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ON THE ACTION OF AUTOMORPHISMS OF A CURVE
ON THE FIRST I-ADIC COHOMOLOGY

by

Jzumi KURIBAYASHI and Fumiyuki MOMOSE

Introduction

Let G={o) be a cyclic group with n=#G>1. For each divisor d of #, let
ya denote the character of G of the irreducible representation over @, the field
of rational numbers, whose kernel is equal to <g%). Let £ be an algebraically
closed ground field and X be a complete non-singular curve over % of genus
¢=2. The main purpose of the present paper is to prove the following theorems,
under the assumption that GEAut(X), the automorphism group of X;in this
situation we denote by Tr(GJH(X,@.)) the character of the natural represe-
ntation of G on the first /-adic cohomology H' (X, @) of X, where [ is any prime
number different from the characteristic of % (cf. Notation, §2 and also [4]):

THEOREM L. Assume that Tr(G|HY(X, Q1)) = ?adxd, where the symbol 3}
dln d\n

stands for the summation over all divisors d of n. Then

(a) For divisors d,e of n with dle, we have

> {ad if d=1,
= laa—2 if d-L.
(b) If we put
—e ) aerpt(f) for e|n,ex1,n,
ae={ fln/e
2— f% ase(f) for e=L1

then @e=0, where p( ) denotes the Mobius function.
TurEOREM Il n<49+2. Moreover, if nx49+2 then n=49.

Our proofs of Theorem II and Theorem I (a) are essentially due to the fact
that the rational character 77(G|H' (X, @:)) has the property described in Theo-
rem I (b). And so, in the large part of this paper we are devoted to the inves-
tigation of the rational characters having such a property. Concerning Theorem

I, we note that @, equals to the cardinality of the set

{(PeX|o¢(P)=P,c/(P)xP for fle fxe},
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in the case where 2=C, the field of complex numbers, (cf. Lemma 2.4). Theorem
IT has been proved by Wiman [10] (cf. [2]) in the case where .=C (cf. also,
[91). We shall see that the bound 49 +2 (resp. 49) is attained by an automor-
phism of a curve over % of genus ¢ if and only if p¥40+2or p=20r p=29+1
(resp. pY49 or “px2, 9=3"), where p denotes the characteristic of % (cf. Re-
mark 3.3).

We give a brief survey of this paper. In §1, we provide the “Riemann-
Hurwitz relation” and a lemma asserting that our property is preserved for in-
duced characters. We shall use them as basic tools for our proofs. In §2, we
prove (b) of Theorem I by using the Lefschetz formula, and deduce the inequali-
ties in (a) from the property. In § 3, we prove Theorem II and moreover deter-
mine the structure of the character 7T7(G)X*(X,Q))) in the extremal cases. In
§4, as applicasions we shall obtain some results concerning the action of auto-
morphisms on the space H°(X, 2x) of 1-canonical forms. Especially we shall prove
the following proposition as an interpretation (of the rational-character-case) of
the existence theorem in [3].

PROPOSITION III.  Let y be a rational character of G of degree =22. Then
the following conditions are equivalent.
(i) x is realizable, i.e., y=Tr(GIH'(X, 2x)) with GEAut(X) for some
compact Riemann surface X.
(ii) The ae’s (eln, exn) defined (as above) for the character 2 % have the
property: ae=0.

NOTATION In this paper, let G=<{06),n, 34 (d|n), %k and I have the meaning
described in Introduction, where for integers m and m’, if m divides m’, we
denote m|m’ as usual. The symbols z( ) and ¢( ) denote the Mdbius function
and the Euler function, respectively. For a finite set U/ we denote by $U the
cardinality of U.

For l=d|2 aaxa€ RQ(G), the group generated by the characters of the repre-

P

sentations of G over @ (cf. [7]), we define:
() @e=a®=20,1—€ 3 acsp(f)  for eln, exn,
fin/e

where 0;,s denotes the Kronecker’s delta, 7. e, 6;5=1 (resp.=0) if t=s (resp.
t%s). We note that the y¢ form an orthogonal basis of Rg(G) (ct. e.9., [7, p.
1047).

