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REPRESENTATION OF NEAR-MING MORITA

CONTEXTS AND RECOGNIZING MORITA

NEAR-RINGS

By

Shoji KYUNO and Stefan Veldsman

Abstract. Subject to certain faithfulness requirements in a morita

context for near-rings, a canonical representation thereof is

provided. Necessary and sufficientconditions (using an idempotent

element) on a near-ring are given which determine when the near-

ring is a morita near-ring.

1. Introduction and preliminaries

In [2] we defined a morita context F = (L, G, H, R) for near-rings as well as the

associated morita near-ring M2(T). The examples provided in [3] probably best

motivates the reason for defining and investigating these concepts for near-rings

(for the ring case, they stood the test of time, see for example Amitsur [1] or

Rowen [4]).It is a generalization of one of these examples, which also appeared

in [2],in which we are interested here. In fact, in Section 2 we show, subject to

some mild faithfulness requirements, that every morita context for near-rings can

be embedded in a context of thistype.

In the next section we give necessary and sufficientconditions on a near-ring

to ensure that it is a morita near-ring. As is usual with matrices or matrix-like

structures, thisinvolves idempotents. Firstly we recall some relevant definitions

and resultsfrom [2]:

All near-rings considered will be right distributiveand O-symmetric. Let R

and L be near-rings and let G be a group. G is a left L-module if there is a

mapping Lx G ―>G,(x,g) h->xg such that (xl + x2)g - xxg + x2g and

(xlx2)g = xl(x2)g for all x,xvx2 eL and g&G.G is a right R-module if there is

a mapping Gx I? ―≫G, (gr)h-> gr such that (gi +g2)r = gxr + g2r and

{grx)r2= g(rxr2)for all g,gvg2 &G,r,rvr2 eR. G is an L-R-bimodule if itis both a

left L-module and a right /^-module for which (xg)r = x(gr) for all

xe L,g eG,re R. Strictly speaking we should talk about, for example, a left

near-ring L-module G, for even if L is a ring, G is not necessarily a left ring L-
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module. A normal subgroup K of G, G an L-i?-bimodule,is an ideal of G

x(g + k)-xge K and kr e K for all xe L,geG,ke K, and re/?.

if

For each i,j e N2:= {1,2}, let TV be a group. The quadruple r = (r,,,ri2,

F21, F22) is a near-ring morita context if for every i,j,ke N2, there is a function

r^r^r., (x,y)^xy,

which satisfies (a + b)c = ac + be and (db)e = d(be) for all a,b e Tjk,c e Tki,d e Ttj

and eeTkm where i,j,k,me N2.

It is clear that if r = (ripri2,r21,r22) is a morita context, then so is

(r22,r21,ri2,rn); the one being called the dual of the other. For Ao- cF^ and

Ajk c F^ , we define

AijAjk:={xy＼xeAlj,yeAjk}

and

A^. * Ajk := {x(z + y)-xz＼xGAij,yeAjk,ze Tjk}.

When necessary, the additive identity of the group Tij will be denoted by Oy,

otherwise we just write 0. Since the near-rings Tn and F22 are 0-symmetric,

x0jk = 0ik for all x e rtj, for all i,j,keN2.

For each i,jeN2 let A.. cTr The quadruple A = (An,A12,A21,A22) is an

ideal of the morita context F = (rn,ri2,r21,r22) if each A- is a normal subgroup

of ^u,Ajj Tjk cz Aik and Tkj* Atj ^Ajk for all i,j,keN2. In this case we get the

quotient morita context

r/A = (F11/A11,ri2/A12,F21/A21,r22/A22)

where the relevant maps are defined as is usual in the universal algebra:

ryA.xivA^iVA,

(x + A
^y

+ AJ^ix + A ,7)(y+ AJ:=xy + A,.,

Let F and F' be two morita contexts. A morita context homomorphism from F

to V is a quadruple a = (au,al2,cc2i,a22) such that each a- : Tt- ―≫F'^.is a group

homomorphism for which cu^(jry) = afa.(jt)a(;/(;y)for jcg Tkj, y e F^.,/,j,k e vV2. We

say (X is an embedding (or injective) if each ai;/is injective and is surjective if

each ai;/.is surjective. As usual, if a is both injective and surjective, it is called

an isomorphism. The kernel of Of, kerOf,is defined by kera = (kerau,kera12,

kera2pkera22). It is clear that ker≪ is an ideal of the morita context F.

For a morita context F = (F11,ri2,F21,r22), the associated morita near-ring

M2{T) is the subnear-ring of Mo(F+ ):={/: F+ -≫F+ | /(0) = 0},F+ is the matrix

group F =

-1 21

rl2l

,generated by the functions
^22 J



where bn =xajl,bj2= xa
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72,&(cl
= 0 = bic2(icdenotes the complement of /in N2),x e

rtj.For later reference, we recall some useful facilitiesfor doing calculations in

M7(T):

(1

(2

Proposition 1.1[2].

