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METRIZABILITY OF PIXLEY-ROY HYPERSPACES
By
Hidenori TANAKA

§1. Introduction.

Throughout this paper, all spaces are assumed to be T,-spaces. The Pixley-
Roy hyperspace F[X] over a space X, defined by C. Pixley and P. Roy in [30],
is the set of all non-empty finite subsets of X with the topology generated by
the sets of the form [F, Ul={Ge %[ X]: FCGCU}, where FeF[X] and U is
an open subset in X containing F. In [147, it was pointed out that for any
space X, F[X] is a zero-dimensional hereditarily metacompact space.

Generalized notions of metrizability were introduced by several authors.
They still retain many of the desirable features of metric spaces (see [1], [11],
[161], {217, [26] and [29]).

Our main purpose of this paper is to discuss these notions and to investigate
metrizability in Pixley-Roy hyperspaces. More precisely, we shall establish the

following theorems.

THEOREM 1.1. For a space X, the following conditions are equivalent.
(@) F[X] is metrizable,

(b) g[X] is a Lasnev space,

(¢) 9[X] is a paracompact perfectly normal quasi-k-space.

THEOREM 1.2. For a space X, the following conditions are equivalent.
(a) 9[X] 7s an Mi-space,

(b) FLX] is a stratifiable space,

(¢) F[X] is a paracompact o-space,

(d) F[X] is a paracompact perfectlv normal space.

THEOREM 1.3. For a space X, the following conditions are equivalent.
(@) F[X] 7s metrizable,
by FLX] 7s a paracompact p-space.

Secondly, we study weakly separated spaces and partially separated spaces
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in the sense of M.G. Tkatenko [35] and M.G. Bell [4]. Weakly (partially)
separated spaces play the fundamental role for the paracompactness of Pixley-
Roy hyperspaces (see [4], [7], [31] and [33]). Several results concerning
partially separated spaces are given, one of which asserts that every Pixley-Roy
hyperspace is the open finite-to-one image of a paracompact Hausdorff space by
using the fact that every Pixley-Roy hyperspace is partially separated. This
may be of interest in connection with the following H.J.K. Junnila’s problem in
[22]: Is every metacompact space the pseudo-open compact image of a para-
compact Hausdorff space? Furthermore, we also prove that for generalized
ordered spaces, semi-stratifiable spaces or locally Cech complete Tychonoff spaces,
weak separatedness is equivalent to partial separatedness.

Our undefined terminology follows [10], [15] and [19]. For Pixley-Roy
hyperspaces, the reader is refered to [14], [31], [33] and [34]

§2. Proofs of Theorems 1.1 and 1.2

DEFINITION 2.1. A space X is said to be a quasi-k-space [28] if, given ACX,
A is closed whenever ANK is relatively closed in K for every countably
compact KCX.

Since for any space X, F[X] is hereditarily metacompact (see E.K. van
Douwen [147), F[X] is a quasi-k-space if and only if F[X] is a k-space. Closed
images of metric spaces were characterized internally by N.S. Lasnev in [23]
(and thus, such spaces bear his name) and K. Morita and T. Rishel obtained

LEMMA 2.2 ([270). A regular space X is a LaSnev space if and only if the
following conditions are satisfied:

(a) X is a quasi-k-space,

(b) there is a sequence {&,: neN} of hereditarily closure preserving closed
covers of X with the properties below:

() for any point x=X, any sequence {A,:n&N} of sets, such that A€,
and xe A, for all n€N, is either hereditarily closure preserving or forms a net-
work at x.

(i) for any point x<X, there is a network {An: neN} at x such that A,
€€, for n=N.

A space is said to be o-discrete if it is the union of countably many closed
discrete subspaces.
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LemMA 2.3 (Lutzer [25]). For a space X, the following conditions are equi-
valent.

(a) F[X] is perfect,

(b) F[X] is semi-stratifiable,

(¢) FLX] 7s a o-space,

(d) g[X] is o-discrete,

(&) every point of X is a Gs-point in X.

In o‘rder to prove the implication (c)—(b) of Theorem 1.1, we show

LEMMA 2.4. If X is o-discrete and paracompact Hausdorff, then there is a
sequence {\,: n<N} of open covers of pairwise disjoint open subsets of X satisfy-
ing the following condition :

if for each x=X and neN, A, is the unique element
(x) < of W, such that x=A,, then {A,:nEN} is a
hereditarily closure preserving closed collection of X.

