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CONSTRUCTIONS OF MODULAR FORMS BY MEANS OF

TRANSFORMATION FORMULAS FOR THETA SERIES

By

Shigeaki Tsuyumine

Let F be a positive integral symmetric matrix of degree m, and Z a variable

on the Siegel space Hn of degree n. Let 0 be a spherical function of order v

with respect to F which is of the form

1 (,=0)
for rnXn complex matrices G

with an mXn matrix rysuch that ^=0 if v>l.

We define a theta series associated with F by setting

0F uv(Z;0)=Z 0(G + F) exp(tr(^(G + V)F{G + V) + 2＼G + F) £/)),
' ' G

where U, V are mXn real matrices, tr denotes the trace of a corresponding square

matrix and G runs through allmXn integral matrices. We write simply 0F,u,v(Z)

for the theta series 0f,u,v(Z;0) when 0 is of order 0.

For congruence subgroups of SL^{Z) the transformation formulas for theta

series of degree 1 associated with F are well known. For example, we can find

transformation formulas for theta series of degree 1 in [7],[8],in which multi-

pliers are explicitly determined. Transformation formulas for the theta series

0f,u,v{Z',O) of degree n>l are also established in [1] in the case where F is even

and U, V are zero (the condition on U, V is not necessary if 0 is of order 0 [9]).

Using these results we can get many examples of Siegel modular forms for

congruence subgroups.

In this paper we determine a transformation formula for the theta series

0f,u,v(Z;0) associated with a positive integral symmetric matrix F and any real

matrices U, V and using this, we get some examples of cusp forms for some

congruence subgroups F' of Spn(Z). Cusp forms of weight n + 1 for Fr induce

differentialforms of the first kind on the nonsingular model of the modular

function fieldwith respect to /''. Our result shows that the geometric genus of

the nonsingular model of the modular function fieldwith respect to F' is positive.
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For example, this is the case where, (i)iv = /＼4)if ≫>1, (II)F' = r{2Nz) for N>1

if ≪= 0 (2),(lii)r = Spn(Z) If ≪= 24 (cf. H. Maass [5]),(iv) r = T(N) for N>2 if

≪= 0 (8),(v) /v = /''(2,4)or /T(iV2)for N>1 if ≪= 7 (8).

Notation.

We denote by Z,,Z,Q,R and C, the set of all positive rational integers, the

ring of rational integers, the rational number field,the real number fieldand the

complex number field. Let A" be a subset of C. We denote by Mm.Jt(K) the set

of all mxn matrices with entries in K; simply Km denotes Mm,i(K) and SMW{K)

denotes the set of all symmetric matrices of degree m with entries in K. We

denote by 1≪the identity matrix of degree n. For XeMm,w(C) and Y£Mm,n{ ),

we set X＼Y]^'-YXY.

We denote the modular group Spn(Z) simply by /'. /' acts on the Siege!

space //, by the usual modular transformations

Zt―> MZ= (AZ+ B)(CZ+ D)-1 for M=
( ^f )

f

Let F' be a congruence subgroup of F, and j a map of F' to C*-=＼c£C＼c^-0}. A

holomorphic function / on //B is called a modular form of weight kiz―ZA for
＼ 2 /

jT' with a multiplier z if / satisfies /(MZ) = Z(M)|CZ+Z>|*/(Z) for any Me/".

Here the factor of automorphy ＼CZ+D＼l/'2 is always determined by the condition

that -7t/2<arg(|V"TC+D!1/2)<7T/2 and ＼CZ+D＼k is determined by |CZ+Z)|* =

(＼CZ+D＼1/'iyk. Such / is called a cusp form of weight k for /'' with a multiplier

X if in the Fourier expansion

|CZ+D|-*/(MZ) = S≪(S>(tr(ZS)) for all MgF,
s

a(S) vanishes for S with |S|=0, where s(*)=exp(v/ ―In*).

We introduce several congruence subgroups of F. Let 0 denote the theta

group ＼M=(
rR)£F＼(fAC)J=.(tBD)J

= Q (2)1 where for a square matrix {Xij) of

degree n, (xij)j denotes t(xiU---,-Vn.n)-Let A/"be a positive integer. Then we set

]'o(N) = {Mer＼C=0 (N)}, r(N) = {MeF＼A = D = ln (N), B=C=0 (N)} and 8n(N) =

{M£Fo(N)＼(!BD)j = llN(tAC)j~(BtA)j = llN(JJC),=O (2)}. For two positive integers

Nh N2 we put F0(Nh Nz) = {M F＼B = 0 (N^, C=0 (NZ)}. For a positive even integer

N we put /'(A/;27^)= {Mer(JV)|(tAC)j = (tZfD)-(= 0 (27V), ^!(iV) = {Mero(iV)|l/iV('/lC)i

= llNUy-C)*=Q (2)1 and f)2(/V)= {M /T0(iV)|(^I))4 = (i>>'/4)i= 0 (2)}.
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We denote by ( ―) the generalized Legendre symbol to which we add the fol

lowing significance; (i) (-r-j = 1 and (ii)If a Is an odd integer congruent to 1 mod

4 and b Is a positive even Integer, then (f)-(i) (cf. [21)

1. Transformation formulas

For u,v,x and y£Cn we define a theta series by setting

A, v(Z;x, y)= 2 e(Z[g+ y＼+ 2lg{x+ it)+ hjx),
g=vmodi?

where the summation is taken over all g£Cn such that g~~V£Zn.From Satz 8

in [10] we get easily the following

Lemma 1. Let u,v,x and y£Cn, and M=＼ rr l /7. Setting

itM^Du + tBv + ^-CBD)*, Vm^Cu + 'Av + ^^AQj and

E{u, v,M) = e(- %LCu+*Av) (lDu + %Bv + (lBD)j) + Lvu),

we have

9UiV(MZ; Ax-By, -Cx+Dy)

^(M)E(u, v,M)＼CZ+D＼^,%m,Vm(Z; x,y)

where %(M) is the 8-th root of 1 depending only on M.

