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EQUIVARIANT CW COMPLEXES AND SHAPE THEORY
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The aim of this note is to study a discrete group equivariant shape theory

by associating an inverse system in the homotopy category of equivariant CW

comolexes.

1. Introduction

Let G be a discrete group and X a G-space. For a subgroup H of G we

denote XH={x^X; gx=x for every g^H). For a G-map /: A->Y of X to

another G-space Y, we denote fH=f＼XH: XH->YH. Let .#0 denote the cate-

gory of G-spaces and G-homotopy classes of G-maps and Wg the fullsubcategory

of MG consisting of G-spaces which have the G-homotopy types of G-CW com-

plexes.

Theorem 1. There is a functor CG from MG into the pro-category pto-Wg
v

of WG so that CG{X)=(Xx, [pfx-la,A) has the universal property for the equi-

variant shape theory with a system G-map px=(Lpf]G)' X-*GG(X), that is,

px: X―>Cg(X) is a G-CW expansion of X.

When G Is a finitegroup, we know that a G-ANR has the G-homotopy

type of a G-CW complex and vice versa. Also any numerable covering has a

refinementof numerable G-equivariantcovering. So, we have

Tneorem 2. Let G be a finitegroup and X a G-space.

v
(1) Any G-ANR expansion of X is equivalent to px: X-*CG(X).

v
(2) The expansion px: X-*Cg(X) is a {non-equivariant) CW expansion of X.

Moreover, if X is a normal G-space, then px-H=(tpf-Hl):XH-*CG(X)B=

(^F> LPu'HJi>-A)is a CW expansion for every subgroup H of G.

V V(3) Let f : X―>Y be a G-map between normal G-spaces. Then, CG{f) '･Gg{X)
v

->Cg(Y) is an isomorphism in pro-'WG if and only if fH: XH-^YH is a shape
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equivalence for every subgroup H of G.

The case when G is a finitegroup is also treated by Pop [10]. But he did

not mention on (2) and (3) of Theorem 2. We note also that Antonian-Mardesic

[1] defined the equivariant ANR shape for compact groups. Our treatment in

the case when G is not a discrete ccrouo will be discussed elsewhere.

2. A quick review of shape theory

The general references are [3], [4] and [8]. Borsuk (1968) defined the

shape for compact metric spaces, Mardesic-Segal (1971) for compact Hausdorfl

spaces, Fox (1972) for metric spaces, and Mardesic (1973) and K. Morita (1975".

for topological spaces.

Let X=(XX, pxv, A) and Y=(Y,,, qPfl',M) be inverse systems in a category

C. A system map of X to Y consists of 6: M-^-A and morphisms /^i Xe^:

-^YM in C satisfying q^f ppewn^f ppei&x for ft^ft', 6{[i')^X and 0(fi)^X.

Two system maps (/^, 0) and (/^, 6') are said to be equivalent if each p.^M

admits a X<=A, X^6{pt) and X^d'(pt), such that f
^peiitn―fixpe'c^x-

The pro-

category pro-C of the category C is defined by Obj (pro-C)=all inverse systems

in C and Mor(X, Y)=equivalence classes of system maps of X to Y. Let £>

be a full subcategory of C. A ^-expansion p―{px): X->X of X is a system

map which is characterized by the following universal properties due to Mardesic

[4, Ch. I, Th. I]:

(0) Xx^-S) for each l^A.

(1) For any map /: X->K with K^S) there exists a morphism hx: Xx―>K

such that f―hxpx-

(2) If f-gxpx then there is a I'^l such that hxpxx>=gxpxx>.

We give an exact definition of Cech expansion and Cech system due to

Morita. Let W be the homotopy category of spaces which have homotopy type

of CW complexes.

For a space X we associate an inverse system C{X)―{Xx, {.pfx'i,A) in 'W

by

{<Ux}xeA=aft numerable coverings of X, X'^X iff HJx'^Vx ',

Xx=N(Vx) and pfx.: N(HJX')-+ N(<UX),

where NiRJx) is the nerve of IJx ―iUi) and pfr is a simplicial map defined by

choosing p=pfxr so that U^dU^^y The homotopy class ＼_pfx'~＼is independent

of the choice of p. Then the inverse system C(X) in nro-W well-defined and
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is called the Cech system of X. Here a pointwise finite covering cu={Ua} of

X is called numerable if it admits a locally finitepartition of unity {pa} i.e., a

family of continuous functions pa: X-+[0, 1] with ^pa=l and pa＼0,l]c£/≪

such that {paKO, 1]} is a locally finite covering of X. By the locally finite

partition of unity {pa} subordinate to 17; we have a map pf: X~>Xx defined

by pf(x)=J}pa(xKUa> where <£/a>eZ; is the vertex corresponding to Ua. A

different choice of the locally finitepartition of unity gives another map con-

tiguous to pf. So, the homotopy class of pf depends only on 17; and pfrpf

^■pf. Then px―([/>f]): X-+C(X) is a W-expansion and called the Cech expan-

sion of X.