§1. Preliminary

First of all we explain a characterization of the @, for the later use.
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LEMMA 1.1. Let l=§|} aaxa€ Ro(G). Then

Z(“e)=2—-§eaf for eln, esn.

PROOF. Since Sz(£%) =[Q(Lq) : Q(Carce,ar) 1+ Sascesar(Lascesar), where {m donotes
exe (274/ =1 /m) and Sn: Q({n)—Q the trace form, we have that

(1) 1a (69)=Sa({) = p(d] (e, ))$(d) [$(d/ (e, D))

= X fedlf)
flle,d)

for djn, eeZ. To see the last equality, we may assume that e[d. Then we put

and let as follows:
e=e-[[p7 with pite and [[pii=eo;
é=dje=¢' ] pii with pi¥é& and []pji=4,
where {p:) denotes the set of common prime divisors of e and é. Since the

functions z( ) and ¢( ) are multiplicative, noting that ¢(eeé) =eodo[](1—1/pi)

=eyp(éy), we have
%efﬂ(d/,ﬂ =f’%’ MZEO Sfore’' [f) puledéo/ fo) (&)
=€o/v‘(é'>#(éo)f,%/ e[

=eot (&) p(é0)9(e)
=p(&)p(e")P(eobn) [ $(&0)
=p(d/e)p(d/d(d]e),

as desired.
From (1) it follows that

A(e)=as X frd/f)
din  fl(e,d)
=31l Ejafg#(g)}

fle  gln/
=2—{2=Fau(9)— X f X arr(9)}
gin fle gln/f
=1
=2—-ay. Q.E.D.
fle

Next, to state our basic technical lemmas bolow concerning the induced virtual

characters, we fix some notations.

Notation. Let d|n, d=1 and put G‘®=G/<{6%. For e|d, the mapping: G@-Q

defined by (z mod (6%))|—y(zr) is the character of the irreducible representation

over @ whose kernel is equal to {(¢ mod <o?))¢). We denote this mapping yxe,

too. For XZZI aexe€ Rg(G), let 2@ denote its induced virtual character of G@®
eln



290 Izumi KURIBAYASHI and Fumiyuki MOMOSE

(via the natural homomorphism : G—>G®) and & (e|d, exd) the a, for A®e

RQ(G(‘”).
We note that
(2) D=3 g4, ;and
eld
(3) &P =20c1—e 3V aesp(f).
fld/e

Now we consider the “Rimann-Hurwitz relation” (cf. [3, §4]).
LEMMA 1.2. Let Ae Rq(G). For a divisor d of n with dxn, we have:
A1) —2=dQn/d (1) -2) + ’2 ae((n)e,d) —1).
en

exn

- d
PROOF. From Aw/d(1)=(1/d) 3} 2(eun/d) it follows that
u=1

1) =2=d @D (1) =2 +'F, (2 Ao}

=d(0d(1)-2)+ D ¢(f) T a.
Jlai eln/f

f
=dQAnD1) —-2)+ Sae{ 3 $(fO}
eln fln/e,d)
exn f*1
=d(An/d)(1) —2) + ; ae((nfe,d)—1). Q.E.D.
exn

Finally we prove the following£
LEMMA 1.3. Let 2=}; arxr€RQ(G). If =20 for all fln with fn, then
a®>0 (eld,exd) for each dn, d=1.

ProoOF. First we see by (2) that
if #’|n, d|n’ with d=1, then the induced virtual character of 2»” via the
natural homomorphism : G/{e%>—G/{s%) is equal to 1@,
Thus, by applying (to 2w/») the induction on the number of divisors of n, we
see that it suffices to show the lemma only for d=7/p with a prime number p.
To prove the lemma in this case, assume n=p'm and e=psm’ with ptm,
ptm/, and eld, exd. Then we have by (%) that

ae=20e,—e{ 3 aerp(f)+ X aeryp(fp9).
fln/pe flm/m’
Combining this and (3), we get

ae
&éﬂlp){
Qe+ Qpe/ p if r—s=1.

if r—s=2,
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This completes the proof by our assumption on a/'s.

