CONSTRUCTIONS OF MODULAR FORMS BY MEANS OF TRANSFORMATION FORMULAS FOR THETA SERIES

By
Shigeaki Tsuyumine

Let F be a positive integral symmetric matrix of degree m, and Z a variable on the Siegel space H_{n} of degree n. Let Φ be a spherical function of order ν with respect to F which is of the form

$$
\Phi(G)=\left\{\begin{array}{cc}
1 & (\nu=0) \\
\left|{ }^{2} G F^{1 / 2} \eta\right|^{\nu} & (\nu>0)
\end{array} \quad \text { for } m \times n \text { complex matrices } G\right.
$$

with an $m \times n$ matrix η such that ${ }^{t} \eta \eta=0$ if $\nu>1$.
We define a theta series associated with F by setting

$$
\theta_{F, U, V}(Z ; \Phi)=\sum_{G} \Phi(G+V) \exp \left(\operatorname{tr}\left(Z^{t}(G+V) F(G+V)+2^{t}(G+V) U\right)\right)
$$

where U, V are $m \times n$ real matrices, tr denotes the trace of a corresponding square matrix and G runs through all $m \times n$ integral matrices. We write simply $\theta_{F, U, V}(Z)$ for the theta series $\theta_{F, U, V}(Z ; \Phi)$ when Φ is of order 0 .

For congruence subgroups of $S L_{2}(\mathbb{Z})$ the transformation formulas for theta series of degree 1 associated with F are well known. For example, we can find transformation formulas for theta series of degree 1 in [7], [8], in which multipliers are explicitly determined. Transformation formulas for the theta series $\theta_{F^{\prime}, U, V}(Z ; \Phi)$ of degree $n \geq 1$ are also established in [1] in the case where F is even and U, V are zero (the condition on U, V is not necessary if Φ is of order 0 [9]). Using these results we can get many examples of Siegel modular forms for congruence subgroups.

In this paper we determine a transformation formula for the theta series $\theta_{F, U, V}(Z ; \Phi)$ associated with a positive integral symmetric matrix F and any real matrices U, V and using this, we get some examples of cusp forms for some congruence subgroups Γ^{\prime} of $S p_{n}(\mathbb{Z})$. Cusp forms of weight $n+1$ for Γ^{\prime} induce differential forms of the first kind on the nonsingular model of the modular function field with respect to $I^{\prime \prime}$. Our result shows that the geometric genus of the nonsingular model of the modular function field with respect to Γ^{\prime} is positive.

[^0]For example, this is the case where (i) $\Gamma^{\prime}=\Gamma^{\prime}(4)$ if $n>1$, (ii) $\Gamma^{\prime}=\Gamma^{\prime}\left(2 N^{2}\right)$ for $N>1$ if $n \equiv 0$ (2), (iii) $\Gamma^{\prime}=S p_{n}(\boldsymbol{Z})$ if $n=24$ (cf. H. Maass [5]), (iv) $\Gamma^{\prime}=\Gamma(N)$ for $N \geq 2$ if $n \equiv 0(8),(\mathrm{v}) \Gamma^{\prime}=\Gamma(2,4)$ or $\Gamma^{\prime}\left(N^{2}\right)$ for $N>1$ if $n \equiv 7$ (8).

Notation.

We denote by Z, Z, Q, R and C, the set of all positive rational integers, the ring of rational integers, the rational number field, the real number field and the complex number field. Let K be a subset of \mathbb{C}. We denote by $M_{m, n}(K)$ the set of all $m \times n$ matrices with entries in K; simply K^{m} denotes $M_{m, 1}(K)$ and $S M_{m}(K)$ denotes the set of all symmetric matrices of degree m with entries in K. We denote by 1_{n} the identity matrix of degree n. For $X \in M_{m, n}(C)$ and $Y \in M_{n, n}(C)$, we set $X[Y]={ }^{s} Y X Y$.

We denote the modular group $S p_{n}(\boldsymbol{Z})$ simply by $\Gamma . \Gamma$ acts on the Siegel space H_{n} by the usual modular transformations

$$
Z \longmapsto M Z=(A Z+B)(C Z+D)^{-1} \quad \text { for } M=\binom{A B}{C D} \in \Gamma
$$

Let $\Gamma^{\prime \prime}$ be a congruence subgroup of Γ, and χ a map of $I^{\prime \prime}$ to $C^{*}=\{c \in C \mid c \neq 0\}$. A holomorphic function f on H_{n} is called a modular form of weight $k\left(\epsilon \frac{1}{2} Z_{+}\right)$for Γ^{\prime} with a multiplier χ if f satisfies $f(M Z)=\chi(M)|C Z+D|^{k} f(Z)$ for any $M \in \Gamma^{\prime}$. Here the factor of automorphy $|C Z+D|^{1 / 2}$ is always determined by the condition that $-\pi / 2<\arg \left(|\sqrt{-1 C}+D|^{1 / 2}\right) \leq \pi / 2$ and $|C Z+D|^{k}$ is determined by $|C Z+D|^{k}=$ $\left(|C Z+D|^{1 / 2}\right)^{2 k}$. Such f is called a cusp form of weight k for $I^{\prime \prime}$ with a multiplier χ if in the Fourier expansion

$$
|C Z+D|^{-k} f(M Z)=\sum_{S} a(S) \varepsilon(\operatorname{tr}(Z S)) \text { for all } M \in \Gamma,
$$

$a(S)$ vanishes for S with $|S|=0$, where $\varepsilon(*)=\exp \left(\sqrt{-1} \pi^{*}\right)$.
We introduce several congruence subgroups of I. Let Θ denote the theta group $\left\{\left.M=\binom{A B}{C D} \in \Gamma \right\rvert\,\left({ }^{t} A C\right)_{s} \equiv\left({ }^{t} B D\right)_{4} \equiv 0(2)\right\}$ where for a square matrix ($x_{i j}$) of degree $n,\left(x_{i j}\right)_{4}$ denotes ${ }^{\prime}\left(x_{11}, \cdots, x_{n n}\right)$. Let N be a positive integer. Then we set $\Gamma_{0}(N)=\{M \in \Gamma \mid C \equiv 0(N)\}, \quad \Gamma(N)=\left\{M \in \Gamma \mid A \equiv D \equiv 1_{n}(N), B \equiv C \equiv 0(N)\right\}$ and $\Theta_{0}(N)=$ $\left\{M \in I_{0}(N) \mid\left({ }^{(} B D\right)_{s} \equiv 1 / N(t A C)_{J} \equiv\left(B^{t} A\right)_{A} \equiv 1 / N\left(D^{t} C\right)_{A} \equiv 0(2)\right\}$. For two positive integers N_{1}, N_{2} we put $J_{0}^{\prime}\left(N_{1}, N_{2}\right)=\left\{M \in \Gamma \mid B \equiv 0\left(N_{1}\right), C \equiv 0\left(N_{2}\right)\right\}$. For a positive even integer N we put $\Gamma(N, 2 N)=\left\{M \in \Gamma(N) \mid\left({ }^{t} A C\right)_{A} \equiv\left({ }^{t} B D\right)_{A} \equiv 0(2 N), \Theta_{i}(N)=\left\{M \in \Gamma_{0}(N) \mid 1 / N\left(^{t} A C\right)_{A}\right.\right.$ $\left.\equiv 1 / N\left(D^{\prime} C\right)_{4} \equiv 0(2)\right\}$ and $\Theta_{2}(N)=\left\{M \in I_{0}^{\prime}(N) \mid\left({ }^{(} B D\right)_{4} \equiv\left(B^{t} A\right)_{4} \equiv 0 \quad(2)\right\}$.

We denote by (-) the generalized Legendre symbol to which we add the following significance; (i) $\left(\frac{0}{1}\right)=1$ and (ii) if a is an odd integer congruent to $1 \bmod$ 4 and b is a positive even integer, then $\left(\frac{a}{b}\right)=\left(\frac{b}{a}\right)$. (cf. [2])

1. Transformation formulas

For u, v, x and $y \in C^{n}$ we define a theta series by setting

$$
\vartheta_{u, v}(Z ; x, y)=\sum_{y \equiv v \bmod Z} \varepsilon\left(Z[g+y]+2^{t} g(x+u)+t^{i} y x\right),
$$

where the summation is taken over all $g \in \mathbb{C}^{n}$ such that $g-v \in \boldsymbol{Z}^{n}$. From Satz 8 in [10] we get easily the following

Lemma 1. Let u, v, x and $y \in \mathbb{C}^{n}$, and $M=\binom{A B}{C D} \in \Gamma$. Setting

$$
\begin{aligned}
& u_{M}={ }^{t} D u+{ }^{\iota} B v+\frac{1}{2}\left({ }^{t} B D\right)_{d}, v_{u}={ }^{t} C u+{ }^{t} A v+\frac{1}{2}\left({ }^{t} A C\right)_{A} \text { and } \\
& E(u, v, M)=s\left(-{ }^{t}\left({ }^{t} C u+{ }^{t} A v\right)\left({ }^{t} D u+{ }^{t} B v+\left({ }^{t} B D\right)_{s}\right)+{ }^{t} v u\right),
\end{aligned}
$$

we have

$$
\begin{aligned}
& \vartheta_{u, v}(M Z ; A x-B y,-C x+D y) \\
& \quad=\chi(M) E(u, v, M)|C Z+D|^{1 / 2} \vartheta_{u_{M}, v_{M}}(Z ; x, y)
\end{aligned}
$$

where $\chi(M)$ is the 8 -th root of 1 depending only on M.
Let F be a positive real symmetric matrix of degree $m>0$. For U, V, X and $Y \in M_{m, n}(\boldsymbol{C})$, we set

$$
\theta_{F, U, V}(Z ; X, Y)=\sum_{G=V \bmod Z} z^{z}\left(\operatorname{tr}\left(Z F[G+Y]+2^{t} G(X+U)+{ }^{\iota} Y X\right),\right.
$$

where the summation is taken over all the matrices $G \in M_{m, n}(\boldsymbol{C})$ such that $G-V \in M_{n, n}(\mathbb{Z})$.

The idea of the proof of the next theorem is due to A. N. Andrianov and G.N. Maloletkin [1], whose idea is based on the interpretation of the theta series $\theta_{F, U, V}(Z ; X, Y)$ of degree n associated with positive quadratic forms F of degree m as specializations of the standard theta series $\vartheta_{u, v}(Z ; x, y)$ of degree $m n$.