PRrROOF. Let X=U{X,: neN}, where each X, is a closed discrete subspace
of X. We may assume X,N\X,=@ for n, meN and n#m. Since X is a zero-
dimensional paracompact Hausdorff space, there is a discrete collection ;=
{Uix): x=X;} of open-and-closed subsets of X such that x<U,(x) for each
x€X;,. Then U=X—U{U(x): x€X,} is an open-and-closed subset of X. Let
W= {U;}. Inductively, we obtain a sequence {l,: neN} of open covers of
pairwise disjoint open subsets of X such that:

(1) for neN and xe\U {X;:i<n}, there is an element U,(x) of WU, such
that xeU,(x) and if x, veU{X;:7<n} and x+#y, then U, (x)"\U,(y)=@.

(2) each U,,, is a refinement of U,,.

If xeX,, then, using (1) and (2), U, (x)CU,(x) for n<m. Pick an arbitrary
element x&X and let A, be the unique open subset of I, containing x for each
ne&N. Since each U, is pairwise disjoint in X, each A4, is an open-and-closed
subset of X. Let E, be a closed subset of X such that E,CA, for each neN
and let y&\U{E,: neN}. Then there are n, m€N such that x€ X, and yeX,,.
Let s=max{n, m}. By using (1), (2) and the fact that A;=U,x) for n=i, we
have U (y)N\(U{E;: s=i})=@. Since {E;::<s} is a finite collection of closed sub-
sets of X, there is an open neighborhood W of y such that WN(U{E;:i<s})=0@.
Thus we have (U, (y)N\WIN(U{E;:ieN})=@. Hence \U{E;:{=N} is a closed
subset of X. Thus c/(J{E;:ieN})=U{E;:ieN}. It follows that the collec-
tion {U,: neN} satisfies the condition (x¥). The proof is completed.
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LEMMA 2.5. If X is o-discrete and a paracompact Hausdorjf quasi-k-space,
then X is a Lasnev space.

PrOOF. Let {II,: n&N} be a sequence of open covers of pairwise disjoint
open subsets of X constructed in Lemma 2.4 and let {X,:neN} be a countable
cover of closed discrete subsets of X which were used to construct {il,: neN}.
For each neN, let &,=U,U{{x}: xeX,}. Then each &, is a hereditarily
closure preserving closed cover of X. By Lemma 2.4, the sequence {&,:n&N}

satisfies the condition (b) of Lemma 2.2. Thus X is a Lasnev space, which com-
pletes the proof.

ProoOF oF THEOREM 1.1. The implication (a)—(c) is obvious and the implica-
tion (¢)—(b) follows from Lemmas 2.3 and 2.5.

(b)-+(a). By the well known Morita-Hanai-Stone’s theorem, it suffices to
prove that F[X] is first countable. We modify the proof of a theorem in Hyman
[20]). Let f:M—9[X] be a closed mapping from a metric space M with a
compatible metric d onto ¥[X] and let F be a non-solated point of F[LX].
Since F[X] is a Fréchet space, there is a sequence {F,: neN} of points of
F[X7] converging to F such that {F,: neN}CF[X]—{F}. Without loss of
generality, we may assume that FCF, for each neN. Let E=f"%F) and E,
=f"YF,) for each neN. Put

Uﬂ,zu{s(x, -—;—a’(x, E)): ern}

for each neN, where S(x, e)={yeM: d(x, y)<e}. Then each O,=F[X]
—f(M—U,) is an open neighborhood of F,. Then there is an open neighborhood
V. of F, in X such that [F,, V,]JC0O, for neN. Since FCF, for neN, we
have FCV,. We shall prove that {{F, V,]: neN} is a countable neighborhood
base at F in $[X]. To see this, let W be an open neighborhood of F in X
and let G=f"[F, W]). Then G is an open neighborhood of E. Put

G’zU{S(x, -;—d(x, M—~G)): er}

and let @ =F[X]—f(M—G’). Since © is an open neighborhood of F, there is
an neN such that F,e¢®’. Pick an arbitrary H=0, and let xe f~(H). Since
Heo,, there is an element yeE, such that d(x, y)<(1/2)d(y, E). Since E,=
F-UF,)CG’, there is an element z< E such that d(y, 2)<(1/2)d(z, M—G). Thus
d(y, EY<(1/2)d(z, M—G). Hence
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d(x, 2)=d(x, y)+d(y, z)
1 1 3
azd(z, M»—G)—i——Z—d(z, M‘G):Zd(z’ M-G).

