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OF TRIVIAL EXTENSION SELF-INJECTIVE ALGEBRAS

By

Takayoshi Wakamatsu

Introduction.

Let A be an indecomposable basic artin algebra and TA a basic tilting

module with B=End(TA). Let us denote by R and S the trivialextension self-

injectivealgebras Am DA and BmDB, respectively. In the papers [24] and [22],

H. Tachikawa and the author have proved that there is a stably equivalent

functor S: mod-i?―>mod-S and the restrictionof S to the tilting torsion class

3:={Xemod-A＼ExtA(T, X)―Q} coincides with that of the tilting functor

Horn^T, ?).

D. Hughes and J. Waschbiisch [18] introduced the following doubly infinite

matrix algebra:

A=

0

An-! Mn-X

An Mn

0

in which matrices are assumed to have only finitelymany entries differentfrom

zero, An―A and Mn―DA for allintegers n, all the remaining entries are zero,

and multiplicationis induced from the canonical maps A(g)ADA^DA, DA&aA^

DA and zero maps DA0ADA->Q.

The identity maps An-+An+1, Mn―>Mn+i induce an algebra isomorphism vA

of A. The orbit space A/vA is easily seen to be the trivialextension algebra R.

Similarly, we can consider the orbit space A/{vA)n as a self-injectivealgebra

and it is denoted by Rn for each n―l, 2, ･･･,oo. Notice that R^-=R and R≪,=A.

The aim of this article is to prove the existence of a stably equivalent

functor 3n: mod-i?m―>mod-5ra for each n. Here Sn is an orbit space B/(vB)n,

The desired functor Sn will be defined by slightly modifying the definition of

the functor S=S< in [24] and [221.
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In order to relate the categories mod-A and mod-/?, Hughes-Waschbiisch

used the exact functor 0: rnod-.A-->mod-J?which preserves the indecomposability

and the composition length of a module and also almost splitsequences and ir-

reducible maps. Similarly to the functor 0, we can define the functors 0n:

mod-^4-≫mod-/?n and 0m,n '■mod-Rm.n―>mod-Rn. We shallshow that the functors

S,=<S, So, S*, ■■･, Soo make the following diagrams commutative:

mod-i?^

<Soo

mod-Rm.n > mod-/?

I <Srifn

Rm,n

K
mod-SOT.n ― ≫.mod-S7!

/Rm.n

mod-Sao

It should be noted that the functor 0 is not dense in general, though in the

case where R is representation-finiteor A is hereditary 0=0j is dense and

S=Sx is induced from Sn.

Recently, D. Happel [15] has proved that mockA and mod-B are equivalent

if gl. dim. A<co. But, since 0 is not dense in general even if gl. dim. yt<oo,

our results does not follow from his one. At the end of this paper such an

example will be given.

Throughout this paper, we fix a commutative artin ring K and allalgebras

are assumed to be artin if-algebras except R^ and SM, and modules are finitely

generated over K and morphisms operate on the opposite side of the scalars.

The ordinary duality functor is always denoted by D.

1. Preliminaries

In this section, we shall recall some of basic results on tilting theory and

trivialextension algebras for the later use.

Let TA be a tiltingmodule in the sense of Happel-Ringel [16]. Put B=

EndCT*), then BT is again a tiltingmodule with End(BT)=A Let us put cl―

{Xe=mod-i4|ExtA(T, X)=0}, £F={Aremod-,4|HomA(T, X)=0}, T={Y^mod-B＼

YRBT=0} and Qj={Yemod-B＼TorB(Y, T)=0}. Further, let F=EomA(T, ?),

F'=ExtA(T, ?)(resp. G=(?(g)BT), G'=Torf(?, T)) be functors from mod-A (resp.

mod-£?) to mod-S (resp. mod-^4). Then there are short exact sequences of

functors
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0 > GF > lmod-A ―> G'F' ―> 0

301

0 ―> F'G' ―> WB -^> FG ―> 0,

where s and rj denote the counit and the unit of the adjunction (F, G), re-

spectively. Hence the restrictionsof the functors F and G (resp. F' and GO

give a category equivalence 2"= 4/ (resp. CI=3C).

