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NON-NORMAL NUMBERS TO DIFFERENT BASES

AND

THEIR HAUSDORFF DIMENSION

0. Introduction.

By

KeniiNagasaka

The notion of normal numbers was first introduced by Emile Borel [3] in 1909.

He considered the decimal expansion of real numbers in the unit interval to the

base r and assuming that every digit of their decimal expansions is independent

and also takes all possible values 0,1, ･ ･･ and r-1 with equal probability, he proved

that almost all real numbers are normal to the base r in the sense of Lebesgue

measure.

For a real number w, we denote {w} the fractional part of w defined by

{<u}= <y―[<w],

where [･] is the Gauss' symbol, so that {<d}is contained in the unit interval I0 = [0,l)

for every real number w. We consider the decimal expansion of {co} to the base

r:

(1)

R

(2)

M

a=

Xn((0)

lim

rn

where xn(<o)is the n-th.digit of development of {≪>}and takes one of the values

in R={0,l, ･■■,r-l}. For an r-adic rational number, we agree to write a termi-

nating expansion in the form (1) in which all digits from a certain point on are 0.

Thus every real number in Io is uniquely expressed by (1) and an infinite

sequence of integers {an}n=i,%･･･ taking one of the values in R can be corresponded

to a unique real number a in Io defined by

We call a real number o> to be simply normal to the base r if, for each j in

AnU ;(o)

N

_1

~r'



90
Kenii Nagasaka

where AN(j; a>)is the number of indices n up to N satisfying

Xnioi)= j

for the expansion(1) of {w}.

A real number o>is said to be normal to the base r if, for every positive

integer k and each string

in Rk,

(3)

dk = (jifjs,---,jk)

lim

where AN(/}k; oj)is the number of indices n between 1 and N satisfying

Xn((D)= jl,Xn+l((D)= J2,'･･,Xn+k-＼{(l>)= jk

for the expansion (1) of {co}.

A normal number to every positive integer base greater than 1 is called to

be absolutely normal. The set of all simply normal numbers and normal numbers

to the base r are denoted by S(r) and B(r), respectively. B denotes the set of all

absolutely normal numbers and

B= n B(x)
r=2

The very definitionindicates that S(r)is a Borel set of the type Gioi and from

another equivalent definitionof normal numbers, B(r) is proved to be a Borel set

of the type GdaSS(K. Nagasaka [9]). B(r) is of full measure but of the first cate-

gory (T. Salat [13]).

From Borel's assumptions corresponding to (2) and (3),it seems that the de-

cimal expansion of a normal number to the base 6 may be considered as an infi-

nite sample paths of fair dice throwings. Indeed, an interesting application of

normal numbers occurs in the foundation of probabilitytheory, namely, in von Mises'

theory of collectives(von Mises [8]). Let us consider a real number in the unit

interval whose decimal expansion is identical to an arithmetic progression of that

of a normal number. D.D. Wall [18] proved in his theorem 7 that this considered

real number is also normal, which suggests us certain collective conditions to be

satisfiedfor normal numbers. We know moreover this kind of property (Teturo

Kamae and Benjamin Weiss [5]).

As we have seen before, the decimal expansion of a normal number is a good

model of random sequences. On the other hand, the set of non-normal numbers,
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simply called often as a non-normal set,attracts our attention also. Those non-

normal sets are generally denned by digitproperties and Lebesgue null sets,there-

fore Hausdorff dimension is widely used in order to compare the sizes of non-

normal sets.

For any set L in Euclidean w-space Rn, dim L denotes the Hausdorff dimension

of L. For a linear set M, dimM is invariant under translation,therefore we

assume that every linear set may be contained in the unit interval Io when we

consider its Hausdorff dimension, that is, we consider S(r)nl0, B(r)r＼l0and Bf]l0

instead of S(r), B{r) and B, respectively. We also write, for two linear sets A

and 5 in L. the difference

A-B=AnQ.o-B).

By applying the theorem on entropies of Markov processes (P. Billingsley[2],

Theorem 14.1), we gave a proof for which the set of all non-normal numbers to

the base r has Hausdorff dimension 1 and the set of all simply normal numbers

but not normal numbers to the base r has also Hausdorff dimension 1 (Nagasaka

[9]). In my preceding note [10],it has been demonstrated, by making use of W.A.