Thus x&G and hence, f~'(H)CG. Since H is an arbitrary element of ¢, we
have 0,C[F, W]. Thus [F,, V,]JC[F, W]. It follows that [F, V,]JC[F, W1.
The proof is completed.

LEMMA 2.6 (Przymusinski [31]). For a space X,
(i) the following conditions are equivalent.
(@) FL[X] is paracompact,
(b) for every non-empty finite subset F of X, one can choose an open
neighborhood U(F) so that the inclusions FCU(H) and HCU(F) imply FAH=@.
(ii) the following conditions are equivalent.
(a) G[X7] is hereditarily paracompact,
(b) for every non-empty finite subset F of X, one can choose an open
neighborhood U(F) so that the inclusions FCU(H) and HCU(F) imply FCH or
HCF.

PROOF OF THEOREM 1.2. The implications (a)=(b)—(c)=2(d) follows from
Lemma 2.3 and G. Gruenhage [17] or [18].

(¢)—(b). Assume that [X] is a paracompact o¢-space. Then F[X7] is
hereditarily paracompact. For each Fe=F[ X7, let U(F) be an open neighborhood
of Fin X satisfying the condition (b) of Lemma 2.6 (ii). By Lemma 2.3, every
point of X isa Gpointin X. Thus for each x = X, there is a decreasing sequence
{Val(x): neN} of open neighborhoods of x such that N {V,(x): neN}={x}.
Put

G(n, F)=[F, (U{V.(x): xFHNUF)]

for each neN and FeF[X]. Thus for each Feg[X], a sequence {¢(n, F):
neN} of open neighborhoods of F is given. By Borges [8], it suffices to prove
that for every closed subset € of F[ X7, €= {clarx(\J{G(n, F): FE&}): neNj}.
Let & be a closed subset of F[X] and let Fe&. Then there is an open neigh-
borhood W of F in X such that (1) [F, WlN€=g, and (2) WCU(F). Thus for
each Eeg, either FCFE or EGW. 1t is clear that if E€& and EGW, then
CF, Wing(, E)=¢. By using the condition (b) of Lemma 2.6 (ii), it follows
that if [F, WINg(l, E)+@ for some Ec¢, then E is a proper subset of F.
Thus &'={E<&: JF, WINe(, E)* @} is finite. Then there is an neN such
that if Ee¢’, then F—U{V,(x): x€E} #@. Then[F, WIn(u{gn, E): E€&))
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=@. Thus Feclax(\J{G(n, E)Y: Ece&}). It follows that €= {clarx(\J {G(n, E):
Eecég}): neN}. The proof is completed.

§3. Proof of Theorem 1.3.

In [9], it was pointed out that if a Tychonoff space X is a p-space, then
the following condition is satisfied :

J there is a sequence {l1,: n=N} of open covers of X
)] such that if xeU,cll, for n&N, then N{c/U,: neN}
l is a compact subset of X

LEMMA 3.1. Let X be a space. If F[X] salisfies the condition (%), then
every point of X is a Gs-point in X. Hence F[X] is semi-stratifiable.

PROOF. Let {il,: n=N} be a sequence of open covers of F[ X satisfying
the condition (%). Assume that x is not a G;-point in X and let U, be an ele-
ment of 1, containing {x} for neN. Then N{dax1VU.: nEN} is a compact
subset of ¥[X]. For n&N, let V, be an open neighborhood of x such that:

O [{x}, V.U, for each neN, and

2) V.V, for each n=N.

Then, using (1), N{{{x}, V.1: neN}=[{x}, N"{V,: nEN}] is a compact
subset of ¥[X]. Since x is not a Gspoint in X, N{V,: n€N} contains un-
countably many points. Let {v,:n&N} be a countable distinct points of
N{V,:neN} and put

8n‘_“[{x7 yb ) yn}) Vn]

for each neN. Using (2), {€,: n=N} is a closed collection which satisfies the finite
intersection property. Since each &, meets [{x}, N{V,:n2N}], N{&€a: neN}
must be non-empty. However, it is clear that N{&,: neN}=¢, which is a
contradiction. Thus every point of X is a Gs-point in X. By Lemma 2.3, g[X]
is semi-stratifiable. The proof is completed.

