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WITH A PERFECT PARACOMPACT
SPACE IS PARACOMPACT

By

Hidenori TANAKA

1. Introduction.

All spaces are assumed to be T -spaces. In particular, paracompact spaces
are assumed to be 7,. The letter w denotes the set of natural numbers.

Let us denote by @(L) the class of all spaces (regular spaces) whose product
with every paracompact (regular Lindelof) space is paracompact (Lindelséf). On
the other hand, let .£’ be the class of regular spaces whose product with every
regular hereditarily Lindel6f space is Lindelof. Then it is clear that LC.L’.
A general problem is to characterize ®(.£) (Tamano). T. Przymusifski [13]
posed the following problem: If Xe®(.L), then is X“ paracompact (Lindelsf)?
Furthermore, E. Michael asked whether £’ is closed with respect to countable
products. K. Alster [2], [3] gave a negative answer to E. Michael’s problem.
He showed that there are a separable metric space M and a regular Lindel6f
space X such that for every regular Lindel6f syace Y and new, the products
Y X X" and X¢ are Lindeldf but M xXX* is not. However, if X is a separable
metric space or X is a regular Cech-complete Lindelsf space or X is a regular
C-scattered Lindelof space, then X¢c.L'. The first result is due to E. Michael
(cf. [10]), the second one is due to Z. Frolik [7] and the third one is due to
K. Alster [1].

Let @C be the class of all T,-spaces which have a discrete cover by com-
pact sets. The topological game G(9C, X) was introduced and studied by R.
Telgarsky [16]. The games are played by two persons called Players I and II.
Players I and II choose closed subsets of II’s previous play (or of X, if n=0):
Player I's choice must be in the class 9C and II’s choice must be disjoint from
I’'s. We say that Player I wins if the intersection of II’s choices is empty.
Recall from [16] that a space X is said to be a DC-like space if Player I has
a winning strategy in G(@C, X). The class of 9C-like spaces includes all
spaces which admit a g-closure-preserving closed cover by compact sets, and
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paracompact, o¢-C-scattered spaces. R. Telgarsky proved that if X is a para-
compact (regular Lindelof) 9C-like space, then Xe@(£). M.E. Rudin and S.
Watson [14] proved that the product of countably many scattered paracompact
spaces is paracompact. Furthermore, A. Hohti and J. Pelant [9] showed that
the product of countably many paracompact, ¢-C-scattered spaces is paracompact
(cf. [6]). K. Alster [4] also proved that if V is a perfect paracompact space
and X, is a scattered paracompact space for each ncw, then VX I[ X, is
paracompact. e

In this paper, we discuss paracompact (regular Lindeldf) 9¢-like spaces and
generalize K. Alster’s results. More precisely, we show that if Z is a perfect
paracompact (regular hereditarily Lindeléf) space and Y, is a paracompact
(regular Lindelof) 9cC-like space for each i=w, then ing Y, is paracompact

(Lindeldf). Therefore, if X is a regular Lindeléf 9¢C-like space, then Xe=_r’.

2. Topological games.

The topological game G(9¢, X) is described in the introduction. F. Galvin
and R. Telgarsky showed that if Player I has a winning strategy in G(9C, X),
then he has a stationary winning strategy in G(9C, X), i.e., a winning strategy
which depends only on II’s previous move. More precisely,

LEMMA 2.1. ([8]). Player I has a winning strategy in G(DC, X) if and only
if there is a function s from 2% into 2XN\DC, where 2% denotes the set of all
closed subsets of X, satisfying

(1) S(F)CF for each F&2*,

(ii) if {F,: n€w} is a decreasing sequence of closed subsets of X such that
S(FONFra=@ for each ncw, then N\ F,=@.

nEw

The following resulls are well known.

LEMMA 2.2 (R. Telgarsky [16]). Le X and Y be spaces, and let f: X—Y
be a perfect mapping from X onto Y. If Y is a DC-like space, then X is also
a DC-like space.

LEMMA 2.3 (R. Telgarsky [16]). If a space X has a countable closed cover
by DC-like sets, then X is a DC-like space.

Recall that a space X is scattered if every non-empty subset A of X has
an isolated point of A, and C-scattered if for every non-empty closed subset A
of X, there is a point of A which has a compact neighborhood in A. Clearly
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scattered spaces and locally compact T,-spaces are C-scattered. Let X be a
space. For each F&2¥, let

F®={x=F: x has no compact neighborhood in F}.