) sx + sy = sx+y

) 4+sl=sl+sxv ifi*k

(3) sXm

(4) s'v(s^+spk2)
lkJ

(5) For any U e MAT)

(here, of course, 0 = sR = sQkm)

aual2l [an0~＼ [0 a,2

U =U +U

a2Xa22＼ a21OJ [0 a22

(6) For any V,V e MJT)

(7) ForkeN2,Ck :=

(8) ForUeM2(T),

"aO"

'ub0

+ s*2 I

La2l"22_

+

]

Xi<=rik}isa

_b2lb22

if and only if U(s^' + s&) = sty + sb2}>

for i = 1,2. ■

For U e M2(T), itis possible that U may be expressed in more than one way

as a combination of a finitenumber of sums and products of the functions s-. The

weight of U, written as w(U), is the minimum number of s-'s which can appear

in a representation of U.

2. Representation of a morlta context

For a near-ring morita context F = (L, G, H, R), G is a right i?-module. Let

Af,(G) := {/ : G -> G |/(gr) = ^r for allg e G, r e i?}

and

Af^CG.i?) :={/ :G-≫J?|/(gr) = /(g>-for allgeG,re/?}.

Both these sets of functions are groups with respect to pointwise addition. The

former is in fact a O-symmetric near-ring with identity. As in [2], Example
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1.2(3),

r*:=(MR(G),G,MR(G,R),R)

is a morita context fornear-ringswith respectto:

MR(G)xG-^G,(f,g)^fg:=f(g)

RXMR(G,R)-* MR(G,RUrJ)^ rf: G-> R,(rf)(g):=rf(g)

MR(G,R)xMR(G)-> MR(G,R),(f,f')^ ff'･■=f °f'

GxMR(G,R)^ MR(G),(g,f)^ gf: G -* G,(gf)(g'):=gf(g')and

MR (G, R) x G -* R,(f,g)i->fg := f(g).

There are naturalmaps an : L -≫MR(G) and a2l:H -^ MR(G,R) givenby

a,.(x)= a* :G^G,a* (g):= xg and

with

a2Ah)

ker a,,

= ah2]:G^R,ah2](gy.= hg

= (0

ker a2.

G)L :={xeL＼xG = O} and

= (0: G)H := {h e H ＼hG = 0}

If we let al2:G^G and a22:R^>R be the identity mappings, then

a -(au,an,a2x,a22):T ―≫F# is a morita context homomorphism. Hence we have

PROPOSITION 2.1. a :r -≫T# wan embedding if and only if (0 : G)L = 0

(0:G)w=0.

and

m

PROPOSITION 2.2. a :T -> F# is an isomorphism if and only if the following

conditions are satisfied:

(i) L has an identity

(ii) (0 : G)L = 0 and (0 :G)H =0

(iii)For every f e MR(G,R), there is an heH (depending on f) such that hg =

fig) for all geG.

(iv) For every f e MR(G), there is an x e L (depending on f) such that xg = f(g)

for all geG.

Proof. If a is an isomorphism, then au: L―> MR(G) is an isomorphism.

Since MR(G) has an identity, so does L. The remainder of the proof follows from

Proposition 2.1 and the fact that au : L―≫MR(G) is surjective iff for every

feMR(G) there is an xeL such that axu =/, i.e. xg = f(g) for all geG. A

similar argument takes care of (iii). ■
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The conditions in Proposition 2.2 can be realized if, for example ,L

has an identity, the right (respt. left) L-module H (respt. G) is unital and

L = GH:={gh＼geG,he H}.Indeed, if 1 is the identity of L, then 1 = goho for

some g0 eG,h0 e H . If xG = 0 (xe L), then jc= jcl= (xgQ )ho=O; hence

(0:G)L=0. If hG = 0(h e H), then h = hi = (hgo)ho = 0 and thus (0: G)H =0. For

f eMR(G,R), let f(gQ) = r0.Then x:= roho e Hand for every ge GJ(g) = f(lg) =

f(8o(ho8)) = f(8o)(ho8)=ro(ho8)^(roho)g = xg. A similar argument shows that

(iv) is also satisfied.

Not every morita context may have the faithfulness required in Proposition

2.1, but it has at least a homomorphic image which does. For the morita context

r = (L)G)//>ie) = (ril,ri2,r21,r22) let Au=(0:G)l, A12
=0, A2I=(0:G)tf and

A22 = 0. Then A = (An,A12,A21,A22) is an ideal of P.

Let fi:F ―>r/A:=(ril/A11,ri2/AI2,r21/A21,r22/A22) be the canonical morita context

homomorphism. Then

(0:ri2/A12)r,i/Aii =0 and (0: F12/A12)r ,. , =0.

3. Recognizing morlta near-rings

Let A be a near-ring with an identity 1. For an idempotent e g A, let e] = e

and let e2=l-e. For i = l,2, let Di={e{aei+e2bei＼a,b e A) and let 5 be the

subnear-ring of A generated by {eue- |1 < i,j < 2,a g A).

PROPOSITION 3.1. Let Abe a near-ring with identity. Then A is isomorphic to

a morita near-ring M2(T) for some morita context Y = (Tu,Tn,T2x,Y22) where

Fu and T22 are near-rings with identity(all modules in Y are unital) if and only

if A contains a distributiveidempotent e for which thefollowing holds:

(i) ea +(l-e)b = (l-e)b + eaforalla,beA

(ii) (0:0,^0(0:^)^=0

riin s = a.