We call a short exact sequence 0^>XA-^VA―^LA―^0 a torsion resolution of

XA if Veff and Leadd(T^). There is the minimal torsion resolution 0-≫

X―>V(X)―>T(X)-~>0 for any ^-module X and every torsion resolution of X

a*) ft- o

0
_> x

> F(Z)0To ■>T(X)RT0 ―■>O

Similarly, a short exact sequence 0->WB―>UB―>YB-^0 is said to be a torsion-free

resolution of YB if £/e<V and W<^add(DTB). It is easy to see that the sequence

0-> WB-> UB-> YB―>0 in the category mod-f? is a torsion-free resolution iff the

corresponding sequence 0-*bDY^bDU--*bDW-j>0 in the category B-tnod is a tor-

sion resolution. Therefore, there is the minimal torsion-freeresolution 0->W(Y)

―>U(Y)-―>Y->0 and every torsion-freeresolution is of the form

(8y
0 ＼

＼0 1WJ (Ty,0)
0 ―* W(Y)@W0 ■ > U(X)@W0 > Y ― > 0.

Any module XR over the trivialextension self-injectivealgebra R=AxDA

is defined by giving its underlying
^4-module

XA and the .4-morphism 0: XRADA

-^X such that $-($RDA)=0 and any i?-morphism f:XR=(XA) <j))^XA={XA, #')

can be considered as an ,4-morphism /: XA-^X'A making the following diagram

commutative:

X<g)ADA > X

fRDA＼ ＼f

X'RADA >X'.

See [12] for details. If the underlying
^4-module

XA is decomposed as a direct

sum X^XX and the morphism 6 is of the form (,
A

)
:(Xo^X^DA-^Xo^X,),

we shall denote XR={XA, ^) by ―°. It should be noted that any indecomposable

fA
projective(= injective)i?-module has to be of the form fR―ff^i. with a primi-

tD A
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tive idempotent feAaR.

Similarly, by the definition,any object X in the category mo6.-Roa{R0*=A) is

is defined by giving a family of A-modules {Xi}iez (Xt^0 for only finitenumber

of integers i^.Z) and a family of A-morphisms {^ : Xi<^>DA-^Xi+l} i<BZsatisfying

$i+i'($i&)DA)=0 for all feZ. Any morphism in the category mod-J?oo from

X={Xi, (f>i＼to X'={X't, fa} is a family of A-morphisms {ft: X^X'^ such that

the following diagrams are commutative for all feZ:

X&aDA > Xi+1

ftRDA＼
u

*≫

X'tRADA >X'i+1.

Similarly to the above also, for any positive integer n, an i?B-module X is

defined by giving a family of A-modules Xo, Xx~-, Xn-t and a family of A-

morphisms ^0: XO(S)ADA-*XU ■■■,$n-2: Xn-<i<g)ADA->Xn-l and ^n-i:Xn-!^ADA

-≫Z0 satisfying $i+1-($i<g)DA)=0 for each z"=0,1, ･･･,n―1. An i?n-morphism

from X={XU (f>i)to Z'^fX^, <f>i)is a family of /1-morphisms f={ft; X^X'^)

such that $'ffi(£)DA=fi+i-if>ifor each i. Where we put Xi+S.n―Xi and fii+s.n^fii

(Isgzfgn, seJV), for convenience.

Then the functors 0n : mod-i?oo―>mod-i?n and 0m, n: mod-i?m.n->mod-i?n are

defined as follows:

0n({Xi,tj})={Yt,4>i}U, Yt= 0 Xj
j=i(modn)

and

d>t|XjRDA=6j for all /=*'(mod n).

0ni{fj:Xi->X'j})={gi:RXJ^RX'j}, gt=@fj

It is easy to verify that the functors 0n, @m,n are exact and preserve the

projectivity(= injectivity),indecomposability and composition length of a module

and almost splitsequences and irreducible maps. Further they make the follow-

ing commutative diagrams:

0

mod-Z?oo

mod-^m.≫ * mod-i?B

and

0

mod

mod-/?m.B > mod-Rn

Here mod-* denotes the project!vely (― injectively) stable category of mod-*

in the sense of M. Ausiander, for each self-iniectivealgebra *
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2. The functors Sn : mod-i?.ft-^mod-Sn and Qn : mod-Sn-≫mod-/?K