Let X=X. For each successor ordinal a, let X =(X@*D)YD  If ¢ is a
limit ordinal, let XW:,;Q X%, Notice that a space X is C-scattered if and
only if X‘“=¢ for some ordinal a. If X is C-scattered, let A=inf{a : X‘*=0@}.
We say that A is the C-scattered height of X. A space X is said to be o-
scattered (o-C-scattered) if X is the union of countably many closed scattered
(C-scattered) subspaces.

LEMMA 2.4. (R. Telgrsky [16]). (a) If a space X has a o-closure-preserving
closed cover by compact sets, then X is a DC-like space.
(b) If X is a paracompact, o-C-scattered space, then X is a DC-like space.

LEMMA 2.5. (R. Telgarsky [16]). If X is a paracompact (regular Lindelif)
DC-like space, then X=P(.L).

For topological games, the reader is refered to R. Telgarsky [16], [17] and
Y. Yajima [18].

3. Paracompactness and Lindeléf property.

LeEMMA 3.1 (K. Nagami [11]). For a paracompact (regular Lindelsf) space
X, there are a paracompact (regular Lindeléf) space X, with dim X,<0 and a
perfect mapping fx: Xe—X from X, onto X.

Let A be a set. We denote by A<® the set of all finite sequences of ele-
ments of A. If r=(a,, -+, a,)€ A< and e A, then Pa denotes the sequence
(@o, =+, @n, @).

The following is the main result in this paper.

THEOREM 3.2. If Z is a perfect paracompact space and Y ; is a paracompact
DC-like space for each icw, then ZX I1Y,; is paracompact.
1€w

PROOF. By Lemma 3.1, for each i<w, there are a paracompact space Y, ,
with dimY,; ,<0 and a perfect mapping f;: Y, ,—Y, from Y, , onto V,. Let
X= iQ]EBin,ou{a}, where aeéig)Yi_o. The topology of X is as follows: Every
Y., is an open-and-closed subspace of X and a is isolated in X. Then X is
a paracompact space with dim X <£0. It follows from Lemmas 2.2 and 2.3 that
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X is a 9C-like space. Define f: HY¢_0—+IEIY1- by f(y)=(fi{(¥:))iew for y=
i€w i1€w
(yi)iewei]f[ Yie Then dd;xf: ZXIY,; —ZX]IIY,; is a perfect mapping
Ew i€w

1€Ew

from Z X% ;[EI(”YL0 onto ZXiIeIwY"' Since inlel;"Y,,o is a closed subspace of Z X
X¢, in order to prove this theorem, it suffices to prove that ZXx X® is para-
compact.

Let us denote by @ the base of ZX X consisting of sets of the form B=

UsX YI B;, where Up is an open subset of Z and there is an n<w such that

Lew

for each i<n, B, is an open-and-closed subset of X and for each i>n, B;=X.
For each B:UBXigBieQ, let n(B)=inf{{ew: B;=X for each j=i}.

Let © be an open covering of ZxX® and let ©F be the set of all finite
unions of elements of ©. Put @'={B=®: BCO for some O0c0OFf}. Let A=
{il;IwKi: K, is a compact subset of X for each icw}. For each z&Z and Ke
X, let Ko xo={2) XK. Then there is an O=0F such that K xCO. By
Wallace theorem in R. Engelking [5], there is a B= # such that K, x,CBCO.
Thus we have Be®’. Define n(K, x,)=inf{n(0): O=®’ and K x,CO}. It
suffices to prove that @ has a o¢-locally finite open refinement.

Let s be a stationary winning strategy for Player | in G(9C, X). Let B=
UgX il;ImB,;E.CB such that for each /<n(B), we have already obtained a compact
set Caiapo Of Bi(Cimasn=0. Cinmo=¢ may be occur for :<n(B)). We
define G, (B) and B, {(B) of collections of elements of @ for each m, jew.
Fix i€n(B). If Cimon#*®D, let Wy »n=B;. Put A(B,)={A(B, )} and ['(B, i)
={r(B,7)}. Let C(B,)={C;: 2 A(B, ©)} ={Ciw.»}, and W(B, i)={W,: re
I'(B, 1)} ={Wyw, o} Assume that C;u »=@. Then there is a discrete collec-
tion C(B,7)={C;: 2= A(B, i)} of compact susbets of X such that s(B;=
\UC(B, 7). Since B; is an open-and-closed subspace of X, B, is a paracompact
space with dim B;<0. Then there is a pairwise disjoint collection W(B, )=
{(W,. rel'(B, i)} of open subsets in B; (and hence, in X), satisfying

(i) W(B, i) covers B,

(ii) Every member of (B, /) meets at most one member of C(B, 7).

