A CLASS OF SPACES WHOSE COUNTABLE PRODUCT WITH A PERFECT PARACOMPACT SPACE IS PARACOMPACT

By
Hidenori TANAKA

1. Introduction.

All spaces are assumed to be T_{1}-spaces. In particular, paracompact spaces are assumed to be T_{2}. The letter ω denotes the set of natural numbers.

Let us denote by $\mathscr{P}(\mathcal{L})$ the class of all spaces (regular spaces) whose product with every paracompact (regular Lindelöf) space is paracompact (Lindelöf). On the other hand, let \mathcal{L}^{\prime} be the class of regular spaces whose product with every regular hereditarily Lindelöf space is Lindelöf. Then it is clear that $\mathcal{L} \subset \mathcal{L}^{\prime}$. A general problem is to characterize $\mathscr{P}(\mathcal{L})$ (Tamano). T. Przymusiński [13] posed the following problem: If $X \in \mathscr{P}(\mathcal{L})$, then is X^{ω} paracompact (Lindelöf)? Furthermore, E. Michael asked whether \mathcal{L}^{\prime} is closed with respect to countable products. K. Alster [2], [3] gave a negative answer to E. Michael's problem. He showed that there are a separable metric space M and a regular Lindelöf space X such that for every regular Lindelöf syace Y and $n \in \omega$, the products $Y \times X^{n}$ and X^{ω} are Lindelöf but $M \times X^{\omega}$ is not. However, if X is a separable metric space or X is a regular Čech-complete Lindelöf space or X is a regular C-scattered Lindelöf space, then $X^{\omega} \in \mathcal{L}^{\prime}$. The first result is due to E. Michael (cf. [10]), the second one is due to Z. Frolik [7] and the third one is due to K. Alster [1].

Let $\mathscr{D C}$ be the class of all T_{2}-spaces which have a discrete cover by compact sets. The topological game $G(\mathscr{D C}, X)$ was introduced and studied by R . Telgársky [16]. The games are played by two persons called Players I and II. Players I and II choose closed subsets of II's previous play (or of X, if $n=0$): Player I's choice must be in the class $\mathscr{D C}$ and II's choice must be disjoint from I's. We say that Player I wins if the intersection of II's choices is empty. Recall from [16] that a space X is said to be a $\mathscr{D C}$-like space if Player I has a winning strategy in $G(\mathscr{D C}, X)$. The class of $\mathscr{A C}$-like spaces includes all spaces which admit a σ-closure-preserving closed cover by compact sets, and

[^0]paracompact, σ - C-scattered spaces. R. Telgársky proved that if X is a paracompact (regular Lindelöf) $\mathscr{D C}$-like space, then $X \in \mathscr{P}(\mathcal{L})$. M. E. Rudin and S . Watson [14] proved that the product of countably many scattered paracompact spaces is paracompact. Furthermore, A. Hohti and J. Pelant [9] showed that the product of countably many paracompact, σ - C-scattered spaces is paracompact (cf. [6]). K. Alster [4] also proved that if Y is a perfect paracompact space and X_{n} is a scattered paracompact space for each $n \in \omega$, then $Y \times \underset{n \in \omega}{\prod_{n}} X_{n}$ is paracompact.

In this paper, we discuss paracompact (regular Lindelöf) $\mathscr{D C}$-like spaces and generalize K. Alster's results. More precisely, we show that if Z is a perfect paracompact (regular hereditarily Lindelöf) space and Y_{i} is a paracompact (regular Lindelöf) $\mathscr{D C}$-like space for each $i \in \omega$, then $Z \times \underset{i \in \omega}{ } Y_{i}$ is paracompact (Lindelöf). Therefore, if X is a regular Lindelöf $\mathscr{D C}$-like space, then $X^{\omega} \in \mathcal{L}^{\prime}$.

2. Topological games.

The topological game $G(\mathscr{D C}, X)$ is described in the introduction. F. Galvin and R. Telgársky showed that if Player I has a winning strategy in $G(\mathscr{D C}, X)$, then he has a stationary winning strategy in $G(\mathscr{D C}, X)$, i. e., a winning strategy which depends only on II's previous move. More precisely,

Lemma 2.1. ([8]). Player I has a winning strategy in $G(\mathscr{D C}, X)$ if and only if there is a function s from 2^{X} into $2^{x} \cap \mathscr{A C}$, where 2^{X} denotes the set of all closed subsets of X, satisfying
(i) $s(F) \subset F$ for each $F \in 2^{x}$,
(ii) if $\left\{F_{n}: n \in \omega\right\}$ is a decreasing sequence of closed subsets of X such that $s\left(F_{n}\right) \cap F_{n+1}=\varnothing$ for each $n \in \omega$, then $\bigcap_{n \in \omega} F_{n}=\varnothing$.

The following resulls are well known.
Lemma 2.2 (R. Telgársky [16]). Le X and Y be spaces, and let $f: X \rightarrow Y$ be a perfect mappıng from X onto Y. If Y is a $\mathscr{D C}$-like space, then X is also a $\mathfrak{D C}$-like space.

Lemma 2.3 (R. Telgársky [16]). If a space X has a countable closed cover by $\mathscr{D C}$-like sets, then X is a $\mathscr{D C}$-like space.

Recall that a space X is scattered if every non-empty subset A of X has an isolated point of A, and C-scattered if for every non-empty closed subset A of X, there is a point of A which has a compact neighborhood in A. Clearly
scattered spaces and locally compact T_{2}-spaces are C-scattered. Let X be a space. For each $F \in 2^{X}$, let
$F^{(1)}=\{x \in F: x$ has no compact neighborhood in $F\}$.
Let $X^{(0)}=X$. For each successor ordinal α, let $X^{(\alpha)}=\left(X^{(\alpha-1)}\right)^{(1)}$. If α is a limit ordinal, let $X^{(\alpha)}=\bigcap_{\beta<\alpha} X^{(\beta)}$. Notice that a space X is C-scattered if and only if $X^{(\alpha)}=\varnothing$ for some ordinal α. If X is C-scattered, let $\lambda=\inf \left\{\alpha: X^{(\alpha)}=\varnothing\right.$. We say that λ is the C-scattered height of X. A space X is said to be σ scattered (σ-C-scattered) if X is the union of countably many closed scattered (C-scattered) subspaces.

