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GAPS BETWEEN COMPACTNESS DEGREE AND COMPACTNESS
DEFICIENCY FOR TYCHONOFF SPACES

By
Takashi KIMURA

1. Introduction.

In this paper we assume that all spaces are Tychonoff. For a space X, dim X denotes
the Cech-Lebesgue dimension of X (see [3]).

J. de Groot proved that a separable metrizable space X has a metrizable compactifica-
tion X with dim (X \ X) <0 iff X is rim-compact (see [4]). A space X is rim-compact if
each point of X has arbitrarily small neighborhoods with compact boundary. Modified the
concept of rim-compactness, he defined the compactness degree of a space X, cmp X, induc-
tively, as follows.

A space X satisfies cmp X=—1 iff X is compact. If # is a non-negative integer, then
cmp X<z means that each point of X has arbitrarily small neighborhoods U with
cmp Bd U<n—1. We put cmp X=n if cmp X<# and cmp X £n— 1. If there is no integer
n for which cmp X<#, then we put cmp X=oo.

By the compactness deficiency of a Tychonoff space (resp. a separable metrizable space)
X we mean the least integer # such that X has a compactification (resp. a metrizable com-
pactification) X with dim (@X \ X) =#. We denote this integer by def* X (resp. def X).
We allow # to be oo.

Thus, with this terminology, J. de Groot’s result above asserts that cmp X<0 iff def X
<0 for every separable metrizable space X. The general problem whether cmp X<#n iff
def X< for arbitrary separable metrizable space X has been known as J. de Groot’s con-
jecture, and was unsolved for a long time.

However, in 1982 R. Pol [7] constructed a separable metrizable space X such that
cmp X=1 and def X=2. In the class of separable metrizable spaces, another example X
with the property that cmp X #def X seems to be still unknown but Pol’s example above.

On the other hand, in the class of Tychonoff spaces, M. G. Charalambous [1] has
already constructed a space X such that cmp X=0 and def* X=# for each n= 1,2, -+, oo,
J. van Mill [6] has constructed a Lindelsf space X such that cmp X=1 and
def* X=o00.

In this paper we construct a countably compact space X such that cmp X=m and

Received September 17, 1985.



264 Takashi KIMURA

def* X=n for m, ne NU {oo} with m<n.

2. Lemmas and the main result.

We begin with the following inductive conception, which is closely related to cmp X.

DEFINITION 2.1. For a subset A of a space X we define

ind (4, X)=-1iff A is empty,

ind (4, X)<n iff each point of A has arbitrarily small neighborhoods
Uin X with ind (Bdy UNA, X)<n-—1,

ind 4, X)=n iff ind (4, X)<#n and ind (4, X)£n—1,

ind (4, X)=0 iff ind (4, X)<n for all n.

The following lemma readily follows from induction.
LEMMA 2.2. For a closed subset A of a space X cmp A<cmp X.

LEMMA 2.3. Let AcCBcXCY. Then

(1) ind (4, X)<ind (B, X),
2) ind (4, X)<ind (4, 7).

ProoF. (1) is easy by induction.

(2). We proceed by induction on ind (4, Y)=n. Obviously, (2) holds for z=—1. Let
7>0 and assume that (2) holds for every k& with <. Suppose that ind (4, Y)=n. For
each xe€ A and each neighborhood U of x in X there are neighborhoods U’ and V' ofxin Y
such that U=U'NX, V'cU and ind Bdy V'NA, Y)<u—1. Let V=V'NX. The induc-
tion hypothesis implies that ind (Bdy V'NA, X)<ind (Bdy V'NA, Y)<n—1. Since
Bdy VNACBdy V'NA, by (1), we have ind (Bdx VNA, X)<n—1. Hence we have
ind (4, X)<n, therefore ind (4, X)<ind (4, Y).

For every space X we set R(X)= {xe X |x has no neighborhood with compact closure}.
LEMMA 2.4. For every space X we have cmp X<ind (R(X), X)+1.

