ON JOINT NUMERICAL RANGES AND JOINT NORMALOIDS IN A C*-ALGEBLA

by

K. R. UNNI and C. PUTTAMADAIAH

The notion of the joint numerical range of a finite system of elements in a unital complex Banach algebra was introduced by Bonsall and Duncan (p. 23, [2]), and also proved that it is a convex compact subset of C^n . Later Mocanu [5] extended this definition to a C*-algebra and obtained several interesting results in this set up. The result (Lemma 5, p. 43, [3]) that if a and b are single elements in unitial Banach algebras A and B respectively, then the numerical range V((a, b)) of $(a, b) \in A + B$ is equal to the convex hull of $V(a) \cup V(b)$, is also valid in case of a C*-algebra. The purpose of this paper is to generalize this result to an n-tuple of elements in a C*-algebra. It is also proved, on contrary to the expentation that the generalization of a well known result that a single element a in a C*-algebra is normaloid if and only if $||a^k|| = ||a||^k$ for all positive integers k, is not true for a finite system of elements in a C*-algebra.

1. Joint numerical range

If A and B are unital C*-algebra with unit elements e_1 and e_2 respectively, then

$$A + B = \{(a, b) : a \in A, b \in B\}$$

with componentwise addition, multiplication, scalar-multiplication, and conjugation together with the norm

$$||(a, b)|| = \max\{||a||, ||b||\}$$

is a unital C*-algebra with the unit element (e_1, e_2)

If $a=(a_1, a_2, \dots, a_n)$ and $b=(b_1, b_2, \dots, b_n)$ are *n*-tuples of elements of A and B respectively, then a+b is given by $a+b=((a_1, b_1), (a_2, b_2), \dots, (a_n, b_n))$. where $(a_i, b_i) \in a+b$, $1 \le i \le n$. Throughout we shall consider complex C*-alsebras only.

A linear functional f on a unital C*-algebra is positive if $f(a^*a) \ge 0$ for all

Received March 27, 1984. Revised September 2, 1985.

 $a \in A$. It is known that f is positive if and only if f is bounded and ||f|| = f(e) ([1], p. 40 [4], prop. 3. 3. p. 24 [9] and cor. 4. 5. 3, p. 215, Th. 4. 8. 16 [7]). A positive functional f such the f(e)=1 is called a state on A.

DEFINITION 1.1. For an *n*-tuple $a = (a_1, \dots, a_n)$ of elements in a unital C*algebra, the joint numerical range V(a) is defined by

$$V(a) = \{(s(a_1), \cdots, s(a_n)) \in C^n, s \in S_A\},\$$

where S_A is the set of all states on A. We note that V(a) is a compact convex subset of C^n .

LEMMA 1.2. If P and Q are convex sets in a vector space, then

$$Co(PUQ) = \bigcup_{0 \le \lambda \le 1} \lambda P + (1 - \lambda)Q$$

This is (Theorem 1.25, p. 16 [8]).

LEMMA 1.3. Let A and B be unital C*-algebras. Then a functional $F \in S_{A+B}$ if and only if it can be represented in the form

$$F(a, b) = \lambda f(a) + \mu g(b)$$

for all $(a, b) \in A+B$, where $f \in S_A$, $g \in S_B$ and $\lambda, \mu \ge 0$ with $\lambda + \mu = 1$.

PROOF. Suppose $f \in S_A$, $g \in S_B$. If λ and μ are such that λ , $\mu \ge 0$, $\lambda + \mu = 1$, then set

$$F(a, b) = \lambda f(a) + \mu g(b),$$

Clearly F is a linear functional on A+B such that $F(e_1, e_2)=1$. Since $f(a^*a) \ge 0$, and $g(b^*b) \ge 0$,

$$F((a, b)^* (a, b)) = F((a^*, b^*), (a, b))$$

= F(a^*a, b^*b)
= $\lambda f(a^*a) + \mu g(b^*b) \ge 0.$

Thus $F \in S_{A+B}$.

