu} p_{\rho_{\lambda}(\mu) \nu}^{X}$ ，where p_{μ}^{λ} denotes $p_{\mu}^{X_{\lambda}}$ ．

Lemma 3.3 （Universal property for equivariant shape）．Let $p^{X}=\left(p_{\lambda}^{X}\right): X \rightarrow$ $\check{C}_{G}(X)=\left(X_{\lambda}, p_{\lambda^{x}}^{X}, \Lambda\right)$ be the system G－map defined above．Let K be a G－CW complex and $f: X \rightarrow K$ a G－map．
（1）There exist $a \lambda$ and a G－map $h: X_{\lambda} \rightarrow K$ such that $f \simeq_{G} h p_{\lambda}^{X}$ ．
（2）If $f \simeq_{G} g p_{\lambda}^{X}$ for any other G－map $g: X_{\lambda} \rightarrow K$ ，then there is a ν with $\nu \geqq \lambda$ such that $h p_{\lambda \nu}^{X} \simeq{ }_{G} g p_{\lambda \nu}^{X}$ ．

Proof of Lemma 3．3 and Theorem 1 from Lemmas 3.1 and 3．2．Lemma 3.3 is a detailed restatement of Theorem 1．Lemmas 3.1 and 3.2 imply Lemma 3.3 in a standard way．In fact，the system G－map $\check{C}_{G}(f): \check{C}_{G}(X) \rightarrow \check{C}_{G}(K)$ consists of $\theta: M \rightarrow \Lambda$ and G－maps $f_{\mu}: X_{\theta(\mu)} \rightarrow K_{\mu}$ ．By Lemma 3.1 we have a μ and a G－map $q: K_{\mu} \rightarrow K$ such that $q p_{\mu}^{K} \simeq_{G} i d_{K}$ ．Now it suffices to define $\lambda=\theta(\mu)$ and $h=q f_{\mu}$ to prove（1），because $q f_{\mu} p_{\theta(\mu)}^{X} \simeq_{G} q p_{\mu}^{K} f \simeq_{G} f$ ．To prove（2）we note that $q g_{\mu} p_{\theta_{\lambda}(\mu)}^{\sim_{G}} g$ replacing X, f and θ with X_{λ}, g and θ_{λ} respectively．By Lemma 3.1 there is a G－map $q^{\prime}:\left(X_{\lambda}\right)_{\nu} \rightarrow X_{\lambda}$ with $\nu \geqq \theta_{\lambda}(\mu)$ such that $q^{\prime} p_{\nu}^{\lambda} \simeq_{G}$ id and $p_{\nu}^{2} q^{\prime} p_{\nu i}^{\lambda} \simeq{ }_{G} p_{\nu \dot{\nu}}^{\lambda}$ for some $\tilde{\nu} \geqq \nu$ ，where $p_{\nu \nu}^{\lambda}$ ，denotes $p_{\nu \nu ⿱ 亠 乂}^{X_{\lambda}}$ ．So，$g q^{\prime} p_{\nu i}^{\lambda} \simeq_{G} q g_{\mu} p_{\nu \nu}^{\lambda}$ ．Here we retake $\theta_{\lambda}(\mu)=\nu$ ．Take the G－map $\left(p_{\lambda}^{X}\right)_{\tilde{y}}: X_{\nu^{\prime}} \rightarrow\left(X_{\lambda}\right)_{\mathcal{y}}$ by putting $\nu^{\prime}=\varphi_{\lambda}(\tilde{\nu})$ ． Then，since $g p_{\lambda}^{X} \simeq_{G} f$ ，we have a $\tilde{\nu}^{\prime}$ with $\tilde{\Sigma}^{\prime} \geqq \nu^{\prime}$ and $\tilde{\Sigma}^{\prime} \geqq \theta(\mu)$ such that $g_{\mu} t_{i v}^{X}\left(p_{\lambda}^{X}\right)_{i} p_{\nu^{\prime} \dot{\nu}^{\prime}}^{X} \simeq_{G} f_{\mu} p_{\theta(\mu) \tilde{y}^{\prime}}^{X}$ ．So，$g q^{\prime} p_{\nu \dot{\nu}}^{X}\left(p_{\lambda}^{X}\right)_{i} p_{\nu^{\prime} \dot{\nu}^{\prime}}^{X} \simeq_{G} q f_{\mu} p_{\theta(\mu) \nu^{\prime}}^{X}$ ．On the other hand by Lemma 3.2 we have $p_{i \dot{\nu}}^{\lambda}\left(p_{\lambda}^{X}\right)_{\tilde{\nu}} p_{\nu^{\prime} \tilde{\nu}^{\prime}}^{\chi^{\prime}} \simeq_{G} p_{\nu}^{\lambda} p_{i \dot{i}}^{X}$ ，if necessary retaking a larger $\tilde{\nu}^{\prime}$ ． Hence，$g p_{\lambda \tilde{i}^{\prime}}^{X} \simeq_{G} q f_{\mu} p_{\hat{\theta}(\mu) \dot{\nu}^{\prime}}^{X} \simeq_{G} h p_{i \tilde{i}^{\prime}}^{X}$ ，
q．e．d．
Proof of Lemma 3．1．We consider a natural G－map $\sigma:|S(K)| \rightarrow K$ for the geometric realization of the singular complex of K ．Since $|S(K)|^{H}=\left|S\left(K^{H}\right)\right|$ ， we see that σ is a G－homotopy equivalence．Since a G－homotopy equivalence induces an isomorphism $\check{C}_{G}(\cdot)$ in pro－ \mathscr{W}_{G} ，the proof reduces to the following two lemmas．

