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1. Introduction

Throughout this paper G, Z and Q denote a finite group, the ring of rational

integers and the rational field respectively. Moreover we write Z to denote the

ring of all algebraic integers in the complex numbers and Q to denote the

algebraic closure of Q in the field of complex numbers. For a finite set S, we

denote by |S| the number of elements in S.

Let Irr(G) = {%＼,----,%h＼be the complete set of absolutely irreducible complex

characters of G. Then we can view X＼>'">Xh as functions from G into the

complex numbers. We write ZR(G) to denote the Z-algebra spanned by

Xv'"->Xh- P°r two finite groups G and H, let A be a Z-algebra isomorphism of

ZR(G) onto ZR(H). Then we can write

*(*/) = Z*=,W. d = h-,h)

where atj&Z and Irr(H) = {X＼>'">X'h}･ ^n tm"s case we write A to denote the

hxh matrix with (i,j)-entry equal to atj and say that A is afforded by X with

respect to Irr(G) and Irr(H).

As is well known, concerning the isomorphism X, we have the following two

results, which seem to be most important. (For example see Theorem 1.3 (ii) and

Lemma 3.1 in [5])

(i) ＼cG(ci)＼= ＼cH(c;,)＼,(/ = 1,･･-,/?) where {cv---,ch} and {c[,,---,c'h,} are

complete sets of representatives of the conjugate classes in G and H respectively

and c{ ―^―≫c/, (i = l,---,h). (Concerning a symbol "c,.――->£,',",see the definition

in [5] and also the definition in section 2 in this paper)

(ii) A is unitary where A is the matrix afforded by X with respect to Irr(G)

andlrr(H).

In this paper our main objective is to give a necessary and sufficient condition
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under which the above statements (i) and (ii)hold, concerning an isomorphism X

of a Brauer character ring onto another, and to state a generalization of theorems

of Saksonov and Weidman about character tables of finitegroups. (See Theorem

2, Corollary 2.1 in [3] and Theorem 3 in [4])

From now on, when we consider homomorphisms from an algebra to another,

unless otherwise specified,we shall only deal with algebra homomorphisms.

2. Preliminaries

We fix a rational prime number p and use the following notation with respect

to a finite group G.

Go: the set of all p-regular elements of G

C7(GO) = {(£,={1},･･･,(£,.}:the complete set of /^-regular conjugate classes in

G

{Cj =l,---,cr}: a complete set of representatives of (Ep･･･,(£,.respectively

IBr{G) = {(px =l,---,(pr}: the complete set of irreducible Brauer characters of

G, which can be viewed as functions from Go into the complex numbers

For any subring R of the field of complex numbers such that IE.'R, we write

RBR(G) to denote the ring of linear combinations of (pl,---,(prover R. That is,

RBR(G) is the /^-algebra spanned by (px,---,(pr.In particular we use the notation

BR{G) instead of ZBR(G) and say that BR(G) is the Brauer character ring of G.

Moreover we add the following notation.

G(Q/Q): the Galois group of Q over Q

If A = (a-) is a matrix over Q, then for o e G{QIQ) we write Aa to denote

the matrix (a?). We use the common notation X* for the conjugate transpose of a

matrix X.

Now we define characteristic class functions on Go.

Definition 2.1. We define class functions f.t on Go (/ = 1,･･-,*･)as follows

fl(ci) = i, /;.(c,)= q (i*j).

In this case we say that these class functions are the characteristic class

functions on Go and that ft corresponds to (£; or S. corresponds to ft

(i = l,-,r).

Now we prove an easy lemma concerning characteristic class functions on

Go.

Lemma 2.2. Let {/p---,/r} be the complete set of characteristic class

functions on Go. Then we have
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fieQBRiG), (i = l,-,r).

characteristic class function of G such that

where f＼G indicates the restriction of ft to

linear combination of X＼>'"'Xh- That is,

G

(l

(2.1) fi

fk
Then each / is written as a

= Z*.1dRJ/|G|)^(c|.)^, (i = l,-,r)

209

=fi

Q-

For each absolutely irreducible complex character Xi °fG, X,＼cls written as a

Z-linear combination of <z>,,■･■,(pr.That is,

(2.2) xlG. =Y~A<i>r O"= i.-,a)

where (dtj)is the decomposition matrix of G.