Since a paracompact Hausdorff space is metrizable if and only if it is a
Moore space (see [15]), Theorem 1.3 follows from the next theorem.

THEOREM 3.2. For a space X, the following conditions are equivalent.
(a) FLX] is a p-space,

(b) F[X7] is a Moore space,

(¢) X is first countable.
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Proor. The equivalence of (b) and (¢) was proved by E. K. van Douwen
[14] and the implication (b)—(a) is well known. The implication (a)—(b) im-
mediately follows from Lemma 3.1 and G. Creede [13].

THEOREM 3.3.  For a space X, the Sollowing conditions are equivalent.
(@) ZFLX7] is metrizable,
(b) F[X] is an M-space.

PROOF. Since a metacompact M-space is a paracompact M-space (=a para-
compact p-space), this follows from Theorem 1.3.

For each neN, let F,[X]={Fe4[X]: |F|<n}, where | F| stands for the
cardinality of F. Notice that for each neN, F.[X] is a closed subspace of
F[X] and, in particular, ;[ X7 is a closed discrete subspace of F[X.

We consider compact subsets in Pixley-Roy hyperspaces. Let A(w,) be the
one-point compactification of a discrete space of cardinality w,, where ; is the
first uncountable ordinal and let co be the non-isolated point of A(w,).

THEOREM 3.4. For a space X, we consider the following conditions :

(@) FLX] contains an uncountable compact subset,

(b) FLXT contains a copy of Alw,), and

(¢) X contains a copy of A(w,).

Then (c)—(a)2(b). Furthermore, in case X is Hausdorff, all of the above
conditions are equivalent.

PrOOF. (b)—(a). Obviocus.

(c)—(b). Assume that X contains a copy of Alw;). We denote it by A(wlj,
too. Let A={{x, o0} : x€ Alw,)—{o}}\U{co}. Then it is clear that A is a
copy of Alw,).

(a)—(b). Let X be a compact subset of F[X]. Since F,[X] is a closed
discrete subspace of F[X7, KX, =XNTF,[X] is finite. Let Hi={{xs} : 71<n,} and
let U(x;) be an open subset in X containing x; for i<n, such that {{{x:}, Ulxa)]:
i=m,} is pairwise disjoint in F[X7]. Let K=K —=U{[{xs}, Ux)]:i<n.}. Then
K3 is a compact subset of F[X]. If Ko=K3MF,[X], then, since X, is a closed
discrete subspace of X, X, is finite. Let K,={{y;, z:} : i=n,} and let U(y,, z;)
be an open set in X containing {y;, z;} for each i=n, such that:

1) s 2, Uys, 20INU{L{x,), Ux)]: j<n,))=@ for each i<n,, and

@) {{ye 2z, Ulyy, 2:)7:7<n,} is pairwise disjoint in F[X].

Let Ks=K—U{[{ys, 2.}, U(ys, z0)7:i<n,} and let HKe=HKiNTFLX]. Then
K, is finite. Since K is a compact subset of [ X7, this process is finished by
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finitely many times. Thus there is a finite subset {E;:¢=n} of X and a finite
family {U;:i=n} of open subsets of X, where each E; is contained in UJ,;, such
that :

(3) {[E; U;]l:i=n} covers X, and

(4) {[E,, U;]:i<n} is pairwise disjoint in F[X].

Let X be an uncountable compact subset of ¥LX]. By the above considera-
tion, we may assume that X is contained in a [E, U], where E€ X and U is

an open neighborhood of E in X. Let |El=n and for each meN, let An=
(GeX:|G|=m}, where K,=@ for meN and m<n. Since K is uncountable,
there is an me N such that X, is uncountable. Let m be the least such a na-
tural number. Then n<m. Since Ec X, we have {GeX: KNG, U] is
uncountable} # . Let s be the largest of {{eN: KX,N[G, U] is uncountable
for some Ge X, and t<m} and let G={x;:1<s} =K, such that KNG, U] is
uncountable. Let d= A NF[XINLG, Ul—U{[H, U]l: He X, and s<t<m}.
Then J is an uncountable compact subset of F[X]. If ’=4—{G}, then it is
clear that J is the one-point compactification of the uncountable discrete space
g’. Thus F[X] contains a copy of A(w,).