Lemma 2.4. (R. Telgársky [16]). (a) If a space X has a σ-closure-preserving closed cover by compact sets, then X is a $\mathscr{D C}$-like space.
(b) If X is a paracompact, σ-C-scattered space, then X is a $\mathscr{D C}$-like space.

Lemma 2.5. (R. Telgársky [16]). If X is a paracompact (regular Lindelöf) $\mathscr{O C}$-like space, then $X \in \mathscr{P}(\mathcal{L})$.

For topological games, the reader is refered to R. Telgársky [16], [17] and Y. Yajima [18].

3. Paracompactness and Lindelöf property.

Lemma 3.1 (K. Nagami [11]). For a paracompact (regular Lindelöf) space X, there are a paracompact (regular Lindelöf) space X_{0} with dim $X_{0} \leqq 0$ and a perfect mapping $f_{X}: X_{0} \rightarrow X$ from X_{0} onto X.

Let A be a set. We denote by $A^{<\omega}$ the set of all finite sequences of elements of A. If $\tau=\left(a_{0}, \cdots, a_{n}\right) \in A^{<\omega}$ and $a \in A$, then $\tau \oplus a$ denotes the sequence ($\left.a_{0}, \cdots, a_{n}, a\right)$.

The following is the main result in this paper.
Theorem 3.2. If Z is a perfect paracompact space and Y_{i} is a paracompact $\mathscr{D C}$-like space for each $i \in \omega$, then $Z \times \prod_{i \in \omega} Y_{i}$ is paracompact.

Proof. By Lemma 3.1, for each $i \in \omega$, there are a paracompact space $Y_{i, 0}$ with $\operatorname{dim} Y_{i, 0} \leqq 0$ and a perfect mapping $f_{i}: Y_{i, 0} \rightarrow Y_{i}$ from $Y_{i, 0}$ onto Y_{i}. Let $X=\bigoplus_{i \in \omega} Y_{i, 0} \cup\{a\}$, where $a \notin \bigcup_{i \in \omega} Y_{i, 0}$. The topology of X is as follows: Every $Y_{i, 0}$ is an open-and-closed subspace of X and a is isolated in X. Then X is a paracompact space with $\operatorname{dim} X \leqq 0$. It follows from Lemmas 2.2 and 2.3 that
X is a $\mathscr{D C}$-like space. Define $f: \prod_{i \in \omega} Y_{i, 0} \rightarrow \prod_{i \in \omega} Y_{i}$ by $f(y)=\left(f_{i}\left(y_{i}\right)\right)_{i \in \omega}$ for $y=$ $\left(y_{i}\right)_{i \in \omega} \in \prod_{i \in \omega} Y_{i, 0}$. Then $i d_{Z} \times f: Z \times \prod_{i \in \omega} Y_{i, 0} \rightarrow Z \times \prod_{i \in \omega} Y_{i}$ is a perfect mapping from $Z \times \prod_{i \in \omega} Y_{i, 0}$ onto $Z \times \prod_{i \in \omega} Y_{i}$. Since $Z \times \prod_{i \in \omega} Y_{i, 0}$ is a closed subspace of $Z \times$ X^{ω}, in order to prove this theorem, it suffices to prove that $Z \times X^{\omega}$ is paracompact.

Let us denote by \mathscr{B} the base of $Z \times X^{\omega}$ consisting of sets of the form $B=$ $U_{B} \times \prod_{i \in \omega} B_{i}$, where U_{B} is an open subset of Z and there is an $n \in \omega$ such that for each $i \leqq n, B_{i}$ is an open-and-closed subset of X and for each $i>n, B_{i}=X$. For each $B=U_{B} \times \prod_{i \in \omega} B_{i} \in \mathscr{B}$, let $n(B)=\inf \left\{i \in \omega: B_{j}=X\right.$ for each $\left.j \geqq i\right\}$.

Let \mathcal{O} be an open covering of $Z \times X^{\omega}$ and let \mathcal{O}^{F} be the set of all finite unions of elements of \mathcal{O}. Put $\mathcal{O}^{\prime}=\left\{B \in \mathscr{B}: B \subset O\right.$ for some $\left.O \in \mathcal{O}^{F}\right\}$. Let $\mathcal{K}=$ $\left\{\prod_{i \in \omega} K_{i}: K_{i}\right.$ is a compact subset of X for each $\left.i \in \omega\right\}$. For each $z \in Z$ and $K \in$ \mathcal{K}, let $K_{(z, K)}=\{z\} \times K$. Then there is an $O \in \mathcal{O}^{F}$ such that $K_{(z, K)} \subset O$. By Wallace theorem in R. Engelking [5], there is a $B \in \mathscr{B}$ such that $K_{(2, K)} \subset B \subset O$. Thus we have $B \in \mathcal{O}^{\prime}$. Define $n\left(K_{(z, K)}\right)=\inf \left\{n(O): O \in \mathcal{O}^{\prime}\right.$ and $\left.K_{(z, K)} \subset O\right\}$. It suffices to prove that \mathcal{O}^{\prime} has a σ-locally finite open refinement.

Let s be a stationary winning strategy for Player I in $G(\mathscr{D C}, X)$. Let $B=$ $U_{B} \times \prod_{i \in \omega} B_{i} \in \mathscr{B}$ such that for each $i \leqq n(B)$, we have already obtained a compact set $C_{\lambda(B, i)}$ of $B_{i}\left(C_{\lambda(B, n(B))}=\varnothing . \quad C_{\lambda(B, i)}=\varnothing\right.$ may be occur for $\left.i<n(B)\right)$. We define $G_{m, j}(B)$ and $\mathscr{B}_{m, j}(B)$ of collections of elements of \mathscr{B} for each $m, j \in \boldsymbol{\omega}$. Fix $i \leqq n(B)$. If $C_{\lambda(B, i)} \neq \emptyset$, let $W_{\gamma(B, i)}=B_{i}$. Put $\Lambda(B, i)=\{\lambda(B, i)\}$ and $\Gamma(B, i)$ $=\{\gamma(B, i)\}$. Let $\mathcal{C}(B, i)=\left\{C_{\lambda}: \lambda \in \Lambda(B, i)\right\}=\left\{C_{\lambda(B, i)}\right\}$, and $\mathscr{W}(B, i)=\left\{W_{\gamma}: \gamma \in\right.$ $\Gamma(B, i)\}=\left\{W_{\gamma(B, i)}\right\}$. Assume that $C_{\lambda(B, i)}=\varnothing$. Then there is a discrete collection $\mathcal{C}(B, i)=\left\{C_{\lambda}: \lambda \in \Lambda(B, i)\right\}$ of compact susbets of X such that $s\left(B_{i}\right)=$ $\cup \mathcal{C}(B, i)$. Since B_{i} is an open-and-closed subspace of X, B_{i} is a paracompact space with $\operatorname{dim} B_{i} \leqq 0$. Then there is a pairwise disjoint collection $\mathscr{W}(B, i)=$ $\left\{W_{r}: \gamma \in \Gamma(B, i)\right\}$ of open subsets in B_{i} (and hence, in X), satisfying
(i) $\mathscr{W}(B, i)$ covers B_{i},
(ii) Every member of $\mathscr{N}(B, i)$ meets at most one member of $\mathcal{C}(B, i)$.