In this section, we shall define the functor Sn: mod-ii?7t->mod-Sm first and

then, by making use of this functor Sn, the functor Qn will be defined as the

D Sn D
composite mod-Sm―>Sft-mod―>i?nmod―>mod-i?n. Notice that, since Rn and

Sn are self-injective,the duality functor D: mod-i?n<z!i?n-mod, mod-Sw^Sw-mod

induces the duality functor mod-i?n^i?n-mod, mod-Sr^Sa-mod (we denote this

functor also by D). The functor Sn: ,Sm-mod―≫i?m-modcan be defined similarly

to Sn: mod-i?m-≫mod-5M.

For an i?B-module X~{Xi} ^J, we shall define Sn-modules J.{X) and £B{X)

and Sra-monomorphism u{X) ;J.(X)^$(X) and the module Sn(X) is defined as its

cokernel Cok u{X). In order to define those S^-modules and Sn-niorphism, the

following lemma is necessary

Lemma 2.1. ADAA^ADTRBTA and BDBB=BTRADTB.

Proof. Since BTA is a balanced bimodule,we have ADAA=AD Hom(B7', BT)A

^ADT0BTA and BDBB^BDEom(TA, TA)B^BTRADTB.

In the following,we can identifyDA (resp.DB) with DTRT (resp.T^DT).

Further,from thelemma, itfollows that ADARADTB^.ADTRBTA and BTRADAA

=BDB<g>BTA and we shallidentifythesebimodules respectively.

Now let us put Jl(X)^{XtRDT, -6t<g)DT: XiRDTRDB=XiRDARDT-+

Xi+lRDT} and i3(Z)^F(F(Xi+1))cF(F(^)(g)Z)£,(0

RDBRF( V(Xt))RDBRDB-+F{ V(Xi+2))^F( V(Xi+1))(g)D4

R):F(V(Xi+1))

, Then it is not hard to

see that
<J(X)

and &(X) become 5n-moduies. We shall define the map u{X)

by the following:

F{axi+1-―#i)-yxt≫DT ＼

JIW^X&DT ―> F<y(Xi+1mF{y{Xt))RDB=<B(X)i.

To see that the above map u(X) is an Sn-morphism, itis enough to show the

commutativity of the followingdiagram:
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0

V(Xt+1)RDT

Id.

Lemma 2.2. The above diagram is commutative.

Proof. From the naturality of the e and ≪, we have the following equali-

evixi+i>RDT-F{aXt+1--$i)RDB-7)Xi9I>TRDB

= (axi+1--<j>i)RDT-ex.RDARDT-VXiQDTRDB

=(≪xf+1･~<!>i)RDT ･(eXi9DT9T ■r)Xi9DTRT)RDT

= (0Cx.+1-~(f>i)RDT'lXiRDTRDB

= axi+1RDT'(-#tRDT),

F(ax.+%--<j)i+l)-T]Xi+1RDT--<j)iRDT

-F(aXi+2- ―$i+i)■F(-$iRDA) -7}XiRDARDT

=F(aXi+2) -F($i+1- <j>iRDA) -rjXiRDARDT=O.

The desired commutativity follows from the above equalities.

Since aXiRDT is an injection and £Y<.Xi)RDT is a bijection, u(X)t is also

an injection for each i. Therefore, u{X) is an 5n-monomorphism. Thus we can

define the S^-module Sn{X) as the cokernel Cok u{X) of this 5ra-monomorphism

u(X).

From the definition of Sn, the following lemma is easily checked.

Lemma 2.3. For any projective Rn-module P, the S-module Sn(P) is also
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protective.

The remaining part of this section is devoted to the proof of the following

proposition.

Proposition 2.4. The correspondence Sn can be seen as a stablefunctor from

mod-Rn to mod-Sn,.

It is necessary to define the Srt-morphisrn Sn(f) for any i?n-morphism /=

{ft} : X={Xi} ^i)-^{X'i}<f>i)=X', at first. In order to define such a morphism,

it is sufficientto define 5n-morphisms JZ(/):JL(X)-*JL(X') and B(f): 3(X)->&(Xf)

such that u{X')'JL{f)=B{f)'u{X).