Assume that X is a Hausdorff space and let us show the implication (b)—(c).
Suppose that F[X] contains a copy of A(w,). We denote it by J=49"U{G},
where 4 is a discrete space of cardinality w,. Let G={x;: i=<n} and let U(x;)
be an open neighborhood of x; for /=7 such that {U(x;):i= n} is pairwise dis-
joint in X. Since 9—[G, U{U(x;): i=n}] is finite, without loss of generality,
we may assume that JCLG, U{U(x,):i=n}]. For i=n, let A,={yeU(xy):
yeH for some HeJd}. Then x;€A4; for i=n. Since |J|=w,, we have | Al =w,
for some 7 (=n). Since 4 is the one-point compactification of J’, A; and A;
—{x}, where x=A,—{x;}, are compact. Since X is a Hausdorff space, A;—{x}
is closed in A4; for each x=A;—{x;}. Thus A,—{x;} is discrete and hence, A;
is a copy of A(w,). The proof is completed.

We cannot omit the condition “X is Hausdorff” in Theorem 3.4.

EXAMPLE 3.5. There is a compact space X for which [ X] contains an
uncountable compact subset, but X does not contain a copy of Alw,).

Let X be a set of cardinality w,. We topologize it as follows: closed sub-
sets of X are @, X and finite subsets of X. It is clear that X does not contain a
copy of Alw). If A={{x, y}: yeX—{x}}U{x} for some x&X, then A is an
uncountable compact subset of FLXT.

If X is a set linearly ordered by <, then X with the usual order topology
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A(<) induced by < is said to be a linearly ordered topological space (=LOTS).
Intervals are denoted in the usual way. For example, we denote {x&X: a<x<b}
by [a, b] for a, b X satisfying a<b. A subset C of a LOTS X is said to be
order-convex if whenever a, beC satisfying a=<b, then [aq, b]JCC. If YV is a
set linearly ordered by < and 7 is a topology on Y such that (1) A(<)Cr and
(2) = has a base consisting of order-convex sets, then X=(Y, z) is said to be a
generalized ordered space (=GO space) [24] and we often say that the GO space
X is constructed on the LOTS Y. Every GO space is known to be a hereditarily
collectionwise normal space.

A Hausdorff space X is said to be of pointwise countable type [2] if for each
xe X, there is a compact subset K of X containing x such that K has a count-
able character in X. p-spaces and first countable spaces are of pointwise countable
type.

For GO spaces, we obtain

THEOREM 3.6. If X is a GO space, then the following conditions are equi-
valent.

(@) Z[X] is a Moore space,
(by FLX] is of pointwise countable type,
(¢) X is first countable.

PrOOF. We shall prove the implication (b)—(c). By E.K. van Douwen [14],
it suffices to prove that [ X7 is first countable. It is well known that A(w,) is
not a GO space. Since every subspace of a GO space is also a GO space, by
using Theorem 3.4, every compact subset of F[X7] is countable (hence metri-
zable). Thus for each FeZ[X], there is a compact metric space KX (F) contain-
ing F such that X(F) has a countable character in [ X]. Hence F[X7] is first
countable. The proof is completed.

By a space of ordinals, we mean a subspace of some ordinal.

THEOREM 3.7. If X is a space of ordinals, then the following conditions are
equivalent.

(a) FLX] is metrizable,
(b) F[X] is of pointwise countable type.

Proor. (a)—(b). Obvious.
(b)—(a). In [31] or [33], it was pointed out that if X is a space of ordinals,
then X7 is paracompact. Thus this follows from Theorem 3.6 and [15, 5.4.17.
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The proof is completed.

§4. Partially separated spaces.

DEFINITION 4.1. A space X is said to be weakly separated [35] if there is
a reflexive and antisymmetric relation < defined on X such that for each x&€X,

{yeX: y<x) is an open set of X. If, in addition, the relation is transitive
(i.e. the relation is a partial order of X), then X is said to be partially separated

f4], [71.

As was seen in [35], a space X is weakly separated if and only if for each
xeX, there is an open neighborhood U(x) of x in X such that if yeU(x) and
x<U(y), then x=1y, or equivalently, X has an antisymmetric neighbornet in the
sense of H.J.K. Junnila [21]. Similarly partially separated spaces are charac-
terized as follows.

LEMMA 4.2. A space X is partially separated if and only if there is a weak
separation W={U(x): x€X} of X such that if yeU(x), then Uy)cU(x), or
equivalently, X has an antisymmetric and transitive neighbornet.

