
TSUKUBA J. MATH.
Vol. 11 No. 2 (1987). 287―301

ON THE ACTION OF AUTOMORPHISMS OF A CURVE

ON THE FIRST Z-ADIC COHOMOLOGY

by

Izumi KURIBAYASHI and Fumiyuki MOMOSE

Introduction

Let G=<ff> be a cyclic group with w = #G>l. For each divisor d of n, let

%d denote the character of G of the irreducible representation over Q, the field

of rational numbers, whose kernel is equal to (,od). Let k be an algebraically-

closed ground field and X be a complete non-singular curve over k of genus

Q^Z.2.The main purpose of the present paper is to prove the following theorems,

under the assumption that G^=Aut(X), the automorphism group of X; in this

situation we denote by Tx(G＼H1(X, QO) tne character of the natural represe-

ntation of G on the first/-adic cohomolqgy .fiPCX,Qz) of X, where I is any prime

number differentfrom the characteristicof k fcf. Notation, 5 2 and also [41) :

THEOREM I. Assume that Tr(G＼H1(X,Qi)}= Y>a<ild,where the symbol S
d＼n d＼n

stands for the summation over all divisorsd of n. Then

(a) For divisorsd,e of n -withd＼e,we have

{aa if d^l,

aa-2 if d=l.

(b) // we put

aefKf) for e＼n,e^?l,?i,

for e = l.

then ≪e^0, xvhere fx(_) denotes the Mobius function.

THEOREM II. n^Ag+2. Moreover, if n^ig +2 then n^ig.

Our proofs of Theorem II and Theorem I (a) are essentiallydue to the fact

that the rational character Tr{G＼H1(X,Qi)') has the property described in Theo-

rem I (b). And so, in the large part of this paper we are devoted to the inves-

tigation of the rational characters having such a property. Concerning Theorem

I, we note that ae equals to the cardinality of the set

{?£lk(F)=?,^(P)%P for f＼e,f*e),
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in the case where k=C, the fieldof complex numbers, (cf.Lemma 2.4). Theorem

II has been proved by Wiman [10] (cf. [2]) in the case where k=C (cf. also,

[9]). We shall see that the bound 4(7+ 2 (resp. 4g) is attained by an automor-

phism of a curve over k of genus Q if and only if pi 49+2 or p = 2 or p=2Q+ 1

(resp. pkAg or "p^2, #=3"), where p denotes the characteristicof k (cf. Re-

mark 3.3).

We give a brief survey of this paper. In §1, we provide the "Riemann-

Hurwitz relation" and a lemma asserting that our property is preserved for in-

duced characters. We shall use them as basic tools for our proofs. In §2, we

prove (b) of Theorem I by using the Lefschetz formula, and deduce the inequali-

tiesin (a) from the property. In §3, we prove Theorem II and moreover deter-

mine the structure of the character Tr(G＼X1(X, Qi~))in the extremal cases. In

§4, as applicasions we shall obtain some results concerning the action of auto-

morphisms on the space H°(X, Q£) of 1-canonical forms. Especially we shall prove

the following proposition as an interpretation (of the rational-character-case) of

the existence theorem in [3].

PROPOSITION III. Let x be a rational character of G of degree ^>2. Then

the following conditions are equivalent.

(i) xis realizable,i.e., x=Tr(G＼H°(X, Qx)) with GQAut(X) for some

compact Riemann surface X.

(ii) The ae's (e＼n,e^n) defined {as above) for the character 2% have the

property: ae^0.

NOTATION In this paper, let G=(a},n,Xd{d＼n), k and I have the meaning

described in Introduction, where for integers m and m', if m divides m', we

denote -m＼mfas usual. The symbols y.{_) and <fi() denote the Mobius function

and the Euler function, respectively. For a finite set U we denote by # U the

cardinalitv of TJ.