§ 2. Proof of Theorem I

291

First we prove (a) of Theorem I, assuming (b). For our purpose it suffices

to show the following :

PrROPOSITION 2.1. Let 2=12 asxr€R@(G). If ar=0 for all fln with f==n,
fln

then for each divisor e of n we have that
ac= ag—2-04,,  for dle.
PROOF. Put by=as—2-0s,; for fln. Then we have
N besp( f)=—aele for e|n, exn.
flu/e

Hence, by our assumption on the a., it suffices to show the following:

LEMMA 2.2. Let n be an integer>1 and let b;eQ for fln. Assume that

tne inequality

> bese( f)<0
fln/e

holds for each e|n, exxn. Then be=ba for all divisors e,d of n with dle.

PRrROOF of LEMMA 2.2. By induction on the number of divisors of #,
may assume that

ba<be holds for e|n, dle with d=1.
In fact, if b}"’d’ denotes bay for f|n/d, then

a a
b P =bg, bHP=be ;and

S HEOuOS0 (@lnld, ¢ nld),

for eln, dle with d=1. There remains to show that
b,<b, for each prime divisor p of n.

To see this, we use the assumption:

0= 3 beru(f)=3ba 3 1(f)
;»ll"leﬂn/e dln

fld
prdif
=N baXp(f)—2 ba 3 #(f)
din fld din  fid/p
ptd plld

= b]_ —bp.

This completes the proof of Lemma 2.2 and hence of Proposition 2. 1.

Throughout the rest of this section we work under the assumption

we

and
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notation in Theorem I, except for Corollary 2.5. In particular we assume that
GEAut(X). We put:
2=Tr(GIH (X, Q.)), Gp={reG|t(P)=P} for PeX

For any r&Gp, vx1, we define ip(zr) to be the order of the zero of z*(z)—r at

P, where 7 is a local uniformizing parameter at P. From the Lefschetz formula
(cf. [4], V §2; [8] VI §4) we have the following :

LEMMA 2.3. A(e)=2— ) ip(2) for ©=l1.
PeX
teGp
Hence, in particular, the character 2 is integer-valued, whence it follows that 1

€Rq(G) (cf. [7, p.93D]).

Next we shall prove (b). Here we fix some notation :
let n=prm with (p, m) =1, where p denotes the characteristic of 2 (n=m for p=0) ;
we denote by F; (f|n, f3n) the set of the fixed points of ¢/.
Before giving a proof to (b), we consider its special case:
LEMMA 2.4. For a divisor e of n with mte, we have
ac=3{PeXlo(P)=P, o/(P)=P for fle, f=e}.
ProOOF. From Lemma 1.1 and Lemma 2.3 it follows that
L) 3 ar= 3 ip(e?) (for each d|n, d=n).
fla PEFq
On the other hand, by the assumption on ¢ we have that
ip(c®) =1 for PeF..

Hence, by induction on the number of divisors of ¢ we obtain our lemma.

Thus, to prove (b) we may assume that p>0, e=psm with 0<s<r. Then
we have that

Ae= 2} psq — 2 ApSy
dlm dim

dx=m
={ar — X as}—}F, (by Lemma 2. 4)
fle fle/p
= 3 ip(e)— X ip(0°P) —%F, (by @)
PeF, PEFep
= > {ip(e®) —ip(eP—1}+ X {ip(s9)—1}.
PeFe/p PeF,

PEFop
On the other hand, it is easy to see that
(2) if PeFyp then ip(0f) =ip(o¢/?)+1 ; and
(3) if PeF. then ip(6®)=2 (by our assumption on e).
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These complete the proof of (b) and hence of Theorem L.