For square matrices A and $B=\left(b_{i j}\right)$ respectively of degree m and n, we define a tensor product by

$$
A \otimes B=\left(\begin{array}{c}
B b_{11} \cdots \cdots \cdot A b_{1 n} \\
\cdots \cdots \cdots \cdots \cdots \\
A b_{n 1} \cdots \cdots A b_{n n}
\end{array}\right)
$$

Let F be a positive real symmetric matrix of degree m. We define three maps which we shall denote by the same sign ${ }^{\sim}$, in the following way:

$$
\begin{aligned}
& \sim: H_{n} \longrightarrow H_{m n} \text { defined by } Z \longrightarrow \tilde{Z}=F \otimes Z \\
& \sim: S p_{n}(\boldsymbol{R}) \longrightarrow S p_{m n}(\boldsymbol{R}) \text { defined by } M=\binom{A B}{C D} \longmapsto \tilde{M}=\binom{\tilde{A} \tilde{B}}{\tilde{C} \tilde{D}}=\left(\begin{array}{ll}
1_{m} \otimes A & F \otimes B \\
F^{-1} \otimes C & 1_{m} \otimes D
\end{array}\right) \\
& \sim: M_{m, n}(\boldsymbol{C}) \longrightarrow C^{m n} \text { defined by } X=\left(x_{1}, \cdots, x_{n}\right) \longmapsto \tilde{X}==^{\prime}\left(x_{1}, \cdots, x_{n}\right) .
\end{aligned}
$$

Then under the above notation we have $\tilde{M} \tilde{Z}=\widetilde{M Z},|\tilde{C} \tilde{Z}+\widetilde{D}|=|C Z+D|^{m}, \tilde{Z}[\tilde{G}]=$ $\operatorname{tr}(Z F[G]),{ }^{t} \tilde{A} \tilde{X}=\widetilde{X A},{ }^{t} \tilde{B} \tilde{X}=\overparen{F B X},{ }^{t} \tilde{G} \tilde{X}=\widehat{F^{-1} X C},{ }^{t} \tilde{D} \tilde{X}=\widetilde{X D},\left({ }^{(} \tilde{B} \widetilde{D}\right)_{4}=\overparen{F_{4}{ }^{t}(t B D)_{\Delta}},\left({ }^{t} \tilde{A} \tilde{C}\right)_{\Delta}$ $=(\overparen{F-1})_{d^{t}(t A C)_{\Delta}}$ and ${ }^{t} \tilde{Y} \tilde{X}=\operatorname{tr}\left({ }^{t} Y X\right)$. If both F and $N F^{-1}\left(N \epsilon Z_{+}\right)$are integral, then we have $\overparen{\Gamma_{0}(N)} \subset S p_{n}(\boldsymbol{Z})$. Moreover, if both F and $N F^{-1}$ are even, then $\overparen{\Gamma_{0}(N)}$ is contained in the theta group of degree $m n$.

We obtain $\theta_{F, U, V}(Z ; X, Y)=g_{\tilde{U}, \tilde{V}}(\tilde{Z} ; \tilde{X}, \tilde{Y})$, and hence by Lemma 1 we get the following

Theorem 1. Let F be a positive real symmetric matrix of degree $m>0$. Let $M=\binom{A B}{C D} \in S p_{n}(\boldsymbol{R})$ with $\tilde{M} \in S p_{m n}(\boldsymbol{Z})$. For $U, V \in M_{m, n}(\boldsymbol{C})$, set

$$
\begin{aligned}
& U_{M}=U D+F V B+\frac{1}{2} F_{\Delta}^{t}(t B D)_{\Lambda} . \quad V_{M}=F^{-1} U C+V A+\frac{1}{2}\left(F^{-1}\right)_{\Lambda^{t}(t}(t C)_{\Lambda} \text { and } \\
& E_{F}(U, V, M)=\varepsilon\left(\operatorname{tr}\left(-{ }^{t}\left(F^{-1} U C+V A\right)\left(U D+F V B+F_{\Delta}(t B D)_{\Delta}\right)+{ }^{t} V U\right) .\right.
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \theta_{F, U, V}\left(M Z ; X^{t} A-F Y^{t} B,-F^{-1} X^{\iota} C+Y^{\iota} D\right) \\
& \quad=\chi_{F}(M) E_{F}(U, V, M)|C Z+D|^{m / 2} \theta_{F, U} M_{M^{\prime}} V_{M}(Z ; X, Y)
\end{aligned}
$$

where $\chi_{F}(M)=\chi_{F}^{(n)}(M)$ is the 8 -th root of 1 depending only on n, F and M.
Suppose that $m=\operatorname{deg}(F)$ is $\geq n$. Let l be any integer such that $n \leq l \leq m$, and L any subset of $\{1, \cdots, m\}$ with l elements. Put $L=\left\{j_{1}, \cdots, j_{l}\right\}$ with $j_{1}<\cdots<j_{l}$. We denote by η_{L} the matrix in $M_{m, l}(Z)$ whose
(i) j-th row $=e_{i}$ if $j=j_{i} \in L$
(ii) j-th row $=0$ if $j \notin L$,
e_{i} being the i-th row of the identity matrix 1_{l} of degree l. Take a pair (η, ν) in $M_{l, n}(\boldsymbol{C}) \times \boldsymbol{Z}_{+}$which satisfies both of the conditions that (i) ${ }^{t} \eta \eta=0$ if $\nu>1$ and that (ii) $\nu=1$ if $l=n$. For $G \in M_{m, n}(\boldsymbol{C})$ we set $\phi(G)=\left|{ }^{t} G F^{1 / 2} \eta_{L} \eta\right|^{\nu}$. We define a theta series with Φ by setting

$$
\theta_{F, U, V}(Z ; \Phi ; X, Y)=\sum_{G \equiv V \bmod Z} \Phi(G) \varepsilon\left(\operatorname{tr}\left(Z F[G+Y]+2^{t} G(X+U)+{ }^{t} Y X\right)\right),
$$

the summation being taken over all the matrices $G \in M_{m, n}(\boldsymbol{C})$ such that G $V \in M_{m, n}(\mathbb{Z})$.

Let $\xi=\left(\xi_{i j}\right)$ be an $l \times n$ variable matrix and $\hat{\partial}=\left(\frac{\partial}{\partial \xi_{i j}}\right)$ the corresponding matrix of differential operators. We introduce the differential operator $\operatorname{det}^{\nu}\left({ }^{t} \eta \partial\right)$. In Lemma 3 of [1], the following equation is proved. For $P \in S M_{n}(\boldsymbol{C})$ and $Q \in M_{l, n}(\boldsymbol{C})$ and for $c \in \boldsymbol{C}$, we have

$$
\begin{aligned}
& \operatorname{det}^{\nu}\left({ }_{\eta} \eta \partial\right)\left(\operatorname{tr}\left(P^{t} \xi \xi+2^{t} Q \xi\right)+c\right) \\
& \quad=\left|2 \sqrt{-1} \pi\left(P^{t} \xi+{ }^{t} Q\right) \eta\right|^{\nu} \varepsilon\left(\operatorname{tr}\left(P^{t} \xi \xi+2^{t} Q \xi\right)+c\right) .
\end{aligned}
$$

Theorem 2. Suppose $n \leq m=\operatorname{deg}(F)$. Let l be any integer with $n \leq l \leq m$ and L a subset of $\{1, \cdots, m\}$ with l elements. Let $\eta \in M_{l, n}(\boldsymbol{C})$ and put $\Phi(G)=\left|{ }^{t} G F^{1 / 2} \eta_{L} \eta\right|^{\nu}$ $\left(\nu \in \boldsymbol{Z}_{+}\right)$for $G \in M_{m, n}(C)$. Then we have

$$
\begin{aligned}
& \theta_{F, U, V}\left(M Z ; \Phi ; X^{t} A-F Y^{t} B,-F^{-1} X^{t} C+Y^{\iota} D\right) \\
& \quad=\chi_{F}(M) E_{F}(U, V, M)|C Z+D|^{(m / 2))^{\nu}} \theta_{F, U_{M}, V_{M}}(Z ; \Phi ; X, Y),
\end{aligned}
$$

in either case that (i) $\nu>1, l>n$ and ${ }^{\prime} \eta \eta=0$, or that (ii) $\nu=1$ and $l \geq n$, where $M=\binom{A B}{C D}$ is as in Theorem 1 and X, Y are matrices in $M_{m, n}(C)$ such that ${ }^{t} X F^{-1 / 2} \eta_{L}={ }^{t} Y F^{1 / 2} \eta_{L}=0$.

Proof. Take an $m \times n$ matrix ξ^{\prime} such that entries of its i-th rows $(i \in L)$ are independent variables and its j-th rows $(j \neq L)$ are 0 . Then we have ${ }^{t} X F^{-1 / 2} \xi^{\prime}=$ ${ }{ }^{\imath} Y F^{1 / 2} \xi^{\prime}=0$. Setting $\xi==^{t} \eta_{L} \xi^{\prime}$ and substituting X for $F^{1 / 2} \xi^{\prime}+X$ in the formula of Theorem 1, we obtain

$$
\begin{aligned}
& \sum_{G \equiv V \bmod Z} \varepsilon\left(\operatorname { t r } \left(-(C Z+D)^{-1} C^{t} \xi \xi+2(C Z+D)^{-1 t} G F^{1 / 2} \eta_{L} \xi+M Z F\left[G-F^{-1} X^{t} C+Y^{t} D\right]\right.\right. \\
& \left.\left.\quad+2^{t} G\left(U+X^{t} A-F Y^{t} B\right)++^{t}\left(-F^{-1} X^{t} C+Y^{t} D\right)\left(X^{t} A-F Y^{t} B\right)\right)\right) \\
& =\chi_{F}(M) E_{F}|C Z+D|_{G=V_{M}^{m / 2} \bmod Z} \sum Z^{\operatorname{tr}\left(2^{t} G F^{1 / 2} \eta_{L} \xi+Z F[G+Y]+2^{t} G\left(U_{M}+X\right)+{ }^{t} Y X\right) .}
\end{aligned}
$$

Applying the differential operator $\operatorname{det}^{2}\left({ }^{(} \eta \partial\right)$ at $\xi=0$, we get the desired result.
In the similar way as in the proof of Theorem 2, we get the following corollary.