By virtue of the formulas (2.1) and (2.2), we can conclude that / e QBR(G),

(I = l,---,r) as required. Q.E.D.

We are given two finitegroups G and H. For G and H we assume that there

exists an isomorphism A of ZBR(G) onto ZBR(H). Then it follows that the rank

of BR(G)= the rank of BR(H) and ＼Cl(Gn)＼= ＼Cl(H)＼.We also can extend A to

an isomorphism X of QBR(G) onto QBR(H) by linearity.By Lemma 2.2 we have
fi g QBR(G). Here we use the following additional notation.

{c[ = l',"-,c'}: a complete set of representatives of (£',,-･･,(£',.respectively

{/,'･･･,//}: the complete set of characteristic class functions on H where f'{/p･･･,//}:the complete set of characteristicclass functions on Ho where f'

corresponds to (£',(i = l,---,r).

IBr(H) = {(P>l=l,-,(p'r}.

We now show a lemma which is actually the key step in the proof of Lemma

2.4.

Lemma 2.3.In the above situation,

Hn, (i = l,-,r).

A(/) is a characteristic class function on

PROOF. Since QBR{G)ft =Qft=Q, QBR(G)ft is a minimal ideal of QBR(G)

and so /■is a (central) primitive idempotent, (i = l,---,r).Since Xif^eQBRiH),

we can write

(2.3)

Since f.2= fi and f/ff

kf.)

= 0 (i*j)

= X>;//. *7-e Q

,by the formula (2.3) we have

kf^T^ff
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(j = !･･･,r). Hence a. =0 or a- =1, (j = l---,r). It follows that

Mfj) = fj' for some j e {1,･･･,/-},because f{is a primitive idempotent, hence the

result. Q.E.D.

Now we define a bijection from Cl(Go) to Cl{Ho) through the isomorphism

A as follows. For a /^-regular conjugate class (£(.of G, (£,.corresponds to a

characteristic class function f} on Go. Since by Lemma 2.3 A(/j.) is also a

characteristic class function f',,on Ho, A(/-) = /-' corresponds to a /^-regular

conjugate class (£',of H. Here we assign (£',to c. (i = 1,･･･,/-).Thus we get a

one-to-one correspondence between Cl{Go) and Cl(Ho):

c,.e(S,.-≫/■-≫A(/) = y;: -^ e^.,34,

where j―>i" (/ = l---,r)is a permutation. In thiscase we write (£.―^-≫(S',,or

ci^^c'i,, (i = l---,r).

Keeping the above notation, we give the following lemma concerning the

Brauer character table of G. This lemma plays a fundamental role in the proof of

Theorem 3.1. The proof is the same as that of Theorem 2.2 in [5] and so we omit

its proof.

Lemma 2.4. ((pi(cj))= (A.(<pi)(c'r))(rxr matrices) where cj―^cj.,

O' = l,-,r).

3. Main theorems

Let G and H be two finite groups with Cartan matrices C and C

respectively. Let X be an isomorphism of ZBR(G) onto ZBR(H) and A = (aij) be

the matrix afforded by X with respect to IBr{G) = {<px,---,(pr)and IBr(H) =

{(p[,---,(p'r).We set Cl(Go) = {(£,,-･･,(£,}and C/(HO) = {c',,･-,c;} and assume that

c(. c,., c[gS' and c.―^->c/,, where i->i" (/ = 1,･･･,/■)is a permutation. We

write m to denote the vector with /-th entry equal to |CG(c(.)| and m' to denote

the vector with /-th entry equal to IC^c/,,)!, (i = !,■■■,r).Then we have the

following two theorems.

THEOREM 3.1. With the above notation,m=m' iff A*CA = C. This neces-

sarilyhappens if CA ―AC ,in which case A is clearlyunitary.