It is well-known that the character Tr(Aut(X)|H'(X,Q:)) is faithful (cf.
e. ., [6]and [5, p.176]). Theorem I provides another proof of this fact. In fact,
by proposition 2.1 we moreover have the following:

COROLLARY 2.5. Assume that A= X aayac RQ(G) is a character such that
ae20 for all eln, exn. If Axy, 21 (?7:1 particular, if the degree 2(1) >2) then
A is faithful (i.e., an=1l) and hence A(1) Zanp () Z¢(n).

§ 3. Proof of Theorem II

Since the demension of the space H!(X, Q) is 29 (>2), to prove Theorem II
it suffices by Corollary 2.5 and Theorem I to show the following:

PROPOSITION 3.1. Assume that A= 2 aaxee R@(G) is a faithful character
such that a.=0 for all eln, exn. Denote by h (=1) the degree of A. Then
n=2h+2 or n<2h.
If n=2h+2 then

2= 5 ga with 2h.
d\n

If n=2h then
(i) A= iEXsz with n=2m (r=1), (2,m)=1;
dim

(ii) 1=X1+degd with (2,h)=1, h>1;o0r
1]
(iii) A=YXe+ Y12

Proor. First we prove the proposition for a special type of 4, which serves
also as the first step of our induction (cf. the final part of the proof). In fact,

now we assume that
Q) 2=aypi+an)n.
Then we have by the definition (x) that
ae= —eantt(n/e) for e|n, ex1, n.
For a prime factor p of », this implies

prlp)S0  for flnjp with fxa/p.

Hence n/p=g"! (r=1) for some prime number q. We estimate n by h=a;+

and(n) in the following two cases. In the case where g=p, we have that

n=¢mp/(P—D=(h—adp/(P—-1a. < 2h.
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and that A=7y,” whenever n=2h. In the case where gxp, we have n=pg (here
we may assume p<g). Then
n=pqspq+(@P—2)(q—2)=2¢(m +2=2h—2a1) [an+2.

Hence we have that n=2h+2 or n=<2h, and that A=y (resp. A=yx1+ %29
whenever n=2h+2 (resp. n=2h).

Let n decompose into a product of coprime integers # and m having the
property :

for each prime divisor p of n, anp=0 if and only if p|u.
By the above consideration we may assume (for the rest of the proof) that

A is not of the form in (1).
Then we note that

(2) m=1, n=wm is not a prime number and ~A=an¢ () >1.
In fact, if m=1 then a¢=0 for any d|n with d=1,n by Proposition 2. 1.

Next we prove our proposition under an additional condition :

(3) for any prime divisor p of m, ‘2 ag<3.
din/p

‘We shall examine the following three cases:
Case (a) u=1;
Case (b) u=x1 and aue=0 for each dim, dxm;
Case (¢) u=1 and auy>0 for some f|m, fxm.

Proof in Case (a). Since dlag, from our condition (3) (with m=n) it follows
that

@) if ag=0 (where d|n, d>n) then “d=1 with «; <37, “d=2 with a,=2,

a;£1” or “d=3 with a;=3, a;=0",

and that

(5) a;=2, a3=3 only when n=6.
To estimate n by A=1(1), we use the relation:

) B(n) ~an=<2, ta>=(1/n) {EGI(T)Xn(T'l) +¢(n) -h}.

Tl

by (4) and Lemma 1.1, we see that

ZA@ (D=3 @ 0yi—a) D xa(0)
eG 1=/<3 &G
1 iln %1, ¥ n/i

=) {ay+az+az—2}.
Hence we have by (6) that
nsanp-n=h—2+a;+as+a,.