Let $k \in \boldsymbol{Z}_{+}$. Let $L_{i}(1 \leq i \leq k)$ be subsets of $\{1, \cdots, m\}$ with $l_{i}(\geq n)$ elements such that $L_{i} \cap L_{j}=\phi$ if $i \neq j$. For $i=1, \cdots, k$ take pairs $\left(\eta_{i}, \nu_{i}\right)$ in $M_{i_{i}, n}(\boldsymbol{C}) \times \boldsymbol{Z}_{+}$which satisfy both conditions that (i) ${ }^{t} \eta_{i} \eta_{i}=0$ if $\nu_{i}>0$ and that (ii) $\nu_{i}=1$ if $l_{i}=n$. For
$G \in M_{m, n}(\boldsymbol{C})$ we set $\Phi(G)=\left.\left.\left.\left.\right|^{t} G F^{1 / 2} \eta_{L_{1}} \eta_{1}\right|^{\nu} \ldots\right|^{\prime} G F^{1 / 2} \eta_{L_{k}} \eta_{k}\right|^{\nu / k}$. We define a theta series with Φ by

$$
O_{F^{\prime}, U, V}(Z ; \Phi ; X, Y)=\sum_{G \equiv V \bmod Z} \Phi(G) \varepsilon\left(\operatorname{tr}\left(Z F[G+Y]+2^{t} G(X+U)+{ }^{t} Y X\right)\right)
$$

for U, V, X and $Y \in M_{m, n}(\boldsymbol{C})$.
Corollary. Let $L_{i}, \eta_{i}, \nu_{i}(1 \leq i \leq k)$ and Φ be stated as above. Then we have

$$
\begin{aligned}
& \theta_{F, U, V}\left(M Z ; \Phi ; X^{t} A-F Y^{t} B,-F^{-1} X^{t} C+Y^{t} D\right) \\
& \quad=\chi_{F}(M) E_{F}(U, V, M)|C Z+D|^{(m / 2)+\Sigma^{v}} \theta_{F, U_{M}, V}(Z ; \Phi ; X, Y)
\end{aligned}
$$

where $M=\binom{A B}{C D}$ is as in Theorem 1 and X, Y are matrices in $M_{m, n}(C)$ such that ${ }^{t} X F^{-1 / 2} \eta_{L_{i}}={ }^{t} Y F^{1 / 2} \eta_{L_{i}}=0$ for $i=1, \cdots, k$.

2. Computation of χ_{F} I

We shall compute χ_{F} (cf. Theorem 1) in the following four cases (up to ± 1 when $\operatorname{deg}(F)$ is odd). Let F be a positive integral symmetric matrix of degree $m>0$. Let N be a positive integer such that $N F^{-1}$ is integral.
(1) $M \in \Theta_{0}(N)$.
(2) F is even. $M \in \Gamma_{0}(2 N)$, or $M \in \Theta_{0}(N)$, or $M \in \Theta_{1}(N)$ for an even N.
(3) $N F^{-1}$ is even. $M \in \Gamma_{0}(2, N)$, or $M \in \Theta_{0}(N)$, or $M \in \Theta_{2}(N)$ for an even N.
(4) Both F and $N F^{-1}$ are even. $M \in \Gamma_{0}(N)$.

First we must generalize Lemma 5 in [1]. We put

$$
P_{U}=\left(\begin{array}{cc}
t U^{-1} & \\
& U
\end{array}\right), \quad Q_{S}=\left(\begin{array}{cc}
1_{n} & S \\
0 & 1_{n}
\end{array}\right), \quad R_{S}=\left(\begin{array}{cc}
1_{n} & 0 \\
S & 1_{n}
\end{array}\right)
$$

with $U \in S L_{n}(\boldsymbol{Z})$ and $S \in S M_{n}(\boldsymbol{Z})$.
Lemma 2. Let K be the group generated by the elements of $\Gamma_{0}\left(N_{1}, N_{2}\right)$ (resp. $\Theta_{0}(N)$, resp. $\Theta_{1}(N)$, resp. $\Theta_{2}(N)$) of the form P_{U}, Q_{S} and R_{S}. Then for any $M=\binom{A B}{C D} \in \Gamma_{0}\left(N_{1}, N_{2}\right)\left(r e s p . \Theta_{0}(N), \Theta_{1}(N), \Theta_{2}(N)\right)$, there exist matrices M_{1} and $M_{2} \in K$ such that

$$
M_{1} M M_{2}=\left(\begin{array}{ccc|ccc}
a & & b & & \\
& 1 & 0 & & 0 & 0 \\
& \ddots & \ddots & \ddots & \ddots \\
0 & 1 & 0 & 0 \\
\hline c & & 0 & d & & \\
& 0 & 0 & 1 & 0 \\
& 0 & 0 & & 0 & 1
\end{array}\right)
$$

Moreover $|D| \equiv d \bmod N_{1} N_{2}(r e s p . \bmod N)$.

Proof. We treat only the case of $\theta_{0}(N)$. Then K is generated by P_{b}, Q_{S} and R_{T} with $U \in S L_{n}(\mathscr{Z})$, even $S \in S M_{n}(\mathbb{Z})$ and $T \in S M_{n}(N \mathscr{Z})$ such that $\frac{1}{N} T$ is even.

We shall prove the assertion by induction on n. When $n=1$, the assertion is trivial. Let us suppose $n>1$. By the elementary divisor theorem there exist $U, V \in S L_{n}(\mathbb{Z})$ such that $U D V$ is diagonal. Hence we may assume $D=\operatorname{diag}\left(d_{1}, \cdots, d_{n}\right)$.

Step I. We may assume $d_{n}=1$.
Putting $C=\left(c_{i j}\right)$ we have g.c.d $\left(c_{n 1}, \cdots, c_{n n}, d_{n}\right)=1$. First we assume that d_{n} is an odd integer. There are even integers s_{1}, \cdots, s_{n} such that $s_{1} c_{n 1}+\cdots+s_{n} c_{n n}=2$ g.c.d $\left(c_{n 1}, \cdots, c_{n n}\right)$. Let us put

$$
S=\left(\begin{array}{ccc}
& s_{1} & \\
0 & \vdots & 0 \\
s_{1} \cdots \cdots s_{n-1} & s_{n} \\
0 & s_{n} & 0
\end{array}\right), \quad M Q_{s}=\binom{A^{\prime} B^{\prime}}{C^{\prime} D^{\prime}} \text { and } D^{\prime}=\left(d_{i j}^{\prime}\right)
$$

Then we have $d_{n, n-1}^{\prime}=2$ g.c. $d\left(c_{n 1}, \cdots, c_{n n}\right)$ and $d_{n n}^{\prime}=d_{n}+c_{n, n-1} s_{n}$, and hence g.c.d $\left(d_{n, n-1}^{\prime}, d_{n n}^{\prime}\right)=1$. Now again by the elementary divisor theorem we may assume that D^{\prime} is of the form $D^{\prime}=\operatorname{diag}\left(d_{1}{ }^{\prime}, \cdots, d_{n}^{\prime}, 1\right)$. Secondly we assume that d_{n} is an even integer. Then for some $i, c_{n i}$ is an odd integer. Take an integer j different from i with $1 \leq j \leq n$. There are integers $s_{1}, \cdots, s_{j-1}, s_{j+1}, \cdots, s_{n}$ and an even integer s_{j} such that $s_{1} c_{n 1}+\cdots+s_{n} c_{n n}=g . c . d\left(c_{n 1}, \cdots, c_{n n}\right)$. Let us put

$$
S=\left(\begin{array}{ccc}
& s_{1} & \\
0 & \vdots & 0 \\
s_{1} \cdots \cdots \cdot s_{j} & \cdots \cdots \cdot s_{n} \\
0 & \vdots & 0
\end{array}\right), \quad M Q_{S}=\binom{A^{\prime} B^{\prime}}{C^{\prime} D^{\prime}} \text { and } D^{\prime}=\left(d_{i j}^{\prime}\right)
$$

Then we have $d_{n j}^{\prime}=g . c . d\left(c_{n 1}, \cdots, c_{n n}\right), d_{n n}^{\prime}=d_{n}+c_{n j} s_{n}$ and hence $g . c . d\left(d_{n j}^{\prime}, d_{n n}^{\prime}\right)=1$. Again by the elementary divisor theorem we may assume that D^{\prime} is of the form $D^{\prime}=\operatorname{diag}\left(d_{1}^{\prime}, \cdots, d_{n-1}^{\prime}, 1\right)$.

Step II. The assertion is true.
Let us put $Q_{S} M R_{T}=\binom{A^{\prime} B^{\prime}}{C^{\prime} D^{\prime}}$. Then since $D=\operatorname{diag}\left(d_{1}, \cdots, d_{n-1}, 1\right)$, we can now select Q_{S} and R_{T} such that the last row of C and the last column of B are zero. The symplectic condition yields that A^{\prime}, B^{\prime} and C^{\prime} have the form

$$
A^{\prime}=\left(\begin{array}{ll}
A_{1} & 0 \\
0 & 1
\end{array}\right), \quad B^{\prime}=\left(\begin{array}{ll}
B_{1} & 0 \\
0 & 0
\end{array}\right), \quad C^{\prime}=\left(\begin{array}{ll}
C_{1} & 0 \\
0 & 0
\end{array}\right) .
$$

By the induction hypothesis this proves the lemma.

In the case of $\Gamma_{0}\left(N_{1}, N_{2}\right), \Theta_{1}(N)$ and $\Theta_{2}(N)$ the similar proof is applivable.
Applying Theorem 1 to the case (1), (2), (3) and (4) with $U=V=X=Y=0$, we have

$$
\theta_{F, 0,0}(M Z)=\chi_{F}^{(n)}(M)|C Z+D|^{m / 2} \theta_{F, 0,0}(Z) .
$$

Hence $\chi_{F}^{(n)}$ is a character if m is even. Let us denote by $\chi_{F}^{(n)}\{\{ \pm 1\}$ the composition map of $\chi_{F}^{(n)}$ and the quatient map: $\mathbb{C}^{*} \longrightarrow \mathbb{C}^{*} /\{ \pm 1\} . \quad \chi_{F}^{(n)}\{\{ \pm 1\}$ is a homomorphism whether m is even or odd. As we shall see in the next section, $\chi_{F}^{(m)}$ (resp. $\chi_{F}^{(n)} /\{ \pm 1\}$) is trivial on K (see Lemma 2 for the notation) if m is even (resp. odd).