In each case, for y=I'(B, i), K;=W,NC; if W, meets some (unique) C;.
If W.nN(\C(B, i))=¢, then we take a point p,=W, and let K;={p,}. Thus,
if Ciwo#®@, then Kyp n=Wiw oN\Cik o=Ciwm.n» Put dg=I(B, 0)X - X
I'(B, n(B)). TFor each 8=(r(,0), ---, 7, n(B))eds, let K©@)=Kys,poX - X
Ky nean X {al XX {a} X+, and let Hp={K(8): 6=4dp}. Then KXz XK. For
each zeUp and 0=, 0), ---, (0, n(B))=dp, let r(K, xwy»)=max {n(Kq, @),
n(B)}. Fix z€Up and 3=(7(3, 0), -+, 7(6, n(B)))edz. Take an O, ,=U, ;X
11 0. ;.0 such that K, x»nCO0. s and n(K. xuy)=n(0,;). Then we can

1E€Em
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take an H(z,K(E)):Hz,SXpf[(z.K(J)).iE-@ such that:
cw

n(K(, gy !
(iii) H, ;X 11}) He, g, i XXX o XXX - CO0,5

and zeH, ,cUzNU, ;,

(iv-1) For each i with n(K g Si=<r(Ke xwn), let He ke, i =Wre, s

(iv-2) For each i<n(K¢, xwy) With i<n(B), let H, ey, be an open-and-
closed subset of Wy, s, such that Kre oCHe, k.« S0z 6.4

(iv-3) For each ¢ with n(B)<i<n(Ke, xen), let He kon,i=1{a},

(iv-4) In case of that (K, xuy)=n(B), let He, k@, =X for n(B)<i. In
case of that r(K¢, xw»)=nKe kan)>n(B), let He, xwy,i=X for n(Ke, xon) Si.

Then we have K¢, x6»nCHa ke Fix mee and let V,(K(@)={z€Up:
n(Ke gen)=m}. Then V,(K@)=U{H, ;: (K¢ xw>)<m}. Since Z is a per-
fect paracompact space, there is a family CV,;,,,L:]_\EJwCVa'm,,-, where Vs m, ;=

{Va: as5; ..}, of collections of open sets in V,(K(d)) (and hence, in Z2)
satisfying

(v) Every member of <V;, is contained in some member of {H,;:
n(K ¢ k@) =m},

(vi) WV covers V., (K@),

(vil) WVj .5 is discrete in Z for each jEw.

For jcw and ac&; . ;, take a z(@)eV ,(K(9)) such that V,CH,».s. Put
Ws=I1128 W6 X XXX XX and Vg, ;=V,XW;s. Then {V,,: d€ds, m,
cw and a€&; . ;) is a collection of elements of @ such that for each &4,
m, jSw and @€ 855 .5, VaoCB and {V,s: 6€ds m, jso and as&; 4 ;)
covers B.

(viii) For each m, jcw, {Va5: 6cdgand a=5; , ;} is discrete in Z X X°.

Fix m, jew. Let (z, x)€ZX X? and x=(x;);c0. For each i<n(B), since
B; is an open-and-closed subset of X, we may assume that x;=B;. There is
a unique 8=, 0), ---, 7(6, n(B))=4dp such that x=W;. Since Vs n ; is dis-
crete in Z, there is an open neighborhood U of z in Z such that U meets at
most one member of Vs . ;. Then UXW;= 48 and UXW; meets at most one
member of {V.s:0'c€dp and ac &y ;. Thus {V.s: 0€dp and a=&5 4 5}
is discrete in Z X X*.

For each dcdy, m, jcw and as=5; ., j, let GM:V(XXig)H(M,_K(m,iCVL,,(;
and G; n (B)={Gas: aEEs n, ;}. Define Gn J(B)=\U{Gs n ;(B): d=dp}. Then
we have

(ix) For each m, j=w, every member of &, ;(B) is contained in some
member of ©'.
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(x) For each m, jcw, @, ;(B) is discrete in Z X X¢.

This is clear from (viii).