Thus, we obtain by (4) and (5) that
n<h+1<2h or n/2=3<6a,—3=h.
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We now consider the case where n=2h. Then we have that =6, A=3, a;=0,
a;=2 and a3=3 and hence that 2=y;+y; But this type of 1 is avoided in our case.
To consider Case (b) or Case (c), here we note that
(7 if ux1 then 2=a1xl+d|2maud Yud-

In fact, for a prime divisor p of » we have by Proposition 2.1 that g.=0 when-
ever e|n/p, ex1.
Proof in Case (b). From (7) it follows that for any flu, fu,
Osamm=—fm 3 asmep(e)=—fmanp(u/f).
eln/fm

Thus u=p7 (r=1) for some prime number p. On the other hand, using the
induction on the number of divisors of m/d, we see by the condition of our case
and the definition (x) that aug=an for d|m. These imply (note (2)) that

® ag= (2—a1)54,1+dan-5d,n/p for d[n, dxn.
In fact, by (7) we have

ag=2-0¢,—d 23 assp(f)
fln/d
=Q@—ay)lay—dan p(u/(d,w) X p#(f)
flm/(d, m)
=(2—ay) 04,1+ dan0ayn/p-
From (8 and Lemma 1.1 it follows that
l(od)=2—2| Ae=ay—dan 0d,n/p for d|n, d=n,
eld
and hence that
D A@ et D =a; 3 tn(®) —an-n/p 3 xu(r) =9(n) {—ar+an-n/p}.
reG eG reG
el el Koo=p
By (6) this implies that
nsap-n=(h—a)p/(p—1)<2h.
If n=2h, then we have that

A= B pre with n=2rm (rzD), @m) =1
dim

Proof in Case (¢). As before (cf. (4)), from (3) and the condition of our case
it follows that

@ auw=u=2or 3 and aw=0 f{or all d|m, d=1, m.
Using the induction on the number of divisors of m/d as in Case (b), we see
by (9 that aue=an—1-d4,; for d|m. Hence we have by (7) that

an) X=(11%1—Xu+an'd%nxud.

Now we consider the case where #=2. Then, by (10) we see that



296 Tzumi KURIBAYASHI and Fumiyuki MOMOSE

h=a,—¢(2) +ap(2)m and that
n<am=2h+2-2a,, =2h+2 or Z2h.
If n=2h+2 then

A= 33 Yoa with 2|A.
dln/2
d=1

If n=2h then

].le+ 3 X2d with 2'1’}1, h>1.
4

Next we consider the case where u=3. Then, by (10) we see
m=ap-m=h—a)/2+1Zh/2+]1.

If h=6, then n=3m=2h, and A=yxs+ x> with n=12 whenever n=2h. (We

note that m=4 and 3} ag=4>3 for A=ys+y12). If h=5 or 4, then n=3m=6<
din/2
2h, since 3Ym and mx1. If A=3 (resp.=2), then n=3m=6 and 2=y1+ 7%

(resp.=xe). (We note that m=1 for A=y;+% or 7).
It remains to show the proposition under the condition :

(11) there is a prime divisor p of m such that 3} ag=4.
d|n/p

For each prime divisor ¢ of n, put
7o= 3 ag and hy=A/D(1).
dln/q
Then, Lemma 1.2 yields the relation:
(12) h—2=q(he—2)+7e(qg—D.
Applying the induction on the number of divisors of # in Proposition 3.1 (cf.
(1) for the first step) to the faithful character (note a0 by the choice of p)

13) A= 3 aeye
eln/p

(cf. also, Lemma 1.3) in lieu of 4, we obtain that n/p<2h,+2 and hence by
(12) and (11) that

n<2h+2+23—71p) (p—1) <2h.

We now consider the case where n=2h. Then p=2, yp=4, n/p=2hp+2.
Hence, applying an induction on the number of divisors of # (cf. (1) for the
fist step) to our faithful character (13) (with p=2) as above, we obtain that
n/d=(n/p)/2 is an odd integer >1 and that

19 2D = 3 yaa.

dln/4
dx1
We wish to show that n/4 is a prime number, so suppose either (15) or (16)

below :
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(15) n/d=qr (r=2) with ¢=3.
(16) There is a prime factor ¢>>3 of n/4 with nx4q.