Assume that $M=\binom{A B}{C D}$ satisfies at least one of the four conditions (1), (2), (3) and (4), and $\binom{a b}{c d}$ is the matrix in $S L_{2}(\boldsymbol{Z})$ corresponding to M in Lemma 2. Then using Siegel's Φ-operator we obtain

$$
\chi_{F}^{(n)}(M)=\chi_{F}^{(1)}\binom{a b}{c d}=\operatorname{sgn}(d)^{m / 2}\left(\frac{(-1)^{m / 2}|F|}{d}\right) \text { if } m \text { is even, }
$$

and

$$
\chi_{F}^{(n)}(M)= \pm \varepsilon\left(\frac{d-1}{4}\right) \text { if } m \text { is odd. }
$$

(see also Appendix).
Through easy calculation we get the following
Theorem 3. Let F be a positive integral symmetric matrix of degree m, and N a positive integer such that $N F^{-1}$ is integral. Put $|F|=2^{s} K$ with g.c.d $(2, K)=1$.
(1) In any one of the following four cases, we have for any even positive integer m

$$
\chi_{F}^{(n)}(M)=\operatorname{sgn}(|D|)^{m / 2}\left(\frac{(-1)^{m / 2}|F|}{a b s(D)}\right) .
$$

(1) $8 \mid N$ and $M \in \Theta_{0}(N), 4 \mid N$ and $M \epsilon \Theta_{0}(2 N), 2 \mid N$ and $M \in \Gamma_{0}(2,2 N), 2 \mid$ s and $4 \mid N$ and $M \in \Theta_{0}(N), 2 \mid s$ and $2 \mid N$ and $M \in \Theta_{0}(2 N)$, or $2 \mid s$ and $M \in \Gamma_{0}(2,2 N)$,
(2) (F is even.) $8 \mid N$ and $M \in \Theta_{1}(N), 4 \mid N$ and $M \in \Theta_{0}(2 N), 2 \mid s$ and $4 \mid N$ and $M \in \Theta_{1}(N)$, $2 \mid s$ and $2 \mid N$ and $M \in \Theta_{1}(2 N)$, or $M \in \Gamma_{0}(2 N)$,
(3) ($N F^{-1}$ is even.) $8 \mid N$ and $M \in \Theta_{2}(N), 2 \mid s$ and $4 \mid N$ and $M \in \Theta_{2}(N)$, or $M \in \Gamma_{0}(2, N)$
(4) (Both F and $N F^{-1}$ are even.) $M \in \Gamma_{0}(N)$ with $N>1$.

In case (4) with $N=1$ we have $\chi_{F}^{(n)}(M)=1$ for all M.
(2) In any one of the following four cases, we have for any odd integer m

$$
\chi_{F}^{(n)}(M)= \pm \varepsilon\left(\frac{d-1}{4}\right) .
$$

(1) $4 \mid N$ and $M \in \Theta_{0}(N), 2 \mid N$ and $M \in \Theta_{0}(2 N)$, or $M \in \Gamma_{0}(2,2 N)$,
(2) $4 \mid N$ and $M \in \Theta_{1}(N)$, or $2 \mid N$ and $M \in \Theta_{1}(2 N)$,
(3) $4 \mid N$ and $M \epsilon \Theta_{2}(N)$, or $2 \mid N$ and $M \in \Gamma_{0}(2, N)$,
(4) $M \in \Gamma_{0}(N)$.

Remark. For even m the case (4) with $N=1$ is investigated in [11].
Corollary. Let F and N be as in Theorem 3. Then we have

$$
\begin{aligned}
& \chi_{F}^{(n)}(M)=\operatorname{sgn}(|D|)^{m / 2}\left(\frac{(-1)^{m / 2}|F|}{a b s(D)}\right) \text { if } m=\operatorname{deg}(F) \text { is even, } \\
& \chi_{F}^{(n)}(M)= \pm \varepsilon\left(\frac{|D|-1}{4}\right) \text { if } m \text { is odd, }
\end{aligned}
$$

in the following four cases (1) $M \in \Gamma_{0}(2,2 N)$, (2) (F is even.) $M \in \Gamma_{0}(2 N)$, (3) ($N F^{-1}$ is even.) $M \in \Gamma_{0}(2, N)$ and (4) (Both F and $N F^{-1}$ are even.) $M \in \Gamma_{0}(N)$.

3. Computation of χ_{F} II

Lemma 3. (The inversion formula) Let F be a positive real symmetric matrix of degree m. Then for U, V, X and $Y \in M_{m, n}(\mathbb{C})$ we have

$$
\theta_{F, U, V}(Z ; X, Y)=|F|^{-n / 2}|-\sqrt{-1} Z|^{-m / 2} \theta_{F-1, V, U}\left(-Z^{-1} ; Y,-X\right),
$$

where $|-\sqrt{-1} Z|^{1 / 2}$ is determined to be positive for purely imaginary Z in H_{n}.
Proof. We have the inversion formula for the standard theta series

$$
\vartheta_{u, v}(Z ; x, y)=|-\sqrt{-1} Z|^{-1 / 2} \vartheta_{v, u}\left(-Z^{-1} ; y,-x\right),
$$

where $|-\sqrt{-1} Z|^{-1 / 2}$ is positive for purely imaginary $Z \in H_{n}$. From this we get the inversion formula for θ_{F} in the same argument as in the proof of Theorem 1.

Corollary. Let F be as in Lemma 3. Assume that there is a positive real number h such that $h F$ is integral. Put $G=M_{m, n}(\mathbb{Z})$. Then we have

$$
\begin{aligned}
& \theta_{F, U, V}\left(-Z^{-1} ; X, Y\right) \\
& =|F|^{-n / 2}|-\sqrt{-1} Z|_{H: h^{-1} / 2} \sum_{1 F^{-1 G / G}} \theta_{h^{2} F, h F V,-h-1 F-1 U+H}\left(Z ; h F Y ;-h^{-1} F^{-1} X\right),
\end{aligned}
$$

where $|-\sqrt{-1} Z|^{1 / 2}$ is positive for purely imaginary Z in H_{n}.
Hereafter we assume that F and $M=\binom{A B}{C D}$ satisfy the condition (1), (2), (3) or (4) with $N>1$. Let $H \in F^{-1} G$. We have the following two formulas:
(*) $\left\{\begin{array}{l}\theta_{F, 0, H}\left(-Z^{-1}\right)=|F|^{-1 / 2}|-\sqrt{-1} Z|_{K: F^{-1 G / G}}^{m / 2} \sum_{K}\left(\operatorname{tr}\left(2^{t} H F K\right)\right) \theta_{F, 0, K}(Z) \text {, }, ~\end{array}\right.$

$$
\quad \theta_{F, 0, H}(Z)=\sum_{K:(d F)^{-}-G / G / G, K t D \equiv \bmod G} \theta_{d F, 0, K}\left(\frac{1}{d} Z[D]\right)
$$

for $D \in M_{n, n}(\mathbb{Z})$ such that $|D| \neq 0$ and for $d \in \boldsymbol{Z}_{+}$such that $d D^{-1}$ is integral.
Let us put $M^{\prime}=\left(\begin{array}{ll}-B & A \\ -D & C\end{array}\right)=M\left(\begin{array}{cc}1 \\ -1 & 1\end{array}\right) \epsilon S \boldsymbol{p}_{n}(\boldsymbol{Z})$. Let d be a positive integer such that $d D^{-1}$ is integral. Then we have

$$
\begin{aligned}
& \theta_{F, 0,0}\left(M^{\prime} Z\right)=\sum_{G: G L^{-1 / G}} \theta_{d F, 0, a}\left(\frac{1}{d} M^{\prime} Z[D]\right) \quad \text { (by the second formula of (*)) } \\
& =\sum_{G: G t D-1 / G} \theta_{d F, 0, a}\left(\frac{1}{d}{ }^{\iota} B D-\left(d Z-d D^{-i} C\right)^{-1}\right) \\
& =\sum_{G: G \bar{D}^{-1} / G} \varepsilon\left(\operatorname{tr}\left({ }^{t} B D^{t} G F G\right)\right) \theta_{d F, 0, G}\left(-\left(d Z-d D^{-1} C\right)^{-1}\right) \\
& =\sum_{G: G D_{D}^{-1 / G}} \varepsilon\left(\operatorname{tr}\left({ }^{t} B D^{t} G F G\right)|d F|^{-n / 2}\left|-\sqrt{-1}\left(d Z-d D^{-1} C\right)\right|^{m / 2}\right. \\
& \times \sum_{K:\left(A F^{-1}=\rightarrow / G\right.} \varepsilon\left(\operatorname{tr}\left(2 d^{t} G F K\right)\right) \theta_{d F, 0, K}\left(d Z-d D^{-1} C\right) \\
& \text { (by the first formula of (*)) } \\
& =|d F|^{-n / 2}\left|-\sqrt{-1}\left(d Z-d D^{-1} C\right)\right|^{m / 2} \\
& \left.\left.\times \sum_{a:\left(A D D-1 / G \quad K:(d F)^{-1 G / G}\right.} \sum \varepsilon \operatorname{tr}^{t} B D^{t} G F G+2 d^{t} G F K-d^{2} D^{-1} C^{t} K F K\right)\right) \theta_{d F, 0, K}(d Z)
\end{aligned}
$$

Now

$$
\begin{aligned}
& \quad \sum_{G: G D^{-1 / G}} \varepsilon\left(\operatorname{tr}\left({ }^{(} B D^{t} G F G+2 d^{t} G F K-d^{2} D^{-1} C^{t} K F K\right)\right) \\
& =\sum_{G: G^{t} D^{-1} / G} \varepsilon\left(\operatorname{tr}\left({ }^{t} B D^{t}\left(G-d K D^{-3} C\right) F\left(G-d K D^{-1} C\right)+2 d^{t} A D^{t} G F K-d^{2 t} A C^{t} K F K\right)\right) \\
& =\sum_{A: G \sum_{D}^{-1} / G} \varepsilon\left(\operatorname{tr}\left({ }^{t} B D^{t} G F K\right)\right) .
\end{aligned}
$$

Using the second formula of (*) for $D=d 1_{n}$, we get

$$
\begin{aligned}
& \theta_{F, 0,0}\left(M^{\prime} Z\right) \\
& \quad=|d F|^{-n / 2}\left|-\sqrt{-1}\left(d Z-d D^{-1} C\right)\right|^{m / 2} \sum_{a: G L^{-1}-1 / G}\left(\operatorname{tr}\left({ }^{t} B D^{t} G F G\right)\right) \sum_{K: F^{\prime}=1 G / G} \theta_{F, 0, K}(Z) .
\end{aligned}
$$

Substituting $-Z^{-1}$ for Z and using the first formula of (*), we get

$$
\begin{aligned}
& \theta_{F, 0,0}(M Z) \\
& =|d F|^{-n / 2}\left|\sqrt{-1} d D^{-1}(C Z+D) Z^{-1}\right|^{m / 2} \sum_{G: G t D-1 / G} \varepsilon\left(\operatorname{tr}\left({ }^{t} B D^{t} G F G\right)\right) \\
& \quad \times \sum_{K: F^{-1 G / G}}|F|^{-n / 2}|-\sqrt{-1} Z|^{m / 2} \sum_{L: F^{-1} G / G} \varepsilon\left(\operatorname{tr}\left(2^{t} L F K\right)\right) \theta_{F, 0, L}(Z) .
\end{aligned}
$$

Observing that

$$
\sum_{K: F^{-1} G / G} \varepsilon\left(\operatorname{tr}\left(2^{t} L F K\right)\right)= \begin{cases}0 & \text { if } L \neq 0 \bmod G \\ |F|^{n} & \text { if } L \equiv 0 \bmod G,\end{cases}
$$

we obtain

$$
\begin{aligned}
& \theta_{i^{\prime}, 0,0}(M Z) \\
& \left.\quad=|-\sqrt{-1} Z|^{m / 2}\left|\sqrt{-1} D^{-1}(C Z+D) Z^{-1}\right|^{m / 2} \sum_{G: G G^{\prime}-1 / G} \varepsilon^{\varepsilon}\left(\operatorname{tr}^{(t} B D^{t} G F G\right)\right) \theta_{F, 0,0}(Z) .
\end{aligned}
$$