Let us put Jl(f) and ^(/) as follows:

Jl(f)i=fiRDT : Ji{X)i^XiRDT ―> ^i0Z)T=^(Z/)i,

F(/f)(g)zW

<B{X)i=F(y{Xi+1mF(V{Xt))<g)DB ―> F{V{X'i+1))RF{V{X'i))RDB=B{X')i

where /f is definedby the followingcommutative diagram

0 _^ x > 7(X,) ^ T(X) ―* 0

/■I f* I f** I

0 __> xi - > V(Xi) > T(X't)―+ 0.

The factthat J.(f)and ^(/) are Sra-morphismsis clear.

Lemma 2.5. The above morphisms Jl{f)and &(f) satisfyu(X')-Jl{f)=$(f)

u(X).

Proof. We have to verify the following two equalities:

(a) sV(Xk)RDT-F(f*n(g>DB-(£V(Xi)RDT)-i-aXi(3DT=ax.iRDT-fiRDT

and

(b) F(ft+1-aXi+l―^t)-Vzt9DT=F(aXUi―^t)-Vx.t9DT-ft(S)DT.

The above two equalities(a) and (b) follow from the naturality of £and rj and

the following three equalities: fi+1-$i=0'i-fi<g>DA, ft-aXi=ax'ffi and/?+1-a*i+i

= ocx-i"fi+1

Therefore we have defined the Sn-morphism S(f) by the following commuta-
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tive diagram:

0 ―> J.(X)
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u{X)

> B(X) ―> Sn(X) ―^ 0

3(f)＼ i≪w>

0 ―> JL{X') > &(X') ―> Sn(X') ―> 0.
u(X')

By the definition,Jl(f)is uniquely determined by / but &{f) is not and so

Sn(f) is not uniquely determined by /. However, in the stable category mod-Sn,

we can prove the singleness of the morphism Sn(.f). To show this fact, we

shall prove that Sn(f) factors through projective SB-modules if /=0.

Since ft=0, there is a morphism 8t: T{Xt)-^ V(X't)and f*=5i-px.. Let S(X)

be a projective 5n-module defined by

^X)i=F{nXM))@F{T{Xi))^DB

/o

(<B(X)t<3)DB->2(X)i+1) =
l

＼}-F(.T(Xi
+ 1))RDB

0/

F{T{Xi+l))RDBRF{T{Xi))RDBRDB ―> F(T(Xi+2))($F(T(Xi+1))RDB.

It is possible to define SB-morphisms fi(X) from B{X) to S>(X) and A from 5>(AT)

to _0(XO so that &(f)=A-fi(X) by putting:

P{X)t=F(pXt+l)@F(pZt)RDB:

F(V(Xi+J)@FmXt))RDB ―> F(T(Zi+1))cF(r(X())RZ>B
and

F(T(Zi+1))cF(T(Xi))(g)Z)B ―* F(F(^+1))0JP(F(^))0Z>5.

It is easy to see that fi(X)-u(X)―0 and ≪?,(/)factors through projective Sn-

module 5>CX):

u(X)
0 * J?(Ar) > &(X) > Sn(X) y 0

R(X)*

A I

0 > ui(X')――> ^(XO > ^n(^) >O .

Therefore, we have definedthe functor nod-i^^mod-Sn and this functor

induces the desired stable functor~Sn:mod~Rn―>mod-Snby Lemma 2.3. This

completes the proof of Proposition2.4.
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From the definitionof the functors 0n, @m,n and Sn, the commutativity of

the diagram in Introduction is now obvious.

3. The functor Qn : mod-S^―>mod-/?n
D Sn

The functor Qn has definedas the composite mod-Sn―>SK-mod―>Rn-mod

―>mod-Rn. In this section, we shall show the construction of this functor in

an explicit way, for the later use.

In the definition of the functor Sn, we expressed Rn- and Sn-modules as

the tensor forms: ＼Xif <pi:Xi^DA^Xi+1} and {Yu 0,: F,(g)Dfl->ri+1}. But for

the definition of the functor Qn, it is convenient to express the modules as the

horn-forms: {Xu $t: Xt-*HomA(DA, Xi+1)＼ and {Yit <pt: Yi-+RomB(DB, Yi+1)},

where <pi(resp. <pt)is the adjoint of <j>i(resp. (pi) which corresponds to $i (rep.