In each case, for $\gamma \in \Gamma(B, i), K_{r}=W_{r} \cap C_{i}$ if W_{γ} meets some (unique) C_{i}. If $W_{r} \cap(\cup C(B, i))=\varnothing$, then we take a point $p_{r} \in W_{\gamma}$ and let $K_{\gamma}=\left\{p_{r}\right\}$. Thus, if $C_{\lambda(B, i)} \neq \varnothing$, then $K_{\gamma(B, i)}=W_{\gamma(B, i)} \cap C_{\lambda(B, i)}=C_{\lambda(B, i)}$. Put $\Delta_{B}=\Gamma(B, 0) \times \cdots \times$ $\Gamma(B, n(B))$. For each $\delta=(\gamma(\delta, 0), \cdots, \gamma(\delta, n(B))) \in \Delta_{B}$, let $K(\delta)=K_{\gamma(\delta, 0)} \times \cdots \times$ $K_{\gamma(\delta, n(B))} \times\{a\} \times \cdots \times\{a\} \times \cdots$, and let $\mathcal{K}_{B}=\left\{K(\delta): \delta \in \Delta_{B}\right\}$. Then $\mathcal{K}_{B} \subset \mathcal{K}$. For each $z \in U_{B}$ and $\delta=(\gamma(\delta, 0), \cdots, \gamma(\delta, n(B))) \in \Delta_{B}$, let $r\left(K_{(z, K(\delta))}\right)=\max \left\{n\left(K_{(z, K(\delta))}\right)\right.$, $n(B)\}$. Fix $z \in U_{B}$ and $\delta=(\gamma(\delta, 0), \cdots, \gamma(\delta, n(B))) \in \Delta_{B}$. Take an $O_{z, \delta}=U_{z, \delta} \times$ $\prod_{i \in \omega} O_{z, \delta, i} \in \mathcal{O}^{\prime}$ such that $K_{(z, K(\delta \partial))} \subset O_{z, \delta}$ and $n\left(K_{(z, K(\delta)\rangle)}\right)=n\left(O_{z, \delta)}\right.$. Then we can
take an $H_{(z, K(\delta))}=H_{z, \delta \delta} \times \prod_{i \in \omega} H_{(z, K(\partial)), i} \in \mathscr{B}$ such that:
(iii) $H_{z, \dot{\delta}} \times \prod_{i=0}^{n\left(K_{(z, K(\delta))}-1\right.} H_{(z, K(\bar{\partial}), i} \times X \times \cdots \times X \times \cdots \subset O_{z, \bar{o}}$
and $z \in H_{z, \dot{\delta}} \subset U_{B} \cap U_{z, \delta}$,
(iv-1) For each i with $n\left(K_{(z, K(\delta)))} \leq i \leqq r\left(K_{(z, K(\delta)))}\right)\right.$, let $H_{(z, K(\delta)), i}=W_{\gamma(\delta, i),}$
(iv-2) For each $i<n\left(K_{(z, K(\delta))}\right)$ with $i \leqq n(B)$, let $H_{(z, K(\delta \partial)), i}$ be an open-andclosed subset of $W_{\gamma(\delta, i)}$ such that $K_{\gamma(\delta, i)} \subset H_{(z, K(\delta)), i} \subset O_{z, \delta, i}$,
(iv-3) For each i with $n(B)<i<n\left(K_{(z, K(\delta))}\right)$, let $H_{(z, K(\delta)), i}=\{a\}$,
(iv-4) In case of that $r\left(K_{(z, K(\partial))}\right)=n(B)$, let $H_{(z, K(\delta)), i}=X$ for $n(B)<i$. In case of that $r\left(K_{(z, K(\hat{\partial}))}\right)=n\left(K_{(z, K(\partial)))}\right)>n(B)$, let $H_{(z, K(\delta)), i}=X$ for $n\left(K_{(z, K(\delta))}\right) \leqq i$.

Then we have $K_{(z, K(\hat{\partial}))} \subset H_{(z, K(\hat{\partial})\rangle}$. Fix $m \in \omega$ and let $V_{m}(K(\delta))=\left\{z \in U_{B}\right.$: $\left.n\left(K_{(z, K(\delta \partial))}\right) \leqq m\right\}$. Then $V_{m}(K(\delta))=\bigcup\left\{H_{z, \hat{\theta}}: n\left(K_{(2, K(\hat{\partial}))}\right) \leqq m\right\}$. Since Z is a perfect paracompact space, there is a family $\mathscr{V}_{\delta, m}=\bigcup_{j \in \omega} \mathcal{V}_{\delta, m, j}$, where $\mathbb{V}_{\delta, m, j}=$ $\left\{V_{\alpha}: \alpha \in \Xi_{\hat{\delta}, m, j}\right\}$, of collections of open sets in $V_{m}(K(\delta))$ (and hence, in Z) satisfying
(v) Every member of $\mathcal{Q}_{\delta, m}$ is contained in some member of $\left\{H_{z, \delta}\right.$: $\left.n\left(K_{(z, K(\delta))}\right) \leqq m\right\}$,
(vi) $\mathcal{C}_{\hat{\delta}, m}$ covers $V_{m}(K(\boldsymbol{\delta}))$,
(vii) $\mathcal{V}_{\delta, m, j}$ is discrete in Z for each $j \in \omega$.