Let F be a positive real symmetric matrix of degree m>0. For U, V, X and

YeMm,n(C), we set

OfmAZ; X, Y)= E s(tr(ZF[G+ Y]+2tG(X+ U) + tYX)!
G=VmodZ

where the summation Is taken over all the matrices GeMVhn{C) such that

G-V£Mm,n(Z),

The Idea of the proof of the next theorem Is due to A. N. Andrianov and

G.N. Maloletkin [1], whose idea Is based on the interpretation of the theta series

0F,u,v{Z;X, Y) of degree n associated with positive quadratic forms F of degree

m as specializationsof the standard theta series 9UiV(Z;x,y) of degree mn.

For square matrices A and B―{bij)respectively of degree m and n, we define

a tensor product by

)
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Let P be a positivereal symmetric matrix of degree m. We definethree

maps which we shalldenote by the same sign ~,in the followingway:

~:Hn―> Hmn definedby Z＼―>Z = F&)Z

~:Spn{R)―>Spmn(R) definedby M=(^ y-H
AB＼

CD KF-itoC

~:Mm>B(C)―>Cmn defined by X=(x1}-,xn)*―■>X = t(txi,--,txR).

Then under the above notation we have MZ = MZ, ＼^Z+ D＼= ＼CZ+D＼m, Z＼G]=

tr(2F[G]), lAX = XA, tBX = FBX, tGX=FZ*XC, lDX = XD, {tBD)A =
f7^BDU,

('AC),

= (F-V?AC)4 and tf'Z = tr('FZ). If both F and A/F"1 (NeZ+) are integral, then

we have ro(N)c:Spn(Z). Moreover, if both F and NF'1 are even,

containedin the thetagroup of degree mn.

then ro(Ar) is

We obtain dF,u,v{Z',X,Y) = Sff^{Z ; X,Y), and hence by Lemma 1 we get the

following

Theorem 1. Let F be a positive real symmetric matrix of degree m>0. Let

M=
(AB)
＼CD

GSpn(R) with M£Spmr,(Z). For U, V£MmJC), set

UM = UD + FVB + ~FAtBD)j. VM^F~1UC+VA+~(F~1)/(tAC)j and

EF(U, V, M)=s(tr(-t(F-lUC+ VA) (UD + FVB+F/(tBD),) + tVU).

Then we have

OFtU,v(MZ; X'A-FY'B, -F~1XtC+ Y'D)

=XF(M)EF(U, V, M)＼CZ+Dr*eF,uM,vM(Z; X, Y)

where ZJp(M)= Zj?)(M) is the 8-th root of 1 depending only on n,F and M.

Suppose that m = deg(F) is >n. Let / be any integer such that n<l<m, and

L any subset of {l,---,m} with / elements. Put L={ji,---,ji}with ji<~-<ji. We

denote by -qhthe matrix in Mm,i{Z) whose

(i) i-th row = e; if j=ji£JL

(ii) j-th row=0 if j$L,

d being the f-th row of the identity matrix h of degree /. Take a pair (yj,v) in

Mi,n(C)xZ+ which satisfiesboth of the conditions that (i) ^=0 if v>l and that

(ii)v = l if /=≪. For G£Mm,n{C) we set 0{G)=＼tGF1/irjJy]＼v.We define a theta

series with 0 by setting
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eF,uAZ;0;X, Y)= E
(}= V mod Z

0(G)s(tr(ZF[G+Y]+2tG(X+ U) + tYX))
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the summation being taken over all the matrices G^Mm,n{C) such that G ―

VsMm,n(zy

Let f=(&,/) be an /x≫ variable matrix and 3= (-r―j the corresponding matrix

of differential operators. We introduce the differential operator det^d). In

Lemma 3 of [1], the following equation is proved. For PeSMn(C) and QGMi,n(C)

and for ceC, we have

detv(V) (triPttf+VQd+c)

- I'lV^HP^ + 'QWeitriP'tf+2lQ^)+c).

Theorem 2. Suppose n<m ―deg(F). Let I be any integer with n<i<m and

L a subset of {l,---,m＼ with I elements. Let yGMi,n(C) and put 0(G) ―＼tGF1/2r}Lrj＼'1

(vqZ^) for GeMmn(C). Then we have

OF.v,v(MZ＼Q; X'A-FY'B, ~F~1XtC+ YlD)

=ZF(M)EF(U, V,M)＼CZ+Dr''^0F,UM,vM(Z;0;X, Y),

in either case that (i) v>l, l>n and cm>=0, or that (ii) v= l and l>n, where

AB＼
CD)

is as in Theorem 1 and X, Y are matrices in MmJC) such that

Proof. Take an mxn matrix f such that entries of its i-th rows (ieL) are

independent variables and its i-th rows (j$L) are 0. Then we have lXF"1/2^ =

*FF1/2£'=0. Setting £= V£' and substituting A" for FWi? + X in the formula of

Theorem 1. we obtain

S e(tr{-(CZ+D)-1Cl&+2(CZ+D)-uGF1'i77L$ + MZFlG-F-1XtC+YtDl
G= VmodZ

+2tG(U+XtA-FYtB) + t(~F-1XtC+ YlD) (X'A-FY'B)))

=XF(M)EF＼CZ+D＼m/2 Z s(tr(2tGF1/2v^+ZF[G+Y]+2tG(UM + X) + tYX)
G=VM modif

Applying the differentialoperator det^V) at f=0> we Set the desired result.