(pi) by the canonical isomorphism }AomA{XiRADAy Xi+i)=HomA(Xi, UomA(DA,

Xi+1)) (resp. HomB(F,(g)B£>5? Yi+1)^UomB(Yit HomB(DB, Yi+1))).

In the following we shall sometimes abbroviate Hom(?, ?) by [?, ?].

For an Sn-module Y= {Yif ^J, let us put

C(Y)={＼:DT, Yil IDT, -fa : IDT, Yt] ―> [_DT, [_DB, yi+1]]

= [DA. [DT. Yi+1-＼1＼

and

1 ＼[DA,G(U(Ytm 0

IDA, G{U(Ytm@G(mYt-t)) ―> IDA, IDA, G(£/(Fi+1))]]

cCZM, G(tf(r,))]|

and definethe map p(Y):&(Y)-*C(Y) as follows:

p(X)t={tDT, rri'iyuiYi))-1,ecDTwGi-frrri-!)'-

SXY^IDA, G{U(Yim@GWYt-i)) ―> LOT, Y{]= {＼),.

Then C(Y) and W(Y) become it?re-modulesand p(Y) is an i?Tt-morphism. The

mhdule Qn(Y) coincideswith the kernel Ker p(Y) of the above morphism p(Y).

For an SB-morphism g={gt: Y^Y'i) : Y={Yi} $i)-+Yf={Y'i,fi＼,we put

C(g):C(Y)-+C(Y') and W(g):0(Y)-*2)(Y') as follows:

C(g)^[DT} gA : ＼DT, Yd ―> IDT, r{],

(IDA, G(gm 0

＼ 0 G{gU)

)
=

IDA, G{U(rt)mG(U<yi-i)) ―->IDA, G(U(YmRG(U(YUi)),
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where g*tis definedby the followingcommutative diagram:

0 ―■*W{Yt) > U{Yt) > Yt ―■*0

18** I & 18*

0 ―> W(Y't) > UiY'i) > Y'i―> 0.
8yt Ty,

Then C(g) and 3)(g)become i?re-morphismsand satisfyC(g)-p{Y)=p(Y/)-^D(g).

The isomorphism Qn(g):Qn(Y)^Qn(Y') is defined by the following commuta-

tive diagram:

P(Y)
0 ―> Qn(Y) ―> iZ>(7) > C(Y) --> 0

＼Qn(g) I D(g) ＼c{g)

0 ―> Qn(Y') ―> 3){Yr) > CiY') ―> 0.
POT')

Similarly to the functor Sn, Qn can be considered as a functor mod-Sn―>

mod-i?n and it induces mod-S≪―>mod-Rn.

4. The proof of the isomorphism Qn-Sn^lmod-Rn

We begin with the survey of the torsion-freeresolution of the component of

Sn(X), in order to investigate the module QnSn(X).

Let us denote the morphism cok u(X) by 6{X):

0(*)<=(x,, y<):FiViXt^mFCViXimDB ― > Sn(X)t.

Let Pi―> V(Xi)->0 be the projective cover, then we have the following com-

mutative diagram with exact rows r

a"

0―>P＼ >

V

pi -U T(Xt)-+O

I Pi

0 ― > Xt > V(Xi) > T(Xt) ―> 0
a*t fat

Since proj. dim. TA^1, P＼ has to be projective. Applying (?<S>ADT) to the above

diagram, we have the following commutative diagram:

alRDT

0 ―> Pi<g)DT >

B*(g)DT

I plRDT

0 ―> X&DT > ViX^DT > T(Xt)RDT ―> 0

<XxtRDT PxtRDT
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Here we used the fact that Torf(T(^), DT) = DExtlA(T(Xi), T)=0. Hence we

know Ker(pi0DT)B^Ker(plo0DT)B by the Snake Lemma.