Since y;=4, we have

SY ag=ay, 01+, a;+a; or as
d|n/2

Thus, by (15) or (16) we get

A7) = X ag = 3 ag = ) ag =4.
din/q d|n/2q dln/2

On the other hand, we note by Proposition 2.1 and (14) that
ansq= anj2q=9(n/2) AP, y3.n119) =1.
Applying the above argument to the faithful character /@, we get n/q<2hq+
2 and hence by (17) that
nL2h+2+420B—79 (@—-1)ZL2h-2,
which is a contradiction. So we can put n=4qg with an odd prime integer gq.
Then 24/2 =y, by (14). Comparing this and (13), we get a1=a,=aq=0, as=1
i, €., A=7y2¢+asxs+asgYaq. From this we see that ¢=3, a;=0 and as=1, since
29=h=92¢) +ap(D +awupdq =(g—1 1+2aiw) +2a,23(g—D.

Thus we get 2=yx6+ Y12
This completes the proof of Proposition 3.1 and hence of Theorem II.

From the latter part of Proposition 3.1 (and Theorem I) we get the follo-

wing :

COROLLARY 3.2. Assume that GSAut(X) for some complete nonsingular
cunve X of genus 9=2. Put 2=Tr(GIH*(X, Q). Then
(@) If n=4942 then .= > .
d

i2g+1
d*1

(b) If n=49 then A =yetyxiz ;or
=3 e with n=2'm (r>1), (2m)=1.
dlm

Remark 3.3. Let ¢ denote an integer =2, and p the characteristic of 2 We
denote by {n a primitive m-th root of unity (if exists).

(a) The character 2,,=d] S xea—7x2 is realizable as Tr(G|H'(X, @:)) by the
2g+1
curve X over k and the automorphism ¢ of X below:
V=224 1, (x,9) > oz, —y)  if pL4g+2;

V2 ty=x20* (z2,y) 1> (L2912, y+1) if p=2;
P2, (z,3) 1> (z+], —y) if p=20+1.
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On the other hand, 2. is not realizable by any curve over % of genus ¢ and any
automorphism if p|20+1 and px2g+1.
(b) Assume that 49=27.m (r=2) with (2,m)=1. The character A=
%} X2’a is realizable by the curve and the automorphism below :
m

V=x2(z*+1), (z,9) 1> x,Lsg-y) it pt4g.
On the other hand, 4, is not realizable if pl4g.
() The character 2,=ys+y1 is realizable by the curve in Proj(k[x,y,z])

and the automorphism below :

x3y—-xy3+z4=0, (x,y, 2) l_)<x+y»y’ C4'Z’) lf st?
.’L‘4+y3$+24=0, (-T,y, Z) |—>(.’I), Ca'y, C4Z) if P#Z, 3.

On the other hand, 2, is not realizable if p=2.

Proor. First, we note by [4, p. 187 Corollary 2. 8] that
49,=29+Tr(e"?|H (X, Qu)

if o€Aut(X) for some curve X of genus ¢ and 2|n, where ¢, denotes the
genus of X/{o72)., Hence, if 2. (resp. 2, 4,) is realizable, then
(19) o is a hyperelliptic (resp. a hyperelliptic, not a hyperelliptic) in-

volution.

(@ By Corollary 3.2, to see (a) it suffices to show the latter part. Now
assume that 2. is realizable and p|2¢0+1 with p=2¢+1. Then, the image of G
via the natural homomorphism: G—>PGL(2, k) must be a cyclic group of order
2¢ +1. On the other hand, it follows from our assumption on p and ¢ that PGL (2, &)
does not have such a subgroup by considering the Jordan’s canonical forms.

(b) This can be proved in the same way as (a).

(© By (19), it suffices to show the latter part. Now assume that 4,=
Tr(GIH'(X, Q1)) for some curve X with GEAut(X) and p=2. If X is hyperlli-
ptic, we have a contradiction as in (a). In the case where X is non-hyperelliptic,
since Tr(Aut(X)|H(X, 2x))is faithful, we have an inclusion: G—=GL(3,2). On
the other hand, GL(3,%) does not have a cyclic subgroup of order 12. Q.E.D.