The above computation is well known for $n=1$. (cf. [4], [7], [8] the section 2). Thus we obtain;

Lemma 4. Let $\left|\sqrt{ }-1 \times+1_{n}\right|^{1 / 2}$ be a functiou on $\operatorname{SM}_{n}(\boldsymbol{R})$ which is the branch taking the value 1 at $X=0$. Suppose that F and $M=\binom{A B}{C D}$ satisfy one of the four conditions (1), (2), (3) and (4) with $N>1$. Let us denote by $\varepsilon(C, D)$ the complex number given by

$$
\varepsilon(C, D) a b s(D)^{-1 / 2}|\sqrt{-1} C+D|^{1 / 2}=\left|\sqrt{-1} D^{-1} C+1_{n}\right|^{1 / 2}
$$

Then we have

$$
\chi_{F}^{(n)}(M)=\varepsilon(C, D)^{m} a b s(D)^{-m / 2} \sum_{G: G D^{-1 / G}} \varepsilon\left(\operatorname{tr}\left({ }^{(} B D^{\iota} G F G\right)\right) .
$$

Corollary. If M is in the form of P_{U}, Q_{S} or $R_{S}(c f . \S 2)$, then we have

$$
\begin{aligned}
& \chi_{F}^{(n)}(M)=1 \text { if } m \text { is even } \\
& \chi_{F}^{(n)}(M)= \pm 1 \text { if } m \text { is odd. }
\end{aligned}
$$

4. Constructions of cusp forms

Let $k \in \frac{1}{2} Z_{+}$and let χ be a map of Γ^{\prime} to C^{*}. We denote by $\left[\Gamma^{\prime}, k, \chi\right]$ (resp. $\left[\Gamma^{\prime}, k\right]$) the space of cusp forms of weight k for Γ^{\prime} with a multiplier χ (resp. a trivial multiplier).

We apply a differential operator $\operatorname{det}^{\nu}\left({ }^{t} \eta \partial\right)$ to the formula in Corollary to Lemma 3. Then we get

$$
\begin{aligned}
\theta_{F, U, V}(& \left.-Z^{-1} ; X, Y\right) \\
= & (\sqrt{-1})^{m n / 2} h^{n \nu}|F|^{-n / 2}|-Z|^{(m / 2)+\nu} \\
& \quad \times \sum_{H: h^{-}-1^{-1}-1 G / G} \theta_{h^{2 F}, h F V,-h-1 F-1 \sigma+H}\left(Z ; \Phi ; h F Y,-h^{-1} F^{-1} X\right),
\end{aligned}
$$

where Φ and ν are as in Theorem 2. Any $M \in \Gamma$ can be written in the form of
a product of P_{U}, Q_{S} and $\binom{1_{n}}{-1_{n}}$ with $U \in G L_{n}(\boldsymbol{Z})$ and $S \in S M_{n}(\boldsymbol{Z})$ (cf. $\S 2$ for the notation). Hence in the Fourier expansion

$$
|C Z+D|^{-(m / 2)-\nu} \theta_{F, U, V}(M Z ; \Phi ; X, Y)=\sum_{S \geq 0} a(S) \varepsilon(\operatorname{tr}(Z S)) \text { for all } M \in \Gamma \text {, }
$$

the coefficient $a(S)$ vanishes for S with $|S|=0$, since $\Phi(G)$ vanishes if rank ($\left.{ }^{t} G F G\right)$ $<n$. Thus $\theta_{F, U, V}(Z ; \Phi)$ will be a cusp form so long as it is a modular form.

(1) Cusp forms of weight $\frac{n}{2}+1$

Proposition 1. a) We have

$$
\operatorname{dim}\left[\Gamma(2), \frac{n}{2}+1, \chi\right]>0
$$

with $\chi(M)=\chi_{1_{n}}(M) \varepsilon\left(\operatorname{tr}\left(\frac{1}{2} B+\frac{1}{2}\left(D-1_{n}\right)-\frac{1}{4} C^{t} D-\frac{1}{4} B^{t} A\right)\right)$. Especialy we have

$$
\operatorname{dim}\left[\Gamma(4,8), \frac{n}{2}+1, \chi_{1_{n}}\right]>0
$$

b) Let F be a positive even symmetric matrix and N a positive integer such that $N F^{-1}$ is even. Then we have

$$
\operatorname{dim}\left[\Gamma(h N), \frac{n}{2}+1, \chi_{h F}\right]>0 \text { for } h \geq 3
$$

and

$$
\operatorname{dim}\left[\Gamma(2 N), \frac{n}{2}+1, \chi\right]>0
$$

with $\chi(M)=\chi_{F}(M) \varepsilon\left(\operatorname{tr}\left(\frac{1}{2}\left(D-1_{n}\right)-\frac{1}{4} F^{-1} C^{t} D-\frac{1}{4} F A^{t} B\right)\right)$.
c) If N is divisible by a square of some odd prime, then we have

$$
\operatorname{dim}\left[\Gamma(N), \frac{n}{2}+1, \chi_{F}\right]>0
$$

Proof. a) We apply Theorem 2 with $n=l=m, F=1_{n}, \Phi(G)=|G|, X=Y=0$, $U=V=\frac{1}{2} 1_{n}$ and $M=\binom{A B}{C D} \in \Gamma(2)$. Then we have

$$
\theta_{1_{n},(1,2) 1_{n},(1 / 2) 1_{n}}(M Z ; \Phi)=\chi(M)|C Z+D|^{(n / 2)+1} \theta_{1_{n},(1 / 2) 1_{n},(1 / 2) 1_{n}}(Z ; \Phi)
$$

with $\chi(M)=\chi_{1_{n}}(M) \varepsilon\left(\operatorname{tr}\left(\frac{1}{2} B+\frac{1}{2}\left(D-1_{n}\right)-\frac{1}{4} C^{t} D-\frac{1}{4} B^{t} A\right)\right)$. Hence
$\theta_{1_{n},(1 / 2) 1_{n},(1,2) 1_{n}}(Z ; \Phi)$ is a cusp form for $\Gamma(2)$ with a multiplier χ.

Let us denote its Fourier expansion by $\sum_{S=0} a(S) \varepsilon(\operatorname{tr}(Z S)) . \quad a(S)$ is given by $a(S)=\varepsilon\left(\frac{n}{2}\right)_{G \equiv(1 / 2) 1_{n} \bmod Z, t G G=S} \sum_{\varepsilon}(\operatorname{tr}(G))|G|$. We must show that $\theta_{1_{n},(1 / 2) 1_{n},(1 / 2) 1_{n}}(Z ; \Phi)$ is a non-zero function. To do this, it sufficies to show that there is $S>0$ such that $a(S) \neq 0$. The Fourier coefficient for $\frac{1}{4} 1_{n}$ is

$$
\begin{aligned}
a\left(\frac{1}{4} 1_{n}\right) & =\varepsilon\left(\frac{n}{2}\right)_{G=(1 / 2) 1_{n}} \sum_{\bmod Z, t G G=(1 / 4) 1_{n}} \varepsilon(\operatorname{tr}(G))|G| \\
& =2^{-n} \varepsilon\left(\frac{n}{2}\right)_{G \equiv 1_{n} \bmod 2 Z, t G G=1_{n}} \varepsilon\left(\operatorname{tr}\left(\frac{1}{2} G\right)\right)|G| .
\end{aligned}
$$

Since $G \equiv 1_{n} \bmod 2 \mathscr{Z}$, we have $|G|=\left|\left(g_{i j}\right)\right| \equiv g_{11} \cdots g_{n n} \bmod 4$. If $n \equiv 0 \bmod 4$, then we have $g_{11} \cdots g_{n n}=1$ or -1 according as $\operatorname{tr}(G) \equiv 0$ or $2 \bmod 4$; hence $\varepsilon\left(-\frac{n}{2}\right) a\left(\frac{1}{4} 1_{n}\right)$ >0. Similarly we have $\varepsilon\left(-\frac{n}{2}\right) a\left(\frac{1}{4} 1_{n}\right)<0$ if $n \equiv 2 \bmod 4, \sqrt{-1} \varepsilon\left(-\frac{n}{2}\right) a\left(\frac{1}{4} 1_{n}\right)$ <0 if $n \equiv 1 \bmod 4$ and $\sqrt{-1} \varepsilon\left(-\frac{n}{2}\right) a\left(\frac{1}{4} 1_{n}\right)>0$ if $n \equiv 3 \bmod 4$.
b) Let F and N be as in the proposition. Let us put $\Phi(G)=|G|$. It is shown in [5] that for an integer $h \geq 3, \theta_{h F, 0,(1, h) 1_{n}}(Z ; \Phi)$ is a non-zero cusp form of weight $\frac{n}{2}+1$ for $\Gamma(h N)$ with a multiplier $\chi_{h F}$. It remains to show that $\theta_{F,(1,2) 1_{n},(1 / 2) 1_{n}}(Z ; \Phi)$ is a non-zero cusp form for $\Gamma(2 N)$ with a multiplier $\chi(M)=\chi_{F}(M) \varepsilon\left(\operatorname{tr}\left(\frac{1}{2}\left(D-1_{n}\right)\right.\right.$ $\left.-\frac{1}{4} F^{-1} C^{t} D-\frac{1}{4} A^{t} B\right)$). By Theorem 2 we have a formula for $M=\binom{A B}{C D} \in \Gamma(2 N)$.

$$
\theta_{F,(1 / 2) 1_{n},(1 / 2) 1_{n}}(M Z ; \Phi)=\chi(M)|C Z+D|^{(n / 2)+1} \theta_{F,(1 / 2) 1_{n},(1 / 2) 1_{n}}(Z ; \Phi) .
$$

If $\sum_{S=0} a(S) \varepsilon(\operatorname{tr}(Z S))$ is its Fourier expansion, then we have

$$
\begin{aligned}
a\left(\frac{1}{4} F\right) & =\varepsilon\left(\frac{n}{2}\right)_{G \equiv(1 / 2) 1_{n} \bmod Z, t_{G F G=(1 / 4) F}} \varepsilon(\operatorname{tr}(G))|G| \\
& =2^{-n} \varepsilon\left(\frac{n}{2}\right)_{G \equiv 1_{n}} \sum_{\bmod 2 Z, t_{G F G=F}} \varepsilon\left(\operatorname{tr}\left(\frac{1}{2} G\right)\right)|G| .
\end{aligned}
$$

Using the same argument as in a), we get $a\left(\frac{1}{4} F\right) \neq 0$. Thus we get the desired result.
c) For an odd prime $h>1$ with $h^{2} \mid N$, it is easily checked that $\theta_{F, 0,(1, h) 1_{n}}(Z ; \Phi)$ is in $\left[\Gamma(N), \frac{n}{2}+1, \chi_{F}\right]$. If $a\left(\frac{1}{h^{2}} 1_{n}\right)$ is the Fourier coefficient for $\frac{1}{h^{2}} 1_{n}$, then we
have

$$
\begin{aligned}
a\left(\frac{1}{h^{2}} 1_{n}\right) & =\sum_{G=(1 / h) 1_{n}, \bmod \&, t_{G F G=(1 / h 2) F}|G|}|G| \\
& =h_{G \equiv 1_{n} \bmod n z, t_{G F G=F} \mid}|C|>0 .
\end{aligned}
$$

Hence $\theta_{F, 0,(1 / h) 1_{n}}(Z ; \mathscr{D})$ is a non-zero cusp form.