To prove the converse, first we shall observe that if D is a unital C*-algebra with unit element e and P is a linear functional on D such that $P(x^*, x) \ge 0$, $x \in D$, then

$$|P(x)| \le P(e)||x||, x \in D$$
 (p. 40 [4] and Prop. 3. 3, p. 29 [9]).

Now let $F \in S_{A+B}$. setting h(a) = F(a, 0), $a \in A$, it follows that h is a linear functional on A such that $h(a^*a) \ge 0$, $a \in A$. Since e_1 is a unit element in A,

(1)
$$|h(a)| \leq h(e_1)||a||, \ a \in A.$$

On Joint Numerical Ranges and Joint Normaloids in a C*-Algebra 113

Analogously, if K(b) = F(0, b), then K is a linear functional on B with $K(b^*b) \ge 0$, and

(2)
$$|K(b)| \leq K(e_2) |||b||, b \in B.$$

Clearly

$$F(a, b) = h(a) + K(b), (a, b) \in A + B$$

and

(4)

(3)

$$1 = F(e_1, e_2) = h(e_1) + K(e_2)$$

(i) If $h(e_1)=0$, then the inequality(1) implies that h(a)=0 for $a \in A$. From (4) it follows that $K(e_2)=1$ showing $K \in S_B$. Then from (3) F(a, b)=K(b).

(ii) Similarly, if $K(e_2)=0$, F(a, b)=h(a) with $h \in S_A$.

(iii) If $h(e_1) = \lambda \neq 0$ and $K(e_2) = \mu \neq 0$, then $\lambda + \mu = 1$. By Setting $f(a) = (1/\lambda)h(a)$ and $g(b) = (1/\mu)K(b)$, we get $f \in S_A$, $g \in S_B$ and $F(a, b) = \lambda f(a) + \mu g(b)$ by (3). This completes the proof.

We now prove our main Jesult.

THEOREM 1.4. Let A and B be unital C*-algebras. If $a = (a_1, \dots, a_n)$ and $b = (b_1, \dots, b_n)$ are *n*-tuples of elements of A and B respectively, then

$$V(a+b) = V((a_1, b_1), \dots, (a_n, b_n))$$

= {(s(a_1, b_1), \dots, s(a_n^* b_n)) \epsilon C^n : s \epsilon S_{A+B}}
= Co(V(a) \u2264 V(b)).

PROOF: Suppose $\lambda \in \operatorname{Co}(V(a) \cup V(b))$. Then $\lambda = t\mu + (1-t)\nu$, $\mu = (\mu_1, \dots, \mu_n) \in (V(a)$ and $\nu = (\nu_1, \dots, \nu_n) \in V(b)$ and $0 \le t \le 1$ using Lemma 1.2. Then $\mu_1 = f(a_i)$, and $\nu_i = g(b_i)$ for some $f \in S_A$ and $g \in S_B$, $1 \le i \le n$. Since $f \in S_A$ and $g \in S_B$, by Lemma 1.3, there exists $F \in S_{A+B}$ such that

$$F(a_i, b_i) = t f(a_i) + (1-t) g(b_i) \text{ for all } (a_i, b_i) \in A + B.$$

Now

$$t\mu + (1+t)\nu = t(\mu_1, \dots, \mu_n) + (1-t)(\nu_1, \dots, \nu_n)$$

= $((t\mu + (1-t)\nu_1), \dots, ((t\mu_n + (1-t)\nu_n)))$
= $(Fa_1, b_1), \dots, F(a_n, b_n)) \in V(a+b)$

Hence

$$\operatorname{Co}(V(a) \cup V(b)) \subset V(a+b).$$

Conversely, suppose $\eta \in V(a+b)$. Then $\eta = \eta_1, \dots, \eta_n$ with $\eta_i = F(a_i, b_i)$ for some $F \in S_{A+B}$, $1 \le i \le n$. Since $F \in S_{A+B}$, by Lemma 1.3, we can find $f \in S_A$ and $g \in S_B$ and