For $j \in \omega$ and $\alpha \in \Xi_{\delta, m, j}$, take a $z(\alpha) \in V_{m}(K(\delta))$ such that $V_{\alpha} \subset H_{z(\alpha), \dot{\delta}}$. Put $W_{\delta}=\prod_{i=0}^{n(B)} W_{\gamma(\bar{\delta}, i)} \times X \times \cdots \times X \times \cdots$ and $V_{\alpha, \bar{\delta}}=V_{\alpha} \times W_{\hat{\delta}}$. Then $\left\{V_{\alpha, \delta}: \delta \in \Delta_{B}, m, j\right.$ $\in \omega$ and $\left.\alpha \in \Xi_{\delta, m, j}\right\}$ is a collection of elements of \mathscr{B} such that for each $\delta \in \Delta_{B}$, $m, j \in \omega$ and $\alpha \in \Xi_{\delta, m, j}, V_{\alpha, \dot{\delta}} \subset B$ and $\left\{V_{\alpha, \bar{\delta}}: \delta \in \Delta_{B}, m, j \in \omega\right.$ and $\left.\alpha \in \Xi_{\delta, m, j}\right\}$ covers B.
(viii) For each $m, j \in \omega,\left\{V_{\alpha, \delta}: \delta \in \Delta_{B}\right.$ and $\left.\alpha \in \boldsymbol{\Xi}_{\delta, m, j}\right\}$ is discrete in $Z \times X^{\omega}$.

Fix $m, j \in \omega$. Let $(z, x) \in Z \times X^{\omega}$ and $x=\left(x_{i}\right)_{i \in \omega}$. For each $i \leqq n(B)$, since B_{i} is an open-and-closed subset of X, we may assume that $x_{i} \in B_{i}$. There is a unique $\delta=(\gamma(\delta, 0), \cdots, \gamma(\delta, n(B))) \in \Delta_{B}$ such that $x \in W_{\tilde{\delta}}$. Since $\mathcal{V}_{\delta, m, j}$ is discrete in Z, there is an open neighborhood U of z in Z such that U meets at most one member of $\mathcal{C}_{\delta, m, j}$. Then $U \times W_{\delta} \in \mathscr{B}$ and $U \times W_{\grave{\delta}}$ meets at most one member of $\left\{V_{\alpha, \delta^{\prime}}: \delta^{\prime} \in \Delta_{B}\right.$ and $\left.\alpha \in \Xi_{\tilde{j}^{\prime}, m, j}\right\}$. Thus $\left\{V_{\alpha, \delta}: \delta \in \Delta_{B}\right.$ and $\left.\alpha \in \Xi_{\delta, m, j}\right\}$ is discrete in $Z \times X^{\omega}$.

For each $\delta \in \Delta_{B}, m, j \in \omega$ and $\alpha \in \Xi_{\hat{\delta}, m, j}$, let $G_{\alpha, \bar{\delta}}=V_{\alpha} \times \prod_{i \in \omega} H_{(z(\alpha), K(\delta)), i} \subset V_{\alpha, \bar{\delta}}$ and $\mathcal{G}_{\delta, m, j}(B)=\left\{G_{\alpha, \delta}: \alpha \in \Xi_{\delta, m, j}\right\}$. Define $\mathcal{G}_{m, j}(B)=\cup\left\{\mathcal{G}_{\dot{\delta}, m, j}(B): \delta \in \Delta_{B}\right\}$. Then we have
(ix) For each $m, j \in \omega$, every member of $\mathcal{G}_{m, j}(B)$ is contained in some member of \mathcal{O}^{\prime}.
(x) For each $m, j \in \omega, \mathcal{G}_{m, j}(B)$ is discrete in $Z \times X^{\omega}$.

This is clear from (viii).
Fix $\delta=(\gamma(\delta, 0), \cdots, \gamma(\delta, n(B))) \in \Delta_{B}, m, j \in \omega$ and $\alpha \in \boldsymbol{\Xi}_{\delta, m, j}$. Let $A \subset\{0,1, \cdots$, $\left.r\left(K_{(z(\alpha), K(\hat{\delta}))}\right)\right\}$. In case of that $r\left(K_{(z(\alpha), K(\hat{o}))}\right)=n(B)$. For each $i \in A$, let $B_{\alpha, A, i}$ $=W_{\gamma(\hat{\delta}, i)}-H_{(z(\alpha), K(\hat{\partial})), i}$. For each $i \notin A$ with $i \leqq n(B)$, let $B_{\alpha, A, i}=H_{(z(\alpha), K(\delta)), i}$. For each $i>n(B)$, let $B_{\alpha, A, i}=X$. Put $B_{\alpha, A}=V_{\alpha} \times \prod_{i \in \omega} B_{\alpha, A, i}$. In case of that $r\left(K_{(z(\alpha), K(\hat{j}))}\right)=n\left(K_{(z(\alpha), K(\hat{\partial}))}\right)>n(B)$. For each $i \in A$ with $i \leqq n(B)$, let $B_{\alpha, A, i}=$ $W_{\gamma(\delta, i)}-H_{(z(\alpha), K(\delta)), i}$. For each $i \notin A$ with $i \leqq n(B)$, let $B_{\alpha, A, i}=H_{(z(\alpha), K(\delta)), i}$. Let $n(B)<i<n\left(K_{(z(\alpha), K(\partial)))}\right)$. If $i \in A$, let $B_{\alpha, A, i}=X-H_{(z(\alpha), K(\hat{\partial})), i}=\oplus_{i \in \omega} Y_{i, 0}$. If $i \notin A$, let $B_{\alpha, A, i}=H_{(z(\alpha), K(\delta)), i}=\{a\}$. For $i \geqq n\left(K_{(z(\alpha), K(\delta))}\right)$, let $B_{\alpha, A, i}=X$. Put $B_{\alpha, A}=V_{\alpha} \times \prod_{i \in \omega} B_{\alpha, A, i}$. In each case, $B_{\alpha, A, i} \subset B_{i}$ for each $i \in \omega$. Notice that if $B_{\alpha, A} \neq \varnothing$, then $n(B)<n\left(B_{\alpha, A}\right)$. By the definition, $V_{\alpha, \bar{\delta}}=G_{\alpha, \bar{o}} \cup\left(\cup\left\{B_{\alpha, A}: A \subset\right.\right.$ $\left.\left.\left\{0,1, \cdots, r\left(K_{(z(\alpha), K(\delta))}\right)\right\}\right\}\right)$. Since $n\left(K_{(z(\alpha), K(\delta \partial))}\right) \leqq m$, for a subset $A \subset\{0,1, \cdots$, $\max \{m, n(B)\}\}$, let $\mathscr{B}_{\delta, m, j, A}(B)=\left\{B_{\alpha, A}: \alpha \in \boldsymbol{\Xi}_{\delta, m, j}, B_{\alpha, A}\right.$ is defined and $\left.B_{\alpha, A} \neq \varnothing\right\}$. For $m, j \in \omega$ and $A \subset\left\{0,1, \cdots, \max \{m, n(B)\}\right.$, define $\mathcal{B}_{m, j, A}(B)=\cup\left\{\mathscr{B}_{\bar{\delta}, m, j, A}(B)\right.$: $\left.\delta \in \Delta_{B}\right\}$. Then, by (viii), we have
(xi) Every $\mathscr{B}_{m, j, A}(B)$ is discrete in $Z \times X^{\omega}$.