In the similar way as in the proof of Theorem 2, we get the following

corollary.

Let keZ+. Let Li (l<i<k) be subsets of {l,---,m}with /≫(>≫)elements such

that Li[~＼Lj―([>if i^j. For i=l,---,k take pairs (^, y4) in Miiin(C)xZ+ which

satisfy both conditions that (i) '^=0 if ^>0 and that (ii) vt―1 if /^w. For
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GeMm,n(C) we set R(G)=＼tGF1/2VLi7]1＼v>---＼lGF1/^LkrJk＼*k.We define a theta series

with 0 by

Of.uAZ^＼X,Y)= E 0(G)e(tr(ZF[G+Y]+2tG(X+U)+tYX)l

(}=V mod Z

for U, V,X and YeMm,n(C).

Corollary. Let LprH,vi (l<i<k) and # be stated as above. Then we have

0F,u<v(MZ;0 ; X'A-FY'B, -F~lXtC+ YlD)

=XF(M)EF(U, ^M^CZ+Dl^^^dF.u v (Z;0;X, Y),

where M=l ＼is as in Theorem 1 and X, Y are matrices in Mm%n{C)

"XF-^^YF1^^ for i=l,.≫,k.

such that

2. Computation of %f I

We shall compute If (cf. Theorem 1) in the following four cases (up to ±1

when deg(F) is odd). Let F be a positive integral symmetric matrix of degree

tn>0. Let N be a positive integer such that NF"1 is integral.

CD M 0o(N).

c F is even. M£ro(2N), or Mz6Q{N), or MsB^N) for an even JV.

(D M^1 is even. Mero(2,N), or Me60(N), or Me@2(iV) for an even iV.

R Both F and iVF-1 are even. Mero(N).

First we must generalize Lemma 5 in [1]. We put

with UeSLn(Z) and SeSMn(Z).

Lemma 2. L<?£iT 6g the group generated by the elements of I＼{Ni, Nz) (resp.

O0(N), resp. @i(JV), resp. 62(N)) of the form Po, Qs and Rs. Then for any

M=
( )

l＼(Ni, N≫)(resp. 0Q(N), 6i(N), 6Z(N)), there exist matrices M, and M&K

such that

a

c

1 0

0 'l

0 0

o "o

b ＼
0 0

_AJL

d
1 o

o 'i t

Moreover ＼D＼=d mod NiN^ (resp. mod AT).
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Proof. We treat only the case of &0(N). Then K is generated by PUf Qs and

Rt with UeSLn(Z), even SeSMn(Z) and TeSMn(NZ) such that
^

T is even.

We shall prove the assertion by induction on n. When n = l, the assertion

is trivial. Let us suppose ≪>1. By the elementary divisor theorem there exist

U, VeSLn(Z) such that UDVis diagonal. Hence we may assume Z)=diag(rfi,---,dn).

Step I. We may assume Jn = l.

Putting C―idj) we have g.c.d (cnl,---,cnn,dn)―l. First we assume that dn is

an odd integer. There are even integers Si,---,snsuch that SiCM-＼ ＼-sncnn=2

g.c.d (cni,"-,Cran).Let us put

V

Si

0
i

0

Sl"*"""Sn-l Sn

0 Sn 0

MQs=(y
?)

and D' = (^-)

Then we have d£,n~i= 2 g-c.d(cni,-~,cnn)and dnn = dn+cn,n-iSn, and hence g.c.d

{d-!l,n-i,diin)= l. Now again by the elementary divisor theorem we may assume

that D' is of the form £>'= diag(<ii',-･･,dn<,1). Secondly we assume that dn is an

even integer. Then for some i,cni is an odd integer. Take an integer j different

from i with l<j<n. There are integers su---,s/-i,sj+i,--,sn and an even integer

sj such that SiCnl-＼ ＼-sncnn=g.c.d(cni,---,cnn).Let us put

/

o

V

Si

0

0

Si

Sj

Sn

0

0

Sn

I

, MQ8=(clp) and D' = {d'i3).

Then we have d,',j=g.c.d(cnl,---,cnn),di,n―dn+cnjSn and hence g.c.d (dnj,dnn)―l-

Again by the elementary divisor theorem we may assume that Dr. is of the form

£'=diag(rf/,-■･,<&_!,1).

Step II. The assertion is true.

(Af B'＼
r/nA- Then since D=diag (di,---,dn-i,l),we can now

select Qs and RT such that the last row of C and the last column of B are zero.

The symplectic condition yields that Ar, B' and C have the form

A'-(Ai
°＼

B-＼o o)'

By the induction hypothesis this proves the

c-(c

lemma.

0/
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In the case of F0(Nh N2), 0i(N) and <92(iV)the similar proof is applivable

Applying Theorem 1 to the case (I),R, @ and c with U=V=X=Y=0, we

have

0F,o,o(MZ)=xP(M)＼CZ+DrzdF,o,o(Z).

Hence IP is a character if m is even. Let us denote by X$VI ±1} the composition

map of %£°and the quatient map: C*―*C*/{±1}. X$)/{±1}is a homomorphism

whether w is even or odd. As we shallsee in the next section, T-p (resp. X^)/{±1})

is trivialon K (see Lemma 2 for the notation) if m is even (resp. odd).

Assume that M=l
AB＼

) satisfies at least one of the four conditions (T),c, @

and (D, and f J is the matrix in SL2{Z) corresponding to M in Lemma 2. Then

using Siegel s <P-operatorwe obtain

and

cdj
= sgn(dr/2ly

3d l 'j if m is even

X$＼M)=±e(^-＼ if m is odd.

(see also Appendix).

Through easy calculation we get the following

Theorem 3. Let F be a positiveintegral symmetric matrix of degree m, and

N a positiveinteger such that NF*1 is integral. Put ＼F＼―2SKwith g.c.d (2,K) = 1.

