A BOOLEAN POWER AND A DIRECT PRODUCT OF ABELIAN GROUPS

By

Katsuya EDA

A group means an abelian group in this paper. A Boolean power and a direct product of groups consist of all global sections of groups in some Boolean extensions $V^{(B)}$. We shall study about a homomorphism h whose domain is a group consisting of all the global sections of a group in $V^{(B)}$. We investigate two cases: one of them is that the range of h is a slender group, which is related to a torsion-free group, and the other is that the range of h is an infinite direct sum, which is related to a torsion group. We extend a few theorems which have been obtained in [4] and [5]. As in [5], we not only extend theorems, but improve them and give a good standing point of view.

We refer the reader to [9] or [1], for a Boolean extension $V^{(B)}$. We shall use notations and terminologies in [5], [6] and [7]. Throughout this paper, Bis a complete Boolean algebra and $\mathcal F$ is the set of all countably complete maximal filters on B. We do not mention these any more. \check{x} is the element of $V^{(B)}$ such that dom $\check{x} = \{\check{y}; y \in x\}$ and range $x \subseteq \{1\}$. As noted in [5], " \hat{x} " in [1] means our " \check{x} ". $\hat{x} = \{y; [[y \in x]] = 1 \text{ and } y \in V^{(B)}\}$ for $x \in V^{(B)}$, where $V^{(B)}$ is separated. For $b \in B$ and a group A in $V^{(B)}$, i.e. [A is a group]=1, \hat{A}^b is the subgroup of \hat{A} such that $x \in \hat{A}^b$ iff $x \in \hat{A}$ and $-b \leq [x=0]$, where 0 is the unit of A. By this notation, $\hat{A} = \hat{A}^{1}$. For $x \in \hat{A}$, x^{b} is the element of \hat{A}^{b} such that $b \leq [x = x^b]$.

1. A general setting about a complete Boolean algebra

Let $\Phi(b)$ be a property of $b \in B$ which satisfies the following conditions:

- (1) if $\{b_n; n \in N\}$ is a pairwise disjoint subset of **B**, there exists k such that $\Phi(\bigvee_{n \geq k} b_n)$ and $\Phi(b_n)$ hold for each $n \geq k$;
- (2) if $b \wedge c = 0$, $\Phi(b)$ and $\Phi(c)$ hold, then $\Phi(b \vee c)$ holds.

Let S be the subset of **B** such that $b \in S$ iff $\Phi(b)$ does not hold and $c \wedge c'$ =0 implies $\Phi(c)$ or $\Phi(c')$ for any $c, c' \leq b$.

Received February 18, 1982.

The author is partially supported by Grant-in-Aid for Encouragement of Young Scientist Project No. 56740087.

Katsuya Eda

LEMMA 1. Let F^b be the subset of **B** defined by: $c \in F^b$ iff $\Phi(b \wedge c)$ does not hold. Then, $F^b \in \mathcal{F}$ for every $b \in S$.

PROOF. We prove only the countable completeness. Let $b_n \in F^b$ for $n \in N$. Let $c_1 = 0$ and $c_{n+1} = \bigwedge_{k=1}^n b_k - b_{n+1}$. Then, $b_1 = \bigvee_{n \in N} c_n \lor \bigwedge_{n \in N} b_n$. By the condition (1) and (2) of Φ and the property of S, $\Phi(b \land \bigvee_{n \in N} c_n)$ and so $\Phi(b \land \bigwedge_{n \in N} b_n)$ does not hold.

LEMMA 2. Let M be a maximal pairwise disjoint subfamily of S. Then, M is finite and $\Phi(c)$ holds for any c such that $c \land \lor M=0$.

PROOF. By the condition of Φ , M is finite. Suppose that there exists c such that $\Phi(c)$ does not hold and $c \wedge \bigvee M = 0$. By the maximality of M, there is no element of S below c. So, there are $b_0, c_0 \leq c$ such that $b_0 \wedge c_0 = 0$ and $\Phi(b_0)$ nor $\Phi(c_0)$ does not hold. Then, take $b_1, c_1 \leq c_0$ with the same property of b_0 and c_0 . In such a way, we obtain a pairwise disjoint family $\{b_n; n \in N\}$ such that $\Phi(b_n)$ does not hold for any $n \in N$, which is a contradiction. **2.** Hom(\hat{A}, G)

Let F be a maximal filter on B. For a group A in $V^{(B)}$, \hat{A}/F is the quotient of \hat{A} by the equivalence relation \sim_F such that $x \sim_F y$ iff $[x=y] \in F$. In the case $A = \check{X}$, \hat{A} is known as a Boolean power $X^{(B)}$ and \hat{A}/F is a Boolean ultrapower $X^{(B)}/F$. (Ref. [8]) In the case that B = P(I) and $\hat{A} = \prod_{i \in I} A_i$, where A is defined by a natural way, \hat{A}/F is known as an ultraproduct $\prod_{i \in I} A_i/F$. (Ref. [2]) However, the following fact is enough to read the main part of this paper. Let K be the subgroup of \hat{A} defined by: $x \in K \leftrightarrow [x=0] \in F$. Then, $\hat{A}/F \cong \hat{A}/K$, where the right part is the quotient group.