Beyer's calculation technique for Hausdorff dimension (Beyer [1]),that B(r) ―B{s)

is of Hausdorff dimension 1 unless log r/log s is rational.

In the next Section, we shall give a refinement of these results, by recon-

siderring the resultsobtained by J.W.S. Cassels [4] and Wolfgang M. Schmidt [14].

In the last Section, we shall construct uncountable non-normal numbers to

both bases 3 and 5 and estimate their Hausdorff dimension. Further we shall give

another simple proof of A.D. Pollington's result [12], which is a final result for

the Hansdorff dimension of non-normal sets.

1. The set of normal numbers to every base except powers of one number.

H. Steinhaus once raised a question in the "New Scottish Book" as to how

far the property of being normal with respect to different bases is independent.

This problem was cited as Problem 144 by J.W.S. Cassels [4],but we cannot find

any trace of this problem in the "Scottish Book" newly edited by R. Daniel

Mauldin [7J.

Cassels [4] replied to this question. Let us denote C(3) a modified ternary

Cantor set, that is, the set of numbers in Io in whose expansion to the base 3 the

digit 2 never occurs. To every number

(D =
£

J!=l

X n(0))

(xn(co) ― 0 or 1)
3n
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in C(3), corresponds the number
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~ Xn{(i))

elo

Introducing a measure p, on C(3) by {Jt= /uo°f3,2,where pt0is the Lebesgue measure,

it is proved that ^-almost all ojin C(3) are normal to every base r which is not

a power of 3.

From the result above and from

5(3)=B(32)=---=5(3B)=---,

we have ^(C(3)n (5c5(3)) = 1, where BQB(3) is the set of all normal numbers to

every base except powers of three. Then we have

dim ,(C(3)n(£05(3))) = !.

For an wgIo, let us define the 3-adic cylinder set containning w of length 3""

by

Un(o))= {o)/Gl0;xk(o)')=xk(o)),k = l,2, ･■■,n＼,

where

and

Then,

and

Thus

ft>=

0) =

~ Xn((o)
v r^r

La on

n=l O

Xn{(Of)

Iog2＼

log 3 ]

t-i nn

uo(un(w)) = ?>-n

tJi{Un{G>)) = flo(fs,2(oj)) = 2-n

C(3)n(505(3))c
(a)6l.;
lim^:

From the Theorem 14.1 of Billingsley[2],we obtain

Theorem 1. dim (C(3)n (505(3))) =log 2/log 3.

Abondonning to fix ourselves to C(3), we can prove a stronger result:
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Theorem 2. dim(BQB(Z)) = 1.

Remark. The above value of the Hausdorff dimension of the set BQB(3)

cannot be improved. For any linear subset L,

0<dimL<l.

Proof. The idea of the proof of Theorem 2 is the same as thatin my pre

vious note [101. Firstwe need next lemma.

Lemma 1. For a given yeB(r)nlo, the vector (x, ?/)gIoxIo is normal to the

base r for almost all x£lQin the sense of Lebesgue measure.

Corollary 1. For a given yGC(3)f)(BQB(3)) and for any positive integer k,

the k-tuple {xi,xz, ■■･ ,xk-i,y) is normal to every base r except powers of 3 for al-

most all (xux2, ■■･ .Xfc-OelJ"1.

This set of full measure in the Corollary 1 is denoted by Pk-＼, and put

where ycC(3)n(BQB(3)) and Tk is a transformation from Io to R denned as the

foliowin er: For

(0 =

~ Xn{(l))

Tk(o))= ((Oi,a)2,･･■,a>fc)lj,

where Xj{o)i)=xa-^-k+i{o>)for every i―l,2,---,kand j―1,2,---.

An extended version of a theorem of Beyer [1]is necessary to complete the

proof.

Theorem A. (Beyer) For any subset M in Io,

dim M= dim TkM/k,

where T^M is the set of (≪>i,w2,･･ ･ ,<wj;)nlofor which there exists an coeM such that

TkO) = ((1)1,0)2,･ ･･ ,O)k)-

From the Theorem 7 of Wall [18], it is easy to see that

avc?*c(ses(3)).