(1) In any one of the following four cases, we have for any even positive

integer m

/(-l)m/*＼F＼ ＼ffW)=8gn(|P|)"(( J ' ')

(D 8＼N and Me&0(N), 4＼N and M£&0(2N), 2＼Nand MgF0(2, 2N), 2＼sand 4＼N and

Me0o(N), 2＼sand 2＼N and M£00(2N), or 2＼sand M£F0(2,2N),

R (F is even.) 8|7V and Me61(N), 4＼N and M 0O{2N), 2＼sand 4＼N and Me6i(N),

2＼sand 2＼N and Mg61(2N), or Mero(2iV),

c (NF-1 is even.) 8|JV and Mg62(N), 2＼sand A＼N and M£&2(N), or M£F0(2, N)

R (Both F and NF'1 are even.) MgF0(N) with N>1.

In case c with N=l we have tg＼M) = l for all M.

(2) In any one of the following four cases, we have for any odd integer m

Xf＼M)=±i{^-)



R

(3)

c
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4|JV and M£&0(N), 2＼N and Me@0(2iV)? or M rQ(2!2N),

4＼N and MzO^N), or 2＼N and Me6i(2N),

4|iV and MeOz(N＼ or 2＼N and MerQ(2,N),

MeFoiN).

Remark. For even m the case @ with N―l Is investigatedin [11].

Corollary. Let F and N be as in Theorem 3. Then we have

/ f_iy≫/2| EM ＼
WM, = sgn(|D|,-(l^I^)

X'f>(M)=±s(^~1＼ if m is odd

if m=deg(F) is even,
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in the following four cases c Af fo(2,2N), c (F is even.) M£F0(2N), (§)(NF'1 is

even.) M£F0(2,N) and R (Both F and NF'1 are even.) MeF0(N).

3. Computation of %F II

Lemma 3. {The inversion formula) Let F be a positive real symmetric matrix

of degree m. Then for U, V,X and YeMm,n{C) we have

6FtU,r(Z;X, Y)=＼F＼-n/*＼-^^＼Z＼-m'*dF-Kv,v{-Z-'＼Yy -X),

where ＼―V ―lZ＼1/2is determined to be positivefor purely imaginary Z in Hn.

Proof. We have the inversion formula for the standard theta series

Kv(Z;x, y)=＼-V^lZl-^&U-Z-1', V, -x),

where |―V ―1Z＼~1/2is positive for purely imaginary Z£Hn. From this we get

the inversion formula for dF in the same argument as in the proof of Theorem 1.

Corollary. Let F be as in Lemma 3. Assume that there is a positive real

number h such that hF is integral. Put G=Mm,n(Z). Then we have

= ＼F＼-n/*＼-V^lZ＼m/* Z 0i*F,*Fv.-u-iF-iu+H(Z;hFY; -h-'F^X),
H-.h-lF-i-G/G

where |―V ―1Z|1/2 is positive for purely imaginary Z in Hn.

Hereafter we assume that F and M=( r ) satisfy the condition (T),c, c

or @ with N>1. Let HsF^G. We have the following two formulas:

(･)

I

K-.F-IG/G
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for DeMn,n(Z) such that IDI-^0 and for dsZ+ such that dD~l is integral.

Let us put M' =
(_^

c)=M(-l

that dD~l is integral. Then we have

l)
eSpJZ). Let d be a positiveinteger such

0f,o,o(M'Z)= 2 Odp,o,a(＼M'Z[D]) (by the second formula of (*))

= S OdF,*J^lBD-{dZ-dD-'C)A

= Z e(tr(tBDtGFG))ddF,o.a(-(dZ-dD-iC)-1)
G:GtD-l/G

= £ eitT^BD'GFG^dFl^^l-V^lidZ-dD-'Cyr2
G-.GlD―i-IG

X Z e{tv{2dtGFK))OdF,oAdZ~dD^C)

K:(dF)-iG/G

(by the first formula of (*))

= ＼dF＼-n/t＼-V-l(.dZ-dD-iC)＼m/2

Now

X E 2 <tr(tBDtGFG+2dtGFK-d2D-1CtKFK))0tiF.o,K(dZ)

G-.GW-l/G K :(dF)~lG/G

2 s(tr(tBDtGFG+2dtGFK-d*D-1CtKFK))

G:G≪D-l/G

= E <tr(l'BDt(G-dKD-iC)F(G-dKD-1C)+2dtADtGFK-d*tACtKFK))

G-.GtD―i/G

= 2 eiXrVB&GFK)).

0:GtD-i/G

Using the second formula of (*) for D―dln, we get

dF.UM'Z)

= ＼dF＼~n/2＼-V~l(dZ~dD-1C)＼m/2 Z iX^BD'GFG)) 2 6F,≫,idZ).
G:GtD-l/G K-.F-i-G/G

Substituting ―Z~xfor Z and using the firstformula of (*), we get

Opn.oiMZ)

= ＼dF＼-n/a＼V-ldD-1(CZ+D)Z-1＼m/i E eWB&GFG))

G: GtI)-l/G

X 2 ＼F＼-n/a＼-V^lZ＼m/* Z e(tr(2tLFK))dJ?,o,L(Z).

K:F~W/G L-.F-lG/G



Constructionsof Modular Forms by means of Transformation

Observing that

f °

2 e(tr(V LFK)) =
＼

K-.F-IG/G [＼F＼

we obtain

6F.o,o(MZ)

if L^O mod G

71 if L=0 mod G

= ＼-V-lZ＼m/a＼V-lD-x(CZ+D)Z-T/a E e(tr(tBDtGFG))dF,0,0(Z).

G:GtD-l/G
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The above computation is well known for n ―＼.(cf,[4],[7],[8] the section 2).