A space X is said to be scattered if X has no dense-in-itself subsets. It is
well known that X is scattered if and only if for some ordinal a, X©=0@,
where X® is the a-th derivative of X. A space X is said to be locally count-
able if every point of X has a neighborhood with cardinality at most @, o-
discrete spaces, scattered spaces and locally countable spaces are known to be
partially separated spaces by M.G. Bell [4]. Furthermore,

LEMMA 4.3. For a space X, F[X] is partially separated.

PROOF. For each FE4[X], let U(F)=[F, X] and let U={U(F): FeF[X}.
It is to prove easy that 11 is a partial separation of $[X]. The proof is completed.

As mentioned in the introduction, weakly (partially) separated spaces play
the fundamental role for the paracompactness of Pixley-Roy hyperspaces.

LEMMA 4.4 (Bell [4], Bennett, Fleissner and Lutzer [7]). If X is partially
separated, then F[X7] is paracompact.

LEMMA 4.5 (Przymusinski [317, Tanaka [33]). For a space X, the following

conditions are equivalent.
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(@) F,[X] is paracompact,
(b) X is weakly separated.

Let us define [ X]=9[X] and F""'[X]=F[F"[X]] for each neN. The
following result is an immediate consequence of Lemmas 4.3 and 4.4. However,
it has already obtained by T. Przymusifski in [31].

LEMMA 4.6. Let n=2. For a space X, F*[ X7 is paracompact.

THEOREM 4.7. For a space X, there are a paracompact Hausdorff space Y
and an open finite-to-one mapping @ from Y onto F[X].

PROOF. By Lemma 4.6, F*[ X] is a paracompact Hausdorff space. As the
space Y, we take F¥X] and define @: F [ X]—-9[X] by OUF, -, Fu.})=
FU - \UF,, where F;e9[X] for i<n. Itis clear that the mapping @ is finite-
to-one. For {Fy, ---, F,} €T} X], let [{Fy, -+, Fy}, [Fy, UV - U[F,, U,1] be
a basic open neighborhood of {Fy, ---, F,}. Then

Q(L{F,, -, Fa}, [Fy, UV - ULFy, U,0D)
:[Flu Uf"n, UIU UUn] .

Thus @ is an open mapping. It is similar to the above argument that @ is
a continuous mapping. The proof is completed.

COROLLARY 4.8. For a space X, the following conditions are equivalent.
(@) FLX] is a Moore space,

(b) F[X] is the open finite-to-one image of a metric space,

() 9LX] is contained in MOBI in the sense of A.V. Arhangel’skii [3].
(d) X is first countable.

RROOF. We shall prove the implications (a)—(b) and (c)—(d).

(a)—(b). If 9[X] is a Moore space, then F2[X] is a paracompact Moore
space and hence, metrizable. Thus this implication follows from the proof of
Theorem 4.7.

(c)—(d). If F[X] is contained in the class MOBI, then F[ X7 is first count-
able. Hence X is first countable. The proof is completed.

REMARK 4.9. In [12], J. Chaber characterized open finite-to-one images of
metric spaces as follows: A space X is the open finite-to-one image of a metric
space if and only if X is a metacompact developable space having a countable
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cover by closed metrizable subspaces.

Next we prove that partial separatedness is preserved by perfect mappings.

THEOREM 4.10. Let f: X—Y be a perfect mapping from X onto Y. Then

(a) if X is partially separaied, then so is Y, and

®) if Y is partially separated, X is a Hausdorff space and F[X] is para-
compact, then X is partially separated.

PrOOF. (a) Let U={U(x): x=X} be a partial separation of X. For each
Feg[X], let UFR)=U{U(x): x&F}. Then W={U(F): FeF[X]} satisfies the
condition (b) of Lemma 2.6 (i) (for details, see M. G. Bell [4] and H.R. Bennett,
W.G. Fleissner and D.J. Lutzer [7]). For each yeY, let F,, be a finite subset
of f %(y) such that f-Y(y)CU(F,). Since W is a partial separation of X, for each
yeV, UUx): x4y} =UF,). For each yeY, let V(y)=Y —f(X—-U(F,))
and let B={V(y): yeY}. We shall prove that B is a partial separation of Y.
To see this, assume that yeV(z) and zeV(y) for some y, z€Y. Then f(y)
CU(F,) and f~*(z)CU(F,). Since W is a partial separation of X, U(F,)=U(F).
Thus F,NF,#@ and hence, y=z. Thus B is a weak separation of V. Since
1l is a partial separation of X, B is transitive. Thus B is a partial separation
of Y.