(2) Cusp forms of weight $\geq n$

Let F be a positive real symmetric matrix of degree $m>0$. Let V be an $m \times n$ matrix with entries in Q, and h the least common multiple of the denominators of the entries of V. Suppose that there exists a prime p with $p \mid h$ such that $\overline{h V} \in M_{m, n}(\boldsymbol{Z} \mid p \boldsymbol{Z})$ is of rank n, where $\bar{h} \bar{V}$ denotes the reduction of $h V \bmod p$. Then for all $G \in M_{m, n}(\mathbb{Q})$ with $G \equiv V \bmod \mathscr{Z}, F[G]$ is a nonsingular matrix; hence in the Fourier expansion $\theta_{F, U, v}(Z)=\sum_{S \geq 0} a(S) \varepsilon(\operatorname{tr}(Z S))\left(U \in M_{m, n}(\boldsymbol{R})\right), a(S)$ vanishes for S with $|S|=0$.
(i) Let F be a positive even symmetric matrix of degree $m \geq 2 n$. Let N be a positive integer such that $N F^{-1}$ is even. For $U, V \in M_{m, n}(\mathbb{Q})$ and $M=\binom{A B}{C D} \epsilon$ $I_{0}(N)$, we have $(U, F V)\binom{D C}{B A}=\left(U_{M}, F V_{M}\right) \bmod Z$. Let p be a prime with (p, N) $=1$ (hence $(p,|F|)=1)$ and take $U, V \in M_{m, n}\left(\frac{1}{p} Z\right)$ so that $\overline{p(U, F V) \in M_{m, n}(\boldsymbol{Z} \mid p \boldsymbol{Z}) \text { is }}$ of rank $2 n$. Then $\overline{p\left(U_{M}, V_{M}\right)}$ is also of rank $2 n$ for all $M \in \Gamma_{0}(N)$. Using the notation in Corollary to Lemma 3, we have $(U, F V)\binom{1_{n}}{-1_{n}} \equiv\left(F V, F\left(-F^{-1} U+H\right)\right)$ $\equiv(F V,-U) \bmod \mathbb{Z}$; hence $\overline{(U, F V)\left(1_{-1 n}\right)}$ is also of rank $2 n$. Since $\Gamma_{0}(N)$ and $\left({ }_{-1_{n}}{ }^{1 n}\right)$ generate Γ, in the Fourier expansion

$$
|C Z+D|^{-m / 2} \theta_{F, U, V}(M Z)=\sum_{S \geq 0} a(S) \varepsilon(\operatorname{tr}(Z S)) \text { for all } M=\binom{A B}{C D} \in \Gamma
$$

$a(S)$ vanishes for S with $|S|=0$. For $M \in \Gamma^{\prime}(p N)$ we have $U_{M} \equiv U, V_{M} \equiv V \bmod \mathbb{Z}$ and hence $\theta_{F, U, V}(Z) \in\left[\Gamma(p N), \frac{m}{2}, \chi\right]$ for some multiplier χ.
(ii) For $F=1_{m}$ we get $2(U, V)\binom{D C}{B A} \equiv 2\left(U_{M}, V_{M}\right) \bmod \mathcal{Z}$ for $U, V \in M_{m, n}(\boldsymbol{R})$ and $M=\binom{A B}{C D} \in \Gamma$. Hence for an odd prime p if we take $U, V \in M_{m n}\left(\frac{1}{p} Z\right)$ so
 some χ.
(iii) Suppose $m \geq 2 n+1$ and set $F=1_{m}$. Take $T \in M_{m, 2 n}\left(\frac{1}{2} Z\right)$ so that $\overline{2\left(T+\frac{1}{2}\binom{0}{t_{u}}\right)} \in M_{m, 2 n}(\boldsymbol{Z} / 2 \boldsymbol{Z})$ is of rank $2 n$ for any $u \in \boldsymbol{Z}^{2 n}$. Then for any M in $G L_{2 n}(\mathbb{Z}), T M$ also has this property. Set

$$
W=\left(\begin{array}{rr}
1 & -1 \\
\ddots & -1 \\
& 1-1 \\
& 1
\end{array}\right) \in M_{m, m}(\mathbb{Z})
$$

Then we have $W\left(U_{M}, V_{M}\right)=W(U, V)\binom{D C}{B A}+\frac{1}{2}\binom{0}{t_{u}}$ for $M=\binom{A B}{C D} \in \Gamma$ and for some $u \in Z^{2 n}$. Thus if $W(U, V)$ has the property stated above, so does $W\left(U_{M}, V_{M}\right)$. Especially $\overline{2 V_{M}} \in M_{m, n}(\mathbb{Z} \mid 2 \boldsymbol{Z})$ is of rank $2 n$ for any $M \in \Gamma$. Hence we get $\theta_{F, U, V}(Z)$ $\in\left[I^{\prime}(2), m / 2, \chi\right]$ for some χ.

Examples of non-zero cusp forms
(i) ${ }^{\prime}$ Let F be a positive even symmetric matrix of degree $m \geq 2 n$ which is of the form $F=\left(\begin{array}{ll}F_{1} & 0 \\ 0 & F_{2}\end{array}\right)$ with $\operatorname{deg}\left(F_{1}\right), \operatorname{deg}\left(F_{2}\right) \geq n$. Let N be a positive integer such that $N F^{-1}$ is even and let p be a prime such that $(p, N)=1$. It is easily checked that for

$$
U=\binom{\frac{1}{p} 1_{n}}{0}, \quad V=\binom{0}{\frac{1}{p} 1_{n}} \epsilon M_{m, n}\left(\frac{1}{p} \mathbb{Z}\right)
$$

$\overline{p(U, F V)} \in M_{m, 2 n}(\mathbb{Z} \mid p \boldsymbol{Z})$ is of rank $2 n$, and $\theta_{F, U, V}(\mathbb{Z})$ is in $[\Gamma(p N), m / 2, \chi]$ with $\chi(M)=\varepsilon\left(\operatorname{tr}\left(2^{t} V F V B-^{t} C^{t} U F^{-1} U D-^{t} A^{t} V F V B\right)\right) . \quad \theta_{F, U, V}(Z)$ is a non-zero function. In fact, we have $\theta_{F, U, V}(Z)=\theta_{F_{1}, U^{\prime}, 0}(Z) \theta_{F_{2}, 0, V^{\prime}}(Z)$ with

$$
U^{\prime}=\binom{\frac{1}{p} 1_{n}}{0} \in M_{\operatorname{deg}\left(F_{1}\right), n}\left(\frac{1}{p} Z\right), \quad V^{\prime}=\binom{0}{\frac{1}{p} 1_{n}} \in M_{\operatorname{deg}\left(F_{2}\right), n}\left(\frac{1}{p} Z\right) .
$$

Here $\theta_{F_{2}, 0, V}(Z)$ is obviously non-zero and so is $\theta_{F_{1}, U^{\prime}, 0}(Z)$ (for example, use the inversion formula).
(ii) Set $F=1_{m}$ with $m \geq 2 n$. Let p be an odd prime, and U, V the same matrices as in (i)'. Then we have a non-zero cusp form $\theta_{1_{m}, U, V}(Z)$ of weight $m / 2$ for $\Gamma(2 p)$ with the multiplier $\chi(M)=\chi_{1_{m}}(M) \varepsilon\left(\operatorname{tr}\left(\frac{2}{p^{3}} B-\frac{1}{p^{2}} C^{t} D-\frac{1}{p^{2}} A^{t} B\right)\right)$.
(iii)' Set $F=1_{m}$ with $m \geq 2 n+1$ and let U, V be as above with $p=2$. Then
 non-zero cusp form $\theta_{1_{m}, U, V}(Z) \in[\Gamma(2), m / 2, \chi]$ with $\chi(M)=\chi_{1_{m}}(M) \varepsilon\left(\operatorname{tr}\left(\frac{1}{2} B-\frac{1}{4} C^{t} D\right.\right.$ $\left.-\frac{1}{4} A^{t} B\right)$).
(3) Cusp forms of weight $n+1$ with a trivial multiplier

Theorem 4. a) We have

$$
\operatorname{dim}[\Gamma(4), n+1]>0 \text { for } n>1 .
$$

Let $F=\binom{F_{1}}{F_{2}}$ be a positive even symmetric matrix of degree $2 n+2$ with $\operatorname{deg}\left(F_{1}\right)$, $\operatorname{deg}\left(F_{2}\right)>n$, and N a positive integer such that $N F^{-1}$ is even. Then we have

$$
\operatorname{dim}\left[\Gamma\left(h^{2} N\right), n+1\right]>0 \text { for an odd } h>1
$$

and

$$
\operatorname{dim}[\Gamma(2 N, 4 N), n+1]>0 \quad \text { if } N \text { is odd. }
$$

b) Let n be even. Then we have

$$
\operatorname{dim}\left[\Gamma\left(2 h^{2}\right), n+1\right]>0 \text { for an odd } h>1 .
$$

Let F be a positive even symmetric matrix of degree n, and N a positive integer such that $N F^{-1}$ is even. Then we have

$$
\operatorname{dim}[\Gamma(h N), n+1]>0 \text { for } h \geq 2
$$

and

$$
\begin{array}{ll}
\operatorname{dim}[\Gamma(N), n+1]>0 & \text { if } N \text { is divisible by a square of some odd } \\
& \text { integer }>1 .
\end{array}
$$

For $n=24$ we have

$$
\operatorname{dim}\left[I^{\prime}, 25\right]>0
$$

Proof. a) Suppose $n>1$. From (2)

$$
\begin{equation*}
\theta_{1_{2 n+2}, U, v}(Z) \tag{**}
\end{equation*}
$$

is a non-zero cusp form for $\Gamma(2)$ with the multiplier $\chi(M)=\chi_{1_{2 n+2}}(M) \varepsilon\left(\operatorname{tr}\left(2^{t} V V B-\right.\right.$ $\left.{ }^{t} U U D^{t} C-{ }^{t} V V B^{t} A\right)$) where we put

$$
U=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & \ddots \\
1 \cdots \cdots 1 \\
& 0
\end{array}\right), \quad V=\frac{1}{2}\left(\begin{array}{c}
0 \\
1 \\
0 \\
\ddots \\
1 \cdots \cdots 1
\end{array}\right) \in M_{2 n+2, n}\left(\frac{1}{2} \boldsymbol{Z}\right) .
$$

Since $\chi_{1_{2 n+2}}(M)$ is trivial on $\Gamma(4)$ (cf. Corollary to Theorem 3) and since both $4^{t} U U$ and $4^{t} V V$ are even, χ is trivial on $\Gamma(4)$. Thus we get $\operatorname{dim}[\Gamma(4), n+1]>0$ for $n>1$.