Let $\mathscr{B}_{m, j}(B)=\cup\left\{\mathcal{B}_{m, j, A}(B): A \subset\{0,1, \cdots, \max \{m, n(B)\}\}\right.$. Then, by (xi),
(xii) For each $m, j \in \omega, \mathscr{B}_{m, j}(B)$ is locally finite in $Z \times X^{\omega}$.

Fix a $B_{\alpha, A}=V_{\alpha} \times \prod_{i \in \omega} B_{\alpha, A, i} \in \mathscr{G}_{\delta, m, j, A}(B)$ for $\delta=(\gamma(\delta, 0), \cdots, \gamma(\delta, n(B))) \in \Delta_{B}$, $m, j \in \boldsymbol{\omega}, \alpha \in \Xi_{\hat{\delta}, m, j}$ and $A \subset\{0,1, \cdots, \max \{m, n(B)\}\}$.
(xiii) For each $i \in A$ with $i \leqq n(B)$ such that $C_{\lambda(B, i)}=\varnothing, s\left(B_{i}\right) \cap B_{\alpha, A, i}=\varnothing$.

Since $B_{\alpha, A, i}=W_{\gamma(\hat{0}, i)}-H_{(z(\alpha), K(\bar{\delta}), i}, s\left(B_{i}\right) \cap B_{\alpha, A, i}=(\cup \mathcal{C}(B, i)) \cap\left(W_{\gamma(\delta, i)}-\right.$ $\left.H_{(z(\alpha), K(\delta \partial)), i}\right)=K_{\gamma(\hat{\partial}, i)}-H_{(\imath(\alpha), K(\delta)), i}=\varnothing$.

For each $i \notin A$ with $i \leqq n(B)$, a compact set $K_{\gamma(\overline{0}, i)}$ is contained in $B_{\alpha, A, i}=$ $H_{(z(\alpha), K(\hat{\partial}), i}$. Let $C_{\lambda\left(B_{\alpha, A}, i\right)}=K_{\gamma(\hat{\partial}, i)}$. For each $i \notin A$ with $n(B)<i<n\left(K_{(z\langle\alpha), K(\hat{\partial}))}\right)$, let $C_{\lambda\left(B_{\alpha, A}, i\right)}=\{a\}$. For each $i \in A$, let $C_{\lambda\left(B_{\alpha, A}, i\right)}=\varnothing$.

Now we define G_{τ} and \mathscr{B}_{τ} for each $\tau \in(\omega \times \omega)^{<\omega}$ with $\tau \neq \varnothing$. For each m, $j \in \omega$, let $G_{(m, j)}=\mathcal{G}_{(m, j)}\left(Z \times X^{\omega}\right)=G_{m, j}\left(Z \times X^{\omega}\right)$ and $\mathscr{B}_{(m, j)}=\mathscr{B}_{(m, j)}\left(Z \times X^{\omega}\right)=$ $\mathscr{B}_{m, j}\left(Z \times X^{\omega}\right)$. Assume that for $\tau \in(\omega \times \omega)^{<\omega}$ with $\tau \neq \varnothing$, we have already obtained \mathcal{G}_{τ} and \mathscr{B}_{τ}. For each $B \in \mathscr{B}_{\tau}$ and $m, j \in \omega$, we denote $\mathcal{G}_{m, j}(B)$ and $\mathscr{B}_{m, j}(B)$ by $\mathcal{G}_{\tau \oplus(m, j)}(B)$ and $\mathscr{S}_{\tau \oplus(m, j)}(B)$ respectively. Define $\mathcal{G}_{\tau \oplus(m, j)}=\cup\left\{\mathcal{G}_{\tau \oplus(m, j)}(B): B \in \mathscr{B}_{\tau}\right\}$ and $\mathscr{B}_{\tau \oplus(m, j)}=\cup\left\{\mathcal{B}_{\tau \oplus(m, j)}(B): B \in \mathscr{B}_{\tau}\right\}$.

Our proof is complete if we show
Claim. $\cup\left\{\mathcal{G}_{\tau}: \tau \in(\omega \times \omega)^{<\omega}\right.$ and $\left.\tau \neq \varnothing\right\}$ is a σ-locally finite open refinement of O^{\prime}.