By virtue of the Theorem A and from a fundamental property of Hausdorff

dimension, we get
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dim (BQB(3)) >dim＼J7VG* = sup dim T^Gk
k=2 k

= sup(fc-l)/Aj= l.
k

<Q.E.D.>

Note. C(3) is eventually contained in Io―S(3). From this remark we may

rewrite Theorem 1 and Theorem 2 as follows:

Theorem V. dim(C(3)n(5cS(3))) = log2/log3, where BQS(3) is the set of all

normal numbers to every base except powers of three which are neither simply normal

to the base 3.

Theorem 2'. dim (5cS(3)) = 1.

Independently of Cassels, Wolfgang M. Schmidt [14] answered the Steinhaus

problem. For two positiveintegers r and 5 greater than 1, we write f~s,if there

exist integers n and m with rn = sm. Otherwise r^s. For integers s and t with

l<t<s, we define a function gs,tfrom Io to Io as follows: Assume that g>gI0 is

developped to the base t,

Then,

£, Xn((l))

w= Yt

Qs.t(a>)= lo,

n=l I

£, Xn{(0)

where xn(co) takes one of the values 0,l,--- and t―1. Introducing a measure

pts,ton gs,t(I0)by {is,t―fio°gi＼,it is proved that, for almost all o> gs,j(I0)with re-

spect to [ts,t,(ois normal to the base r whenever r^-s, which implies that

li..t(O:tao)ri(BQB(s))) = l,

where BQB(s) is the set of all normal numbers to every base except powers of

5. Cassels' result is a special case of this result of Schmidt with t=2, 5 = 3 and

By virtue of g*,t(Io)c(Io―S(s)),we get analogously to Theorem V and Theorem

2'.

Theorem 3. For integerss and t with Kt<s,

dim (g,.t(I0)fl(BQS(s)))= log f/logs,

where BQS(s) is the set of all normal numbers to every base except powers of s
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which are neither simply normal to the base s
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Theorem 4. For any integer r>l,

dim(BQS(r)) = l,

where BQSir) is the setof allnormal numbers to every base except powers of r

which are neithersimply normal to the base r.

Note. S(r)z)B(r) assures that we can replace S(r) in above Theorems by

B(r).

These Theorems are refinements of my preceding result in [10].

Recently Bodo Volkmann [17] generalized Schmidt's theorem as follows: Let

r and s be integers greater than 1 with r-+-s. We denote Mr(v0,vi,･･･,vr-i) the

set of real numbers <oin Io satisfying

. AN(j; co) ･ a
i ilim jt= =vj, j=0,l,---,r-l,

where

(4)

(5)

0<v*<l, 7=0,1,

r-＼

■■-,r-l

and there exists at least one j such that

(6) vj^l/r.

Further, introducing a probability measure //, on Io as the product measure of

v = (vo,vi,･･ ･ ,vr-i), he proved that, for //,-almost all <o in Mr(v0,vi,- ･ ･ ,vr-i), o> is

normal to every base s^r.

Using the same theorem of Billingsley, we obtain

Theorem 5.

Then,

dim(Mr(v0, vi, ･ ･ ･, vr-i) n 5) = -

1
r-i
E

i=0
vj-logvj

logr

for every integer r greater than 1.

It is clear that

Mr(v0,v,, ■■■,vr-x)DB^(BQS(r)).

dim(B0S(r)))>sup(Afr(yo,vi, ･ ･･ ,vr-i)r＼E)
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-sup

-

I

- )

0) = 0)r ―

1 r-l ]

i=o Jlog Y

where the supremum is taken over all v―(vo,vi, ･･■,vr_i) satisfying (4), (5) and (6).

Thus we get another proof of Theorem 4.

2. The set of non-normal numbers to different bases.

Hereafter we consider the decimal expasion of a real number w to the base

r and also to the base s. In order to distinguish different bases, we agree to write

~xUw)

if we need to specify the base r of the development of co.

MJ. Pelling [11] proposed to construct an uncountable classof reals not normal

in the scales of 3 and 5.