For X= S aaXdEiRQ^G), the group generated by the characters of the repre-

sentations of G over Q (cf. [71), we define:

(*) ae = a^ = 28e,1-e 2 aeffi(f) for e＼n,e^n,
f＼n/e

where dt,s denotes the Kronecker's delta, i.e., <5≪,s= l (resp. =0) if t = s (resp.

t^s). We note that the id form an orthogonal basis of Rq(G) (cf. e.g., [7, p.

inzm

§1. Preliminary

First of all we exnlain a characterization of the a* for the later use.
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LEMMA 1.1. Let ^ = 2] <%*<*£i?e(G). Then
d＼n

X(ae)=2~2≪/ for e＼n, e^7i.
f＼e

289

PROOF. Since Sd(Ca) =[Q(Cd) : Q(Cd/cc,d))]--S'd/ce,d)(Cd/(e,d)),where Cm donotes

exe (2 tiV― i /m) and *Sm: Q(Cro)->Q the trace form, we have that

for d＼n, eEiZ. To see the last equality, we may assume that e＼d. Then we put

and let as follows:

e = e'-UPii with pile' and ＼[p^ = e^;

e=d/e=e' U P? with pike' and ＼＼PY= eQ,

where {pi} denotes the set of common prime divisors of e and e. Since the

functions p.{ ) and <p{ ) are multiplicative, noting that <}>(eGe =̂eaeo]＼(l ―ljpi)

= eo<p(eo), we have

as desired.

From (1)

S/K^//)= 2 2 f'foKe'/f)Keoeo/fo)Kel

f＼e f'＼e'fo＼eo

= eoK^K^ 2 f'Ke'lf)

f'W

=K8)$ (≪0 ^ (^e0) /0 (£0)

= Kdle)<j>(d)l<j>(dle),

it follows that

*0≪) = 2<w S fKd/f)
d＼n f＼(e,d)

=2-{2-Sfl,K(/)- 2/2 a/gKQ))

g＼n f＼e q＼n/f
f*l

= 2-2 ≪/
f＼e

Q.E.D

Next, to state our basic technicallemmas bolow concerning the induced virtual

characters, we fix some notations.

Notation. Let d＼n,d^l and put GCd)= G/Od>. For e＼d,the mapping: G(tf)^Q

defined by (r mod (od}) I―*-%e(r)is the character of the irreduciblerepresentation

over Q whose kernel is equal to <(<7mod <cd>)e>. We denote this mapping %e,

too. For /l= S aeXe^R-Q(G), let ^(d) denote its induced virtual character of G(d)
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(via the natural homomorphism : G^*G(d)) and a^ (e＼d,e^d) the ae for J.Cd:>e.

(2)

(3)

X^^-^aeXe ;and
e＼d

af^2§e,x-e S ae/Kf)
f＼d/e

Now we consider the "Rimann-Hurwitz relation" (cf. [3, § 4]).

LEMMA 1.2. Let XelRq(G}. For a divisor d of n with d^n, voe have:

i(l)-2 = ^(I^/*(l)-2)+ 2 ae≪n/e,d)-l).

e＼n
D^CVt

Proof. From #≪/<*)(1)= (lid) 2 K°un/d) it follows that

=</(;i(≫A0(l)-2)+ s

/*1

0(/) 2

e＼nlf

e＼n

=d(K≫/<D(l)-2) +

/I

ae

0(/)}

2 ≪≪((≪/<?,<*)-l)

e＼n
Q. E. D.

Finally we prove the following:

LEMMA 1.3. Let ^ = ^EafX/^RQ(G). If af^Q for allf＼nwith f^n, then
f＼n

aid^0 (di,rt^) for each d＼n,d*l.

PROOF. First we see by (2) that

if n'＼n,d＼n' with d^l, then the induced virtual character of Xw'i via the

natural homomorphism : GI(pn')>->GI(pdy is equal to ^(d:).

Thus, by applying (to ^<≪//0)the induction on the number of divisors of n, we

see that it suffices to show the lemma only for d=njp with a prime number p.

To prove the lemma in this case, assume n=prm and e=psm' with pint,

p k m'', and eld, e^d. Then we have by (*) that

ae = 2de,1-e{ 2 ae/Kf)+ 2 ae/p'-'fiCfp'-')}.
f＼n/pe f＼mlm'

Combining thisand (3), we get

Wee + dpe/p if r ― 5 = 1.



On the action of automorphisms 291

This completes the proof by our assumption on ae's.

§2. Proof of Theorem I

First we prove (a) of Theorem I, assuming (b). For our purpose it suffices

to show the following :

Proposition 2.1. Let ^ = S^/Z/ei^Q(G). // a/^0 for all f＼n with f±?n,
f＼n

then for each divisor e of n we have that

ae~2^a<i―2-da,i for d＼e.