Fix 6=, 0), -, 70, n(B))=dp, m, jswand ac=&; . ;. Let ACH{0, 1, -,
K, ke)}- In case of that (K. ken)=n(B). For each ;= A, let Ba 4,
=W;6.0—He, ko, .- For each igA with i<n(B), let Ba s i=Hear. k3.4
For each i>n(B), let B, 4 ;=X. Put Ba,A:VaX_IEIwBa,A,i. In case of that
(K ocar, k 009)=1(Kzcar, k) >n(B). For each Z'G/ll with i=<n(B), let Ba 4=
Wiye,o—Hea, kwyy.»  For each igA with i<n(B), let Ba,a.i=HeGay, ko900
Let n(B)<i<n(Ke. ko). If icA, let Ba‘A,i:X_H(z(a).K((F)),i:i@‘}/i,0- If
iEA, let B g i=He. xon,i=1{a}. For iZn(Keo, xen), let Ba, i =X. Put
Ba,A:V,,xig”Ba,A,i. In each case, B, 4 CB; for each icw. Notice that if
Bo a# @, then n(B)<n(Bs 4). By the definition, V, =G, s J(U{Bs 4: AC
{0, 1, -, (K, ko). Since n{Kc iy, kay)=m, for a subset AC{0, 1, -,
max {m, n(B)}}, let Bs . ;. 4(B)={Ba.a: a=E; n j, Ba 4 1s defined and B, 4+ @}.
For m, jewand AC{0, 1, ---, max{m, n(B)}}, define B, ; A(B)=\U{Bs um.; 4(B):
0=4dg}. Then, by (viii), we have

(xi) Every @, ;4(B) is discrete in ZXx X°.

Let B, j(B)=U{Bn ;4(B): AC{0, 1, -+, max{m, n(B)}}. 'Then, by (xi),

(xii) For each m, jEw, B, ;(B) is locally finite in Z X X.

Fix a B, 4=V.X IL Ba.a i€ Do.m.4(B) for 0=, 0), -, 70, n(B)))ds,
m, jew, as5; , ; and ACH{0, 1, -+, max{m, n(B)}}.

(xiil) For each ;€A with :<n(B) such that C;;. =0, s(B)NBa 4..=0.

Since Ba,a,i = Wit — Hecar kayy i S(B) N Baa, o = (JCB, ) N\ Wy, iy—
H(z(a),K(B)).i):Krw, i>—H(z(a>,K(6)),i:Q5-

For each /&£ A with /<n(B), a compact set K, ;, is contained in B, 4 ;=
Hoas, k0.1 Let Caca,, 4.0=Kre. o Foreach i A with n(B)<i<n(Kccar. & o9)s
let Ciw,, ,o=1{a}. For each icA, let Cis, , 0=0-

Now we define ¢. and 4, for each r=(@Xw)<® with = @. For each m,
Jjew, let G p =8 »H(ZXX)=8n (ZXX? and B jy= Bm H(Z XX =
B (ZXX?). Assume that for re(wXw)<® with r+ @, we have already obtained
G. and 8,. For each B3, and m, j=w, we denote G, ;(B) and B, ;(B) by
Growm, »(B) and B.gcm, 5(B) respectively. Define Groim, »=\J {Grown.»(B) : BE B.}
and Beowm, p=\J{Brom. »(B): BEB}.