THEOREM 1. Let A be a group in $V^{(B)}$ and G a slender group. Then, Hom $(\hat{A}, G) \cong \bigoplus_{F \in \mathcal{F}} \operatorname{Hom}(\hat{A}/F, G)$ holds.

PROOF. Let *h* be a homomorphism from \hat{A} to *G* and $\Phi(b)$ the property " $h''\hat{A}^b=0$ ". Let $\{b_n; n \in N\}$ be a pairwise disjoint subset of *B* and $x_n \in \hat{A}^{b_n}$ for each $n \in N$. Think of the homomorphism $g: \mathbb{Z}^N \to \hat{A}$ such that $g(\sum_{n \in N} a_n e_n) = \sum_{n \in N} a_n x_n$, where $x = \sum_{n \in N} a_n x_n$ is the element of \hat{A}^b such that $b = \bigvee_{n \in N} b_n$ and $b_n \leq [x = a_n x_n]$ for each $n \in N$, and apply the slenderness of *G* to $h \cdot g$, then $h \cdot g(e_n) = 0$ and so $h(x_n) = 0$ for almost all *n*. Hence, there exists *k* such that $\Phi(b_n)$ for any $n \geq k$ and $h(\sum_{n \geq k} x_n) = 0$, by Specker's theorem. (Ref. Prop. 1 of [5] or

189

Lem. 94.1 of [7])

Therefore, Φ satisfies the conditions (1) and (2) of §1. Hence, Lem. 1 and Lem. 2 hold for this Φ . Now, let $M = \{b_1 \cdots b_n\}$ and $b_0 = 1 - \bigvee M$. Let $h_i: \hat{A}/F^{b_i} \rightarrow G$ be defined by: $h_i([x]_i) = h(x^{b_i})$, where $[x]_i$ is the equivalence class containing x with respect to F^{b_i} , for each $1 \le i \le n$. Since $[x=0] \in F^{b_i}$ implies $h(x^{b_i}) = 0$ for $x \in \hat{A}^{-[x=0]}$, h_i is well-defined for $1 \le i \le n$. For $x \in \hat{A}$, $h(x) = h(\sum_{i=0}^m x^{b_i}) =$ $\sum_{i=0}^m h(x^{b_i}) = \sum_{i=1}^m h_i([x]_i)$. The linear independence of $\{\operatorname{Hom}(\hat{A}/F, G); F \in \mathcal{F}\}$ is clear. Now, the proof is completed.

In view of the paragraph preceding Th. 1, Th. 1 includes Th. 2 of [5] and Th. 94.4 of [7]. We express these as corollaries.

COROLLARY 1. Let A be a group and G a slender group. Then, $\operatorname{Hom}(A^{(B)}, G) \cong \bigoplus_{F \in cr} \operatorname{Hom}(A^{(B)}/F, G).$

COROLLARY 2. Let A_i be a group for each $i \in I$ and G a slender group. Then, $\operatorname{Hom}(\prod_{i \in I} A_i, G) \cong \bigoplus_{F \in \mathcal{F}} \operatorname{Hom}(\prod_{i \in I} A_i/F, G).$

If the cardinality of A is less than the least measurable cardinal M_c or **B** satisfies $M_c - c. c.$, $A^{(B)}/F \cong A$ holds, so Cor. 1 is an extended form of Th. 2 of [5]. If the cardinality of I is less than M_c , then every $F \in \mathcal{F}$ is principal. Therefore, $\operatorname{Hom}(\prod_{i \in I} A_i, G) \cong \bigoplus_{i \in I} \operatorname{Hom}(A_i, G)$, which is a famous theorem. If the cardinalities of the A_i are bounded below M_c , then $\prod_{i \in I} A_i/F \cong A_i$ for some *i*, which was used in the proof of Cor. 2 of [5].