Thus we obtain ;

Lemma 4. Lei |V~-lX+ln|1/2 be a function on SMn(R) which is the branch

taking the value 1 at X― 0. Suppose that F and M= I r | satisfy one of the four

conditions (I),@, (§)and c with N>1. Let us denote by e(C,D) the complex

number given by

e{C,D) abs{DYinW^~'＼C+DY/^W^l D-'C+lnV'2.

Then we have

X$＼M)=e(C, B)m abs(D)~m/2 £ s(tifBDlGFG)).

Corollary. If M is in the form of Pu, Qs or Rs {cf.§2), then we have

Z£>(M)= 1 if m is even,

Z£W)=±1 if m is odd.

4. Constructions of cusp forms

Let ke-^-Z+ and let % be a map of V to C*. We denote by [T',k,x＼ (resp.

＼T't&]) the space of cusp forms of weight k for F' with a multiplier i (resp. a

trivialmultiplier).

We apply a differentialoperator det"(V) to ^e formula in Corollary to Lemma

3. Then we get

= (Vf^)WB/2An"|F|-n/a|-Z|(W/w+*

X Z OvF,nFv.-n-iF-w+H<,Z',0 ; hFY, -h^F^X),
H:h-1F-1G/G

where 0 and v are as in Theorem 2. Any MeT can be written in the form of
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ln＼

with UsGLn(Z) and S£SMn(Z) (cf.§2 for the

notation). Hence in the Fourier expansion

＼CZ+D＼~(m/v-vdF,uAMZ; 0;X,Y)=Z a(S)e(tr(ZS)) for a!! Me/1,
S>0

the coefficienta(S) vanishes for S with |S|=0, since 0(G) vanishes if rank (lGFG)

<n. Thus 8f,u,v(Z;0) will be a cusp form so long as it is a modular form.

ft(1) Cusp forms of weight -5-+I

Proposition 1. a) We have

dim[r(2),|-+l>z]>0

with X(M) = Xln(M)e(tr^B+~(D-ln)~jCtD-jBtA＼＼ Especialywe have

dim[r(4,8),|-+l,ZlB]>0.

b) Let F be a positiveeven symmetric matrix and N a positive integer such

that NF"1 is even. Then we have

and

dimlF(hN), -|+1, ZA,~|>0 for h>3

dim[r(2iV),|-+l,zl>0

with X(M) = XF(M)e(tr(^-(D~ln)-jF-1CtD-jFAtB＼＼

c) If N is divisibleby a square of some odd prime, then we have

Proof, a) We apply Theorem 2 with n=l=m, F=ln, 0(G)=＼G＼,X=Y=0,

U=V=＼ln and M=(^?W(2). Then we have

din^a/mn^nn{MZ＼0)=1{M)＼CZ+Dr/^dln,O/^n,O/Znn{Z-,0)

with X(M)=Xln(M)e (tr(jB+^(D-ln)~OD-jBtA＼＼ Hence

Oin,a/mn,<.i/2nr,(Z',R)is a cusp form for T(2) with a multiplier 1.
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Let us denote its Fourier expansion by 2] a(S)e(tr(ZS)). a(S) is given by
so

≪(S) = e(-9-) S e(tr(G))|G|. We must show that dln,a/2nn,cl/2Hn(Z;R)is

＼6/G=a/2)lnmodZ,≪GG=S

a non-zero function. To do this, it sufficies to show that there is S>0 such that

a(S)^O. The Fourier coefficientfor 4-In is

a(＼u)=e(£) 2 e(tr(G))|G|

＼4 / ＼Z I G =(i/2)inmod 2,*GO = (i/4)lB

=i-.(|) S .(tr(^G))|G|

Since G = ln mod 1Z, we have ＼G＼= ＼(gij)＼=gn---gnnmod 4. If ≪= 0 mod 4, then we

-y W-j In)

/ n＼ (
>0. Similarly we have el――W

＼ ^ / ＼
jl≫)<0 if n=2 mod 4, V-le(~＼a(jln)

<0 if≫=1 mod 4 and V-le(-j)a(jln)>0 if ≪=3 mod 4.

b) Let F and N be as in the proposition. Let us put 0(G)=＼G＼. It is shown

in [5] that for an integer h>3, 6hF.o,o/h->in(Z;0) is a non-zero cusp form of weight

― + 1 for T{hN) with a multiplier XhF. It remains to show that 0F,(.i/2nn><.w-n(Z',R)

is a non-zero cusp form for F(2N) with a multiplier X(M)-ZF(M)e(tr( ―(D-ln)

-jF-'OD-jA'bX). By Theorem 2 we have a formula forM=(f?＼er(2N).

If £ c(S)e(tr(ZS))is its Fourier expansion, then we have
.s.n

4') = £(y) 2 e(tr(G))|G|

=2-.(|) E , ･(tr(lG))|G|.

Using the same argument as in a),we get af-j-Fj^O. Thus we get the desired

result.

c) For an odd prime A>1 with h2＼N,itis easily checked that dF,o,a/hnn{Z;R)

is in P(N), -77-+ 1,If ･ If fl tf1≫I is tne Fourier coefficient for -77-1≪,then we
I ^ J ＼n h>
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u)=
O--(.＼/h)lnmod Z, tGFG=V/h2)F

IGI

= h~n 2 ＼G＼>0.
G=＼nmodhZ,<-GFG=F

Hence 0F^,(.i/^＼n{Z;(I>)is a non-zero cusp form.

(2) Cusp forms of weight >n

Let F be a positive real symmetric matrix of degree m>0. Let V be an

7nXn matrix with entries In Q, and h the least common multiple of the denomi-

nators of the entries of V. Suppose that there exists a prime p with p＼h such

that hV£Mm,n(ZlpZ) is of rank n, where hV denotes the reduction of hV mod p.