Lemma 3．4．For a G－space $X,|S(X)|$ admits a G－equivariant triangulation．
Lemma 3．5．For a G－equivariantly triangulated G－space $K, p^{K}: K \rightarrow \check{G}_{G}(K)$ is an isomorphism in pro－ \mathscr{W}_{G} ．Moreover，suppose μ is given then there are a $\tilde{\mu}$ $\left(\geqq \mu\right.$ ）and a G－map $q: K_{\tilde{\mu}} \rightarrow K$ such that q is the G－homotopy inverse to p_{μ}^{π} ．

Proof of Lemma 3．4．We know that there is a G－homeomorphism between
$|S(X)|$ and $|\mathrm{Sd} S(X)|$ where $\mathrm{Sd} S(X)$ is a barycentric subdivision of the singular s.s. complex $S(X)$ of X. Note that the natural quotient map $|\operatorname{Sd} S(X)| \rightarrow$ $|S d S(X) / G|$ restricts to a homeomorphism on any cell of $|S d S(X)|$. So, a triangulation of the regular CW complex $|\mathrm{Sd} S(X) / G|$ lifts to a G-equivariant triangulation of $|\operatorname{Sd} S(X)|$.
q. e. d.

Proof of Lemma 3.5. For each vertex v we take an open star neighborhood U_{v}. Then, v_{1}, \cdots, v_{n} are the vertices of the same simplex if and only if $U_{v_{1}} \cap \cdots \cap U_{v_{n}}$ is not empty. If necessary by taking a barycentric subdivision, we may assume the following: If $g v$ and v are in the same simplex of K then $g v=v$ and hence $U_{g v} \cap U_{v} \neq \varnothing$ implies $g v=v$. We put $\bar{\rho}_{v}(x)=$ the coefficient of x with respect to v. Then the G-map $\bar{p}: K \rightarrow N\left(\left\{U_{v}\right\}\right)$ defined by $\left\{\bar{\rho}_{v}\right\}$ is not only a bijection but also a G-homeomorphism. Note here that $\bar{\rho}_{v}(g x)=\bar{\rho}_{v}(x)$ if $g v=v$. Now we make the support of $\bar{\rho}_{v}$ smaller and get a locally finite G equivariant partition of unity ρ_{v} so that $\mathcal{U}=\left\{U_{v}, \rho_{v}\right\}$ is a numerable G-equivariant covering and $p: K \rightarrow N(\mathcal{U})$, defined by $\left\{\rho_{v}\right\}$, is G-homotopic to $\bar{p}: K \rightarrow N(U)$. If we take a subdivision of K fine enough at first, we may assume that $\mathcal{U}<\mathcal{Q}_{\mu}$. Take this U as $U_{\tilde{\mu}}$. Then $p_{\tilde{\mu}}: K \rightarrow K_{\tilde{\mu}}=N\left(\mathcal{U}_{\tilde{\mu}}\right)$ is a G-homotopy equivalence. This finishes the proof of Lemma 3.5 and also Lemma 3.1.
q. e. d.