By Cor. 2, we can calculate a dual group of $\prod_{\lambda_1} \bigoplus_{\lambda_2} \cdots \prod_{\lambda_{2n-1}} Z$. Now, we shall do it in a simple case. Let $j_F: V \to M_F$ be the elementary embedding, where F is a countably complete maximal filter on $P(\lambda)$ and M_F is the transitive model which is isomorphic to V^{λ}/F . (Ref. [10]) Let $B = P(\lambda_1)$, then

$$\begin{split} \operatorname{Hom}(\prod_{\lambda_1} \bigoplus_{\lambda_2} Z, Z) &\cong \bigoplus_{F \in \mathcal{F}} \operatorname{Hom}(\prod_{\lambda_1} (\bigoplus_{\lambda_2} Z)/F, Z) \\ &\cong \bigoplus_{F \in \mathcal{F}} \operatorname{Hom}(\bigoplus_{j_F(\lambda_2)} Z, Z) \\ &\cong \bigoplus_{F \in \mathcal{F}} \prod_{j_F(\lambda_2)} Z \,. \end{split}$$

In the calculation, we have used the absoluteness of direct sums. Unfortunately, direct products are not absolute among transitive models. So, for the calculation of $\operatorname{Hom}(\prod_{\lambda_1} \bigoplus_{\lambda_3} \prod_{\lambda_3} Z, Z)$, we must prepare a proposition which is obtained by modifying Cor. 2. That can be done, if we notice the fact that only the count-

Katsuya EDA

ably completeness of B, not the full completeness, has been used in the proof of Th. 1.

In this paper, we deal with the case that B is a complete Boolean algebra. Therefore, unless B is very large, every element of \mathcal{F} is principal. Concerning a Boolean power, a countably complete Boolean algebra can give us interesting groups, for there can be a non-principal c.c. max-filter on a non-complete but countably complete and small Boolean algebra.

3. A homomorphism into an infinite sum

In this section, we shall extend some results of [4]. We do not prove the next lemma, because the proof is in [3] and [4], and the essential idea of it will be developed in the proof of Lem. 5. For $X \subseteq I$, we identify $\prod_{i \in I} A_i$ with the subgroup of $\prod_{i \in I} A_i$ such that $x \in \prod_{i \in I} A_i$ iff $x \in \prod_{i \in I} A_i$ and x(i)=0 for each $i \notin X$. Similarly, we do $\bigoplus_{i \in X} A_i$ with the subgroup of $\bigoplus_{i \in I} A_i$.

LEMMA 3. (Chase [3]) Let $h: \prod_{i \in N} A_i \to \bigoplus_{j \in J} G_j$ (=G) be a homomorphism. Then, there exist an integer n > 0 and finite subsets $F \subseteq N$ and $J' \subseteq J$ such that

$$h'' n \prod_{i \in N-F} A_i \subseteq \bigoplus_{j \in J'} G_j + \bigcap_{n \in N} nG$$
.

THEOREM 2. Let A be a group in $V^{(B)}$ and $h: \hat{A} \to \bigoplus_{j \in J} G_j$ (=G) a homomorphism. Then, there exist $F_1, \dots, F_m \in \mathfrak{F}$, an integer $n^* > 0$ and a finite subset J^* of J that satisfy the following condition: Let K be the subgroup of \hat{A} such that $x \in K$ iff $[x=0] \in F_i$ for each $1 \leq i \leq m$, then $h''n^*K \subseteq \bigoplus_{j \in J^*} G_j + \bigcap_{n \in N} nG^{(*)}$

Let $\Phi(b)$ be the property "There exist an integer n > 0 and a finite subset J' of J such that $h'' n \hat{A}^b \subseteq \bigoplus_{j \in J'} G_j + \bigcap_{n \in N} n G$."

LEMMA 4. This Φ satisfies the conditions (1) and (2) in § 1.

PROOF. Let $b = \bigvee_{n \in N} b_n$, for a pairwise disjoint family $\{b_n; n \in N\}$. Then, $\hat{A}^b \cong \prod_{n \in N} \hat{A}^{b_n}$. $b \le c$ and $\Phi(c)$ imply $\Phi(b)$. Hence, Φ satisfies the condition (1), by virtue of Lem. 3. Φ satisfies the condition (2) clearly.

LEMMA 5. There exist an integer $n^*>0$ and a finite subset J^* of J such that, for any b which satisfies $\Phi(b)$, $h''n^*\hat{A}^b \subseteq \bigoplus_{j \in J^*} G_j + \bigcap_{n \in N} nG$.

190

^(*) Here we admit m=0 and in such a case $K=\hat{A}$.