Consider the following diagram of ^-modules:

c

> ${X)i >Sn(X)t-^O
u(Xh

where C, and 1 are defined as follows:

(F(aXi ■―fa) ･ 7)XiRDT -P＼RD

＼ (Vp^DTy'-a^DT

OiX)*

r)

I
0 (6V(xi><8)DT)-1-pi0<8)DT-(Vpi9DT)-1)

From the fact that Ker(piRDT)B^Ker(p{RDT)B, it followsthat KerZ = Ker

((ev^.^DTy1 ■piRDT-(7]PiRDTyi)= Ker(piRDT)^Ker(piRDT). Therefore we

have CokC=<Sn(X)i and we have a torsion-freeresolutionof SJX)*.

Lemma 4.1. The following exact sequence is a torsion-free resolution of

Sn(X)t:
C

0 ―> P{<8)DT ―-* F(F(*i+1))RF(P$(g)ZM) ―> £≫(*),―* O.

It is clear that P＼RDT^&dd{DTB) and F(F(Zi+1))RF(P$(g)ZM)e<y. We

shall denote coker£ by di―{xifyt).

To define the modules Jn(Z) and Qn{Y), we have used the minimal torsion

and torsion-freeresolutions. But by the remark on torsion and torsion-free re-

solutions in section one, we may use any such resolutions since we consider

modules in the stable categories.

Now, using the torsion-free resolutions given by Lemma 4.1,let us calculate

the module QnSn(X).

The routine verificationshows the following lemma.

Lemma 4.2. The map p(Sn{X)) is expressed as follows:

(a) CSniX^lDZSniX)^,

(b) WSn(X)t=lDA, GF(V(Xi+1ymiDA, GF(Pl0(g)DA)l

(SGFiViXimGFiPi-^DA)
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(c) p(Sn(X))t=(tDT, ^･(7fIWi+1)))-1], IDT, yv{y]FiPi^A))-^,

where we identify IDA, ?] (resp. ＼_DB,?]) with [_DT, [T, ?]] (res/>.[T, IDT, ?]])

an<i(/ji:Sn(X)i-^^DB> Sn(X)i+1'] denotes the i-th structure map of the Sn-module

SJX) in the horn-form.

The remaining part of this section is devoted to prove that Ker p(Sn(X)) is

isomorphic to X as an object in the stable category mod-/?,,,.In fact, we shall

show Ker p(Sn(X))^XQ)P for the projective(― injective) ^-module P defined

as follows:

i ovP-'o

0 0X|

Lemma 4.3. |Kerp(Sn(X))＼ = ＼X＼+ ＼P＼,where |*| denotes the K-composition

length of a module *.

Proof. By Lemma 4.1, we have

|Kerp(Sn(X))t!-1IDA, V(X<+1)]＼ + ＼Pt＼+ ＼V(Xt)I

+ ＼Pt->RDA＼-＼[DT, SAX)*-]],

since ev:FG(V)=V for a torsion v4-rnodule V and yjV: U=GF{U) for a torsion-

free jB-module U by Brenner-Butler's theorem. On the other hand, from the

exact sequence

0 ―> P＼RDT ―> F{V(Xi+1mF(Pt0RDA) ―> Sn(X)t ―* 0

we have the exact sequence

0 ―^ [D7, P|RZ)T] ―* [_DTf F(y{Xi+1))l@lDT, F(PlRDA)l

―> [Z)7＼ ^B(^)f] ―> 0

and IDT, F(Pl<g>DA)]&＼:DA, PtRDA]&Pl, IDT', P{RZ)T]s[DT', D[P!, T]]s

[[P|T],T]sPf, as well. Therefore, it follows |[£>T,^B(X)i] | = |IDA, V(Xi+1)~]＼

+ ＼Pl＼-＼Pi＼. Hence we have |Ker p(Sn(X))i＼ = ＼V(Xt)＼+ ]Pt0-1<S>DA＼+ ＼Pi1＼.

Further, from the exact commutative diagram:

I I 1

o―+xt-+ vlxt) ―> nxt) ―* o,

we know ＼Pi＼~＼P＼＼^＼T(Xi)＼= ＼V(Xi)＼-＼Xi＼, i.e., I V(Xi)＼ + ＼P＼I- ＼P＼＼+ ＼XA.
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Finally, we have ＼Kerp(Sn(X))i＼ = ＼Pio-1<g)DA＼ + ＼Pt0＼+ ＼Xi＼= ＼Xi＼+ ＼Pi＼ and

this means that | Ker p(Sn(X)) ＼= ＼X＼+ ＼P＼ as desired.