The remaining cases have already investigated in (2).
b) Let n be an even integer. Throughout the proof $\Phi(G)$ denotes the determinant of G.

For an odd $h>1$, we have $\theta_{1_{n}, 0,(1, h) 1_{n}}(Z) \in[\Gamma(2 h), n / 2, \chi]$ and $\theta_{1_{n}, 0,(1, h) 1_{n}}(Z ; \Phi) \epsilon$ $\left[\Gamma(2 h), n / 2+1, \chi^{\prime}\right]$ with $\chi^{\prime}(M)=\chi_{1_{n}}(M) s\left(\operatorname{tr}\left(1 / h^{2}\left(21_{n}-A\right)^{t} B\right)\right)$. Hence we have $\theta_{1_{n}, 0,(1, h) 1_{n}}$ $(Z) \theta_{1_{n}, 0,(1, h) 1_{n}}(Z ; \Phi) \in[\Gamma(2 h), n+1, \chi]$ with $\chi(M)=\varepsilon\left(\operatorname{tr}\left(1 / h^{2}\left(21_{n}-A\right)^{t} B\right)\right)$. Since χ is trivial on $\Gamma\left(2 h^{2}\right), \theta_{1_{n}, 0,(1, h) 1_{n}}(Z) \theta_{1_{n}, 0,(1, h) 1_{n}}(Z ; \Phi)$ is a cusp form for $\Gamma\left(2 h^{2}\right)$ with a trivial multiplier. It remains to shows that both $\theta_{1_{n}, 0,(1 / h) 1_{n}}(Z)$ and $\theta_{1_{n}, 0,(1 / h) 1_{n}}(Z ; \Phi)$ are non-zero functions. Obviously the former is non-zero, and it is easy to check that the latter is non-zero, using the same method as in the proof of Proposition 1 c).

Let F and N be as in the theorem. For $h \geq 3, \theta_{h F, 0,0}(Z) \times \theta_{h F, 0,(1, h)]_{n}}(Z ; \Phi)$ is a non-zero cusp form of weight $n+1$ for $\Gamma(h N)$ by Proposition 1 b). Hence we get $\operatorname{dim}[\Gamma(h N), n+1]>0$ for $h \geq 3$.

If N is odd, then $\theta_{\left.F,(1,2) 1_{n},(1 / 2) 1_{n}\right)}(Z)$ is non-zero modular form, since we have $\theta_{F, 0,(1,2) 1_{n}}(M Z)=\chi_{F}(M) E_{F}\left(0,(1 / 2) 1_{n}, M\right) \theta_{F,(N / 2) 1_{n}(1 / 2) 1_{n}}(Z)=\chi_{F}(M) E_{F}\left(0,(1 / 2) 1_{n}\right.$, $M) \theta_{F,(1 / 2) 1_{n},(1 / 2) 1_{n}}(Z)$ for $M=\left(\begin{array}{cc}1_{n} & N F^{-1} \\ 0 & 1_{n}\end{array}\right)$. Hence $\theta_{F,(1 / 2) 1_{n},(1 / 2) 1_{n}}(Z) \theta_{F,(1 / 2) 1_{n} \cdot(1 / 2) 1_{n}}(Z$; $\Phi)$ is a non-zero cusp form by Proposition 1 b). Hence we get $\operatorname{dim}[\Gamma(2 N), n+1]$ >0 for an odd N. If N is even, then obviously $\operatorname{dim}[\Gamma(2 N), n+1]$ is positive since $[\Gamma(4), n+1]$ is contained in $[T(2 N), n+1]$.

If N is divisible by a square of some odd integer $h>1$, then $\theta_{F, 0,0}(Z) \theta_{F_{, 0,(1,2) 1_{n}}}(Z$; Φ) is a non-zero cusp form for $\Gamma(N)$ with a trivial multiplier by Proposition 1 c). Hence we have $\operatorname{dim}[\Gamma(N), n+1]>0$.

For $n=24 \mathrm{H}$. Maass has shown an existence of an even matrix of degree 24 with the determinant 1 , for which $\theta_{F, 0,0}(Z ; \Phi)$ is a non-zero cusp form of weight 13 for Γ with a trivial multiplier. Hence $\theta_{F, 0,0}(Z) \theta_{F, 0,0}(Z ; \Phi)$ is a non-zero cusp form of weight 25 for Γ with a trivial multiplier and we get $\operatorname{dim}[\Gamma, 25]>0$.

Remark 1. A cusp form of weight $n+1$ for $\Gamma(4)$ corresponds to a differential form of the first kind on the nonsingular model $\overline{H_{n} / \Gamma(4)}$ of the modular function field with respect to $\Gamma(4)$. Our result shows that the geometric genus of $\overline{H_{n} / \Gamma(4)}$ is positive if $n>1$. On the other hand we know that for $n=1, \overline{H_{1} / \Gamma(4)}$ is a rational curve.

Remark 2. When $n=2$, the cusp form (**) is just the example of a cusp
form of weight 3 found by S. Raghavan in [6]. In fact we get

$$
(* *)=\prod_{i} \vartheta_{u_{i}, v_{i}}(Z, 0,0)
$$

where $\left(u_{i}, v_{i}\right)$ varies over the set

$$
\left\{\left(\begin{array}{cc}
0 & 1 / 2 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
0 & 1 / 2
\end{array}\right),\left(\begin{array}{ll}
0 & 1 / 2 \\
0 & 1 / 2
\end{array}\right),\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
1 / 2 & 0
\end{array}\right),\left(\begin{array}{ll}
1 / 2 & 0 \\
1 / 2 & 0
\end{array}\right)\right\} .
$$

(4) Examples of cusp forms of degree 2 and weight 3

Let F be a positive even symmetric matrix of degree $m \in 2 \mathbb{Z},>n$, and N a positive integer such that $N F^{-1}$ is even. We have a transformation formula

$$
\begin{align*}
& \theta_{F, U, V}(Z ; \Phi) \\
& \quad=\mathrm{s}\left(\operatorname{tr}\left(A^{t} B^{t} V F V+2\left(D-1_{n}\right)^{t} V U-C^{t} U F U\right)\right)|C Z+D|^{(m / 2)++^{2}} \theta_{F, U, V}(Z ; \Phi) \tag{***}
\end{align*}
$$

for $M=\binom{A B}{C D} \in \Gamma(N)$ and $U, V \in M_{m, n}\left(\frac{1}{N} Z\right)$ with $N F^{-1} U \in M_{m, n}(Z)$, where ϕ and ν are as in Theorem 2. Let us denote its Fourier expansion by $\sum_{S, 0} a(S) \varepsilon(\operatorname{tr}(Z S))$. Then $a(S)$ is given by

$$
\left.a(S)=s\left(2 \operatorname{tr}\left({ }^{t} V U\right)\right) \sum_{G \in M_{m}, n} \sum_{Z \backslash, F[G+V]=s} s\left(2 \operatorname{tr}{ }^{t} G U\right)\right) \mathscr{Q}(G+V) .
$$

Using this formula, we give some examples of non-zero cusp forms of degree 2 and weight 3 for principal congruence subgroups with a trivial multiplier. It seems that we answer a question in [3] concerning "konkrete Beispiele von Spitzenformen".
$\theta_{F, U, v}(Z ; \Phi)$ becomes such a cusp form for $I^{\prime}(N)$ in the following cases. Let us set
(i) $\quad N=5 ; F=\left(\begin{array}{lll}2 & 1 & \\ 1 & 2 & 1 \\ & 1 & 2 \\ & 1\end{array}\right), \quad \Phi(G)=\left|G_{2}\right|, \quad U=\frac{1}{5}\left(\begin{array}{ll}1 & 4 \\ 2 & 3 \\ 3 & 2 \\ 4 & 1\end{array}\right), \quad V=\frac{1}{5}\left(\begin{array}{rr}4 & -1 \\ -3 & 2 \\ 2 & -3 \\ -1 & 4\end{array}\right)$
(ii) $\quad N=13 ; F=\left(\begin{array}{lll}2 & 1 & \\ 1 & 2 & 1 \\ 1 & 2 & 1\end{array}\right), \quad \varphi(G)=\left|G_{1}\right|, \quad U=\frac{1}{13}\left(\begin{array}{ll}5 & 0 \\ 3 & 0 \\ 1 & 0 \\ 7 & 1\end{array}\right), \quad V=\frac{1}{13}\left(\begin{array}{rr}4 & 1 \\ -8 & 2 \\ 12 & -3 \\ -3 & 4\end{array}\right)$

(iv) $\quad N=29 ; F=\left(\begin{array}{lll}2 & 1 & \\ 1 & 2 & 1 \\ 1 & 6 & 1 \\ & 1 & 2\end{array}\right), \quad \Phi(G)=\left|G_{1}\right|, \quad U=\frac{1}{29}\left(\begin{array}{rr}0 & 6 \\ 0 & 7 \\ 0 & 11 \\ 0 & 7\end{array}\right), \quad V=\frac{1}{29}\left(\begin{array}{rr}2 & -1 \\ -4 & 2 \\ 6 & -3 \\ -3 & 16\end{array}\right)$
(v) $\quad N=4 h-1(h \geq 2) ; F=\left(\begin{array}{lll}2 & 1 & \\ 1 & 2 h & \\ & 2 & 1 \\ & 1 & 2 h\end{array}\right), \quad \Phi(G)=\left|G_{3}\right|, \quad U=0, \quad V=\left(\begin{array}{rr}-1 & 0 \\ 2 & 0 \\ 0 & -1 \\ 0 & 2\end{array}\right)$
(vi) $\quad N=20 h-7(h \geq 2) ; F=\left(\begin{array}{cccc}4 & 1 & & \\ 1 & 2 & 1 & \\ & 1 & 2 & 1 \\ & & 1 & 2 h\end{array}\right), \quad \Phi(G)=\left|G_{2}\right|, \quad U=0, \quad V=F^{-1}\left(\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1\end{array}\right)$
(vii) $\quad N=20 h-3(h \geq 2) ; F=\left(\begin{array}{cccc}2 & 1 & & \\ 1 & 2 & 1 & \\ & 1 & 4 & 1 \\ & & 1 & 2 h\end{array}\right), \quad D(G)=\left|G_{1}\right|, \quad U=0, \quad V=F^{-1}\left(\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1\end{array}\right)$
(viii) $N=24 / h-11(h \geq 2) ; F=\left(\begin{array}{lll}2 & 1 & \\ 1 & 2 & 1 \\ & 1 & 2 h \\ & 1 & 1 \\ & & 1\end{array}\right), \quad 4(G)=\left|G_{1}\right|, \quad U=0, \quad V=F^{-1}\left(\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1\end{array}\right)$
(ix) $\quad N=24 h-7(h \geq 2) ; F=\left(\begin{array}{cccc}2 & 1 & & \\ 1 & 4 & 1 & \\ & 1 & 2 & 1 \\ & & 1 & 2 h\end{array}\right), \quad D(G)=\left|G_{3}\right|, \quad U=0, \quad V=F^{-1}\left(\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1\end{array}\right)$