QOur proof is complete if we show

CLAIM. U{G,: t€(@Xw)< and t+ P} 1s a a-locally finite open refinement
of ©.
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PROOF OF CLAIM. Let r€(wXw)<® and 7+ @. By the construction, ¢.C 3.
By (ix), every member of g. is contained in some member of ¢’. By (x), (xii)
and induction, ¢. is locally finite in Z X X®. Assume that \U{G.: r=(@Xo)<*
and v+ @} does not cover Zx X*. Take a point (z, x)cZ X X*—\U{UG.: 7=
(wXw)<® and z#=@}. Let x=(x;);eo- Take a unique 3(0)=70), )4, yo=
I'(ZX X 0) such that x&W;q. Let KOQ)=K©B0) = Kyzxo and let m(0) =
n(K e, &) Choose a jO)=w such that (z, x) & UGn, oy Z XX
(UBnw, iy (ZXX?). Letc(0)=0m(0), j0)SwXw. Since (z, x)&\ UG, there are
an a(0)Y= &5, me, oo and AQ)C{0, 1, -+, m(0)} such that (z, X)E Bacp, 4y and
Baw, 4 E Ber(Z X X*). Wehave 0=n(Z X X*)<n(Bacw, ). FOr Bacoy, acoy, take
a unique o(1)=F @), 0), -+, 70), n(Baw.4))E 44, 40, SUch that x Wi,
Let K(l):K(é(l))EJCBa(O),m) and m(1)=n(K xay»). Take a j(l)&w such that
(2, %) € Ubnw,inBaw, 40) U (U Buw, jax(Baw, aw))- Let (1) = ((m(0), j(O)),
(m(), j(HNE(@Xw)<®. Since (z, x)& UG, there are an a(1)&E Fs¢y, maw, jaiy and
AMCHO, 1, -+, max {m(1), n(Baco.4)}} such that (z, x)& Bacw, a0y and Baay, a0
E B 5(Bacw, aw). We have n(Bacy, a)<n(Baw awy). Continuing this matter,
we can choose a sequence {0(k): k=w}, a sequence {K(k): k=w} of compact
subsets of X?, where K(k)= iI(Iﬂ)K(/ehEJC, sequences {m(k): k=sw}, {J(k): k=w}
of natural numbers, a sequence {r(k): k=w} of elements of (WXw)<?, where
(k)= ((m(0), 7(0)), ---, (m(k), 7(k))), a sequence {a(k): k=w}, a sequence {A(k):
k=w} of finite subsets of w, a sequence {Beacry ahr: kEw} of elements of B
containing (z, x), where Bacey acx=Var X I Bacey, a1, satisfying the follow-
ing: Let k=w. Assume that we have alr:ezaély obtained sequences {0(7): i<k},
(K@) : i<k), m@): i<k}, {J@): i<k}, {@): i<k}, {a@): i<k}, {A@): i<k}
and {Bacy acy: 1=k}. Then

xiv) otk + D =@k +1),0), -, 70k + 1), n(Back>. 4 € Aoy ey
Wice+1; is a unique element of {W;: 6€4d,,,, ,.,,} containing x,

xv) Kk+1)=K@R+1)E K,esy achy

xvi) me+D=n(Kq gwny), and jlk+Dcw. Let r(k+1)=((m(), ;j0)), -,
(mk+1), j(k+1))),

xvil) a(k+DEEsu40, marsn,isn and A(e+1)c {0, 1, -+, max{m(k+1),
n(Bacer, )t}

(xviil) (2, %) € Back+v.acesn = Vaesn Xi].e__[mBa(k+l),A(k+1).i’ Bacrin, aen €
BeckrBacry, ary), and n(Bacry, ace)) <n(Back+1d, 4ck+1),

(xix) For each i=n(Bac, acry) With i€ A(k+1) such that Cim,eey 4cxy 0=
D, s(Backy, 4k, dNBacks, acesn, i =D,

(xx) For each i<n(Bay, acry) With i€ A(k+1) such that C
D, Ke+1i=Cisacry achy 0

aCkd Ak D7
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Assume that for each i=w, |{k=sw: i=A(k)}|<w, where |A| denotes the
cardinality of a set 4. Then for each i=w, there is a k,=w such that /<k;
and if k=Fk;, then ;& A(k). Then, by (xx),

(xxi) For each icw and k=k,, K(k);=K(k,);.

Let K:;C[K(kf)iex. There is an 0@’ such that K, x,CO. By (xviii)
and (xxi), tal:e a k=1 such that n(O)=n(Back-1.4ce-») and if 1=<n(0), then
K(k);=K(k;);- Then we have K¢, kO and hence, m(k)=n(K¢, x»)=n(0).
Since a(k) S Fsciy.meny. oy M. xa) = mlk).  For i with n(O)=7 =
n(Back-1. 4ck-1), by the definition, Hicarr. xrr.: = Wrean. - Hence ApN
{n(0), -, n(Back-v.4ce-1)} = @. Since (2, x) € Bawr,acey and Bawy aer €
By Back-1y.4ck-1), there is an i=A(k) such that x;&EH iy, k.- Thus
i<n(0) and %, Bawus, acer,i=Wrew, o—Hewan, kan.- Since ie A(k), k<k;.
For each k'>k, K(k'):;CBacr ackr.i- Thus K(k); C Bacey, aw, - Since K(k);C
Hecwnry. kery.i» we have K(k);#K(ky);. This is a contradiction. Therefore
there is an /=w such that | {kcw:icAR)} |=w. Let {fcw:icA(k) and /<
n(Bacws, ac)t ={ke: t€0}. Let t€w. Since Cawae,y ach, 0= D> if kyey="F,+1,
then, by xiX), $(Backp.acep. ) N Backyep.ace,ep.e = @D. Assume that k.,
> ket 1o Since  Kroaen.o = CaBacryrn ackren® = CA1Bachyyi-vdchiyr-0-0 ©
Heoacr,ip ke, e, We have s(Bacep. ackp, )N Back,yp. 4k, p, i =@- Since s is a
stationary winning strategy for Player I in G(9@C, X), tQ Backy ackp.i =@ But
xiE,Qu Backpy.ackp.» Which is a contradiction. It follows that U{g,: (WX )<

and 7+ @} is a covering of ZXX®. The proof is completed.