By the above lemma, in order to prove the isomorphism Ker p(Sn(X))=XQ)P,

it suffices to show the existence of an i?ra-monomorphism (e(X), f{X)): X@P->

WSn{X) such that the composition p{Sn{X))-{e(X), f(X)) is a zero map. To

define such morphisms e(X) and f(X), it is necessary to introduce a notation:

For a bimodule exMe2 over algebras Ex [and E2, we can always consider the

adjoint pair of functors Hom£2(M, ?): mod-£2―mod-Ex and (?R£lM): mod-!?!-*

mod-E2. We shall denote the unit and counit of this adjunction by -qM ＼lmod-E,

->Hom£2(M, ?(g)tf,M) and zM: HomE2(M, ?)0£lM"->lmod.£2, respectively. Then it

is noted that r)― rf and e ― eT.

Now let us put e(X): X-^£)Sn(X) and f(X): P-+9SJX) as follows:

and

f(X)t=

IDA, (^(x^-ax^i]-^

0

0

<*x<

0

0

0

In the following, we shall show that e(X) and f(X) are i?ri-homomorphisms and

p(Sn(X))-e(X)=O=p(Sn(X))-f(X). To do so, it is necessary to provide the fol-

lowing lemma.

Lemma 4.4. The following diagrams are commutative for any A-rnodule X

and B-morphism g: ZRDB-^Y.

IDT, 7]F(X)']
IDT, F(X)1 > ＼_DT,FGF(X)1

(a)

(b)

IDA, X] >

IDA, £x]
IDA, GF(X)1

IDA, X&DA1

IDT, XROT~] > [DTS F{XRDA)]
IDT, 7]XRDt1
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[DT, Z&DB1

vB?z>
t

G(Z)

IDT, g]
IDT, Y~＼

1

SZDT,Y1

GF([DT, 71)

G([DB, Z0DB]) >
G(lDB,gJi

Proof. Rutine verification.

GilDB, Yl)

Lemma 4.5. The map e(X) is an Rn-morphism.

Proof. At first, we have to verify the equality

By the naturality of eDA and the relation s^^da'VxA<S)DA = lxi, we have aXi+t

'fii=e$ixi+1)-[DA, aXi+1-0i~]<g)DA-7}xAiRDA. Hence it is sufficient to show

(£F(Xi+1))"1"£K(Xi+1)― £GF(V(Xi+1)) '([.DA, £v(Xi + 1)']0DA)~1,
i.e., £v(Xi+1)'£GF(V(.Xi+l))

= £vixi+1)'[DA, £v(xi+1)l(8)DA. But this follows again from the naturality of sDA.

The another necessary condition (IDA, ^^^^^-[DA, aXi+i-(f)i+x'＼-7]DxAi+l

■01=0 is obvious.

Lemma 4.6. The map f(X) is an Rn-morphism, as well.

Proof. We have to verify the equality

Since £°Ln.-yIii(8)DA=lpiRDA and eDA is a natural transformation, we have

^p＼*i>aYx= s%Uf＼*dav{U)A, e^o^^DAY'-rj^DA.

Hence we have the desired result since (IDA, £piRDA])~1= [DT, 7]F<.piQRDA)']<&DA

by Lemma 4.4 (a).

For the proof of p{X)-{e(X), f(X))=0, we note that the z-th structure map

<pt:Sn(X)t<g)DB-+Sn(X)i+1 satisfies(pi-yiRDB=Q and yi+l-=<pi-XiRDB and its

adjoint (p% is the same with the composition: [^.^I'^air Sn(X)i-+

[DB, Sn(X)tRDBTi->[DB, ≪Sn(Z)i+1]. Then it is easy to prove the following

lemma, by definition.