Then for all GeMm,n(Q) with G=V mod Z, F[G] is a nonsingular matrix; hence

in the Fourier expansion Of,u,v(Z)= £≪(S)s(tr(ZS))(UeMm,n(R)), a(S) vanishes for
S>0

S with |S|=0.

(i) Let F be a positive even symmetric matrix of degree m>2n. Let N be

a positive integer such that NF'1 is even. For £/,FeMTO,??,(Q)and M=( ",n )
＼CD }

FIN), we have (U, FV)
( ^ )=(UX,

FVM) mod Z. Let p be a prime with (p, N)

= 1 (hence (p, |F|) = 1) and take U, VeMm
J―z＼

so that p(U, FV)GMm n(ZjpZ) is
＼P I

of rank 2n. Then p(UM, Vm) is also of rank 2n for all MgF0(N). Using the

notationin Corollaryto Lemma 3,we have (U, FV)(
ln)=(FV,

F(-F-lU+H))

= {FV, -U) mod Z; hence (U, FV)( n) is also of rank 2≫. Since F0(N) and
＼―In /

( TC| generate F, in the Fourier expansion

＼CZ+D＼-m/26f>jj,v(MZ)=Za(SWtr(ZS)) for all M=

S>0

(AB
＼CD

).r.

a(S)vanishes for S with |S|=0. For M l＼pN) we have UM=U, VM=V mod Z

r(pN), ―, 1 for some multiplier1.

(ii) For F=lm we get 2(f/,V)(^)=^u"> v≫)mod ^ for u> V£Mm,n(R)

and M=( ,, Je/"1.Hence for an odd prime p if we take U, VeMmn(~-Z) so
＼LD) ＼p J
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that 2p(U, V) MM,n(ZlpZ) is of rank In, then 0F,v,v(Z) is in
＼r＼2p＼

some 1.

(iii) Suppose m>2n + l and set F=lm.

2(r+l 0)

Take T MmJjZ)

eMm,2n(ZI2Z) is of rank 2n for any u Z2n. Then

GL2n{Z), TM also has this property. Set

w=

1
-1

1-1

1

e/kLm(Z).

Then we have W(UM, VM)= W(U, V)(
f^ HU°)

m

~2
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X~| for

so that

for any M in

for^=(^W and for

some ueZ2n. Thus if W(U, V) has the property stated above, so does W(Um, Vm)>

Especially 2T^eMOT.≪(Z/2Z) is of rank 2n for any Me P. Hence we get 0F,u,v(Z)

e|T(2),w/2,Z] for some X.

Examples of non-zero cusp forms

(i)' Let F be a positive even symmetric matrix of degree m>2n which is of

the form F―i1 ) with deg(Fi),deg(F2)> n. Let N be a positive integer such

that NF^'1 is even and let p be a prime such that (p, N) = l. It is easily checked

fhflffor

w v＼＼l}M"^z)

p(U,FV)GMm,2n(ZlpZ) is of rank 2n, and 0F.u,v(Z)is In UXpN), m/2,X] with

X(M) = e(tr(2tVFVB-tCtUF-1UD-tAtVFVB)). 0F,vAZ) is a non-zerofunction. In

fact,we have dF,u,v(Z)―0F u^0(Z)dF2,o,v(Z)with

＼P /

0 ＼

1 eMdegcF2),≫(―Z)
― In I ＼P I
P /

Here OF.z,o,v(Z)is obviously non-zero and so is OFvu＼o{Z) (for example, use the

inversion formula).

(ii)' Set F=lm with m>2n. Let p be an odd prime, and U, V the same

matrices as in (i)'. Then we have a non-zero cusp form 0im,u,r(Z) of weight

/ / 2
m＼'lfor F{2p) with the multiplier X(M) = Xlm(M)e＼trl-^-B-pOD-LA'B))
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(iii)'Set F=lm with m>2n + l and let U, V be as above with p=2. Then

2W(U, V) +
(t )£Mm2n(ZI2Z)

is of rank In for any uqZ211. Hence we have a
V u)

non-zero cusp form 6im,u,v(Z)e[r(2),ml2,X]with l(M) = lJJM)e(tr(^B--~CtD

T-))

(3) Cusp forms of weight n + 1 with a trivial multiplier

Theorem 4. a) We have

dim[r(4),≫+ l]>0 for ≫>1.

Let F―＼ * ) he a positiveeven symmetric matrix of degree 2n+2 with deg(F1),

deg(F2)>w, and N a positiveinteger such that NF~l is even. Then we have

dim[T(/rW), w + l]>0 for an odd A>1

and

dim[T(2N, AN), ≪+ l]>0 if N is odd.

b) Let n be even. Then we have

dim[r(2^2),≪+ l]>0 for an odd A>1.

Let F be a positive even symmetric matrix of degree n, and N a positiveinteger

such that NF'1 is even. Then we have

dim[r(hN), n +1]>0 for h>2

and

dim[T(iV), ≫+ l]>0 if N is divisibleby a square of some odd

integer >1.

For n=2A we have

dim[r, 25]>0.

Proof, a) Suppose w>l. From (2)

(*･) *i*.+..*.r(Z)

is a non-zero cusp form for r(2) with the multiplier l(M) = Xl2n+2(M)e(tr(2tVVB-

tUUDtC~tVVBtA)) where we put

u=
1

~2

/I

0

1

V

0

0

＼ / 0 ＼

) U ;i/
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Since %i2n+2(M) is trivial on T(4) (cf. Corollary to Theorem 3) and since both

VUU and A'VV are even, X is trivial on r(4). Thus we get dim[T(4), w + l]>0

for ≪>L

The remaining cases have already investigated in (2).

b) Let n be an even integer. Throughout the proof R(G) denotes the deter-

minant of G.