Any S^-expansion X->X is equivalent to the Cech expansion px: X-+C(X).

The equivalence class of ^-expansion of X is called the shape of X.

3. Equivariant Cecil system CG(X) (Proof of Theorem 1)

Let G be a discrete group and X a G-space. An open covering cU={Ua]

of X is called a numerable G-equivariant covering if gUa=Uga<BcU for each

Ua^HJ and g(=G and if <U has a locally finite partition of unity {pa} such

that pga(x)=pa(g~1x) for any ^eG and the following three sets have finite

differences:

{g(=G;ga=a i.e., pga=pa}CZ{g^G; gUa=Ua}CZ{g^G; gUar＼Ua^0}.

The nerves Xx―NiVx) of the numerable G-equivariant coverings HJx of X

induce an inverse system CG{X)={Xx, Ipu'la, A) in Wg with a system G-map

Px=(LPflo: X-*Xi) such that pf-apfrPr- The G-homotopy classes [/>f]0

and [/>&]o are also well-defined by the argument using contiguity as in the

non-equivariant case.

For a G-map f: X-^Y a system G-map C0(f)=(£f ^g, 0): Ce(X)=

(Xi, Ip&la, A)-^Ca(Y)=(Yft, ipf^a, M) is defined so that p^f^af,pi^. In

fact, a numerable G-equivariant covering ^^{Vf, pp} of Y induces a covering

f~lc^P={f~＼V^), ppf} of Z, which is numerable G-equivariant and may be

denoted by IJg^y an(* /?'･N{f~lcVl,)-^N{pJll) defined by the natural inclusion

satisfiesthe required G-homotopy equality.

Hereafter we will omit [ ]G to avoid complexity of notation.

Lemma 3.1. Let K be a G-CW complex. Then, the system G-map pK: K-*

CG(K) is an isomorphism in pro-WG.

Lemma 3.2. For a G-space X we take a G-map pf: X-^Xx in the system
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G-map px=(pf): X->CG(X) and consider a system G-map CG(px)=({px)(if <fx)

CG(X)-*CG{Xx). Then, there is a v with v^l and u~^<px({i)such that
p]xpfv―

i

(Pf)tiPvxW≫ where />£denotes p%*.

Lemma 3.3 (Universal property for equivariant shape). Let px=(pf)'. X―

Cg(X)―{Xx, pfr, A) be the system G-map defined above. Let K be a G-CS＼

complex and f: X~>K a G-map.

(1) There exist a X and a G-map h: Xx-^K such that f ―Ghpf.

(2) // f^agpf for any other G-map g: Xx-≫K, then there is a v with v^j

such that hpfv^agpfv

Proof of Lemma 3.3 and Theorem 1 from Lemmas 3.1 and 3.2. Lernm?

3.3 is a detailed restatement of Theorem 1. Lemmas 3.1 and 3.2 imply Lemrm

3.3 in a standard way. In fact, the system G-map CG(/): CG{X)->CG(K) consist?

of 6: M->A and G-maps /^: Xec^-^K^. By Lemma 3.1 we have a p. and e

G-map q: K^K such that qp^^aidK- Now it sufficesto define X=8{ft) and

h=qfp to prove (1), because qf
^pf^

―aqpff ―G f. To prove (2) we note thai

QgtiPex<.p->―og replacing X, f and 6 with Xx, g and dx respectively. By LemmE

3.1 there is a G-map q':(XxX-^Xx with v^dx(fi) such that q'pi^a id and

plq'plz^a pit,for some v^v, where p＼v>denotes pfj. So, gq'piz―GqgfiPh- Here

we retake 0x(fi)=v. Take the G-map (pf)z: XV'-*(Xx)z by putting v'=<px(v)-

Then, since gpf ―of, we have a v' with v'^v' and v'^d(pi) such that

gpPhiPfhpSt'
~

a fppfitiw ･ So' gQ'Piv{px>vPxi'- g qfppfw ■
On the other hand

by Lemma 3.2 we have plv(Px)zPx v ―g plpx~,if necessary retaking a larger v'.

