ON JOINT NUMERICAL RANGES AND JOINT NORMALOIDS IN A \mathbb{C}^{*}-ALGEBLA

by

K. R. Unni and C. Puttamadaiah

The notion of the joint numerical range of a finite system of elements in a unital complex Banach algebra was introducəd by Bonsall and Duncan (p. 23, [2]), and also proved that it is a convex compact subset of C^{n}. Later Mocanu [5] extended this definition to a C^{*}-algebra and obtained several interesting results in this set up. The result (Lemma 5, p. 43, [3]) that if a and b are single elements in unitial Banach algebras A and B respectively, then the numerical range $V((\mathrm{a}$. $b)$) of $(a, b) \in A+B$ is equal to the convex hull of $V(a) \cup V(b)$, is also valid in case of a C^{*}-algebra. The purpose of this paper is to generalize this result to an n-tuple of elements in a C^{*}-algebra. It is also proved, on contrary to the expentation that the generalization of a well known result that a single element a in a C^{*}-algebra is normaloid if and only if $\left\|a^{k}\right\|=\|a\|^{k}$ for all positive integers k, is not true for a finite system of elements in a C*-algebra.

1. Joint numerical range

If A and B are unital C*-algebra with unit elements e_{1} and e_{2} respectively, then

$$
A+B=\{(a, b): a \in A, b \in B\}
$$

with componentwise addition, multiplication, scalar-multiplication, and conjugation together with the norm

$$
\|(a, b)\|=\max \{\|a\|,\|b\|\}
$$

is a unital C^{*}-algebra with the unit element $\left(e_{1}, e_{2}\right)$
If $a=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ and $b=\left(b_{1}, b_{2}, \cdots, b_{n}\right)$ are n-tuples of elements of A and B respectively, then $a+b$ is given by $a+b=\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \cdots,\left(a_{n}, b_{n}\right)\right)$. where $\left(a_{i}, b_{i}\right) \in a+b, 1 \leq i \leq n$. Throughout we shall consider complex C^{*}-alsebras only.

A linear functional f on a unital C^{*}-algebra is positive if $f\left(a^{*} a\right) \geq 0$ for all

[^0]$a \in A$. It is known that f is positive if and only if f is bounded and $\|f\|=f(e)$ ([1], p. 40 [4], prop. 3. 3. p. 24 [9] and cor. 4.5.3, p. 215, Th. 4. 8.16 [7]). A positive functional f such the $f(e)=1$ is called a state on A.

Definition 1.1. For an n-tuple $a=\left(a_{1}, \cdots, a n\right)$ of elements in a unital C*algebra, the joint numerical range $V(a)$ is defined by

$$
V(a)=\left\{\left(s\left(a_{1}\right), \cdots, s\left(\alpha_{n}\right)\right) \in C^{n}, s \in S_{A}\right\}
$$

where S_{A} is the set of all states on A. We note that $V(a)$ is a compact convex subset of C^{n}.

Lemma 1.2. If P and Q are convex sets in a vector space, then

$$
\mathrm{Co}(\mathrm{PUQ})=\bigcup_{0 \leq \lambda \leq 1} \lambda P+(1-\lambda) Q
$$

This is (Theorem 1.25, p. 16 [8]).
Lemma 1. 3. Let A and B be unital C^{*}-algebras. Then a functional $F \in S_{A+\boldsymbol{B}}$ if and only if it can be represented in the form

$$
F(a, b)=\lambda f(a)+\mu g(b)
$$

for all $(a, b) \in A+B$, where $f \in S_{A}, g \in S_{B}$ and $\lambda, \mu \geq 0$ with $\lambda+\mu=1$.
Proof. Suppose $f \in S_{A}, g \in S_{B}$. If λ and μ are such that $\lambda, \mu \geq 0, \lambda+\mu=1$, then set

$$
F(a, b)=\lambda f(a)+\mu g(b),
$$

Clearly F is a linear functional on $A+B$ such that $F\left(e_{1}, e_{2}\right)=1$. Since $f\left(a^{*} a\right) \geq 0$, and $g\left(b^{*} b\right) \geq 0$,

$$
\begin{aligned}
F\left((a, b)^{*}(a, b)\right) & =F\left(\left(a^{*}, b^{*}\right),(a, b)\right) \\
& =F\left(a^{*} a, b^{*} b\right) \\
& =\lambda f\left(a^{*} a\right)+\mu g\left(b^{*} b\right) \geq 0 .
\end{aligned}
$$