An uncountable class is indeed indispensable. Let us take a rational number

(o in Io, then w=a/b, where a and b are integers with Q<a<b. The fractional

part of

a),To),r2w, rsw, ･･･

take only values in the finiteset

0, 1/b, 2/b,---,(b-l)/b.

From the Dirichlet'spigeon-hole principle,we may conclude that the decimal ex-

pasion of coris ultimately periodic with the period of length at most b to every

base r. This means that this o> has not normality of order b [6]. Hence any

rationalnumber is not normal to every base, but the set of rationals is countable.

Before mentionning the answer to Pelling'sproblem given by Andrew Odlyzko

and also by the proposer himself, we want to give our construction of uncountable

non-normal numbers to the bases 3 and 5.

For every non-negative integer k, the 10fcth through 5-10fc digits of ≪ are

prescribed to be zero to the base 3. This w is evidently not normal to the base

3. Then let us consider the decimal expansion of the same a> to the base 9, that

is a)9,then the 10*/2th through 5-10V2 digits of o>9 are prescribed to be zero.

This prescription defines only about 4-10fc-log3/log5 digitsin o)5to be zero. Then

limJnf^^).>4/9=0.44-..,
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which signifiesthat g>5is neither normal to the base 5. The digits other than

the above prescription of m are able to take all possible values. Thus we con-

struct an uncountable class of real <w'sthat are neither normal to the base 3 nor

to the base 5.

Odlyzko's answer also uses the prescription technique in the decimal expan-

sion of x in Io- For every nonnegative integer k, the digits 102* through 3-102*

of x to the base 5 are /32*and 102*fl through 3-102fc+1to the base 3 are ptk+1,

where (/?,)is an infinitesequence of finitestrings of O's and l's of length 2-10".

For each sequence (pn), this prescribed x is normal to neither of the bases and

there exist uncountably many (/3ra).Thus uncountable non-normal numbers to the

bases 3 and 5 are constructed.

We can estimate the Hausdorff dimension of thus constructed non-normal

numbers to the bases 3 and 5 from my theorem 4 [9]. According to our constru-

ction of non-normal numbers, the limes sup of the relative freqency of the pre-

scribed digits is equal to 8/9, then its Hausdorff dimension is at least

1-8/9=1/9=0.11-･･.

By using the same calculation technique for Hausdorff dimension as in the

previous Section, we obtain stronger results with the aid of another Schmidt's

result [15]. The set of all positiveintegers greater than one is divided into two

disjoint classes R and S so that equivalent integers fallin the same class under

the equivalent relation ~ defined in the previous Section. Schmidt proved

Lemma 2. There exist uncountably many numbers which are normal to every

base from R and to no base from S, where R and S are two disjointclasses of

integers defined above.

Suppose that S contains 3 and 5. Then Lemma 2 assures the existence of

uncountable non-normal numbers to the bases 3 and 5, which are also normal to

every base from R. Theorem 6 below shows a greater value of Hausdorff dimen-

sion of this set. hence we obtain a finalresult instead of mentioned before. For

(D B(r)- n B(s))c (Io- (5(3)n B(5)).

In the case of R―<f>,Schmidt proved that the Hausdorff dimension of un

countably many numbers in Lemma 2 is equal to 1 [16J.

Now assume that Rj=6. By Lemma 2,

Then, we have

Y=[nB(r)-f)B(s)l^<p.
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Corollary 2 of Lemma 1. For a given yzY and for every positiveinteger

k, the k-tuple (xi,Xi,-･･,xic-i,y) is normal to every base from R for almost all

(xi,x2,-･･jtffc-OelJT1-

Tracing the same arguments as in Theorem 2 together with Corollary 2 of

Lemma 1, we get

Theorem 6. The Hausdorff dimension of non-normal numbers which are

normal to every base from R and to no base from S is equal to 1, where R^<j> and

S are two disjointclasses of all positiveintegers greater than 1 so that equivalent

integers fall into the same class.

Note. This Theorem was firstproved by A.D. Pollington [12],but his proof

needs rather complicated estimation technique for Hausdorff dimension and also

essentiallySchmidt's construction. Our proof is based on only the existence result

of Schmidt and on Beyer's theorem, which seems to be much simpler than that

of Pollington.
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