 $\lambda, \mu \ge 0$ with $\lambda + \mu = 1$ such that

$$F(x, y) = \lambda f(x) + (1 - \lambda) g(y)$$

for all $(x, y) \in A + B$. Therefore, in particular

$$F(a_i, b_i) = \lambda f(a_i) + (1 - \lambda) g(b_i), (a_i, b_i) \in A + B.$$

$$\eta = (\eta_1, \dots, \eta_n) = (F(a_1, b_1), \dots, F(a_n, b_n))$$

$$= ((\lambda f(a_1) + (1 - \lambda) g(b_1), \dots, (\lambda f(a_n) + (1 - \lambda) g(b_n)))$$

$$= \lambda (f(a_1), \dots, f(a_n)) + (1 - \lambda) (g(b_1), \dots, g(b_n)) \in \operatorname{Co}(Va) \cup V(b)).$$

Thus

$$V(a+b) = \operatorname{Co}(V(a) \cup V(b)).$$

2. Joint Normaloids

DEFINITION 2.1. Let A be a C*-algebra with unit element e. Then for an *n*-tuple $a = (a_1, \dots, a_n)$ of elements in A, the joint spectrum o(a) of a is defined by

$$\sigma(\alpha) = \{ (\lambda_1, \dots, \lambda_n) \in \mathbb{C}^n : \sum_{i=1}^n (\alpha_i - \lambda_i) A \neq A \text{ or } \sum_{i=1}^n A(\alpha_i - \lambda_i) \neq A \}$$

 $a(a) \subset V(a)$ (Theorem 12, p. 24, [2], also see [5]).

The Cartesian product $A^n = A \times A \times \cdots \times (n \text{ times})$ becomes an algebra with involution if we define all the operations componentswise. In particular, if $a = (a_1, \dots, a_n)$ and $b = (b_1, \dots, b_n)$ are elements of A^n , we have

$$a^* = (a_1^*, \cdots, a_n^*),$$

$$ab = (a_1b_1, \cdots, a_nb_n)$$

and a norm is defined by

$$||a|| = (\sum_{i=1}^{n} ||a_i||^2)^{1/2}.$$

If $z = (z_1, \dots, z_n) C^n$, we set $|z| = (\sum_{i=1}^{m} |z_i|^2)^{1/2}.$

DEFINITION 2.2. The joint numerical radius and joint spectral radius of $a \in A^n$ defined by

$$V(a) = \sup \{ |\lambda| : \lambda \in V(a) \}$$

and

$$r(a) = \sup \{ |\eta| : \eta \in \sigma(a) \}$$

respectively. It is easy to see that $r(a) \le v(a) \le ||a||$.

DEFINITION 2.3. The joint approximate spectrum $\pi(a)$ of $a = (a_1, \dots, a_n) \in A^n$ is

defined to be the set of all *n*-tuples of complex numbers $\lambda = (\lambda_1, \dots, \lambda_n)$ such that there exists a sequence U_k of unit vectors in A satisfying

$$||(a_i-\lambda_i)U_k|| \rightarrow 0$$
 as $K \rightarrow \infty$, for $i=1, 2, \dots, n$.

DEFINITION 2.4. We say that $a=(a_1, \dots, a_n) A^n$ is jointly normaloid if r(a) = ||a||.

THEOREM 2.5. The joint numerical radius has the following properties:

- (i) $v(a) < \infty$, $v(a) \ge 0$ and v(a) = 0 if and only if $a = 0 \in A^n$.
- (ii) $v(\alpha a) = |\alpha| v(a)$ for all scalars α
- (iii) $v(a+b) \le v(a) + v(b)$ for all $a, b \in A^n$
- (iv) $v(a) = v(a^*)$ for all $a \in A$.

Proof is easy, and hence omitted.

LEMMA 2.6. Let $a=(a_1, \dots, a_n)$ be *n*-tuple of elements in A. If $\lambda=(\lambda_1, \dots, \lambda_n) \in V(a)$ with $|\lambda_i|=||a_i||, 1 \le i \le n$, then $\lambda \in \pi(a)$.

This is Theorem 3 of Mocanu [5].

In the following we prove the invalidity of the generalization of a well known characterisation that a single element $a \in A$ is normaloid if and only if $||a^k|| = ||a||^k$ for all positive integers k. For simplicity of exposition we shall consider the case n=2 and the general result follows on the similar lines.