PROOF. Put bf = a/ ―2-df,1 for f＼n. Then we have

S be/i"(/) = -ae/e for e＼n, e^n.
f＼n/e

Hence, by our assumption on the ae, it sufficesto show the following :

LEMMA 2.2. Let n be an integer>l and let b/^Q for f＼n. Assume that

tne inequality

2 befKf)^0
f＼n/e

holds for each e＼n,e^n. Then be^ba for all divisors e,d of n with d＼e.

PROOF of LEMMA 2.2. By induction on the number of divisors of n, we

may assume that

ba^be holds for e＼n,d＼e with d^l.

In fact,if bcfnld:>denotes bdf for f＼n/d, then

ai ―Oa, oeld -De ,ana

fln/de'
(e'＼n/d,e'^n/d),

for e＼n,d＼ewith d^l. There remains to show that

bi^bp for each prime divisor p of n.

To see this,we use the assumption:

e＼nf＼n/e d＼n f＼d
Pkdlf

Kf)

= 2 ^2K/)-2 ba 2 Kf)

d＼n f＼d d＼n f＼d/p
p＼d p＼＼d

= bi ―bp.

This completes the proof of Lemma 2. 2 and hence of Proposition 2.1.

Throughout the rest of this section we work under the assumption and
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notation in Theorem I, except for Corollary 2. 5. In particular we assume that

G^Aut(X). We put:

X = Tr(G＼HKX,Qi)), GP= {t(eG＼t(P)=P} for PeX

For any igGp, r^l, we define z>(r) to be the order of the zero of r*(jr)― k at

P, where n is a local uniformizing parameter at P. From the Lefschetz formula

(cf. [4], V §2 ; [8] VI §4) we have the following :

LEMMA 2.3. *(r)=2- S ip(z) for r^l.

reGp

Hence, in particular, the character X is integer-valued, whence it follows that X

*=Rq(G) (cf. [7, p. 93]).

Next we shall prove (b). Here we fix some notation :

let n=prm with (p, rri)=1, where p denotes the characteristic of k (n = m for p = 0) ;

we denote by Ff (f＼n, f^n) the set of the fixed points of af.

Before giving a proof to (b), we consider its special case :

LEMMA 2. 4. For a divisor e of n with mie, we have

ae = #{PGX|<re(JP)=P, of(F)*P for f＼e,f^e]

PROOF. From Lemma 1.1 and Lemma 2.3 it follows that

(1) S ≪/= S ≪>(ffd) (for each d＼n, d^n)
f＼d PeFd

On the other hand, by the assumption on e we have that

iP(ae)=i for P^Fe.

Hence, by induction on the number of divisors of e we obtain our lemma.

Thus, to prove (b) we may assume that p>0, e=psm with 0sSs<7＼ Then

we have that

^{2≪/ - E af}-$Fe
f＼e f＼e/p

= 2 *>≪>- 2 iP(o≪ip)-%Fe
PtEFe

= 2

P^Fe/p

{ip (oe) - iP (ae'P) -1} + S {iP (a≪)

P<EFe
PeFe/p

(by Lemma 2.4)

(by (1))

-1}.

On the other hand, it is easy to see that

(2) if P(EFeiP then iP(a^^iP{a^v)+1 ; and

(3) if P^Fe then ip(ae)^2 (by our assumption on e)
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These complete the proof of (b) and hence of Theorem I.

It is well-known that the character TrCAutCX)!//1^, Qi)) is faithful (cf.

e. Q.,[6] and [5, p. 176]). Theorem I provides another proof of thisfact.In fact,

by proposition 2.1 we moreover have the following :

COROLLARY 2.5. Assume that /t= ^aaXd^RQCG) is a character such that
d＼n

≪el^0for all e＼n,e^n. If h^Xi, 2 Xi (in particular, if the degree -^(1)>2) then

X is faithful (i.e., an^.l) and hence !(Y) ^.an4>(n)H^<fi(n).

§3. Proof of Theorem II

Since the demension of the space H1(X,Qi) is 2g(>2), to prove Theorem II

it sufficesby Corollary2.5 and Theorem I to show the following:

PROPOSITION 3.1. Assume that /= 2a<zZdei?Q(G) is a faithful character

such that ae2g0 for all e＼n,e^n. Denote by h (2>1) the degree of X. Then

n = 2h+2 or n^2h.

If n = 2h+2 then

*= 2 X2d ^th 2＼h.

d＼n/2
d*l

// n = 2h

(i)

(ii)

then

-2=SX2r<z with n = 2rm (r^l), (2,w)=l
d＼m

^ = %i+SZ2d with (2, h)=l, h>l; or
d＼h

(iii) ^ = %6+ Zi2-

PROOF. First we prove the proposition for a special type of X, which serves

also as the firststep of our induction (cf. the final part of the proof). In fact,

now we assume that

(1) k = a1Xi+anXn.