Proof of Claim. Let $\tau \in(\omega \times \omega)^{<\omega}$ and $\tau \neq \varnothing$. By the construction, $Q_{\tau} \subset \mathcal{B}$. By (ix), every member of \mathcal{G}_{τ} is contained in some member of \mathcal{O}^{\prime}. By (x), (xii) and induction, a_{τ} is locally finite in $Z \times X^{\omega}$. Assume that $\cup\left\{G_{\tau}: \tau \in(\omega \times \omega)^{<\omega}\right.$ and $\tau \neq \varnothing\}$ does not cover $Z \times X^{\omega}$. Take a point $(z, x) \in Z \times X^{\omega}-\cup\left\{\cup \mathcal{G}_{\tau}: \tau \in\right.$ $(\omega \times \omega)<\omega$ and $\tau \neq \varnothing\}$. Let $x=\left(x_{i}\right)_{i \in \omega}$. Take a unique $\delta(0)=\gamma(\delta(0), 0) \in \Delta_{Z \times X^{\omega}}=$ $\Gamma\left(Z \times X^{\omega}, 0\right)$ such that $x \in W_{\partial(0)}$. Let $K(0)=K(\delta(0)) \in \mathcal{K}_{Z \times X^{\omega}}$ and let $m(0)=$ $n\left(K_{(z, K(0)}\right)$. Choose a $j(0) \in \omega$ such that $\quad(z, x) \in \cup \mathcal{G}_{m(0), j(0)}\left(Z \times X^{\omega}\right) \cup$ $\left(\cup \mathscr{B}_{m(0), j(0)}\left(Z \times X^{\omega}\right)\right)$. Let $\tau(0)=(m(0), j(0)) \in \omega \times \omega$. Since $(z, x) \notin \cup \mathcal{G}_{\tau(0)}$, there are an $\alpha(0) \in \Xi_{\partial(0), m(0), j(0)}$ and $A(0) \subset\{0,1, \cdots, m(0)\}$ such that $(z, x) \in B_{\alpha(0), A(0)}$ and $B_{\alpha(0), A(0)} \in \mathscr{B}_{\tau(0)}\left(Z \times X^{\omega}\right)$. We have $0=n\left(Z \times X^{\omega}\right)<n\left(B_{\alpha(0), A(0)}\right)$. For $B_{\alpha(0), A(0)}$, take a unique $\delta(1)=(\gamma(\delta(1)), 0), \cdots, \gamma\left(\delta(1), n\left(B_{\alpha(0), A(0))))} \in \Delta_{B_{\alpha(0)}, A(0)}\right.\right.$ such that $x \in W_{\delta(1)}$. Let $K(1)=K(\delta(1)) \in \mathcal{K}_{B_{\alpha(0), A(0)}}$ and $m(1)=n\left(K_{(z, K(1))}\right)$. Take a $j(1) \in \omega$ such that $(z, x) \in \cup \mathfrak{g}_{m(1), j(1)}\left(B_{\alpha(0), A(0)}\right) \cup\left(\cup \mathscr{B}_{m(1), j(1)}\left(B_{\alpha(0), A(0)}\right)\right)$. Let $\tau(1)=((m(0), j(0))$, $(m(1), j(1))) \in(\omega \times \omega)^{<\omega}$. Since $(z, x) \notin \cup \mathcal{G}_{\tau(1)}$, there are an $\alpha(1) \in \boldsymbol{Z}_{\delta(1), m(1), j(1)}$ and $A(1) \subset\left\{0,1, \cdots, \max \left\{m(1), n\left(B_{\alpha(0), A(0)}\right)\right\}\right\}$ such that $(z, x) \in B_{\alpha(1), A(1)}$ and $B_{\alpha(1), A(1)}$ $\in \mathcal{B}_{\tau(1)}\left(B_{\alpha(0), A(0)}\right)$. We have $n\left(B_{\alpha(0), A(0)}\right)<n\left(B_{\alpha(1), A(1)}\right)$. Continuing this matter, we can choose a sequence $\{\delta(k): k \in \omega\}$, a sequence $\{K(k): k \in \omega\}$ of compact subsets of X^{ω}, where $K(k)=\prod_{i \in \omega} K(k)_{i} \in \mathcal{K}$, sequences $\{m(k): k \in \omega\},\{j(k): k \in \omega\}$ of natural numbers, a sequence $\{\tau(k): k \in \omega\}$ of elements of $(\omega \times \omega)^{<\omega}$, where $\tau(k)=((m(0), j(0)), \cdots,(m(k), j(k)))$, a sequence $\{\alpha(k): k \in \omega\}$, a sequence $\{A(k)$: $k \in \omega\}$ of finite subsets of ω, a sequence $\left\{B_{\alpha(k), A(k)}: k \in \omega\right\}$ of elements of \mathscr{B} containing (z, x), where $B_{\alpha(k), A(k)}=V_{\alpha(k)} \times \prod_{i \in \omega} B_{\alpha(k), A(k), i}$, satisfying the following: Let $k \in \omega$. Assume that we have already obtained sequences $\{\delta(i): i \leqq k\}$, $\{K(i): i \leqq k\},\{m(i): i \leqq k\},\{j(i): i \leqq k\},\{\tau(i): i \leqq k\},\{\alpha(i): i \leqq k\},\{A(i): i \leqq k\}$ and $\left\{B_{\alpha(i), A(i)}: i \leqq k\right\}$. Then
(xiv) $\delta(k+1)=\left(\gamma(\delta(k+1), 0), \cdots, \gamma\left(\delta(k+1), n\left(B_{\alpha(k), A(k)}\right)\right)\right) \in J_{B_{\alpha(k), A(k)}}$. $W_{\dot{\delta}(k+1)}$ is a unique element of $\left\{W_{\hat{j}}: \delta \in \Delta_{B_{\alpha(k), A(k)}}\right\}$ containing x,
(xv) $K(k+1)=K(\delta(k+1)) \in \mathcal{K}_{B_{\alpha(k), A(k)}}$,
(xvi) $\quad m(k+1)=n\left(K_{(2, K(k+1))}\right)$, and $j(k+1) \in \boldsymbol{\omega}$. Let $\tau(k+1)=((m(0), j(0)), \cdots$, $(m(k+1), j(k+1)))$,
(xvii) $\alpha(k+1) \subseteq \Xi_{\partial(k+1), m(k+1), j(k+1)}$ and $A(k+1) \subset\{0,1, \cdots, \max \{m(k+1)$, $\left.\left.n\left(B_{\alpha(k), A(k)}\right)\right\}\right\}$,
(xviii) $\quad(z, x) \in B_{\alpha(k+1), A(k+1)}=V_{\alpha(k+1)} \times \prod_{i \in \omega} B_{\alpha(k+1), A(k+1), i}, B_{\alpha(k+1), A(k+1)} \in$ $\mathscr{B}_{\tau(k+1)}\left(B_{\alpha(k), A(k)}\right)$, and $n\left(B_{\alpha(k), A(k)}\right)<n\left(B_{\alpha(k+1), A(k+1)}\right)$,
(xix) For each $i \leqq n\left(B_{\alpha(k), A(k)}\right)$ with $i \in A(k+1)$ such that $C_{\lambda\left(B_{\alpha(k), A(k), i)}\right.}=$ $\varnothing, s\left(B_{\alpha(k), A(k), i}\right) \cap B_{\alpha(k+1), A(k+1), i}=\varnothing$,
(xx) For each $i \leqq n\left(B_{\alpha(k), A(k)}\right)$ with $i \notin A(k+1)$ such that $C_{\lambda\left(B_{\alpha(k), A(k), i)}\right.} \neq$ $\varnothing, K(k+1)_{i}=C_{\lambda\left(B_{\alpha(k), A(k), i)}\right.}$.