Hence, gpf.,^a qf ppfi^s'-a hpfs,. q. e.d.

Proof of Lemma 3.1. We consider a natural G-map a: ＼S(K)＼->K for the

geometric realization of the singular complex of K. Since ＼S(K)＼H=＼S(KH)＼,

we see that o is a G-homotopy equivalence. Since a G-homotopy equivalence

induces an isomorphism CG(-) in pro-^e, the proof reduces to the following two

lemmas.

Lemma 3.4. For a G-space X, ＼S(X)＼admits a G-equivariant triangulation.

Lemma 3.5. For a G-equivariantly triangulated G-space K, pK: K->GG(K)

is an isomorphism in pro-WG. Moreover, suppose ftis given then there are a ft

(l^fi) and a G-map q: Kp->K such that q is the G-homotopy inverse to pf.

PROOF OF LEMMA 3.4 Wp knnw i-hpf-1-hprpis n n.hnmpnmnrnhism hpfwppn
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|S(Z)| and |Sd5(Z)| where Sd S(X) is a barycentric subdivision of the singular

s.s. complex S(X) of X. Note that the natural quotient map |SdS(.X)|-≫

|SdS(JY")/G| restricts to a homeomorphism on any cell of |SdS(X)|. So, a

triangulation of the regular CW complex ＼§dS(X)/G＼lifts to a G-equivariant

triangulation of |Sd5(Z)|. q.e.d.

Proof of Lemma 3.5. For each vertex v we take an open star neighbor-

hood Uv. Then, vu ･■■,vn are the vertices of the same simplex if and only if

UVxr＼ ■･■r＼UVn is not empty. If necessary by taking a barycentric subdivision,

we may assume the following: If gv and v are in the same simplex of K

then gv―v and hence Ugvr＼Uv^0 implies gv―v. We put p^(x)=the coefficient

of x with respect to v. Then the G-map p: K->N({UV}) defined by {pv} is not

only a bijection but also a G-homeomorphism. Note here that pv(gx)―pv(x) if

gv=v. Now we make the support of pv smaller and get a locally finite G-

equivariant partition of unity pv so that TJ={UV, pv} is a numerable G-equivari-

ant covering and p: K-+N(1J), defined by {pv}, is G-homotopic to p: K-^NCU).

If we take a subdivision of K fine enough at first, we may assume that cU^cUfl.

Take this HJ as 17^. Then p$: K->Kp=N(cUfi) is a G-homotopy equivalence.

This finishes the proof of Lemma 3.5 and also Lemma 3.1. q. e. d.

Proof of Lemma 3.2. Note that Xx is equivariantly triangulated. By the

proof of Lemma 3.5 we have a ft(^/i) and a subdivision X'x of Xx such that

Vfi is the open star covering of X'x and py. X'x-^(Xx)fi=N(1Jfi) is G-homotopic

to the natural identification. The G-map pf induces a numerable G-equivariant

covering <l7J,=(/>f)"1(£L//f)of J^and the natural inclusion (pf)fi: Xy=A^(<UvH(Zy!)/?

=NCUji). The G-map pfv is the composition of the inclusion XV->X'X with a

simplicial G-map XX->XX given by choosing a refinement. Hence Pjipfu―
Gipf)^.

This implies Lemma 3.2 and completes a proof of Theorem 1. q. e. d.

4. The case when G is a finite group

Let G be a finite group and X a G-space. Then (1) of Theorem 2 is a

consequence of Theorem 1 and the fact that a G-ANR has the G-homotopy of

a G-CW complex and vice versa (cf.[9] and [4, Appendix] or [10]). Pop [10]

also defines the equivariant shape theory for a finite group G. In the case that

Y is normal (9.}anr! (%} nf Theorem 9.enrich the result-.

Lemma 4.1. Let G={gu ■･■,gn) be a finite group. For any numerable

covering cU―{Ua, pa} of a G-space X we have a numerable G-equivariant cover-
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ing cv of X such that cv-<<V.

Proof. It suffices to take the covering cv consisting of g＼xU aiC＼■■■r＼g~nlUan

with pai(gix) ― pajignx). In fact, gi{g＼lUaxr＼ ･･･r＼gn1Uan)dUai and the sum

'Zpa^gix) ― pajignx) is equal to (2,pai(gix)) ･･■C£pan(gnx))=l. Note that we

do not require gV pr＼Vpi=0 implies gV^ ―V$ for the numerable G-equivariant

covering. q. e. d.