Lemma 4.7. The following hold.
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(a) G^i-1'Xi-1)=G(lDB, yd-rf^x^)

(b) G(^i.1-h-1)=0

Lemma 4.8. p(X)-e(X)=0.
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Proof. By Lemma 4.7 (a),it is sufficientto prove the commutativity of the

following diagram:

ifx＼ IDA, ri,-] IDA, aXi+1l

Xi―^IDA, X&DAl >[DA, X-+1] >＼DT, F(V(Xi+1m

≪*≪
r

V{Xt)

£v(Xi) jjj

I LDT,Xi-]

IDT, £,(*,)]

GF(V(Xi)) >G(WB, F(V(Xi))RDB']) >G([DB, iSn(A')*]).

GWfriXi≫) G{IDB, y{])

We know rlxAi^WT,r}Xi%m＼t]x＼: Xt-+＼_DT, X&DT^DT, F(Xt(^DA)^

tDA,Xt<g)DA] by Lemma 4.4 (b) and eZDT,snlxui-G(iDB, yd-yfflvui^LDT, yd

'VoFWiXi)) by Lemma 4.4 (c). Further, by the definition of the map 6, it

holds that

yi-G(eV(Xi))-1-aXi§<)DT= xi-F(axi+1-0i)-r]xiRDT-

Hence we have

IDT, xd-tDA, aXi+l-^-VD4

^lDT,xi-F(aXi+1-^-7]'xAi

= [DT, xi'F(aXt+1'$i)-i}xtRDT']-i]xTi

= tDT,yi-(evcxV(£)DT)-i-aXi(g)Dn-7]xTi

―IDT, yil-yBiiviXiD-isviXi^-axi

:=£iDT,sn(X)iyG{[_DB, yi~＼-7]FB(V(xi)))-{zv<.xi)Y1-axi.

Lemma 4.9. p(X)-f(X)=0.

Proof. By Lemma 4.6 (a),it is enough to prove the commutativity of the

diagram:
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DA
V*t IDT, Stl

Pi ≫LDA, PiRDA}=tDT, F(PiRDA)l > IDT, Sn(Xh2

Pi I

tvixo ＼l L

GF(V{Xi)) G&DB, F(V(Xi))<g>DB]) >G({_DB, Sn(X)i])

GWfyiX0)) G(lDB,yi])

By Lemma 4.4 (b) and (c), we know i)%i―[DT, J^ssr] ･jyjf and 7]Bhvut)i=

ezDT.FirixowDBvGiyjlfvtfi)))' Hence we have

IDT, y^VDPi=lDT, yt-VPi9DTl-V%[

= IDT, yAeriXtiRDT)-1'PiRDn>V$
0

= IDT, yt■(eV(Xi)RDTn ･r]v＼xo'̂o

= LDT, yt-]-j}fttV(Xt≫'(eviXt))-*'Pt

= [DT, yi]-etDT,E(V(X.))ig,DBrG(r]Ffv(xi)))-(ev<,xi))~1-po

= szDT,snlxHrGF(iDT, y^'G^fv^.^'isy^.^-pi

■=£LDT,sn(X)ii-G(£DB,y{"]-i)F>frixi≫)-(evixii)~1'Po.

Since (e(X), f(X)) is obviously an i?n-monomorphism, we have proved QnSn(X)

=X(BP as i?re-modules. It is easy to prove that the monomorphism e(X): X-+

£)Sn(X) has naturality on X. By the duality, we can prove the similar result

on ≪SBQB.

Thus we have

Theorem 4.10. Qn<Sn = lmo&.Rn and SnQn = lmo_^sn>i.e., the stable categories

mod-Rn and mod-Sn are always equivalent.

Remark. D. Happel [15] has proved that mod-A and mod-I? are equivalent

if gl. dim. A<oo. And, in the case where 0=0X: mod-^l-^mod-J? is dense,

the stable functor Sn is induced from <SM for each n^oo. But, in general, 0 is

not dense even if gl. dim. y4<oo can not be induced from £,.

Example 4.11. Let A be the bound quiver algebra of

A6^

with £･≪=<).
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Then socie^^topietA&DA) and there is a non-zero map / from etA^DA to

e4A such that Im(/)=soc(e4j4) and Ker(/)―rad(eiA<g)DA). Hence we can define

an Indecomposable i?-module X―{e±A, /). As is easily seen, for any i?-module

X', X can not be isomorphic to 0{Xr). Thus 0: mod-A-≫mod-i? is not dense,

even though g.I dim. A=2<oo.
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