Assume that for each $i \in \omega, \quad|\{k \in \omega: i \in A(k)\}|<\omega$, where $|A|$ denotes the cardinality of a set A. Then for each $i \in \omega$, there is a $k_{i} \in \omega$ such that $i \leqq k_{i}$ and if $k \geqq k_{i}$, then $i \notin A(k)$. Then, by (xx),
(xxi) For each $i \in \omega$ and $k \geqq k_{i}, K(k)_{i}=K\left(k_{i}\right)_{i}$.

Let $K=\prod_{i \in \omega} K\left(k_{i}\right)_{i} \in \mathcal{K}$. There is an $O \in \mathcal{O}^{\prime}$ such that $K_{(z, K)} \subset O$. By (xviii) and (xxi), take a $k \geqq 1$ such that $n(O) \leqq n\left(B_{a(k-1), A(k-1)}\right)$ and if $i \leqq n(O)$, then $K(k)_{i}=K\left(k_{i}\right)_{i}$. Then we have $K_{(2, K(k))} \subset O$ and hence, $m(k)=n\left(K_{(2, K(k))}\right) \leqq n(O)$. Since $\alpha(k) \in \Xi_{\delta(k), m(k), j(k)}, n\left(K_{(z(\alpha(k)), K(k))}\right) \leqq m(k)$. For i with $n(O) \leqq i \leqq$ $n\left(B_{\alpha(k-1), A(k-1)}\right)$, by the definition, $H_{(z(\alpha(k)), K(k)), i}=W_{\gamma(\delta(k), i)}$. Hence $A_{k} \cap$ $\left\{n(O), \cdots, n\left(B_{\alpha(k-1), A(k-1)}\right)\right\}=\varnothing . \quad$ Since $(z, x) \in B_{\alpha(k), A(k)}$ and $B_{\alpha(k), A(k)} \in$ $\mathcal{B}_{z(k)}\left(B_{\alpha(k-1), A(k-1)}\right)$, there is an $i \in A(k)$ such that $x_{i} \notin H_{(z(\alpha(k)), K(k)), i}$. Thus $i<n(O)$ and $x_{i} \in B_{\alpha(k), A(k), i}=W_{\gamma(\hat{o}(k), i)}-H_{(z(\alpha(k)), K(k)), i}$. Since $i \in A(k), k<k_{i}$. For each $k^{\prime}>k, K\left(k^{\prime}\right)_{i} \subset B_{\alpha(k), A(k), i}$. Thus $K\left(k_{i}\right)_{i} \subset B_{\alpha(k), A(k), i}$. Since $K(k)_{i} \subset$ $H_{(z(\alpha(k)), K(k)), i}$, we have $K(k)_{i} \neq K\left(k_{i}\right)_{i}$. This is a contradiction. Therefore there is an $i \in \omega$ such that $|\{k \in \omega: i \in A(k)\}|=\omega$. Let $\{k \in \omega: i \in A(k)$ and $i \leqq$ $\left.n\left(B_{\alpha(k), A(k)}\right)\right\}=\left\{k_{t}: t \in \omega\right\}$. Let $t \in \omega$. Since $C_{\lambda\left(B_{\left.\alpha\left(k_{t}\right), A\left(k_{t}\right), i\right)}\right.}=\varnothing$, if $k_{t+1}=k_{t}+1$, then, by (xix), $s\left(B_{\alpha\left(k_{t}\right), A\left(k_{t}\right), i}\right) \cap B_{\alpha\left(k_{t+1}\right), A\left(k_{l+1}\right), i}=\varnothing$. Assume that k_{l+1}
 $H_{\left(z\left(\alpha\left(k_{t+1}\right), K\left(k_{t+1}\right)\right), i\right.}$, we have $s\left(B_{\alpha\left(k_{t}\right), A\left(k_{l}\right), i}\right) \cap B_{\alpha\left(k_{t+1}\right), A\left(k_{t+1}\right), i}=\varnothing$. Since s is a stationary winning strategy for Player l in $G(\mathscr{D C}, X), \bigcap_{t \in \omega} B_{\alpha\left(k_{t}\right), A\left(k_{t}\right), i}=\varnothing$. But $x_{i} \in \bigcap_{t \in \omega} B_{\alpha\left(k_{t}\right), A\left(k_{t}\right), i}$, which is a contradiction. It follows that $\cup\left\{\mathcal{G}_{\tau}: \tau \in(\omega \times \omega)^{<\omega}\right.$ and $\tau \neq \varnothing\}$ is a covering of $Z \times X^{\omega}$. The proof is completed.

Remark 3.3. Let M be the Michael line and let \mathbf{P} be the space of irrational numbers. It is well known that $M \times \mathbb{P}$ is not normal. M is a hereditarily paracompact space. But M is not perfect. Since \mathbf{P} is homeomorphic to ω^{ω}, we cannot omit the condition " Z is perfect" in Theorem 3.2. Furthermore we cannot replace " Z is a perfect paracompact space" by " Z is a hereditarily paracompact space" in Theorem 3.2.

Theorem 3.4. If Z is a perfect paracompact space and Y_{i} is a paracompact space with a σ-closure-preserving cover by compact sets for each $i \in \omega$, then $Z \times$ $\prod_{i \in \omega} Y_{i}$ is paracompact.

Proof. This follows from Theorem 3.2 and Lemma 2.4 (a).
Similarly, by Theorem 3.2 and Lemma 2.4 (b),
Theorem 3.5. If Z is a perfect paracompact space and Y_{i} is a paracompact,
σ-C-scattered space for each $i \in \omega$, then $Z \times \prod_{i \in \omega} Y_{i}$ is paracompact.
For a space X, let $\mathscr{F}[X]$ denote the Pixley-Roy hyperspace of X. Every Pixley-Roy hyperspace has a closure-preserving cover by finite sets and is σ scattered. For a space X, the following are equivalent (see H. Tanaka [15]): (a) $\mathscr{I}[X]$ is paracompact; (b) $\mathscr{F}\left[X^{2}\right]$ is paracompact; (c) $\mathscr{I}\left[X^{n}\right]$ is paracompact for each $n \in \omega$ and (d) $\mathscr{F}\left[X^{n}\right]^{m}$ is paracompact for each $n, m \in \omega$. T. Przymusinski [12] posed the following problem: If $\mathscr{f}[X]$ is paracompact, then is $\mathscr{F}[X]^{\omega}$ paracompact? We have

Theorem 3.6. If Z is a perfect paracompact space and Y_{i} is a space such that $\mathscr{G}\left[Y_{i}\right]$ is paracompact for each $i \in \omega$, then $Z \times \prod_{i \in \omega} \mathscr{T}\left[Y_{i}\right]$ is paracompact.