Proof of Lemma 3.2. Note that X_{λ} is equivariantly triangulated. By the proof of Lemma 3.5 we have a $\tilde{\mu}(\geqq \mu)$ and a subdivision X_{λ}^{\prime} of X_{λ} such that $\mathcal{U}_{\tilde{\mu} \tilde{\mu}}$ is the open star covering of X_{λ}^{\prime} and $p_{\tilde{\mu}}^{\lambda}: X_{\lambda}^{\prime} \rightarrow\left(X_{\lambda}\right)_{\tilde{\mu}}=N\left(\mathcal{U}_{\tilde{\mu}}\right)$ is G-homotopic to the natural identification. The G-map p_{λ}^{X} induces a numerable G-equivariant covering $U_{\nu}=\left(p_{\lambda}^{X}\right)^{-1}\left(\mathcal{U}_{\tilde{\mu}}\right)$ of X and the natural inclusion $\left(p_{\lambda}^{X}\right)_{\tilde{\mu}}: X_{\nu}=N\left(G_{\nu}\right) \rightarrow\left(X_{\lambda}\right)_{\tilde{\mu}}$ $=N\left(\Psi_{\tilde{\mu}}\right)$. The G-map $p_{\lambda \nu}^{X}$ is the composition of the inclusion $X_{\nu} \rightarrow X_{\lambda}^{\prime}$ with a simplicial G-map $X_{\lambda}^{\prime} \rightarrow X_{\lambda}$ given by choosing a refinement. Hence $p_{\hat{\mu}}^{\lambda} p_{i \nu}^{X} \simeq_{G}\left(p_{\lambda}^{X}\right)_{\tilde{\mu}}$. This implies Lemma 3.2 and completes a proof of Theorem 1.
q.e.d.

4. The case when G is a finite group

Let G be a finite group and X a G-space. Then (1) of Theorem 2 is a consequence of Theorem 1 and the fact that a G-ANR has the G-homotopy of a G-CW complex and vice versa (cf. [9] and [4, Appendix] or [10]). Pop [10] also defines the equivariant shape theory for a finite group G. In the case that X is normal, (2) and (3) of Theorem 2 enrich the result.

Lemma 4.1. Let $G=\left\{g_{1}, \cdots, g_{n}\right\}$ be a finite group. For any numerable covering $U=\left\{U_{\alpha}, \rho_{\alpha}\right\}$ of a G-space X we have a numerable G-equivariant cover-
ing \mathbb{V} of X such that $\mathbb{V}<\mathcal{U}$.
Proof. It suffices to take the covering Q consisting of $g_{1}^{-1} U_{\alpha_{1}} \cap \cdots \cap g_{n}^{-1} U_{\alpha_{n}}$ with $\rho_{\alpha_{1}}\left(g_{1} x\right) \cdots \rho_{\alpha_{n}}\left(g_{n} x\right)$. In fact, $g_{i}\left(g_{1}^{-1} U_{\alpha_{1}} \cap \cdots \cap g_{n}^{-1} U_{\alpha_{n}}\right) \subset U_{\alpha_{i}}$ and the sum $\sum \rho_{\alpha_{1}}\left(g_{1} x\right) \cdots \rho_{\alpha_{n}}\left(g_{n} x\right)$ is equal to $\left(\sum \rho_{\alpha_{1}}\left(g_{1} x\right)\right) \cdots\left(\sum \rho_{\alpha_{n}}\left(g_{n} x\right)\right)=1$. Note that we do not require $g V_{\beta} \cap V_{\beta} \neq \varnothing$ implies $g V_{\beta}=V_{\beta}$ for the numerable G-equivariant covering.
q. e. d.

Proof of (2) of Theorem 2. Lemma 4.1 implies that $p^{X}: X \rightarrow \check{C}_{G}(X)$ is also a (non-equivariant) CW expansion of $X[4, \mathrm{Ch} . \mathrm{I}, \S 1, \mathrm{Th} .1 ; \S 2$, Rem. 3]. Assume that X is a normal space. For a subgroup H of G any numerable covering \mathcal{U}_{H} of the closed subspace X^{H} extends to a numerable covering \mathscr{U} of X i.e., $\mathcal{G}_{H}=\left\{U \cap X^{H} ; U \in \mathcal{U}\right\}$. We may assume that if $U \cap X^{H}=\varnothing$ then U is not H-invariant for $U \in q$. So, we see that $\check{C}_{G}(X)^{H} \simeq \check{C}_{W(H)}\left(X^{H}\right)$ for a normal G-space X where $W(H)=N(H) / H$ and $N(H)=\left\{g \in G ; g H g^{-1}=H\right\}$. Now we have proved (2) of Theorem 2 by considering X^{H} a $W(H)$-space. q.e.d.