Then we have by the definition (*) that

ae= ―ean^(n/e) for e＼n,e^l, n.

For a prime factor p of n, this implies

p(n/pf)^0 for f＼njp with f^n/p.

Hence n/p=qr~1 (r2>l) for some prime number q. We estimate n by /i= ai4-

an^(ji) in the following two cases. In the case where q=p, we have that

n = t(n)p/(p-l) = (h-al')p/(p-l)an£2h.
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and that l = X2r whenever n = 2h. In the case where q^p, we have n^pq (here

we may assume p<Cq). Then

n=pq£pq+ (p-2) (q-2) = 2$(n) +2= (2h-2a1)/an + 2.

Hence we have that n=2h+2 or n^2h, and that ^ = ^2? (resp. A = Xi + X2q)

whenever n=2h+2 (resp. n = 2h).

Let n decompose into a product of coprime integers u and m having the

property:

for each prime divisor p of n, an/p=0 if and only if p＼u.

By the above consideration we may assume (for the rest of the proof) that

1 is not of the form in (1).

Then we note that

(2) ot^=1, n = um is not a prime number and h^an^>(n)'>l.

In fact, if ot = 1 then aa = 0 for any d＼n with d^l,n by Proposition 2.1.

Next we prove our proposition under an additional condition:

(3) for any prime divisor p of m, 2 #<z^=3.
d＼n/p

We shall examine the following three cases:

Case (a) u = 1;

Case (b) u^l and aUd = 0 for each d＼m, d^m;

Case (c) u^l and ≪m/^0 for some f＼m, f^m.

Proof in Case (a). Since d＼ccd, from our condition (3) (with m = n) it follows

that

(4) if ad^0 (where d＼n, d^ri) then "d=l with ≪i^3", "d=2 with a2 = 2,

a^l" or "J=3 with ≪3= 3, ai = 0",

and that

(5) ≪2= 2, ≪3= 3 only when w = 6.

To estimate n by A = ^(l), we use the relation:

(6)

by (4) and Lemma 1.1, we see that

s

reG
i＼n r *l,#<r> I≫/≫

= <j>(n){a1 + a2 + a3-2}.

Hence we have by (6) that

n |San ･n = h ―2 + at + a2 + a3.

Thus, we obtain by (4) and (5) that

n<Lh + l<2h or n/2 = 3^6an-3=h.
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We now consider the case where n ―2h. Then we have that n = 6, h ―% ≪i= 0,

≪2= 2 and a3 = 3 and hence that X = xi + Xe- But this type of X is avoided in our case.

To consider Case (b) or Case (c), here we note that

(7) if u±r＼ then X = aai+ 2 &udiud
dim

In fact, for a prime divisorp of u we have by Proposition 2.1 that ae―0 when-

ever e＼njp,e^l.

Proof in Case (b). From (7) it follows that for any f＼u,f^u,

0£afm = ―fm 2 a/mefi(e) = -fmanP(u/f)
e|n/fm

Thus u=pr (r^l) for some prime number p. On the other hand, using the

induction on the number of divisors of mid, we see by the condition of our case

and the definition (*) that aUd = an for d＼m. These imply (note (2)) that

(8) oa=(2―a^)dd,i+dan-8a,nip for d＼n,d^n.

In fact, by (7) we have

aa = 2-dd,i―d 2 cid/pif)
f＼n/d

= (2―ai)8a,i―dan'fJi(u/(d,u)

= (2―ad ･8d,i + dan'8a,n/p'

From (8) and Lemma 1.1 it follows that

) S K/)
/|m/W,m)

X(a<r)=2―^] ae=ai ―dan-Od,n/p for d＼n, d^n,
e＼d

and hence that

2 ^(OZw(^"1)=≪i S Xn(?)-an-nlp 2 Zn(r)=0(w){-tfi + aB-w//>}.

reG reG reGr#l r*l #<r>=£

By (6) thisimplies that

n^an-n―(h-ax)p I(p-1)^2 h.

If n = 2h, then we have that

^= S Z2'1(j with n = 2rm (r^l), (2,m)=l.
d＼m

Proof in Case (c). As before (cf. (4)), from (3) and the condition of our case

it follows that

(9) au=u = 2 or 3 and aua = 0 for all d＼m, d^l, m.