REMARK 3.3. Let M be the Michael line and let P be the space of irrational
numbers. It is well known that MXP is not normal. M is a hereditarily
paracompact space. But M is not perfect. Since P is homeomorphic to w*, we
cannot omit the condition “Z is perfect” in Theotem 3.2. Furthermore we
cannot replace “Z is a perfect paracompact space” by “Z is a hereditarily
paracompact space” in Theorem 3.2.

THEOREM 3.4. If Z is a perfect paracompact space and Y ; is a paracompact
space with a c-closure-preserving cover by compact sets for each icw, then Z X
LY, is paracompact.

=
ProoF. This follows from Theorem 3.2 and Lemma 2.4 (a).

Similarly, by Theorem 3.2 and Lemma 2.4 (b),

THEOREM 3.5. [f Z is a perfect paracompact space and Y ; is a paracompact,
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a-C-scattered space for each icw, then ZX [1Y; is paracompact.
1€

For a space X, let F[X] denote the Pixley-Roy hyperspace of X. Every
Pixley-Roy hyperspace has a closure-preserving cover by finite sets and is o-
scattered. For a space X, the following are equivalent (see H. Tanaka [15]):
(a) F[X] is paracompact; (b) F[X?] is paracompact; (¢c) F[X"] is paracompact
for each n=w and (d) F[X"]™ is paracompact for each n, mew. T. Przy-
musinski [12] posed the following problem: If ¥[X] is paracompact, then is
F[X]® paracompact? We have

THEOREM 3.6. If Z is a perfect paracompact space and Y, is a space such
that F[Y ;] is paracompact for each icw, then ZX I] 9[V,] is paracompact.
i1€w

It is well known that Z is a regular hereditarily Lindel6f space if and only
if Z is a regular perfect Lindelo6f space (R. Engelking [5]).

THEOREM 3.7. If Z is a regular hereditarily Lindelof space and Y, is a
regular Lindelsf DC-like space for each icw, then ZX 11Y; is Lindelof. Hence,
i1€w
if X is a regular Lindeléf DC-like space, then X< L',

PROOF. By Lemmas 2.2 and 3.1, we may assume that for each icw, Y, is
a regular Lindelof 9C-like space with dim Y ,;<0. Let X= @Y,L-U{a}, where
ae \JY,;. Define the topology of X as the proof of TheorelmwS.Z. It suffices
to prove that Zx X is Lindeldf.

Let @ be the base of Z XX defined in the proof of Theorem 3.2 and let
© be an open covering of ZxX®. Define @ and n(B) for each B= & as before.
We show that @ has a countable open refinement. By the proof of Theorem
3.2, © has a o¢-locally finite refinement ¢=\U{G,: n=w} such that ¢C 8. For
each mew, let pn: ZXxXX*—>ZXX™ be the projection from Z XX® onto ZXX™.
For n, mew, let ¢, n—={G<=G,: n(G)<m}. Then ¢,=U{G, »: mcwo} for each
ncw. Put Xy n=pn(@n n)={pu(G): GEG, »} for n, mcw. Then every K, »
is locally finite in ZxX™. By Lemma 2.5, every ZXX™ is Lindelof. Then
for each n, mcw, I, » is countable. Hence every &, , is countable. Thus
G=U{G,: ncw}=\U{G, n: n, mco} is countable. It follows that ZXX“ is
Lindeléf. The proof is completed.

THEOREM 3.8. If Z is a regular hereditarily Lindelof space and Y, is a
regular Lindelof space with a c-closure-preserving cover by compact sets for each
i€w, then ZX I Y, is Lindelof.

icw
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THEOREM 3.9. [f Z is a regular hereditarily Lindeliéf space and Y, s a

regular Lindelof, a-C-scattered space for each icw, then ZX [1Y; is Lindelsf.
)
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