Thus $F \in S_{A+B}$.
To prove the converse, first we shall observe that if D is a unital C^{*}-algebra with unit element e and P is a linear functional on D such that $P\left(x^{*}, x\right) \geq 0, x \epsilon$ D, then

$$
|P(x)| \leq P(e)\|x\|, x \in D \quad \text { (p. } 40[4] \text { and Prop. 3. 3, p. } 29[9]) .
$$

Now let $F \in S_{A+B}$. setting $h(a)=F(a, 0), a \in A$, it follows that h is a linear functional on A such that $h\left(a^{*} a\right) \geq 0, a \in A$. Since e_{1} is a unit element in A,

$$
\begin{equation*}
|h(a)| \leq h\left(e_{1}\right)\|a\|, a \in A . \tag{1}
\end{equation*}
$$

Analogously, if $K(b)=F(0, b)$, then K is a linear fuctional on B with $K\left(b^{*} b\right)$ ≥ 0, and
(2)

$$
|K(b)| \leq K\left(e_{2}\right)\|\mid b\|, \quad b \in B .
$$

Clearly
(3)

$$
F(a, b)=h(a)+K(b),(a, b) \in A+B
$$

and

$$
\begin{equation*}
1=F\left(e_{1}, e_{2}\right)=h\left(e_{1}\right)+K\left(e_{2}\right) \tag{4}
\end{equation*}
$$

(i) If $h\left(e_{1}\right)=0$, then the inequality(l) implies that $h(a)=0$ for $a \in A$. From (4) it follows that $K\left(e_{2}\right)=1$ showing $K \in S_{B}$. Then from (3) $F(a, b)=K(b)$.
(ii) Similarly, if $K\left(e_{2}\right)=0, F(a, b)=h(a)$ with $h \in S_{A}$.
(iii) If $h\left(e_{1}\right)=\lambda \neq 0$ and $K\left(e_{2}\right)=\mu \neq 0$, then $\lambda+\mu=1$. By Setting $f(a)=(1 / \lambda) h(a)$ and $g(b)=(1 / \mu) K(b)$, we get $f \in S_{A}, g \in S_{B}$ and $F(a, b)=\lambda f(a)+\mu g(b)$ by (3). This completes the proof.

We now prove our main result.
Theorem 1.4. Let A and B be unital C*-algebras. If $a=\left(a_{1}, \cdots, a_{n}\right)$ and b $=\left(b_{1}, \cdots, b_{n}\right)$ are n-tuples of elements of A and B respectively, then

$$
\begin{aligned}
V(a+b) & =V\left(\left(a_{1}, b_{1}\right), \cdots,\left(a_{n}, b_{n}\right)\right) \\
& =\left\{\left(s\left(a_{1}, b_{1}\right), \cdots, s\left(a_{n}^{*} b_{n}\right)\right) \in C^{n}: s \in S_{A+B}\right\} \\
& =\operatorname{Co}(V(a) \cup V(b)) .
\end{aligned}
$$

Proof: Suppose $\lambda \in \operatorname{Co}(V(a) \cup V(b))$. Then $\lambda=t \mu+(1-t) \nu, \mu=\left(\mu_{1}, \cdots, \mu_{n}\right) \in(V(a)$ and $\nu=\left(\nu_{1}, \cdots, \nu_{n}\right) \in V(b)$ and $0 \leq t \leq 1$ using Lemma 1.2. Then $\mu_{1}=f\left(a_{i}\right)$, and ν_{i} $=g\left(b_{i}\right)$ for some $f \in S_{A}$ and $g \in S_{B}, 1 \leq i \leq n$. Since $f \in S_{A}$ and $g \in S_{B}$, by Lemma 1. 3, there exists $F \in S_{A+B}$ such that

$$
F\left(a_{i}, b_{i}\right)=t f\left(a_{i}\right)+(1-t) g\left(b_{i}\right) \text { for all }\left(a_{i}, b_{i}\right) \in A+B
$$