(b) Let U={U(y): yY} be a partial separation of ¥. By T. Przymusifiski
[31], every fiber is a scattered subset of X. For xef-%(y) and yeV, if x&
(fHN@ —(fHy) @+ for some a, let V(x)=f"V()—((f(») @ —{x}). Let
B={V(x): xX}. Assume that xV(z) and z€V(x) for some x, z&€X. Then
Fx)eU(f(2) and fz)eU(f(x)). It follows that f(x)=/f(2). By the definition
of B, x=2. Hence B is a weak separation of X. Since W is a partial separa-
tion of Y, it is easy to prove that B is transitive. Thus ¥ is a partial separa-
tion of X. The proof is completed.

ExaMmPLE 4.11. We cannot omit the condition “F[ X7 is paracompact” in
Theorem 4.10 (b).

Let X be a partially separated space and let f: XXI—X be a perfect map-
ping from XXI onto X, where I is the closed unit interval. By M.E. Rudin’s
theorem in [32], F[ X x 1] is not normal. Thus by Lemma 4.4, XX is not partially
separated.

In [337, the author has shown that for any GO space X, F[X] is paracom-



Metrizability of Pixley-Roy hyperspaces 311

pact if and only if X is weakly separated (i.e., F,[ X] is paracompact by Lemma
4.5) as the affirmative answer to H.R. Bennett’s problem in [5]. Furthermore,
we obtain the following theorem.

THEOREM 4.12. Let X be a GO space. Then X is partially separated if and
only if X is weakly separated.

PrROOF. It suffices to prove the “if” part. Let X be a GO space constructed
on a LOTS (¥, <). Let U={U(x): x= X} be a weak separation of X. Without
loss of generality, we may assume that each U(x) is order-convex. For each
x&€X, define a subset V(x) of X as follows: yeV(x) if and only if there is a
finite sequence {xi, ---, x,} of points of X such that x,=U(x), X €U(x,) for
i<n and ysU(x,).

We shall prove that the collection B={V(x): x& X} is a partial separation
of X. It suffices to prove that B satisfies the following conditions :

(1) V(x) is an open neighborhood of x for each x& X,

2) if xeV(y) and yV(2), then xV(z), and

3) if xeV(y) and yeV(x), then x=3y.

For each x X, we have U(x)CV(x). Since 1 is a weak separation of X, B
satisfies (1). From the definition of B, it is clear that 9B satisfies (2). It follows
from the following claim that B satisfies (3).

Cram. Let {xj, -, x,} be a finite sequence of points of X such that x;.,
€U(x;) for each i<n, where x,.,=x,. Then x,= - =x,.
PROOF OF CLAIM. Let us call such a sequence {x,, -, x,} a cycle with

length n. We shall prove by induction on the length. If n=1, the claim is
obvious. Let n>1 and we have already proven the claim with length <n. Let
{x1, ==, xn} be a cycle with length n. Then there is an s<n such that X155
and x;=x; Or x;.;=x; and x,.,>x,;, where x,=x, and Xp+1=%1.. We con-
sider the first case only. If x,,<x; . (<x,), then Xi-1€[ x5, x]CU(x,), be-
cause U(x;) is order-convex. Since U is a weak separation of X, x,.,=x; and
hence, x;,€U(x;y). If x;1=xi; (Sx;), then Xp1E€[ x40y, 2, ]CU(x;-). In
either case, we have x,.,€U(x,-,). Hence {x, -, x4y, Xi+1, ', Xa} IS @ cycle
with length n—1. By the induction hypothesis, x;= - =x; ;= x;,= - =Xn.
Moreover x;=x;;,, because x,€U(x;_)=U(x;,) and x1€U(x;). The proof is
completed.

THNOREM 4.13. Let X be a GO space. Then the following conditions are
equivalent.
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(a) FLX] 7s paracompact,
(b) F.[X] is paracompact,
(¢) X is partially separated.

PrOOF. This follows from Lemmas 4.4, 4.5 and Theorem 4.12 immediately.

COROLLARY 4.14. Let X be a GO space. Then the following conditions are
equivalent.

(a) F[X] is metrizable,

(b) G X] is metrizable,

(¢) X is a first countable partially separated space.

Proor. By D.]. Lutzer [25], 9,[X] is first countable if and only if X is
first countable. Thus this follows from Theorem 4.13.