PROOF. We shall apply induction with respect to ind (R(X), X)=n. Obviously, the
lemma holds for #= —1. Let #>0 and assume that the lemma holds for every % with k<#.
Suppose that ind (R(X), X) =x. We shall prove that cmp X<#n+1. To prove this, we only
consider points of R(X), because X \ R(X) is locally compact and open in X. Let xe R(X)
and U a neighborhood of x in X. Then we take a neighborhood V of x in X such that VC U
and ind (Bdy VNR(X), X)<n—1. Since R(Bdx V)CBdy VNR(X), by lemma 2.3, we
have ind (R(Bdy V), Bdy V) <ind (Bdy VNR(X), X) <n—1. By induction hypothesis, we
have cmp Bdy V<#. Hence we have cmp X<n+1.
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As usual, an ordinal « is the space of all ordinals less than « with order topology. For
each ordinal o we denote by [0, «] the long segment for a. That is, [0, a]=(ax [0, 1))
U {a} as the set, where [0, 1) is the half-open unit interval, with order topology with
respect to an order < as follows; for (8, ?), (y,s)eax[0,1) (B8, H)<(y,s) iff (8<yp) or
(B=y and {<s) and for all (B, H)eax[0,1) (B, t)<a.

Then the space [0, a] is compact and connected. For ordinals oy, 1<7<#, we have
dim II7, [0, o;] =ind II7_, [0, ;] =n. For any points B, y €[0, o] with A<y we define [8, 7]
={d€[0, a]IB<5<y}. Similarly, we define [B, y), (B, y] and (8, y).

LEMMA. 2.5. Let m21 and Y,=(w1 %[0, @1]"*)U ({(y, @1, @)} X [0, 1)) be
the subspace of (w;+1) X [0, w,]"*. Thern cmp Y,,=m.

PrROOF. Since R(Y,)= {(wy, w1, wy)} X [0, w]™" !, we have ind (R(Y,,), Y,)=m—1.
By Lemma 2.4, cmp Y,,<m. Thus we only show that cmp Y,,=>m. We proceed by induc-
tion on m.

Step 1. Suppose that m=1.

Let {3y} =R(Y)= {(wy, w1, w1)} and U= +1)x {1, 0;])NY,. Then U is a
neighborhood of y in Y;. Assume that there is a neighborhood V of y in Y; such that VC U
and Bd V is compact. Let p:(w;+1) x [0, w;]*=w;+1 be the projection. Then we have
p(BdV) Cw,. Since p(BdV) is compact, we can take an ordinal o <w,; such that p(BdV)
C a. On the other hand, there is an ordinal #< w; such that (y, w;, w) € V for every y with
B<y<w,;. Pick up an ordinal y with max {a, 8} <y<w;. Then y¢p(BdV), (»,0,00¢V
and (y, w,, wy) € V. This contradicts the connectedness of {y} X [0, w,]% Thus BdV is not
compact for every neighborhood V of y in ¥; with VC U. Hence cmp Y;=1.

Step 2. Assume that cmp Y, =% for every k with 2<m.

Let Z=((w1+1) X [0, )" % [0, 1D N Y, U={(w1+1) X [0, 0,]"%[0,1/2))NY,, and
x=(w1, wy, -, wy, 0). Then Z is closed in Y,, and U is a neighborhood of x in Z. For each
neighborhood V of x in Z with VC U we set

t=sup {s€[0, 1] {wy, w, - - -, w1, s)e V}.