Now

$$
\begin{aligned}
t \mu+(1+t) \nu & =t\left(\mu_{1}, \cdots, \mu_{n}\right)+(1-t)\left(\nu_{1}, \cdots, \nu_{n}\right) \\
& =\left(\left(t \mu+(1-t) \nu_{1}\right), \cdots,\left(\left(t \mu_{n}+(1-t) \nu_{n}\right)\right)\right. \\
& \left.=\left(F a_{1}, b_{1}\right), \cdots, F\left(a_{n}, b_{n}\right)\right) \in V(a+b)
\end{aligned}
$$

Hence

$$
\operatorname{Co}(V(a) \cup V(b)) \subset V(a+b)
$$

Conversely, suppose $\eta \in V(a+b)$. Then $\eta=\eta_{1}, \cdots, \eta_{n}$ with $\eta_{i}=F\left(a_{i}, b_{i}\right)$ for some $F \in S_{A+B}, 1 \leq i \leq n$. Since $F \in S_{A+B}$, by Lemma 1.3, we can find $f \in S_{A}$ and $g \in S_{B}$ and
$\lambda, \mu \geq 0$ with $\lambda+\mu=1$ such that

$$
F(x, y)=\lambda f(x)+(1-\lambda) g(y)
$$

for all $(x, y) \in A+B$. Therefore, in particular

$$
\begin{aligned}
& F\left(a_{i}, b_{i}\right)=\lambda f\left(a_{i}\right)+(1-\lambda) g\left(b_{i}\right),\left(a_{i}, b_{i}\right) \in A+B . \\
& \eta=\left(\eta_{1}, \cdots, \eta_{n}\right)=\left(F\left(a_{1}, b_{1}\right), \cdots, F\left(a_{n}, b_{n}\right)\right) \\
& \quad=\left(\left(\lambda f\left(a_{1}\right)+(1-\lambda) g\left(b_{1}\right), \cdots,\left(\lambda f\left(a_{n}\right)+(1-\lambda) g\left(b_{n}\right)\right)\right)\right. \\
& \left.\quad=\lambda\left(f\left(a_{1}\right), \cdots, f\left(a_{n}\right)\right)+(1-\lambda)\left(g\left(b_{1}\right), \cdots, g\left(b_{n}\right)\right) \in \operatorname{Co}(V a) \cup V(b)\right) .
\end{aligned}
$$

Thus

$$
V(a+b)=\operatorname{Co}(V(a) \cup V(b)) .
$$

2. Joint Normaloids

Definition 2.1. Let A be a C*-algebra with unit element e. Then for an n tuple $a=\left(a_{1}, \cdots, a_{n}\right)$ of elements in A, the joint spectrum $\sigma(a)$ of a is defined by

$$
\sigma(a)=\left\{\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in C^{n}: \sum_{i=1}^{n}\left(a_{i}-\lambda_{i}\right) A \neq A \text { or } \sum_{i=1}^{n} A\left(a_{i}-\lambda_{i}\right) \neq A\right\}
$$