THEOREM 2. 7. suppose $a = (a_1, a_2) \in A \times A$. if a is jointly normaloid, then $a_1^2 = (a_2^2, a_2^2)$ is also jointly normaloid. If in addition a_1 and a_2 are non-zero, then $r(a^2) \neq r(a)^2$, that is $||a^2|| \neq ||a||^2$.

PROOF: Since a is jointly normaloid, we have r(a) = ||a||. There exists $\lambda = (\lambda_1, \lambda_2) \in \sigma(a)$ such that $|\lambda| = r(a)$. Thus

$$|\lambda_1|^2 + |\lambda_2|^2 = ||a_1||^2 + ||a_2||^2.$$

This shows that

(5) $||a_i|| = |\lambda_i| \text{ for } i=1, 2$

and hence $\lambda \in \pi(a)$ by Lemma 2.6. Since $\lambda = (\lambda_1, \dots, \lambda_n) \in \pi(a)$, there is a sequence $\{U_k\}$ of unit vectors in A such that

$$||(a_i-\lambda_i)U_k|| \rightarrow 0$$
 as $k \rightarrow \infty$, $i=1, 2$.

From which it follows that

$$||(a_i^2-\lambda_i^2) U_k|| \rightarrow 0$$
 as $k \rightarrow \infty$, $i=1, 2$.

Hence

$$\mu = (\lambda_1^2, \lambda_2^2) \in \pi(a^2).$$

Using (5) and the fact that a_1 is a normaloid, we have

$$|\lambda_i^2| = |\lambda_i|^2 = ||a_i||^2 = ||a_i^2||$$

for each i=1, 2 and therefore

$$|\mu| = (|\lambda_1^2|^2 + |\lambda_2^2|^2)^{1/2}$$

= (||a_1^2||^2 + ||a_2^2||^2)^{1/2} = ||a^2||.

Hence $r(a^2) = ||a^2||$ and a^2 is jointly normaloid. This proves the first part.

Now suppose $a = (a_1, a_2)$ is jointly normaloid and a_1, a_2 are both non-zero. If possible, suppose $r(a^2) = r(a)^2$, By the first part of the theorem a^2 is jointly normaloid, and hence $||a^2|| = ||a||^2$. This gives

$$||a_1^2||^2 + ||a_2^2||^2 = (||a_1||^2 + ||a_2||^2)^2$$

That is,

$$(||a_1||^4 - ||a_1^2||^2) + (||a_2||^4 - ||a_2^2||^2) + 2||a_1||^2||a_2||^2 = 0.$$

Since the left side of this equation is the sum of three nonnegative terms, we conclude that each term must be zero, in particular either $a_1=0$ or $a_2=0$. This is a contradiction.

References

- Bohnenblust, H. F. and Karlin, S., Geometric properties of the unit sphere in Banach algebra, Ann. of Math. 60 (1955) 217-229.
- [2] Bonsall, F. F. and Duncan, J., Numerical ranges of operators on normed spaces and of elements of normed algebras, Lond. Math. Soc. Lecture Notes-2, 1971.
- [3] Bonsall, F. F. and Duncan, J., Numerical ranges II.
- [4] Lumer, G., Semi-inner-product spaces, Trans. Ame. Math. Soc. 100 (1961) 29-43.
- [5] Mocanu, Gh., The Joint approximate spectrum of a finite system of elements of a C*-algebra, Studia Mathematica, 49 (1974) 253-262.
- [6] Pushpa Juneja, Contributions to the theory of several Hilbert space operators, Ph. D. Thesis, University of Delhi, 1977.
- [7] Rickart, C.E., General theory of Banach algebras, Van Nostrand Co., 1960.
- [8] Valentine, F. A., Convex sets, McGraw-Hill, London 1964.
- [9] Williamson, J. H., Lectures on Representation Theory of Banach algebras and locally compact groups, Matscience Report No. 54 (1967).

Institute of Mathematical Sciences MADRAS-600 113, India. Department of Mathematics University of Mysore MYSORE-570 006, India.

116