For an odd A>1, we have dln,0,a/linn(Z)£[F(2h),nl2,l] and 0ln,o,(.i,hnn(Z',R)e

[F{2h＼ ≪/2+l, Z'] with Z'(i1f)-Zlre(M)£(tr(l//i2(2U-A)^)). Hence we have eln.o.a,mn

{Z)dln,o,a/hnn{Z;0)£[r^h),n + l,X＼ with Z(M) = e(tr(l/A2(21≪-^)tJB)). Since Z is

trivial on i"(2/z2),din,o,a/hnn(Z)0in,o,ci/hnn(Z;0) is a cusp form for T(2^2) with a

trivial multiplier. It remains to shows that both 6in,Q,a/h)in{Z) and #iM,o1(i//mn(2';R)

are non-zero functions. Obviously the former is non-zero, and it is easy to check

that the latter is non-zero, using the same method as in the proof of Proposition

1 c).

Let F and iV be as in the theorem. For h>3, dhF,o,o(Z)X8hF,o,n/h)in(Z;0) is

a non-zero cusp form of weight n + 1 for F{hN) by Proposition 1 b). Hence we

get d＼m[F(hN), n+l]>0 for A>3.

If N is odd, then dF,o/2-)in,a^)in{Z) is non-zero modular form, since we

have 0F,O,ci/8)ln(MZ) = XF(M)EF(0, (1/2)1,,,M)0F.,N^nno^nn{Z) = XF(M)EF(0, (1/2)1B,

(In NF~X＼
M)0F,a/2nn.<.i/≫in(Z) for M=[

ft 1
). Hence ^.(i^^.ci^i^^.ci^i^.d^)!^;

0) is a non-zero cusp form by Proposition 1 b). Hence we get dim[F(2N), n + 1]

>0 for an odd N. If N is even, then obviously dim[F(2N),n + l] is positive

since [T(4), n + T＼is contained in [F{2N), n + 1].

If A/"is divisible by a square of some odd integer A>1, then OF^,o{Z)OF,o,a/^in{Z＼

0) is a non-zero cusp form for F(N) with a trivial multiplier by Proposition 1 c).

Hence we have dim[F(N), ≪+ l]>0.

For w ―24 H. Maass has shown an existence of an even matrix of degree 24

with the determinant 1, for which OF,o,o(Z;0) is a non-zero cusp form of weight

13 for F with a trivial multiplier. Hence dF,o,o(Z)6F,o,o(Z;0) is a non-zero cusp

form of weight 25 for F with a trivial multiplier and we get dimrr7, 251>0.

Remark 1. A cusp form of weight n + 1 for F(4.)corresponds to a differential

form of the firstkind on the nonsingular model 7Jra/r(4)of the modular function

fieldwith respect to i"(4). Our result shows that the geometric genus of Hnjr{A)

is positiveif≫>1. On the other hand we know that for n = l, /71/irT(4)is a rational

curve.

Remark 2. When n = 2, the cusp form (**) is just the example of a cusp
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form of weight 3 found by S. Raehavan in [6]. In fact we get

where (u-h v≪)

IC

i

varies over

l/2＼

0 )

the set

1/2/

/O l/2＼ /1/2 0＼

10 1/2/' V 0 0/

/ 0 0＼ /1/2 0＼

U/2 0/' Vl/2 0.J

(4) Examples of cusp forms of degree 2 and weight 3

Let F be a positive even symmetric

positiveinteger such that NF~l is even.

(***)

matrix of degree m£2Z, >n, and N a

We have a transformationformula

OF,u.v(Z;0)

= sftriA'B1VFV+ 2(D-lnY VU-QUFU))＼CZ+ T)＼(mm+V0F<U,V(Z;0)

forM=(^＼r(N) and U, VeMnJ-jj-z＼ with NF-1ll£Mm..v(Z), where 0 and

v are as in Theorem 2. Let us denote Its Fourier expansion by 2] a(S)e(tr(ZS)).
S 0

Then a(S) is given by

a{S)= s(2tr('VU)) £ s(2tifGf/))#(G + V).

GZMm,V(Z),F[G+V~1=S

Using this formula, we give some examples of non-zero cusp forms of degree

2 and weight 3 for principal congruence subgroups with a trivialmultiplier. It

seems that we answer a question in [3] concerning " konkrete Beispiele von

Spitzenformen ".

Of,u,v(Z＼&) becomes such a cusp form for l＼N) in the following cases. Let

us set

＼Q*

(i) N=5 F=

(ii) N=13; F=

(iii) N=17; F=

M4,2

98/

(2 1 ＼

12 1

12 1

＼ 1 2/

f

f

1

2 1

1 2

1

1

2 1

1 4

1

(Z)

J

i

＼0.i gJ Kg* gJ

0(G) = |G8|, U=

0(G) = |Gi|, U=

0(G)=|G,|, U=

/o

10

17 0

＼0

(92

4＼ / 4 -
3 K_l[-3

V

0＼ / 4 1＼
0 F_l -8 2
0 ' V-＼i 12 -3
0/ ＼-3 4/

4＼ / 2 -1＼

-3 '
K~17 6 -3

5/ ＼ 3 10/
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(iv) iV=29; F=

(2 1 ＼

12 1

16 1'

＼ 1 2/

(v) 7V= 4A-1 (A>2);

means

/o

＼0

/2 1 ＼

F-＼l
2h

M 2 1
'

＼ 1 2h

(vi) N=20h-7 (h>2); F=

/4 'l ＼

12 1

12 1'

＼ 1 2h

I2

(vii) N= 20/?- 3 (A > 2); F= ~l

(viii)N=24/i-ll (h>2); F=

1

2 1

1 4

1

12 1

!