Using the induction on the number of divisors of m/d as in Case (b), we see

by (9) that a.ud= an ―l-dd,i for d＼m. Hence we have by (7) that

(10) X = <2iXi- Xu + an･ S lud.
d＼m

Now we consider the case where u = 2. Then, by (10) we see that
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h=ai ―<f>(2) + an<fi(2) m and that

n^ann = 2h + 2-2alf =2h + 2 or £2h.

If n = 2h + 2 then

^= S l2d with 2＼h.

d＼n/2
d*l

If n = 2h then

l = li+ 2 Xzi with 21 A, A>1.
rf|≪/2

Next we consider the case where m = 3. Then, by (10) we see

m^an-m= (h-a{)/2 + l^h/2 + l.

If h^6, then n = 3m^2h, and ^ = Z6 + Zi2 with ≪= 12 whenever n = 2h. (We

note that m = 4 and 2 ≪d= 4>3 for ^ = X6 + Zi2)- If h = 5 or 4, then n = 3m = 6<

d＼n/2
2h, since 31m and m^l. If A = 3 (resp. =2), then n = 3ra = 6 and ^ = Zi + Ze

(resp. = %6)- (We note that m = l for ^ = Zi + Ze or %6)-

It remains to show the proposition under the condition:

(11) there is a prime divisor p of m such that 2 ≪d^4.
d＼n/p

For each prime divisor q of n, put

r≪= S ≪tf and Aa=l<≫/≪>(1).
d＼n/q

Then, Lemma 1.2 yields the relation:

(12) h-2 = q(hq-2)+rq(q-l).

Applying the induction on the number of divisors of n in Proposition 3.1 (cf.

(1) for the firststep) to the faithful character (note an/p^0 by the choice of p)

(13) XC≪/J≫=2 aeXe
e＼n/p

(cf. also, Lemma 1.3) in lieu of X, we obtain that n/p^2hp + 2 and hence by

(12) and (11) that

n^2h+2 + 2(3-rp) (p-D ^2h.

We now consider the case where n = 2h. Then p = 2, fp = 4, n/p=?2hp + 2.

Hence, applying an induction on the number of divisors of n (cf. (1) for the

fist step) to our faithful character (13) (with p=2) as above, we obtain that

n/4=(n/p) 12 is an odd integer >1 and that

(14) ^(n/2)= 2

fifln/4
l2d.

We wish to show that n/4 is a prime number, so suppose either (15) or (16)

below:



(15)

(16)
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n/4= gr (r^2) with 4 = 3.

There is a prime factorg>3 of n/4 with n^Aq.

Since r2=4, we have

2 ad = a1,a1 + a2,a1 + a3 or a2.
d＼n/2

Thus, by (15) or (16) we get

(17) ra= 2 ≪* ^ 2 ≪<* = 2 ≪<*=4.
d|≫/<7 rf|w/2o rf|≪/2
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On the other hand, we note by Proposition 2.1 and (14) that

anlq^anl2q-<p(nl2)-＼X^i2＼l2.niiq"> = l.

Applying the above argument to the faithful character X<nJ^, we get n/q^2hq +

2 and hence by (17) that

n^2h + 2 + 2(3-rq) (g-1) ^2h-2,

which is a contradiction. So we can put n = 4q with an odd prime integer q.

Then X(-nl2*>= i2q by (14). Comparing this and (13), we get ai = a2 = ag = 0, a2q=l

i. e., X = x2q-＼-cnXiJrCLiqXiq-From this we see that q=S, #4 = 0 and #43= 1, since

2q = h = <f>(2q)+040(4) +am<j>(Aq) = (q-l) (1 + 2%) +2a4^3(?-l).

Thus we get ^ = ^6 + Zi2.

This completes the proof of Proposition 3.1 and hence of Theorem II.

From the latter part of Proposition 3.1 (and Theorem I) we get the follo-

wing :

COROLLARY 3.2. Assume that GQAut(X) for some complete nonsingular

cunve X of genus 0^2. Put 1 = Tr(G＼Hl{X, Qi)). Then

(a) // w = 4g+2 then Xa =

d＼

2 Xzd-

2g + l

(b) If n = Ag then XT = %t + Xi2 ; or

^y3=SX2rd with n = 2rm (r>l), (2, m)=l.