Let p: (w1 +1) X [0, " =(w;+1) X I74 [0, 0,]i—~ [0, w1ln+1 be the projection and
A=p(({{wy, w1, -+, @)} X[0, 1PN V). For each xe ({{wy, w1, -+, @)} X[0, INNV we
take ap<wsy, 1=0,1, -+, m, and an open subset U, of [0, 1] such that xe V,=((w;+1)
Nag,) X2 [ag, on] X U,)NZC V. Since ({(wy, @i, -+, wy)} x[0, 1])N V is Lindel6f, we
can take a countable subset {x(#)|#ne N} such that {V,y|neN} covers ({(w:, wn, -,
w)) x[0,1PNV. Let e;=sup {apwlneN} for each i=0,1, -+, m. Then o;<w; and
(1 + 1) N o) XTI, [, 1] XAYNZC V. Let W=Z\ Cl; V. Then, similarly, we can take
an ordinal g;<w,; for each =0, 1, ---, m such that (((w;+1)\ Bo) X112, [B;, w1] X B)
NZC W, where B=p({(w;, w1, - -, oy} x[0, I])NW). Let us set y;=max [a;, f;} for
each 1=0,1, -, m. Then (((w;+1)\po) XO, [y, wi] % {t})NZ is homeomorphic to
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Y.n-1and contained in Bd; V as a closed subset. By Lemma 2.2, we have cmp Bd; V>m—1,
therefore cmp Y,,=>cmp Z>m. Hence we have cmp Y,,=m. This completes the proof of
Lemma 2.5.

Let 22 and Z,=II7%; [0, w;]\ {(wz, ws, -+, w,+1)} be the subspace of 27} [0, w;].

Since 1172, [0, ;) is pseudocompact, by Glicksberg’s theorem, we have BII*} [0, w;)
=117} [0, w,], where BY is the Stone-Cech compactification of a space Y. Thus Z,=
1172 [0, w;]. Namely, Z, has the only compactification 117} [0, w;].

LEMMA. 2.6. Let X contain Z, as a closed subset. Then for every perfect image Y of X we
have dim Y>un.

PROOF. Letf:X—Y be a perfect surjection and gf:fX—FY the Stone extension
of 7. Then ClsxZ, is a compactification of Z,. As described above, ClgxZ, is homeomorphic
to 1174} [0, w;]. Let z=(ws, w3, - - -, w,+1). Then ClxZ,=Z,U {2z} and ze X\ X.

Claim 1. For each ¢=2,3, ---,n+1, there is an ordinal o;<w; such that ff(4)
NSf (B;)=¢, where

A; Hl =2 [0‘;, w]] X {o;} XH; +z+1 [a;: w]]
and
B= Hl —2 [, w]] x {eo;} XH/ i+1 [a]) w]]

Proof of Claim 1. Since f is perfect, 8f (z) € 8/ (Z,) (see [3, 3.7.15]). Thus for each
a<w; we take an ordinal () < w; such that

BF (V2] [ (@), wi] x {a} XTII2L [d(@), wi])N
BF (V2] [ (@), @] % {o)} X T2 (@), wi]) =¢.

Let o/=sup {of(a) la<w,}. If j<i, then a/< w;.
We define, by downward induction on ¢, an ordinal

2 i—1 +1
=max {af, -+, @i, i M), o, @l e}

Then o;<w; for each i=2, 3, - - -, n+1. Since a;>a!(a;), we have B (4,) NBf (B)=9¢.

Claim 2. dim Y>n.

Proof of Claim 2. Assume that dim Y=dim Y <#. Since 8f(A;) and Bf(B;) are dis-
joint closed subsets of Y for each i=2, 3, - - -, n+1, we take a partition L; in 8Y between
Bf(A) and Bf(B) such that NIY) Li=¢(cf. [2,3.3.6])). Let X' =II""} [0, w;] and
M;=pf"YL)NX' . Then M; is a partition in X' between A; and B; such that N2 M=6.
Since X is compact, for each i=2, 3, - - -, n+1, we take a finite collection {8!]0<j<m;}
of ordinals such that

1) a=pI<- - <pi<-- <pl'=uw,
@ NSt @)=9, StM;, ANSt(A;, @)=¢ and St(M, ANSt(B, @) =9,
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where @= {1122} [B97%, BI911G@), -+, jn+ D)) eIl {1, -+ -, m}}.