We furthermore characterize GO spaces constructed on separable LOTS’s
whose Pixley-Roy hyperspaces are metrizable.

THEOREM 4.15. Let X=(Y, ) be a GO space constructed on a separable LOTS
(Y, <). Then the following conditions are equivalent.
(a) F[X] is metrizable,
(b) [ X] is metrizable,
(c) if we define
I={x€Y: {x}er},
L={xeY—IJ«, x]er},
R={xeY-I[x, -[eT},
E=Y—(IULUR),
then
(i) E is countable,
(i) R (resp. L) can be wriiten as R=\U{R,: neN} (resp. L=\U{L,: neN})
such that cl,R.,N\L=@ (resp. cl.L,\R=@) for each nEN,
Gil) if x€ENclR,, then for some y<x, ly, x[NR,=@, and
(iv) if x€ENcl.L,, then for some z>x, Jx, 2LNL,=@.

REMARK 4.16. In [6], H.R. Bennett, W.G. Fleissner and D.]J. Lutzer ob-
tained another characterization.

PROOF OF THEOREM 4.15. (a)—(b). Obvious.
(b)—(c). This implication was in fact proved by H.R. Bennet, W. G. Fleissner
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and D.]J. Lutzer in [6].

(c)—(a). By Theorem 4.12, it suffices to prove that X is weakly separated.
(Notice that X is first countable.) Since X=E\U(\J {c/;R, :neN})\J(J{c.L,:nEN})
UI, by M.G. Bell [4], it suffices to prove that c¢/.R, and ¢/.L, are weakly
separated for neN. Fix n and we shall prove that ¢/.R, is weakly separated.
Using (ii), cl.R.NL=@. Clearly c/.R,N\I=¢@. For each x=cl/.R,, define an
open neighborhood U(x) of x in X as follows:

1) if xeRNcl.R,, let Ux)=[x, —[.

(2) if xeENcl.R,, then, using (iii), there is a y<x such that Jy, x[N\R,
=@. Let Ux)=]y, —[.

Let U={U(x): x<cl.R,}. Then Ul is a weak separation of ¢/.R,. To see
this, assume that yeU(x) and xU(y) for some x, y=c.R,. We devide two
cases.

Case 1. xeRNcl.R,. Since U(x)=[x, —[, we have x=y. If yeENcl.R,,
then there is a z< y such that Jz, y[N\R,=¢ and U(y)=]z, —[. Then Jz, y[Nc/R,
=@. Thus it follows that x=<z and hence, x&U(y), which is a contradiction.
Thus yeRNc¢l.R,. Hence y=<x. We have x=y.

CASE 2. x€ENcl.R,. Then there is a z<x such that Jz, x["\R,=@ and
U(x)=]z, »[. Hence Jz, x[Ncl.R,=@. Since yecl.R,, we have x=y. If
yERNc.R,, then x+3y and hence, x<y, which contradicts the fact that x&
U(y). Thus ye ENcl.R,. Hence we obtain y=<x similarly. We have x=y.
The proof is completed.

REMARK 4.17. The collection U={U(x): x<cl.R,} constructed in the proof
of Theorem 4.15 is in fact a partial separation of ¢/.R,.

As other classes of spaces for which weak separatedness implies partial
separatedness,

THEOREM 4.18. Let X be a semi-stratifiable space. Then the following con-
ditions are equivalent.

(a) ZLX] is paracompact,

(b) F.,[X] is paracompact,

(c) X is o-discrete,

(@) X is partially separated.

Proor. This follows from H.J.K. Junnila [21].
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The following results are essentially proved by T. Przymusinski (see [31, § 4])

and thus, the proofs are omitted.

THEOREM 4.19. Let X be a locally Cech complete Tychonoff space. Then

the following conditions are equivalent.

(2) F[X] is paracompact,
(b) FLX] is normal,

(¢) F.[X] is paracompact,
(d) F[X7] is normal,

(e) X is scattered,

(f) X 1s partially separated.

THEOREM 4.20. Let X be a compact Hausdorff space. Then the jollowing

conditions are equivalent.

[2]

[3]
[4]

£6]
L7]
£8]

[9]
[10]

[11]
(12]

[13]
[14]

(a) FLX] is metrizable,

(b) F[X7] is metrizable,

(¢) X is countable,

(d) X is a first countable partially separated space.
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