Remark 3.3. Let Q denote an integer ^2, and p the characteristic of k. We

denote by Cm a primitive m-th. root of unity (if exists).

(a) The character Xa= 2 X2d―%2 is realizable as TrtGlH1^, Qi)) by the
d＼2g+l

curve X over k and the automorphism a of X below :

y = x2ff+i+ lj (X,y)i-+(i;2g+l.2, -y) iipiig + 2;

y2+y=x2g+i} (x,y)＼-+(Z2g+i'X,y + D if /≫=2;

y2 = x2o+1-x, (x,y)＼^>(x + l, -y) hi p = 2Q+ 1.
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On the other hand, Xa is not realizable by any curve over k of genus Q and any

automorphism if p＼2g+ l and p±?2g + l.

(b) Assume that 4g=2r-m (r^2) with (2, m)=l. The character 1^

S Xzra is realizable by the curve and the automorphism below :
d＼m

y2 = x(x2o + l), (xj)i->(C2a-J:,C≪7) iipkAg.

On the other hand, Xp is not realizable if p＼4g.

(c) The character ^r = %6 + Xi2 is realizable by the curve in ~Pro](k[_x,y,z~])

and the automorphism below:

x3y―xy3 + z4=0, (x,y,z) i-*(x+y,y,d-z) if p = 3;

x4+y3x+z4 = 0, (x,y,z)＼->(x,C3'y,i:i-z) if p*2,3.

On the other hand, lr is not realizable if p=2.

PROOF. First, we note by [4, p. 187 Corollary 2. 8] that

4g2=2g+Tr(<Tw/2|i/1(X,Q0)

if <?eAut(X) for some curve X of genus Q and 2＼n, where g2 denotes the

genus of X/(an/2}. Hence, if Xa (resp. Xh Xr) is realizable, then

(19) anl2 is a hyperelliptic (resp. a hyperelliptic, not a hyperelliptic) in-

volution.

(a) By Corollary 3. 2, to see (a) it suffices to show the latter part. Now

assume that X≪is realizable and ^>|20 + 1 with p^2Q + l. Then, the image of G

via the natural homomorphism: G-≫PGL (2, k) must be a cyclic group of order

20 + 1. On the other hand, it follows from our assumption on p and Q that PGL(2, k)

does not have such a subgroup by considering the Jordan's canonical forms.

(b) This can be proved in the same way as (a).

(c) By (19), it suffices to show the latter part. Now assume that Xr =

Tr(G＼H＼X,Qi)) for some curve X with GgAut(X) and p=2. If X is hyperlli-

ptic, we have a contradiction as in (a). In the case where X is non-hyperelliptic,

since Tx(Aut(X)＼H°(X, ££>)is faithful, we have an inclusion: G->GL(3,jfe). On

the other hand, GL (3, k) does not have a cyclic subgroup of order 12. Q. E. D.

§4. Application

Throughout this section we assume k=C and by C,na primitive n-th.root of

unity. Before giving a proof to Proposition III, we make, as an interpretation

of Theorem I (a), an evaluation of the eigenvalues of the action of an automor-

phism of a curve X on the space H°(X,Qx) of 1-canonical forms.
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PROPOSITION 4.1. Assume that GQAut (X) for a compact Riemann surface

X of genus 9^2. Put % = Tr (G＼H＼X, Q'*)) and let wa = <£,(pa>(aeZ), where

(pa'-G―>C＼{0} denotes the homomorphism defined by aI―>Cb- Then we have the

following,:

(a)

(b)

ma + mn-a=mb + mn-b if (a, n) = (b, ?i).

me + mn~e^md+mn-d-2-8d,n for d＼n, e＼d.

PROOF. It suffices to show that

(1) z + r1 = Tr(G|H≫(X,QO).

On the other hand, this follows from the Lefschetz fixed point formula (cf. [1,

p. 265]). Q.E.D.

For the rest of this section we consider Proposition III. Our proof is based

on an existence theorem ([3, Proposition 4. 5]) :

LEMMA 4. 2. Let %: G-^C be a character of degree^2. Then % is realizable

(cf. Proposition III for this terminology) if and only if % satisfies the following

condition:

(t) for each e＼n, e^n and each integer i (0<i<.n/e) with (i,n/e)=l, there

exists a non-negative integer aet with e＼oteisuch that for all d＼n with d^n.

(I nle) = ＼

Proof of Proposition III. Put l = x + X~1=2x- First we note that

(2) C/(l-C)+C-1/(l-C-1) = -l if C*l.