It is well known that Z is a regular hereditarily Lindelöf space if and only if Z is a regular perfect Lindelöf space (R. Engelking [5]).

Theorem 3.7. If Z is a regular heredıtarily Lindelöf space and Y_{i} is a regular Lindelöf $\mathscr{D C}$-like space for each $i \in \omega$, then $Z \times \prod_{i \in \omega} Y_{i}$ is Lindelöf. Hence, if X is a regular Lindelöf $\mathscr{D C}$-like space, then $X^{\omega} \in \mathcal{K}^{\prime}$.

Proof. By Lemmas 2.2 and 3.1, we may assume that for each $i \in \omega, Y_{i}$ is a regular Lindelöf $\mathscr{D C}$-like space with $\operatorname{dim} Y_{i} \leqq 0$. Let $X=\underset{i \in \omega}{\oplus} Y_{i} \cup\{a\}$, where $a \notin \cup Y_{i}$. Define the topology of X as the proof of Theorem 3.2. It suffices to prove that $Z \times X^{\omega}$ is Lindelöf.

Let \mathcal{B} be the base of $Z \times X^{\omega}$ defined in the proof of Theorem 3.2 and let \mathcal{O} be an open covering of $Z \times X^{\omega}$. Define \mathcal{O}^{\prime} and $n(B)$ for each $B \in \mathcal{B}$ as before. We show that \mathcal{O}^{\prime} has a countable open refinement. By the proof of Theorem 3.2, \mathcal{O}^{\prime} has a σ-locally finite refinement $\mathcal{G}=\cup\left\{\mathcal{G}_{n}: n \in \omega\right\}$ such that $\mathscr{G} \subset \mathscr{B}$. For each $m \in \omega$, let $p_{m}: Z \times X^{\omega} \rightarrow Z \times X^{m}$ be the projection from $Z \times X^{\omega}$ onto $Z \times X^{m}$. For $n, m \in \omega$, let $\mathcal{G}_{n, m}=\left\{G \in \mathcal{G}_{n}: n(G) \leqq m\right\}$. Then $\mathcal{G}_{n}=\cup\left\{G_{n, m}: m \in \omega\right\}$ for each $n \in \boldsymbol{\omega}$. Put $\mathscr{H}_{n, m}=p_{m}\left(\mathcal{G}_{n, m}\right)=\left\{p_{m}(G): G \in \mathcal{G}_{n, m}\right\}$ for $n, m \in \boldsymbol{\omega}$. Then every $\mathscr{A}_{n, m}$ is locally finite in $Z \times X^{m}$. By Lemma 2.5, every $Z \times X^{m}$ is Lindelöf. Then for each $n, m \in \boldsymbol{\omega}, \mathscr{H}_{n, m}$ is countable. Hence every $\mathscr{G}_{n, m}$ is countable. Thus $\mathcal{G}=\cup\left\{\mathcal{G}_{n}: n \in \omega\right\}=\cup\left\{G_{n, m}: n, m \in \omega\right\}$ is countable. It follows that $Z \times X^{\omega}$ is Lindelöf. The proof is completed.

Theorem 3.8. If Z is a regular hereditarily Lindelöf space and Y_{i} is a regular Lindelöf space with a σ-closure-preserving cover by compact sets for each $i \in \omega$, then $Z \times \prod_{i \in \omega} Y_{i}$ is Lindelöt.

Theorem 3.9. If Z is a regular hereditarily Lindelöf space and Y_{i} is a regular Lindelöf, σ-C-scattered space for each $i \in \omega$, then $Z \times \prod_{i \in \omega} Y_{i}$ is Lindelöf.

References

[1] Alster, K., A class of spaces whose Cartesian product with every hereditarily Lindelöf space is Lindelöf, Fund. Math. 114 (1981), 173-181.
[2] ———A note on Michael's problem concerning the Lindelöf property in the Cartesian products, Trans. Amer. Math. Soc. 278 (1983), 369-375.
[3] -, On Michael's problem concerning the Lindelöf property in the Cartesian products, Fund. Math. 121 (1984), 149-167.
[4] - On the product of a perfect paracompact space and a countable product of scattered paracompact spaces, Fund. Math. 127 (1987), 241-246.
[5] Engelking, R., General Topology, Heldermann Berlin, 1989.
[6] Friedler, L. M., Martin, H. W. and Williams, S. W., Paracompact C-scattered spaces, Pacific J. Math. 129 (1987), 277-298.
[7] Frolik, Z., On the topological product of paracompact spaces, Bull. Acad. Polon. Sci. 8 (1960), 747-750.
[8] Galvin, F. and Telgársky, R., Stationary strategies in topological games, Topology Appl. 22 (1986), 51-69.
[9] Hohti, A. and Pelant, J., On supercomplete uniform spaces IV: Countable products, Fund. Math. 136 (1990), 115-120.
[10] Michael, E., Paracompactness and the Lindelöf property in finite and countable Cartesian products, Comp. Math. 23 (1971), 199-214.
[11] Nagami, K., A note on Hausdorff spaces with the star-finite property II, Proc. Japan Acad. 37 (1961), 189-192.
[12] Przymusiński, T., Normality and paracompactness of Pixley-Roy hyperspaces, Fund. Math. 113 (1981), 201-219.
[13] , Products of normal spaces, in Handbook of Set-Theoretic Topology, ed. by K. Kunen and J. Vaughan, North-Holland, 1984, 783-826.
[14] Rudin, M.E. and Watson, S., Countable products of scattered paracompact spaces, Proc. Amer. Math. Soc. 89 (1983), 551-552.
[15] Tanaka, H., Paracompactness of Pixley-Roy hyperspaces II, Proc. Amer. Math. Soc. 85 (1982), 113-118.
[16] Telgársky, R., Spaces defined by topological games, Fund. Math. 88 (1975), 193223.
[17] -, Topological games: On the 50th Anniversary of the Banach-Mazur game, Rocky Mountain J. Math. 17 (1987), 227-276.
[18] Yajima, Y., Topological games and applications, in Topics in General Topology, ed. by K. Morita and J. Nagata, North-Holland, 1989, 523-562.

> Department of Mathematics
> Osaka Kyoiku University
> Tennoji, Osaka, 543
> Japan

[^0]: Received August 5, 1991, Revised February 21, 1992.