Then for each =2, 3, - - -, n+1, there is a continuous mapping f;: [e;, @;]—[0, 1]=1; such
that f;(8)) =j/m;and ([, B =[G—D/m; j/m;]. Let g=T}2} f: 13 [ew, 0]~ 1115 L
be the product mapping defined by g(()715) = (f:(£)),. Since St(M;, @) is a partition in
X'’ between A; and B, there are disjint open subsets U; and V; of X' such that A;,C U,
B,.C Viand X' \St(M;, @ =U;UV,. Let Ki=I; x - - - X [_; X {j} XLis1 X - - - X L4, for each
1=2,3,---,n+1 and each j=0, 1. Let Nj=g(X'\U)Ng(X' '\ V}) for each =2,3, - -,
n+1. Then N; is a partition in IT"%} I; between K| and K}, and N?*} N;=¢. This is a con-
tradiction (cf. [2, 1.8.1]).

Now we construct a space, which is mentioned in the introduction.

EXAMPLE. 2.7. For m, ne NU {0} with m<n there exists a countably compact space X
such that cmp X=m and def* X=n.

Case 1. neN.

Let X=(w; X112 [0, :]) U ({(w1, @1, @)} X [0, @] 7' % {(w1, @1, -+, @)U {0y,
Wz, **, War1)} be the subspace of (w;+1) X112, [0, ;.

It is easy to see that X is countably compact.

Since R(X) = ({(w1, @1, @)} X [0, w1]" ' X {(wy, wy, -+, @)D U {(@1, wa, -+, @was)},
we have ind (R(X), X)=m—1. By Lemma 2.4, we have cmp X<m. Since X contains Y,,
as a closed subspace, by Lemmas 2.2 and 2.5 we have cmp X>m. Hence cmp X=m.

Next, since SX=(w;+1) xII7*; [0, w;], we have dim (8X\ X)=n. Thus def*X<n.
For each compactification oX of X there is a parfect surjection f;8X\ X—aX\ X, and
BX\ X contains a closed subset homeomorphic to Z,. Thus, by Lemma 2.6, we have
dim (@X\ X)>n. Hence def*X=x.

Case 2. n=co.

Let X=(w; XTI, [0, w;]) U {{(w1, w1, @)} X [0, @] % {(wy, w1, -+ DU {(01, ws,
-+ -)} be the subspace of (w;+1) XII7Z, [0, w;]. Then, similarly, X is countably compact,
cmp X=m and def*X=n.

3. Statements.

We define Cmp X of a space X by the following; Cmp X=01f cmp X<0, and for n>1,
Cmp X< if each closed subset of X has arbitrarily small neighborhoods U with Cmp Bd U
<#n—1. Cmp X was defined by J. de Groot for the case X is separable and metrizable.

It can be prove that cmp X<Cmp X for every space X and cmp X<Cmp X< def X for
every separable metrizable space X (see [4]). For Pol’s example X in [7] shows that cmp X
=1 and Cmp X=def X=2. Thus it is unknown whether there is a separable
metrizable space X with Cmp X<def X. It would be interesting to have a separable
metrizable space X such that cmp X=k, Cmp X=m and def X=n for k, m, ne NU {oo}
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with k<m<n.

Obviously, def*X<def X for every separable metrizable space X. We do not know
whether there is a separable metrizable space X with def * X< def X as well as the value of
def*X for Pol’s example X in [7].

In Example 2.7 we have constructed a space X with cmp X=m and def*X=u for m,
neNU {eo} with m<n. However, in general, cmp X need not be less than or equal to
def*X [5, VIL.25). It would be interesting to have a space X such that cmp X=4,
Cmp X=m and def*X=n for &, m, nc NU {o0} with 2<m.

Added in proof. The author constructed a separable metrizable space X such that
def X—com X=n for each #eN. Thus in the class of separable metrizable spaces the gap
between cmp X and def X can be arbitrarily large. '
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