Lemma 4.2. Let G be a finite group. Let X and Y be G-CW complexes and $h_{H}: X^{H} \rightarrow Y^{H}$ maps satisfying $g_{*} h_{H} \simeq h_{H^{\prime}} g_{*}$ for every pair of subgroups $H^{\prime} \subset g H^{-1}$ where $g_{*}(x)=g x$. Then there is a G-map $f: X \rightarrow Y$ such that $f \mid X^{H}$ $\simeq h_{H}$ for every subgroup H of G.

Proof. Choose a family of representatives $\left\{H_{1}, \cdots, H_{m}\right\}$ of conjugacy classes of subgroups of G. For $G-0$-cell $\sigma: \Delta^{0} \times G / H_{i} \rightarrow X$ we define $f \mid X^{0}$ by $f\left(\sigma\left(\Delta^{0} \times g H_{i} / H_{i}\right)\right)=g_{*} h_{H_{i}}\left(\sigma\left(\Delta^{0} \times H_{i} / H_{i}\right)\right)$. Assume that a G-map $f \mid X^{n-1}$ is defined and for $H=H_{i}$ there are given homotopies between $f \mid \sigma\left(\Delta^{k} \times H / H\right)$ and $h_{H} \mid \sigma\left(\Delta^{k} \times H / H\right)$ in Y^{H} which extend the homotopies on the boundaries as an induction hypothesis for $k<n$. Then, for a G - n-cell $\sigma: \Lambda^{n} \times G / H \rightarrow X$ with $H=H_{i}, h_{H} \mid \sigma\left(\partial \Delta^{n} \times H / H\right)$ is homotopic to $f \mid \sigma\left(\partial \Delta^{n} \times H / H\right)$. We can now define $f \mid \sigma\left(\Delta^{n} \times H / H\right)$ by the homotopy on the collar and by h_{H} on the interior. Extending f on $\sigma\left(\Delta^{n} \times G / H\right)$ so that f becomes G-equivariant, $f \mid X^{n}$ satisfies also the induction hypothesis. So, we get a G-map $f: X \rightarrow Y$ such that $f \mid X^{H} \simeq h_{H}$.
q. e. d.

Proof of (3) of Theorem 2. If $f: X \rightarrow Y$ induces an isomorphism $\check{C}_{G}(f)$: $\check{C}_{G}(X) \rightarrow \check{C}_{G}(Y)$ in pro- \mathscr{W}_{G}, then all $\check{C}_{G}(f)^{H}: \check{C}_{G}(X)^{H} \rightarrow \check{C}_{G}(Y)^{H}$ are isomorphisms in pro-W. This means that all $f^{H}: X^{H} \rightarrow Y^{H}$ are shape equivalences by (2) of Theorem 2. Now suppose that all $f^{H}: X^{H} \rightarrow Y^{H}$ are shape equivalences. Then, also by (2) of Theorem 2, $\check{C}_{G}(f)^{H}=\left(f_{\mu}^{H}, \lambda\right): \check{C}_{G}(X)^{H} \rightarrow \check{C}_{G}(Y)^{H}$ are isomorphisms in
pro-W. Let $q_{H}=\left(\left(q_{H}\right)_{\lambda}, \mu\right): \check{C}_{G}(Y)^{H} \rightarrow \check{C}_{G}(X)^{H}$ be pro-W inverses of $\check{C}_{G}(f)^{H}$. Then
 Here we abbreviate $\mu=\mu(\lambda), \lambda^{\prime}=\lambda(\mu)$ and $\mu^{\prime}=\mu(\tilde{\lambda})$. By taking $\mu, \lambda^{\prime}, \tilde{\lambda}, \mu^{\prime}$ and $\tilde{\mu}$ equal to or bigger than the ones for each H, we may assume that they do not depend on H. Note that if $H^{\prime} \subset g H g^{-1}$ then $g_{*} f_{\mu}^{H} \simeq f_{\mu}^{H^{\prime}} g_{*}, g_{*} p_{\lambda \lambda^{\prime}}^{X}{ }^{X} \simeq p_{\lambda k^{\prime}}^{X, H^{\prime}} g_{*}$ and $g_{*} p_{\mu_{\mu} \mu^{\prime}}^{Y, H} \simeq p_{\mu \mu^{\prime}}^{Y, \mu^{\prime}} g_{*}$. We have in this case the following diagram:

In the diagram we omit to write $p_{\mu^{\prime}, \tilde{\mu}^{\prime}}^{Y,}, p_{\mu^{\prime} \tilde{\mu}^{\prime}}^{Y,}, p_{\lambda^{\prime}, \dot{\lambda}}^{X, H^{\prime}}$ and $p_{\lambda^{\prime}, H^{\prime}}^{X,}$. Not necessarily $g_{*}\left(q_{H}\right)_{\lambda} \simeq\left(q_{H^{\prime}}\right)_{\lambda} g_{*}$ but we have $g_{*}\left(q_{H}\right)_{\lambda} p_{\mu \tilde{\mu}}^{Y, H} \simeq\left(q_{H^{\prime}}\right)_{\lambda} p_{\mu \tilde{\mu}}^{Y, H^{\prime}} g_{*}$, because $g_{*}\left(q_{H}\right)_{\lambda} p_{\mu \tilde{\mu}}^{Y, H}$

 means that we may assume $g_{*}\left(q_{H}\right)_{\lambda} \simeq\left(q_{H^{\prime}}\right)_{\lambda} g_{*}$ for every H, H^{\prime} and g by retaking $\tilde{\mu}$ as $\mu(\lambda)$. By Lemma 4.2 we get a new G-map $q_{\lambda}: Y_{\mu(\lambda)} \rightarrow X_{\lambda}$ such that $q_{\lambda}^{H} \simeq\left(q_{H}\right)_{\lambda}$ for every subgroup H of G. Note that $q_{\lambda}^{H} f_{\mu(\lambda)}^{H} p_{\lambda / \mu(\lambda) \lambda}^{X, H} \simeq p_{\lambda \dot{\lambda}}^{X, H}$ for some $\tilde{\lambda} \geqq \lambda(\mu(\lambda))$ and every H. So, applying the same argument of Lemma 4.2, we can get a G-homotopy between $q_{\lambda} f_{\mu(\lambda)} p_{\lambda(\mu(\lambda)) \lambda}^{X}$ and $p_{\lambda \lambda}^{X}$. Also, we have a G-homotopy between $f_{\mu} q_{\lambda(\mu)} p_{\mu(\lambda(\mu)) \tilde{\mu}}^{Y}$ and $p_{\mu \tilde{\mu}}^{Y}$ for some $\tilde{\mu} \geqq \mu(\lambda(\mu))$. q.e.d.

Reserences

[1] Antonian, S. A. and Mardešić, S., Equivariant shape, Fund. Math. 127 (1987), 213223.
[2] Borsuk, K., Theory of shape, Monografie Matematyczne 59, Polish Scientific Publishers, Warszawa, 1975.
[3] Dydak, J. and Segal, J., Shape theory, An introduction, Lecture Notes in Math. 688, Springer, Berlin, 1978.
[4] Mardešić, S. and Segal, J., Shape theory, The inverse system approach, NorthHolland Math. Library 26, Amsterdam, 1982.
[5] Matumoto, T., G-CW complexes and a theorem of J. H.C. Whitehead, J. Fac. Sci. Univ. Tokyo, IA 18 (1971), 109-125.
[6] -_, A complement to the theory of G-CW complexes, Japan. J. Math. 10 (1984), 353-374.
[7] Matumoto, T., Minami, N. and Sugawara, M., On the set of free homotopy classes and Brown's construction, Hiroshima Math. J. 14 (1984), 359-369.
[8] Morita, K., Theory of shape (in Japanese), Sûgaku 28 (1976), 335-347.
[9] Murayama, M., On G-ANR's and their G-homotopy types, Osaka J. Math. 20 (1983), 479-512.
[10] Pop, I., An equivariant shape theory, An. Stint. Univ. "A1. I. Cuza" Iaşi s. Ia Mat. 30-2 (1984), 53-67.
[11] Smirnov, Yu. M., Shape theory of G-pairs, Uspekhi Mat. Nauk $40: 2$ (1985), 151$165=$ Russian Math. Surveys $40: 2$ (1985), 185-203.
[12] Whitehead, J. H. C., On C ${ }^{1}$-complexes, Ann. Math. 41 (1940), 809-824.
Department of Mathematics
Faculty of Science
Hiroshima University
Hiroshima 730, Japan

[^0]: Received January 25, 1988. Revised June 6, 1988.