PROOF. Suppose the negation of the conclusion. Let $\pi_j: \bigoplus_{j \in J} G_j \to G_j$ be the projection for $j \in J$. We construct $b_k \in B$, $a_k \in \hat{A}$, $n_k \in N$, $j_k \in J$ and a finite subset J_k of J satisfying the following conditions:

- (1) $\langle b_k; k \in N \rangle$ are pairwise disjoint and $\Phi(b_k)$ for $k \in N$;
- (2) $a_k \in n_{k-1}! \hat{A}^{b_k}$ and $\pi_{j_k} h(a_k) \in n_k! G_{j_k}$ and $\pi_{j_i} h(a_k) = 0$ for each i < k;
- (3) $h''n_{k-1}! \hat{A}^b \subseteq \bigoplus_{j \in J_{k-1}} G_j + \bigcap_{n \in \mathbb{N}} nG$, where $b = \bigvee_{i=1}^{k-1} b_i$;
- (4) $j_k \in J_k$ and $j_k \notin J_i$ for i < k;
- (5) $\langle n_k; k \in N \rangle$ and $\langle J_k; k \in N \rangle$ are increasing.

Suppose that we have already defined b_i , a_i , n_i , j_i and J_i for $i \leq k$ satisfying the above conditions. By the hypothesis, there exists b_{k+1} such that $b_{k+1} \wedge \bigvee_{i=1}^{k} b_i = 0$, $\Phi(b_{k+1})$ and $h''n_k ! \hat{A}^{b_{k+1}} \oplus \bigoplus_{j \in J_k} G_j + \bigcap_{n \in N} nG$. So, there exists $a_{k+1} \in n_k ! \hat{A}^{b_k+1}$ such that $h(a_{k+1}) \oplus \bigoplus_{j \in J_k} G_j + \bigcap_{n \in N} nG$. Hence, there are $j_{k+1} \oplus J_k$ and $n > n_k$ such that $h(a_{k+1}) \oplus m ! G_{j_{k+1}}$. Let $J' = J_k \cup \{j; \pi_j h(a_{k+1}) \neq 0\}$. By the property of b_{k+1} , there exist n_{k+1} and a finite subset J_{k+1} such that $n < n_{k+1}$ and $J' \subseteq J_{k+1}$ and $h''n_{k+1} ! \hat{A}^{b_{k+1}} \subseteq \bigoplus_{j \in J_{k+1}} G_j + \bigcap_{n \in N} nG$. $\sum_{k \in N} a_k$ exists in \hat{A} and so let it be a. Then, $a - \sum_{i=1}^{k} a_i \in n_k ! A$ and $\pi_{j_k} h(a_k) \oplus n_k ! G_{j_k}$ and $\pi_{j_k} h(a_i) = 0$ for each i < k. Hence, $\pi_{j_k} h(a) = \pi_{j_k} h(a - \sum_{i=1}^k a_i) + \pi_{j_k} h(a_k) \neq 0$ for each k. Since $k \neq k'$ implies $j_k \neq j_{k'}$, it is a contradiction.

PROOF OF TH. 2. By Lem. 1, Lem. 2 and Lem. 4, M is finite and so let $M = \{b_1, \dots, b_m\}$ and $b_0 = 1 - \bigvee M$. Let $F_i = F^{b_i}$ for $1 \le i \le m$. Now, the theorem is clear by Lem. 5 and the fact that $x \in K$ implies $x \in \hat{A}^b$ for some b which satisfies $\Phi(b)$.

For a Group A, \overline{A} denotes the corresponding Hausdorff group $A / \bigcap_{n \in N} nA$.

LEMMA 6. For a group A in $V^{(B)}$, $\overline{\hat{A}} \cong \widehat{\overline{A}}$.

PROOF. By the absoluteness of $N_{n \in N}$ $n\hat{A} \cong_{n \in N} \stackrel{\frown}{nA}$. Hence, $\overline{\hat{A}} \cong \hat{A}/_{n \in N} n\hat{A} \cong \hat{A}/_{n \in N} \hat{A}$.

Let F be a maximal filter on **B** and $K_F^{\widehat{A}}$ the subgroup of \widehat{A} such that $x \in K_F^{\widehat{A}}$ iff $[x=0] \in F$.

LEMMA 7. $nx \in K_F^{\widehat{A}}$ implies $nx \in nK_F^{\widehat{A}}$, where n is an integer.

PROOF. Let b = [nx=0]. Let x' be the element of \hat{A} such that $-b \leq [x'=x]$

and $b \leq [x'=0]$. Then, $x' \in K_F^{\widehat{A}}$ and nx'=nx.

LEMMA 8. Let $\pi: \hat{A} \to \hat{\bar{A}} \ (\cong \bar{\hat{A}})$ be the canonical homomorphism. Then, $\pi'' K_F^{\widehat{A}} = K \hat{\bar{A}}$.