Proof. Suppose A = M2 (F). Let I be the identity of M2 (T). Then I = sln+ s22

(we use 1 to denote both the identity of Tn and T22). Let e = ex = slu. Then e is a

distributive idempotent and sluU + (I - jj,)V = slnU + s22V = s22V + sluU = (I - jj,)V +

51,1,?/for all U, V e M2(T). Using properties 1.1(7) and (4), we have

Hence, if UDi

= W+stt2?＼aJerjl}fori = l,2.

= 0 for i = 1,2, then
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ro
al2

a22

1/(^,1'+527'
i o] n o"

01
+i/(^+4p{01 =o

for all ajk e Tjk,j,k&N2. Thus U = 0.

Finally, [s^Us1-1U e M2(T),i,j eN2} = {s°＼ae Yipi,j e N2} and so S = M2(T).

Conversely, let el = e be a distributiveidempotent of A which satisfiesconditions

(i),(ii)and (iii).Then e2 :=l-e is idempotent. Furthermore, itis easily seen that

e2 is distributive by using condition (i). Note also 6,^2=0 = ^2^,. For each

i,j e A^2,let T- = e{Ae-. Clearly Y
~
is a subgroup of A and if the mappings

r,, x Yjk ―>Yik are defined by (x,y) h^ xy,

we obtain a near-ring morita context r = (ril,ri2,r21,r,2). Each near-ring Fa-

rias an identity et and all Yu-modules (left or right) are unital, i = l,2. Define

6: M2(T) ―>A- S by 0(U) = u where u e 5 is obtained from U e M2(T)by replacing

each s*jpresent in U by x. At the outset we have to verify that 0 is well-defined.

We first need two remarks:

(1) If x e rtj = ejAej, then x = eiaei for some a e A and thus x = eixei.

(2) If UeM2 (T) and U(s"> + s"2})= sft + sb2}, then u(ax + a2) = bx + b2 :We will

substantiate this claim by induction on w(U). If w(U) = 1, then U = sxikfor some

xeF
jk.

Thus 0(U) = u = x and f/≪.' + s＼})= jj ≪■'+ 527) = jj*. Now M(a, + a2) =

jt(a, + a2) = ejxek(elalei + e2a2ej) = e-xekekakei ― xak. Suppose the result holds for

all VeM2(P) with w(V) < m,m > 2 . If w(U) = m, then U = Uy + U2 or U = U{U2

where UXU2 e M2(T) with w(Ui) < m,i = 1,2. Suppose 17,(5,7 + s2fl})= (**･' +
4?).

f/2(5,7 + 52fl?)= (5,7 + se2f) and [/,(5[,.'+ se2}) = (5,7 + 5^). If U = U{+U2 then U(s?> +

52}) = 5,7+C| + 52,2+C2and u(a{ + a2) = (m, + m2 )(a, + a2) = ft,+62 + c, + c2 = fe,+ c, + Z?2 +

c2 since b2 + c, = e2&2e; + e,c,e(.= excxei + e2b2ei =cx+h2.HU = UXU2,then £/(5,7 + 52/2)

= 5,7 + 52} and w(a, + a2) = m,m2 (a, + a2) = ≪,(c, + c2) = J, + d2.

We now show that 0 is well-defined. Suppose U, V e M2(F) with £/= V. For

/,j e N2, let a., g P... Suppose

17
au al2

a2xa22

By property 1.1(8),

From (2) above,

I Ia2＼a2l＼

=

"^11 ^12 1

Al ^22
J

V(s$+sa2}) = s!>+s *2forieN2.

u(au + a2j) = v(au + a2i), i.e.

(u - v)(elauei + e2a2iei ) = (u- v)(au + a2i) = 0
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and so u- v e (0: D{)A n(0: D2)A = 0 .Hence w = v and 0(U) = 0(V). Thus 0 is

well-defined and clearlyitis a near-ring homomorphism. For any ue A- S, u is a

finitecombination of sums and products of e{ae-%,ugA. By replacing eacheiaei

in u by setf'eiwe obtain an element U of M2(T) for which 0(U) = u. Thus 9 is

surjective. Finally we show that 9 is injective.

UeM2(T). For all i,jeN2 and ^g^ if

Suppose u = 0(U) = 0 for

i

W + slil)= 41' + 42/ and so 0 = u(au + a2i) = bu+ b2i

i,jgN2,0 = e,(bu + b2i)= eh = bn, hence U = 0.

anan~

a2la22

=
'bubul

for iG N2.

then

Thus for all

■

Let us remark that if A is a ring, then any idempotent ee A satisfies the

conditions of the previous result and A is isomorphic to the morita ring

eAe eA{＼ -e) 1

;
of course,

(l-e)Ae (l-e)A(l-e)]

A = eAe + M(l -e) + (l- e)Ae + (1 - e)A{＼ - e)

is just the Peirce decomposition of A.
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