Proof of (2) of Theorem 2. Lemma 4.1 implies that px: X~*OG(X) is

also a (non-equivariant) CW expansion of X [4, Ch. I, § 1, Th. 1; §2, Rem. 3].

Assume that X is a normal space. For a subgroup H of G any numerable

covering <U# of the closed subspace XH extends to a numerable covering *U of

X i.e., cUH={UnXH; U^V}. We may assume that if UnXH=0 then U is

not H-'mvariant for £/ecU. So, we see that CG(X)H^Cwan(XH) for a normal

G-space X where W(H)=N(H)/H and N(,H)={g<=G＼ gHg~l=H). Now we

have proved (2) of Theorem 2 by considering XH a PF(i£)-space. q.e. d.

Lemma 4.2. Let G be a finite group. Let X and Y be G-CW complexes

and hH'. XH-+YH maps satisfying g*hH~hH<g* for every pair of subgroups

H'CgHg'1 where g*(x)=gx. Then there is a G-map f: X-+Y such that f＼XH

~hH for every subgroup H of G.

Proof. Choose a family of representatives {Hlt ■■■,Hm＼ of conjugacy

classes of subgroups of G. For G-O-cell ai A°xG/Hi-*X we define f＼X° by

f{a(A°xgHi/Hi))=g^hHi(a{AoxHi/Hi)). Assume that a G-map f＼Xn^ is defined

and for H=^Hi there are given homotopies between f＼a(AkxH/H) and

hH＼a(AkxH/H) in YH which extend the homotopies on the boundaries as an

induction hypothesis for k<n. Then, for a G-n-cell a: AnxG/H->X with

H=Hi, hH＼a(dAnxH/H) is homotopic to f＼o(dAnxH/H). We can now define

f＼a(AnxH/H) by the homotopy on the collar and by hH on the interior. Ex-

tending / on o(AnxG/H) so that / becomes G-equivariant, f＼Xn satisfies also

the induction hypothesis. So, we get a G-map /: X->Y such that f＼XH=±hH.

q. e. d.

Proof of (3) of Theorem 2. If /: X-^Y induces an isomorphism CG(f):

Cg(X)-*Cg(Y) in pro-WG, then all CG(f)H: CG(X)H->CG(Y)H are isomorphisms in

pro-W. This means that all fH: XH-+YH are shape equivalences by (2) of

Theorem 2. Now suppose that all fH: XH~+YH are shape equivalences. Then,

also by (2) of Theorem 2, CG(f)H=(f%, X): CG(X)H->CG(Y)I{ are isomorphisms in
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pro-W. Let gH=((gB)x, p): CG{Y)H->CG(X)H be pro-W inverses of CG(f)H. Then

(qH)xfH,Plf^PxxiH for some l^X' and f*p*f (qB)iP ^p for some p^p'.

Here we abbreviate p―p{X), X'=X(p) and ft'=fi(X). By taking ft,X',X, p.'and p.

equal to or bigger than the ones for each H, we may assume that they do not

depend on H. Note that if H'CgHg-1 then g*f**^ffg*, g*pfxiH-PftH'g*

and g^p^JF ―p^fi'g*. We have in this case the following diagram:

w W^SlSvV
t,XB'JjLY*'^Zkx*'

In the diagram we omit to write />£;£,pY;H~'',pf;f and P'J;f- Not necessarily

g*{qH)x-{qw)xg* but we have g*(qH)xPYMf'-(qH'hP*f g*, because g^q^xp^f

^g*(qH)xf%Plf(qx)xPl:?^g*PjiH(qH)xpr;^PliH'g*(qH)xPYM;^^^

'g*(qa)lPYfi'.f- (qw)xg*tfPif{qH)xPY;,H~ - (qB-hg*p*f - (qH-)xPYfg*. This

means that we may assume g*(qH)x~(qH')xg* for every H, H' and g by retak-

ing p. as fi(Z). By Lemma 4.2 we get a new G-map ^.j:Ypa-i-^Xx such that

qx-{qa)x for every subgroup i/ of G. Note that qxf%a)Px<-/ixm-P*iH for

some X^X(ft(Z)) and every if. So, applying the same argument of Lemma 4.2,

we can get a G-homotopy between qxf[la^Px^a^x and £^. Also, we have a

G-homotopy between f^qxc^Plcxc^fi and /^ for some ft^piXp)). q.e.d.
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