PROOF. $\pi'' K_F^{\widehat{A}} \subseteq K_F^{\widehat{A}}$ is obvious. Let $x \in K_F^{\widehat{A}}$. Then, there exists y in \widehat{A} such that $\pi(y) = x$. So, there exists b such that $b \in F$ and $b \leq [x=0]$. Let y' be the element of \widehat{A} such that $-b \leq [y'=y]$ and $b \leq [y'=0]$. Then, $\pi(y') = \pi(y)$ and $y' \in K_F^{\widehat{A}}$.

LEMMA 9. Let A be a torsion group in $V^{(B)}$, then \hat{A}/F is also a torsion group for $F \in \mathfrak{F}$.

PROOF. Let $a \in \hat{A}$, then $\bigvee_{n \in N} [na=0] = [\exists n \in N(na=0)] = 1$. By the countable completeness of F, $[na=0] \in F$ for some $n \in N$. So, \hat{A}/F is a torsion group.

THEOREM 3. Let A be a torsion group in $V^{(B)}$. Then, for each direct sum decomposition $\bigoplus_{i \in J} G_i$ of \hat{A}, \overline{G}_i is a torsion group for almost all $j \in J$.

PROOF. Applying Th. 2 directly, we have $F_1, \dots, F_m \in \mathcal{F}$, an integer *n* and a finite subset J' of J such that $nK \subseteq \bigoplus_{j \in J'} G_j + \bigcap_{n \in N} nG$, where K and G are the same as Th. 2. Let $\pi: G \to \overline{G}$ be the canonical homomorphism. Then, $\pi''G_j \cong \overline{G}_j$ for each $j \in J$ and $n\pi''K \subseteq \bigoplus_{i \in J'} \pi''G_j$.

Let $\psi: \overline{G} (=\overline{A}) \to \overline{G}/\pi'' K$ be the canonical homomorphism. Then, the restriction ψ to $n \bigoplus_{j \in J-J'} \pi'' G_j$ is a monomorphism, by Lem. 6, 7 and 8. On the other hand, $\overline{G}/\pi'' K \cong \widehat{A}^{b_1}/F_1 \oplus \cdots \oplus \widehat{A}^{b_m}/F_m \cong \widehat{A}/F_1 \oplus \cdots \oplus \widehat{A}/F_m$, by virtue of Lem. 6, 7 and 8 and the fact: $K = \widehat{A}^{b_0} \oplus K_{F_1}^{2b_1} \oplus \cdots \oplus K_{F_m}^{2b_m}$. Therefore, it is a torsion group by Lem. 9 and hence $\bigoplus_{j \in J-J'} \overline{G}_j$ is a torsion group.

Let A_i be a torsion group for each $i \in I$. In view of the first paragraph of § 2, we can take a torsion group A in $V^{(P(I))}$ such that $\hat{A} \cong \prod_{i \in I} A_i$. So, Th. 3 is an improvement of Lem. 8 of [4], even in the case of a direct product, i.e. dropping the cardinality hypothesis for I. Hence, we have Th. 9 of [4] without the cardinality hypothesis for I.

Acknowledgement

The author would like to thank Prof. K. Honda for his kind teaching in the preparation of this paper.

192

References

- [1] Bell, J.L., Boolean valued models and independence proofs in Set Theory, Clarendon Press, Oxford, (1977).
- [2] Bell, J. L. and Slomson, A. B., Models and Ultraproducts, North-Holland, Amsterdam, (1969).
- [3] Chase, S.U., On direct sums and products of modules, Pacific Journal of Mathematics, 12 (1962), 847-854.
- [4] Dugas, M. and Zimmermann-Huisgen, B., Iterated direct sums and products of modules, in L. N. in Math. 874 Springer, (1981), 179-193.
- [5] Eda, K., On a Boolean power of a torsion free abelian group, to appear in J. Algebra.
- [6] Fuchs, L., Infinite abelian groups, Vol. I, Academic Press, (1970).
- [7] Fuchs, L., Infinite abelian groups, Vol. II, Academic Press, (1973).
- [8] Mansfield, R., The Theory of Boolean Ultrapowers, Annals of Mathematical Logic, 2 (1971), 297-323.
- [9] Solovay, R. M. and Tennembaum, S., Iterated Cohen extensions and Souslin's Problem, Annals of Mathematics, 94 (1971), 201-245.
- [10] Jech, T., Set Theory, Academic Press, (1978).

Institute of Mathematics University of Tsukuba Sakuramura, Ibaraki, 305 Japan