§4. Application

Throughout this section we assume 2=C and by {, a primitive n-th root of
unity. Before giving a proof to Proposition III, we make, as an interpretation
of Theorem I (a), an evaluation of the eigenvalues of the action of an automor-

phism of a curve X on the space H°(X, 2x) of 1-canonical forms.
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PROPOSITION 4.1. Assume that GSAut(X) for a compact Riemann surface
X of genus 9=2. Put y=Tr(G|H*(X,2x)) and let mo=<3, ¢y (a€EZ), where
¢a: G—>C\(0} denotes the homomorphism defined by o1—(% Then we have the
following : .

(@) me+Mpu—a=mp+mMn-b if (a,n)=(b,n.

(b)  MetMmn_eZma+Mmn_a—2-0a,0  for din, eld.

Proor. It suffices to show that

O x+x=Tr(GH (X, Q).
On the other hand, this follows from the Lefschetz fixed point formula (cf. [1.
p. 2657). QE.D.

For the rest of this section we consider Proposition III. Our proof is based

on an existence theorem ([3, Proposition 4.57) :

LEMMA 4.2. Let 3: G—C be a character of degree=2. Then y is realizable
(cf. Proposition 111 for this terminology) if and only if y satisfies the following
condition :

(1) for each eln, exn and each integer i (0<i<n/e) with (i,nfe)=1, there
exists a non-negative integer Qei with el|ae; such that for all dn with d=n.

1@H=1+3 3 aei- L8 (A=Y,
eld 1sisn/e
(i, n/e)=1

PROOF of PROPOSITION III. Put 2=yx+y '=2y. First we note that
@ ¢a-0+cya-¢H=-1 if L{xL

To show the implication: (i)==>(ii), we assume the existence of ae’s such as
in (f). Then, by (2) we have

A(0%) =2— 3 3 tei for dn, d=n.
eld &

Hence, from Lemma 1.1 it follows that

a® =33 aei =0 for ejn, exmn,
2

as desired. To show the converse, we note that
2a*¥ =a{®  for eln with exn.
In fact, we have

1 (09 =1— 3 al+® d\n, d=n).
eld

Hence, by our assumption on 2 and the definition (x) we have that a{** 20 and
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elal*®P. Using these, we obtain a set of desired ae;’s:

a0 if e=n/2;
Qei= g0 if exn/2 and if i=1 or nje—1;
0 otherwise. Q.E.D.

REMARK. We note by (1) that if a real-valued character of G of degree

>2 is realizable (in our sense), then it is a rational character.

REMARK 4.3. In this remark, G denotes a finite group. Denote by G the
set of cyclic subgroups D of G such that D= {1}. Let 1 be a rational character
of G. For each De6 we define an integer ap by the relation below :

A(cp)=2— 3 ap for Ee8,
Des
D2E

where or denotes a generator of £ (cf. Lemma 1.1).
If GSAut(X) for some compact Riemann surface X of genes =2 and 1=
Tr(G|H*(X, Q)), then for De6 we have that

ap>0 and [Ng(D) : D]|ap,

because ap=#{PeX|t(P)=P&reD for t&G} as in Lemma 2.4 (note: the
isotropy subgroup Gp is cyclic, cf. [1, IIL 7. 7]).

In general, even if ap>=0 for each De6, the condition that [Ng(D) : D]lap
is not necessarily satisfied. In particular, such y as in Proposition III (ii) is not
necessarily realizable for our (abelian) G. For example, take: G=(Z/p-Z) X (Z/p-Z)
with p being a prime number and x=£§6210, where yp: G—Q denotes the
compositum of the character of the faithful irreducible representation of G/D
over @ and the natural homomorphism: G—~G/D. Then it is easy to see that

ap=4 for Det.

Note added in proof (Nov. 1987). Proffessor H. Stichtenoth kindly let us
know a direct proof of THEOREM II using the Riemann-Hurwitz foumula.
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