$\sigma(a) \subset V(a)$ (Theorem 12, p. 24, [2], also see [5]).
The Cartesian product $A^{n}=A \times A \times \cdots \times$ (n times) becomes an algebra with involution if we define all the operations componentswise. In particular, if $a=\left(a_{1}\right.$, $\left.\cdots, a_{n}\right)$ and $b=\left(b_{1}, \cdots, b_{n}\right)$ are elements of A^{n}, we have

$$
\begin{aligned}
& a^{*}=\left(a_{1}^{*}, \cdots, a_{n}^{*}\right), \\
& a b=\left(a_{1} b_{1}, \cdots, a_{n} b_{n}\right)
\end{aligned}
$$

and a norm is defined by

$$
\|a\|=\left(\sum_{i=1}^{n}\left\|a_{i}\right\|^{2}\right)^{1 / 2}
$$

If $z=\left(z_{1}, \cdots, z_{n}\right) C^{n}$, we set $|z|=\left(\sum_{i=1}^{m}\left|z_{i}\right|^{2}\right)^{1 / 2}$.
Definition 2.2. The joint numerical radius and joint spectral radius of $a \in A^{n}$ defined by

$$
V(a)=\sup \{|\lambda|: \lambda \in V(a)\}
$$

and

$$
r(a)=\sup \{|\eta|: \eta \in \sigma(a)\{
$$

respectively. It is easy to see that $r(a) \leq v(a) \leq\|a\|$.
Definition 2.3. The joint approximate spectrum $\pi(a)$ of $a=\left(a_{1}, \cdots, a_{n}\right) \in A^{n}$ is
defined to be the set of all n-tuples of complex numbers $\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ such that there exists a sequence U_{k} of unit vectors in A satisfying

$$
\left\|\left(a_{i}-\lambda_{i}\right) U_{k}\right\| \rightarrow 0 \text { as } K \rightarrow \infty, \text { for } i=1,2, \cdots, n
$$

Definition 2.4. We say that $a=\left(a_{1}, \cdots, a_{n}\right) A^{n}$ is jointly normaloid if $r(a)$ $=\|a\|$.

Theorem 2.5. The joint numerical radius has the following properties:
(i) $v(a)<\infty, v(a) \geq 0$ and $v(a)=0$ if and only if $a=0 \in A^{n}$.
(ii) $v(\alpha a)=|\alpha| v(a)$ for all scalars α
(iii) $v(a+b) \leq v(a)+v(b)$ for all $a, b \in A^{n}$
(iv) $v(a)=v\left(a^{*}\right)$ for all $a \in A$.

Proof is easy, and hence omitted.
Lemma 2.6. Let $a=\left(a_{1}, \cdots, a_{n}\right)$ be n-tuple of elements in A. If $\lambda=\left(\lambda_{1}, \cdots\right.$, $\left.\lambda_{n}\right) \in V(a)$ with $\left|\lambda_{i}\right|=\left\|a_{i}\right\|, 1 \leq i \leq n$, then $\lambda \in \pi(a)$.

This is Theorem 3 of Mocanu [5].
In the following we prove the invalidity of the generalization of a well known characterisation that a single element $a \in A$ is normaloid if and only if $\left\|a^{k}\right\|=\|a\|^{k}$ for all positive integers k. For simplicity of exposition we shall consider the case $n=2$ and the general result follows on the similar lines.

Theorem 2.7. suppose $a=\left(a_{1}, a_{2}\right) \in A \times A$. if a is jointly normaloid, then $a_{1}^{2}=\left(a_{2}^{2}, a_{2}^{2}\right)$ is also jointly normaloid. If in addition a_{1} and a_{2} are non-zero, then $r\left(a^{2}\right) \neq r(a)^{2}$, that is $\left\|a^{2}\right\| \neq\|a\|^{2}$.

Proof: Since a is jointly normaloid, we have $r(a)=\|a\|$. There exists $\lambda=$ $\left(\lambda_{1}, \lambda_{2}\right) \in \sigma(a)$ such that $|\lambda|=r(a)$. Thus

$$
\left|\lambda_{1}\right|^{2}+\left|\lambda_{2}\right|^{2}=\left\|a_{1}\right\|^{2}+\left\|a_{2}\right\|^{2}
$$

This shows that

$$
\begin{equation*}
\left\|a_{i}\right\|=\left|\lambda_{i}\right| \text { for } i=1,2 \tag{5}
\end{equation*}
$$

and hence $\lambda \in \pi(a)$ by Lemma 2.6. Since $\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \pi(a)$, there is a sequence $\left\{U_{k}\right\}$ of unit vectors in A such that

$$
\left\|\left(a_{i}-\lambda_{i}\right) U_{k}\right\| \rightarrow 0 \quad \text { as } k \rightarrow \infty, i=1,2
$$