PROOF. To prove this theorem, we introduce some simplifying notation: Write

P to denote the rxr matrix with (i,j)-entry equal to <p,-(c-)and similarly write

P' for the matrix with (/,_/)-entryequal to (p'(Cj,,).

Since A(≪p,)= XLa*^ where A = (a..),by Lemma 2.4 we have
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This implies that P = AP'. Also, if B is the diagonal matrix with (i,/)-entry equal

to |CG(c,.)|,it follows that P*CP = B by Theorem 60.5 in [2]. Similarly

(P')*C'P' = B', where B' is the diagonal matrix with (/,/)-entry equal to

＼CH(c'r)＼.Here we note that B-B' iff m=m'. Since P* =(P')*A*, we have the

two equations

{P')*A*CAP' = B and {P')*C'P' = Bf.

It is now obvious that B = B' iff A*CA = C.

Now suppose CA = AC. Then we show that A is unitary. If we write

/ = A*A, then we have {P')*JC'P' = B. Thus {B')~xB = {P'YX{C'YX JC'P'. This is

a diagonal matrix with rational entries and this shows that J has rational

eigenvalues. But / has algebraic integer entries, and so must have integer

eigenvalues. Thus {B')~XB is a diagonal matrix with positive integer diagonal

entries. Also, A is invertible over Z and thus A* is too. It follows that

det(J) = det((B'yl B) -1 and so (B')"1B is the identity matrix /. It follows that

/ = A*A = / and so A is unitary, as required. Q.E.D.

THEOREM 3.2.If CA- AC, then we have

(i) h((pj)= £$1, where the e. are roots of 1 and

permutation.

;-w (/ = !,･･･ r) is a

(ii)The Brauer character tables of G and H are the same.

Proof, (i) Now we pay attention to the fact that if a eZ and |aCT|<l (an

absolute value) for all o e G{QI Q), then a = 0 or a is a root of 1.

If we use the same notation as in the proof of Theorem 3.1, then we have

A = P{P')~Xand so A has entries that lie in a field with an abelian Galois group.

Thus (A*)ff =(Aa)* for all oeG(QIQ). Since A is unitary by Theorem 3.1, Aa

is automatically unitary for all aeG(Q/Q). Hence we have the equation with

respect to the i-throw of Aa.

i'≪=i;J<f=i. ≪-=i.-■■,<･)

Hence we have a° <1 for all <jgG(Q/Q). This implies that atj- 0 or atjis a

root of 1 because of the above attention. Thus it follows that for each ie{l,---,r],

there exists /'e{l,･■･,/-}such that air is a root of 1 and atj=0 (j^i'). Hence

M<Pi) = £i<P'rwhere e. = aH, is a root of 1 and / ―≫/'(i = l,--,r) is a permutation.

(ii) We state a one-to-one correspondence u. between IBr(G) and IBr(H)
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through the isomorphism A as follows. By (i) of this theorem, we have

X((pj) = £i(p',(i-l,---,r) where the £■are roots of 1. Here we assign (p., to

(Pi: H((Pj) = (p＼,(i = 1,･･-,/■).Then fi can be extended to an isomorphism of BR(G)

onto BR(H) by linearity. (See the proof of Lemma 3.2 in [5]) By Lemma 2.4 we

have ((pi(cj)) = (q>{,(Cj≫))(rxr matrices) where c.―iL->cj≫ (j = l,---,r). That is,

G and H have the same Brauer character table. Thus the result follows. O.E.D.

Remark. If the condition m ―m' in Theorem 3.1 holds, then we can easily

prove ＼G＼= ＼H＼.But we can give examples such that for two finitegroups G, H

with ＼G＼̂＼H＼,a matrix A is unitary where A is afforded by an isomorphism of

BR(G) onto BR(H). Actually, such an example is given by taking G and H to be

any two/?-groups of different orders. Another example can be found in [1]. (p =

2, G = the symmetric group S4 on 4 symbols and H = the dihedral group D6 of

order 12. See the examples of section 91 in [1])
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