To show the implication: (i)==>(ii)> we assume the existence of aei's such as

in (t). Then, by (2) we have

X(o*)=2- S 2 ≪≪* for d＼n, d^n

e＼d i

Hence, from Lemma 1.1 it followsthat

a w = 2aei=^Q for e＼n, e^n,

i

as desired. To show the converse, we note that

2aa+x) = aw for e＼n with e±-m

In fact, we have

X (od) = 1-2 ≪e(1+5:) (d＼n, d* n).

e＼d

Hence, by our assumption on X and the definition(*) we have that a<1+J:)^0 and



300
Izumi KURIBAYASHI and Fumiyuki MOMOSE

e＼acl+x:>.Using these, we obtain a set of desired oca's

)

if e = n/2;

if e^n/2 and if i=＼ or n/e ―1;

otherwise.

REMARK. We note by (1) that if a real-valued character of G

>2 is realizable (in our sense), then it is a rational character.

Q. E. D.

of degree

REMARK 4. 3. In this remark, G denotes a finite group. Denote by r5 the

set of cyclic subgroups D of G such that D^{1}. Let X be a rational character

of G. For each De£? we define an integer aD by the relation below:

A(<ri5)=2- S az, for £etS,

where ff£denotes a generator of £ (cf. Lemma 1.1).

If Gi=Aut(X) for some compact Riemann surface X of genes ^2 and 1 =

Tx(G＼Hl(X,Qi)), then for D<=$ we have that

aD^0 and [Ng(D) : U]＼aDt

because ≪D= #{PeX|r(P) =JP<==^reZ) for tgG} as in Lemma 2.4 (note : the

isotropy subgroup Gp is cyclic,cf. [1, III.7. 7]).

In general, even if aD^0 for each D^&, the condition that [Na(D) : D~＼＼aD

is not necessarily satisfied.In particular, such % as in Proposition III (ii)is not

necessarilyrealizablefor our (abelian) G. For example, take: G= [Z/p'Z) X [Z/p-Z)

with p being a prime number and %= S 2%zj, where %# : G->Q denotes the

compositum of the character of the faithful irreducible representation of G/D

over Q and the natural homomorphism: G^>G/D. Then it is easy to see that

aD=4 for Det5.

A/W a<i(ie<iin proof (Nov. 1987). Proffessor H. Stichtenoth kindly let us

know a direct proof of THEOREM II using the Riemann-Hurwitz foumula.

REFERENCES

[ 1 ] Farkas, H. M. and Kra, I., Riemann surfaces, Springer-Verlag, Berlin-Heidelberg-New

York, 1980.

[ 2 ] Harvey, W. J., Cyclic groups of automorphisms of a compact Riemann surface, Quart.

J. Math. Oxford (2), 17 (1966), 86-97.

[ 3 ] Kuribayashi, I., On automorphism groups of a curve as linear groups, J. Math. Soc.

Japan, 39 (1987), 51-77.

f 4 1 Milne, J. S., Etale cohomoloey, Princeton University Press, New Jersey, 1980.



On the action of automorphisms 301

[ 5 ] Mumford, D., Abelian varieties,Oxford University Press, London, 1970.

[ 6 ] Sekiguchi, T., On the fields of rationality for curves and for their Jacobian varieties,

Nagoya Math. J., 88 (1982), 197-212.

[ 7 ] Serre, J. P., Linear representations of finite groups, Springer-Verlag, New York-Hei-

delberg-Berlin, 1977.

[8] Serre, J. P., Local fields,Springer-Verlag, New York-Heidelberg-Berlin, 1979.

[ 9 ] Steiger, F., Die maximalen Ordnungen periodischer topologischer Abbildungen gesch-

lossener Flachen in sich, Commentarii Math. Helv., 8 (1929), 48-69.

[10] Wiman, A., Uber die hyperelliptischen Curven und diejenigen vom Geschlechte p=3

welche eindeutigen Transformationen in sich zulassen, Bihang Till. Kongl.

Svenska Vetenskaps-Akademiens Handlinger, 21 (1895-6), 1-23.

Izumi Kuribayashi

Instituteof Mathematics

Universityof Tsukuba

Ibaraki,305 Japan

Fumiyuki Momose

Department of Mathematics

Faculty of Science and

Engineering

Chuo University

Bunkyo-ku, Tokyo 112 Japan