From which it follows that

$$
\left\|\left(a_{1}^{2}-\lambda_{1}^{2}\right) U_{k}\right\| \rightarrow 0 \quad \text { as } k \rightarrow \infty, i=1,2
$$

Hence

$$
\mu=\left(\lambda_{1}^{2}, \lambda_{2}^{2}\right) \in \pi\left(a^{2}\right) .
$$

Using (5) and the fact that a_{1} is a normaloid, we have

$$
\left|\lambda_{i}^{2}\right|=\left|\lambda_{i}\right|^{2}=\left\|a_{i}\right\|^{2}=\left\|a_{i}^{2}\right\|
$$

for each $i=1,2$ and therefore

$$
\begin{aligned}
|\mu| & =\left(\left|\lambda_{1}^{2}\right|^{2}+\left|\lambda_{2}^{2}\right| 2\right)^{1 / 2} \\
& =\left(\left\|a_{1}^{2}\right\|^{2}+\left\|a_{2}^{2}\right\|^{2}\right)^{1 / 2}=\left\|a^{2}\right\| .
\end{aligned}
$$

Hence $r\left(a^{2}\right)=\left\|a^{2}\right\|$ and a^{2} is jointly normaloid. This proves the first part.
Now suppose $a=\left(a_{1}, a_{2}\right)$ is jointly normaloid and a_{1}, a_{2} are both non-zero. If possible, suppose $r\left(a^{2}\right)=r(a)^{2}$, By the first part of the theorem a^{2} is jointly normaloid, and hence $\left\|a^{2}\right\|=\|a\|^{2}$. This gives

$$
\left\|a_{1}^{2}\right\|^{2}+\left\|a_{2}^{2}\right\|^{2}=\left(\left\|a_{1}\right\|^{2}+\left\|a_{2}\right\|^{2}\right)^{2}
$$

That is,

$$
\left(\left\|a_{1}\right\|^{4}-\left\|a_{1}^{2}\right\|^{2}\right)+\left(\left\|a_{2}\right\|^{4}-\left\|a_{2}^{2}\right\|^{2}\right)+2\left\|a_{1}\right\|^{2}\left\|a_{2}\right\|^{2}=0 .
$$

Since the left side of this equation is the sum of three nonnegative terms, we conclude that each term must be zero, in particular either $a_{1}=0$ or $a_{2}=0$. This is a contradiction.

References

[1] Bohnenblust, H..F. and Karlin, S., Geometric properties of the unit sphere in Banach algebra, Ann. of Math. 60 (1955) 217-229.
[2] Bonsall, F.F. and Duncan, J., Numerical ranges of operators on normed spaces and of elements of normed algebras, Lond. Math. Soc. Lecture Notes-2, 1971.
[3] Bonsall, F.F. and Duncan, J., Numerical ranges II.
[4] Lumer, G., Semi-inner-product spaces, Trans. Ame. Math. Soc. 100 (1961) 29-43.
[5] Mocanu, Gh., The Joint approximate spectrum of a finite system of elements of a C*-algebra, Studia Mathematica, 49 (1974) 253-262.
[6] Pushpa Juneja, Contributions to the theory of several Hilbert space operators, Ph. D. Thesis, University of Delhi, 1977.
[7] Rickart, C. E., General theory of Banach algebras, Van Nostrand Co., 1960.
[8] Valentine, F.A., Convex sets, McGraw-Hill, London 1964.
[9] Williiamson, J. H., Lectures on Representation Theory of Banach algebras and locally compact groups, Matscience Report No. 54 (1967).

Institute of Mathematical Sciences MADRAS-600 113, India.
Department of Mathematics University of Mysore MYSORE-570 006, India.

[^0]: Received March 27, 1984. Revised September 2, 1985.