Remark. Let p be a prime integer with $3<p<100$. Then p is one of the following: $5,13,17,29,4 h-1,20 h-3,20 h-7,24 h-11,24 h-7$ for some $h \geq 2$. Hence noting cusp forms which appear in the proof of Theorem 4, we can easily obtain a non-zero cusp forms of weight 3 for $\Gamma(N)$ with a trivial multiplier where N is any integer with $3<N \leq 100$.

Now we shall prove the above $\theta_{F, U, V}(Z ; \Phi)$ are non-zero cusp forms of weight 3 with a trivial multiplier. We treat only the cases (i) and (v). To the remaining cases almost the same argument is applicable.

Case (i). We get ${ }^{t} V F V=\frac{1}{5}\left(\begin{array}{rr}4 & -1 \\ -1 & 4\end{array}\right),{ }^{t} V U=\frac{2}{5}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \quad 5 F^{-1} U \in M_{4,2}(\mathbb{Z})$ and ${ }^{\iota} U F U=\frac{1}{5}\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$. Then it is easy to check that $\theta_{F, U, V}(Z ; \Phi)$ is a cusp form of weight 3 with a trivial multiplier, using the formula $(* * *)$. We must show that it is a non-zero function. Put $S_{0}=\frac{1}{5}\left(\begin{array}{rr}4 & -1 \\ -1 & 4\end{array}\right)$. Then we have

$$
a\left(S_{0}\right)=\sum_{G} \varepsilon\left(2 / 5\left(g_{1}+2 g_{2}+3 g_{3}+4 g_{4}+4 g_{5}+3 g_{6}+2 g_{7}+g_{8}\right)\right)\left|G_{2}+S_{0}\right|
$$

where G runs over the set of all 4×2 integral matrices such that ${ }^{t} G_{2}+G_{2}+{ }^{t} G F G$ $=0$. The equation ${ }^{t} G_{2}+G_{2}+{ }^{t} G F G=0$ has the following twenty integral solutions. Let us put $a_{1}={ }^{\prime}(-1,0,0,0), a_{2}=t(-1,1,0,0), a_{3}={ }^{t}(-1,1,-1,0), a_{4}=^{t}(-1,1,-1,1)$,
$b_{1}=a_{3}-a_{4}, b_{2}=a_{2}-a_{4}, b_{3}=a_{1}-a_{4}, b_{4}=-a_{4}$ and $0=^{l}(0,0,0,0)$. Then all the integral solutions are

$$
\begin{aligned}
G= & (0,0),\left(0, b_{1}\right),\left(0, b_{2}\right),\left(0, b_{3}\right),\left(a_{1}, 0\right),\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{1}, b_{4}\right), \\
& \left(a_{2}, 0\right),\left(a_{2}, b_{1}\right),\left(a_{2}, b_{3}\right),\left(a_{2}, b_{4}\right),\left(a_{3}, 0\right),\left(a_{3}, b_{2}\right),\left(a_{3}, b_{3}\right),\left(a_{3}, b_{4}\right) \\
& \left(a_{4}, b_{1}\right),\left(a_{4}, b_{2}\right),\left(a_{4}, b_{3}\right),\left(a_{4}, b_{4}\right) .
\end{aligned}
$$

Then we have

$$
a\left(S_{0}\right)=1+\varepsilon\left(\frac{3}{5}\right) .
$$

Thus $\theta_{F, U, V}(Z ; \mathscr{\Phi})$ is a non-zero function.
Case (v). Obviously $\theta_{F, U, V}(Z ; \Phi)$ is a cusp form of weight 3 for $\Gamma(N)$ with a trivial multiplier. We shall show that it is a non-zero function. Put $S_{0}=\frac{1}{N}\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$. Then we have

$$
a\left(S_{0}\right)=\sum_{G}\left|G_{3}+S_{0}\right|,
$$

where G runs over the set of all 4×2 integral matrices such that ${ }^{t} G_{3}+G_{3}+{ }^{t} G F G$ $=0$. The integral solution of the equation ${ }^{t} G_{3}+G_{3}+{ }^{t} G F G=0$ is only $G=0$. Hence we have

$$
a\left(S_{0}\right)=\left|S_{0}\right|=\frac{4}{N^{2}} .
$$

Thus $\theta_{F, U, V}(Z ; \Phi)$ is a non-zero function.

5. Appendix

Let F be a positive integral symmetric matrix of degree $m>0$ and $M \in \Gamma$ satisfy one of the four conditions (1), (2), (3) and (4) in $\S 2$. If $\binom{a b}{c d} \in S L_{2}(\boldsymbol{Z})$ is the matrix corresponding to M in Lemma 2, then it satisfies one of the four conditions (1), (2), (3) and (4) below ;
(1) $b \equiv 0(2), c \equiv 0(2 N)$,
(2) $(F$ is even.) $b \equiv 0(2), c \equiv 0(N)$,
(3) $\left(N F^{-1}\right.$ is even.) $b \equiv 0(2), c \equiv 0(N)$,
(4) (Both F and $N F^{-1}$ are even.) $c \equiv 0(N)$.

In these cases $\chi_{F}\binom{a b}{c d}=\left.\varepsilon(c, d)^{m}|d|\right|_{G: d-\frac{1}{2} Z^{m} / Z m} \varepsilon\left(\operatorname{tr}\left(b d^{t} G F G\right)\right)$ can be computed as in [8].
Moreover the invariance of $\chi_{F}\binom{a b}{c d}$ by $\binom{1 m}{01}$ with $m \in \boldsymbol{Z}$ (resp. $m \in 2 \boldsymbol{Z}$) for an even
F (resp. an integral F) gives some informations on F and N.

Proposition. (i)
(2) Suppose that F is even and $N F^{-1}$ is integral. If m is odd, then $4 \mid N$, or $2 \mid N$ and $|F|=2^{2 r+1} K$ with $r \geq 0$ and an odd K. If m is even, then $4 \mid N$, or $2 \mid N$ and $|F|=2^{2 r} K$ with $r>0$ and an odd K, or $|F| \equiv m+1$ (4).
(3) Suppose that F is integral and $N F^{-1}$ is even. If m is odd, then $4 \mid N$, or $2 \mid N$ and $|F|=2^{2 r} K$ with $r \geq 0$ and an odd K. If m is even, then $4 \mid N$, or $2 \mid N$ and $|F|=$ $2^{2 r} K$ with $r \geq 0$ and an odd K, or $|F| \equiv m+1$ (4).
(4) Suppose that both F and $N F^{-1}$ are even. If m is odd, then $8 \mid N$, or $4 \mid N$ and $|F|=2^{2 r_{+1}} K$ with $r \geq 0$ and an odd K. If m is even, then $8 \mid N$, or $4 \mid N$ and $|F|=2^{2 r} K$ with $r>0$ and an odd K, or $2 \mid N$ and $|F|=2^{2 r} K$ with $r>0$ and $K \equiv m+1$ (4), or $|F| \equiv m+1$ (4).
It is known that $m \equiv 0$ (8) if $|F|=1$.
(ii) Suppose that $M=\binom{a b}{c d}$ and F satisfy one of the four conditions (1), (2), (3) and (4) mentioned above. In case (4) with $N=1$, we have

$$
\chi_{F}^{(n)}(M)=1 \quad \text { for all } M \in S L_{2}(\boldsymbol{Z})
$$

In the remaining cases d is always non-zero. If m is odd, then we have

$$
\chi_{F}^{(n)}(M)=\operatorname{sgn}(c)^{m(\operatorname{sgn}(d)-1) / 2} \varepsilon\left(\frac{m(d-1)}{4}\right)\left(\frac{c}{d}\right)^{m}\left(\frac{|F|}{d}\right)
$$

If m is even, then we have

$$
\chi_{F}^{(n)}(M)=\operatorname{sgn}(d)^{m / 2}\left(\frac{(-1)^{m / 2}|F|}{|d|}\right)
$$

References

[1] Andrianov, A. N. and Maloletkin, G. N., Behavior of theta series of degree N under modular substitutions, Math. USSR Izvestija 39, 227-241 (1975).
[2] Eicheler, M., Einführung in die Theorie der algebraischen Zahlen und Funktionen, Birkhäser Verlag Basel-Stuttgart, (1963).
[3] Fritag, E., Holomorphe Differentialformen zu Kongruenzgruppen der Siegelschen Modulgruppe zweiten Grades, Math. Ann. 216, 155-164 (1975).
[4] Hecke, E., Zur Theorie der elliptischen Modulfunktionen, Math. Ann. 97, 210-242 (1926).
[5] Maass, H., Konstruktion von Spitzenformen beliebigen Grades mit Hilf von Thetareihen, Math. Ann. 226, 275-284 (1977).
[6] Raghavan, S., Cusp forms of degree 2 and weight 3, Math. Ann. 224, 149-156 (1976).
[7] Schoeneberg, B., Das Verhalten von mehrfachen Thetareihen bei Modulsubstitutionen, Math. Ann. 116, 511-523 (1939).
[8] Shimura, G., On modular forms of half integral weight, Ann. Math. 97, 440-481 (1973).
[9] Siegel, C.L., On the theory of indefinite quadratic forms, Gesam. Abh. II, 421-466, Springer-Verlag Berlin.Heiderberg.New York, (1966).
[10] -, Moduln Abelscher Funktionen, Gesam. Abh. III, 373-435,
[11] Witt, E., Eine Identität zwischen Modulformen zweiten Grades, Abh. Math. Sem. Hansischen Univ. 14, 323-337 (1941).

[^0]: Received November 30, 1978. Revised August 23, 1979.