2hj

1

2h 1

1 4

(ix) JV=24A-7 (h>2); F=

)

/2 1 ＼

14 1

12 1'

＼ 1 2A/

of

6＼

7

11

7

0(G)=|Gs|

Transformation

v=

/ 2 -1＼
1J-4 2

29 6 -3
＼-3 16/

(7-0. V

/-I 0＼

-I
2 °

H 0
-1

＼ 0 2/

A

<p(C)=|G2|, £7=0, F=F-J q

＼0

0(G)=＼Gt＼, U=Q, V=F

/o

?

＼0

0(G)=|Gi|, U=0, V=F
?

＼o

0(G)=＼Ga, U=0, V=F

V

°

)

V

°)

V
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Remark. Let p be a prime integer with 3</><100. Then p is one of the

following: 5, 13, 17, 29, 4A-1, 20A-3, 20A-7, 24A-11, 24A-7 for some h>2. Hence

noting cusp forms which appear in the proof of Theorem 4, we can easily obtain

a non-zero cusp forms of weight 3 for F{N) with a trivial multiplier where N is

any integer with 3<iV<100.

Now we shall prove the above Ofm.v(Z;@) are non-zero cusp forms of weight

3 with a trivialmultiplier. We treat only the cases (i) and (v). To the remaining

cases almost the same argument is applicable.

Case (i) We get

wjQ Then

5 ＼

4-l＼

-1 i
lVU=^r

o

G i)
5F1U lVIUZ) and

it is easy to check that Of,v,v(Z;0) is a cusp form of

weight 3 with a trivial multiplier,

it is a non-zero function. Put So =

using the

1/ 4

formula (***). We must show that

J)
Then we have

≪(5o)= 2>(2/5(g1+2g2+3g3 + 4g4+4g5 + 3g6+2g7 + g8))|G2+So|,

where G runs over the set of ail 4x2 Integral matrices such that tG%-{-G:>+ tGFG

= 0. The equation 'G2+G2 + tGFG--Q has the following twenty integral solutions.

Let us put ^ = '(-1, 0,0,0), ≪2= '(-l, 1,0,0), ≪3= t(-l, 1,-1,0), aA = ＼-l, 1, -1,1),
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bi ― a^ ― a^ b2 = a2--ai, 6s = ≪i―≪4, &4=― a4 and 0 = l(0, 0, 0, 0). Then all the integral

solutions are

G = (0, 0), (0, 60, (0, h), (0, h), {fllt 0), {flu 60, (≪i, k), (≪1( 64),

(≪2, 0), (≪2, &0≫ (tf2, 68), (≪2, 64), (≪3, 0), (tf3, 62), (≪3, 6s), (≪8, 6-0

(≪4, 60, (≪4, h), {aA, bz), (04, 64).

Then we have

≪(S0) = l + s(j^

Thus 6f,u,v(Z;0) is a non-zero function.

Case (v). Obviously Of u v{Z ; 0) is a cusp form of weight 3 for

a trivial multiplier. We shall show that it is a non-zero function.

Then we have

r(N) with

Put So = j,
＼0 V

a(S0)=E |G8+So|,
G

where G runs over the set of all 4x2 integral matrices such that tGs+Gs + tGFG

= 0. The integral solution of the equation tG3+G& + tGFG = 0 isonlyG = Q. Hence

we have

≪(SO)=|So| =
_4_

N*

Thus Of v v(Z;0) is a non-zero function.

5. Appendix

Let F be a positiveintegral symmetric matrix of degree m>0 and MzF

satisfy one of the four conditions CD, @, c and c in §2. If f ＼gSL2(Z) is the

matrix corresponding to M in Lemma 2, then it satisfiesone of the four condi-

tions (T),(2),(3) and (D below;

R b~0 (2), c=0 (2iV),

c (F is even.) b= R (2), c=0 (AT),

c (A^F"1 is even.) b=0 (2), c=0 (iV),

c (Both F and A^F"1 are even.) c=0 (N).

In these cases XF(ab＼=e(c, d)m＼d＼ 2 s(tr(WGFG)) can be computed as in [8].

Moreover the invariance of "If
(ab＼ , (lm＼
U)by (01 with mzZ (resp.m£2Z) for an even
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F (resp. an integral F) gives some informations on F and N.

Proposition, (i)

(2) Suppose that F is even and NF~l is integral. If m is odd, then i＼N, or 2＼N

and ＼F＼―22r^K with r>0 and an odd K. If m is even, then 4|AT,or 2＼N and

＼F＼=22TKwith f>0 and an odd K, or ＼F＼=m+l (4).

(3) Suppose that F is integral and NF*1 is even. If m is odd, then A＼N,or 2＼N

and ＼F＼=22rKwith r>0 and an odd K. If m is even, then A＼N,or 2＼N and ＼F＼=

22rK with r>0 and an odd K, or ＼F＼=m+ l (4).

c Suppose that both F and NF"1 are even. If m is odd, then 8|iV, or 4|iV and

＼F＼=22r+1Kwith r>0 and an odd K. If m is even, then 8|JV,or 4|iV and ＼F＼=22rK

ivith r>0 and an odd K, or 2＼N and ＼F＼=22rK with r>0 and K=m + 1 (4), or

＼F＼=m+ l (4).

It is known that m=0 (8) if ＼F＼=1.

(ii) Suppose that M―( ) and F satisfyone of the four conditions R, @, R
＼CU/

and c mentioned above. In case R with N=l, we have

1P(M) = 1 for all MeSLiCZ).

In the remaining cases d is always non-zero

＼ 4 l＼dI

If m is even, then we have

/( ―ly^iFI ＼

// m is odd, then we have
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