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METRIZABILITY OF PIXLEY-ROY HYPERSPACES

By

Hidenorl Tanaka

§1. Introduction.

Throughout this paper, all spaces are assumed to be TVspaces. The Pixley-

Roy hyper space 1[_X~＼over a space X, defined by C. Pixley and P. Roy in [30],

is the set of all non-empty finitesubsets of X with the topology generated by

the sets of the form [F, £/]={Geg[Z]: FdGdU}, where Feff[Z] and U is

an open subset in X containing F. In [14], it was pointed out that for any

space X, £F[X] is a zero-dimensional hereditarily metacompact space.

Generalized notions of metrizability were introduced by several authors.

They stillretain many of the desirable features of metric spaces (see [1], [11],

[16], [21], [26] and [29]).

Our main purpose of this paper is to discuss these notions and to investigate

metrizabilityin Pixley-Roy hyperspaces. More precisely, we shall establish the

following theorems.

Theorem 1.1. For a space X, the following conditions are equivalent.

(a) ££[^3is metrizable,

(b) £F[X] is a Lasnev space,

(c) ^[y^] is a paracompact perfectly normal quasi-k-space.

Theorem 1.2. For a space X, the following conditions are equivalent.

(a) ff[Z] is an Mx-space,

(b) 3＼iX~lis a stratifiablespace,

(c) ffCZ] is a paracompact a-space,

(d) 3[_X~]is a paracompact perfectly normal space.

Theorem 1.3. For a space X, the following conditions are equivalent.

(a) EF[X] is metrizable,

(b) ffC^H is a paracompact p-space.

Secondly, we study weakly separated spaces and partially separated spaces
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in the sense of M. G. Tkacenko [35] and M.G. Beli [4]. Weakly (partially)

separated spaces play the fundamental role for the paracompactness of Pixley-

Roy hyperspaces (see [4], [7], [31] and [33]). Several results concerning

partially separated spaces are given, one of which asserts that every Pixley-Roy

hyperspace is the open flnite-to-oneimage of a paracompact Hausdorff space by

using the fact that every Pixley-Roy hyperspace is partiallyseparated. This

may be of interest in connection with the following H. J.K. Junnila's problem in

[22] : Is every metacompact space the pseudo-open compact image of a para-

compact Hausdorff space? Furthermore, we also prove that for generalized

ordered spaces, semi-stratifiablespaces or locally Cech complete Tychonoff spaces,

weak separatedness is equivalent to partialseparatedness.

Our undefined terminology follows [10], [15] and [19]. For Pixley-Roy

hyperspaces, the reader is refered to [14], [31], [33] and [34].

§2. Proofs of Theorems 1-1 and 1.2.

Definition 2.1. A space X is said to be a quasi-k-space[28] if, given AdX,

A is closed whenever Ar＼K is relatively closed in K for every countably

compact KdX.

Since for any space X, 1＼_X~}is hereditarily metacompact (see E.K. van

Douwen [14]), (3[_X']is a quasi-&-space if and only if 3IX] is a &-space. Closed

images of metric spaces were characterized internally by N.S. Lasnev in [23]

(and thus, such spaces bear his name) and K. Morita and T. Rishel obtained

Lemma 2.2 ([27]). A regular space X is a Lasnev space if and only if the

following conditions are satisfied:

(a) X is a quasi-k-space,

(b) there is a sequence {@re: n^N} of hereditarily closure preserving closed

covers of X with the properties below:

(i) for any point zel, any sequence {An: n<BN} of sets,such that An<^&n

and x^An for all n^N, is either hereditarily closurepreserving or forms a net-

work at x.

(ii) for any point igI, there is a network {An: n^N} at x such that An

e@re for neAr.

A space Is said to be a-discreteif it is the union of countably many closed

discrete subspaces.
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Lemma 2.3 (Lutzer [25]). For a space X, the following conditions are equi-

valent.

(a) 3tZ] is perfect,

(b) 3ZX3 is semi-stratifiable,

(c) %＼_X~＼is a a-space,

(d) %[_X~]is a-discrete,

(e) every point of X is a Gg-point in X.

In order to prove the implication (c)―Kb) of Theorem 1.1, we show

Lemma 2.4. // X is a-discrete and paracompact Hausdorff, then there is a

sequence {Un : neA7} of open covers of pairwise disjointopen subsets of X satisfy-

ing the following condition:

if for each xel and n^N, An is the unique element

of Un such that x^.An, then {An: n^N) is a

hereditarily closure preserving closed collectionof X.

Proof. Let X― U{Xn: neA7}, where each Xn is a closed discrete subspace

of X. We may assume Xnr＼Xm=0 for n, meN and n^m. Since X is a zero-

dimensional paracompact Hausdorff space, there is a discrete collection tti=

{Uiix): xelj of open-and-closed subsets of X such that xgU^x) for each

xgIj. Then U1=X―KJ{U(x):x^X1] is an open-and-closed subset of X. Let

U1=UiW{t/i}. Inductively, we obtain a sequence {Un: n^N} of open covers of

pairwise disjointopen subsets of X such that:

(1) for neA^and xeW{Z*: ffgn}, there is an element Un(x) of VLn such

that x(EUn(x) and if x, y<=U{Xt:i^n} and x^y, then Un(x)r＼Un(y)=0.

(2) each Un+1 is a refinement of VLn.

If xeXn, then, using (1) and (2),Um(x)dUn(x) for n^m. Pick an arbitrary

element xgX and let ^4n be the unique open subset of Un containing x for each

neiV. Since each Un is pairwise disjointin X, each An is an open-and-closed

subset of X. Let £, be a closed subset of X such that En(ZAn for each neN

and let ;y U{En : neA7}. Then there are n, me A7 such that xeZn and y^Xm.

Let s=max{n, m}. By using (1),(2) and the fact that Ai=Ut(x) for n<i, we

have Us{y)r＼{＼J{Ei:s^/})=0. Since {E≫:/<s} is a finitecollectionof closedsub-

sets of X there is an open neighborhood W of j such that Wr＼(＼J{Ei:z<s}) = 0.

Thus we have (Us(y)r＼W)n(U{Et; ieN})=0. Hence U{£≫:feiV} is a closed

subset of X. Thus c/(W{£i: feAr})=w{.Ei: i<=N}. It follows that the collec-

tion (Un: n^N} satisfiesthe condition (*). The proof is completed.
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Lemma 2.5. // X is a--discreteand a paracompact Hausdorff quasi-k-space,

then X is a Lasnev space.

Proof. Let {Un: n^N} be a sequence of open covers of palrwise disjoint

open subsets of X constructed in Lemma 2.4 and let {Xn : n^N) be a countable

cover of closed discrete subsets of X which were used to construct {VLn: n^N}.

For each n(=N, let <Sn="UraW{{x} : x<=Xn}. Then each <3n is a hereditarily

closure preserving closed cover of X. By Lemma 2.4, the sequence {c,: n^N}

satisfiesthe condition (b) of Lemma 2.2. Thus X is a Lasnev space, which com-

pletes the proof.

Proof of Theorem 1.1. The implication (a)-Kc) is obvious and the implica-

tion (c)-Kb) follows from Lemmas 2.3 and 2.5.

(b)->(a). By the well known Morita-Hanai-Stone's theorem, it sufficesto

prove that ffCX] is firstcountable. We modify the proof of a theorem in Hyman

C20]. Let f: M->'3[_X~＼be a closed mapping from a metric space M with a

compatible metric d onto 5F[Z] and let F be a non-isolated point of EFCZ].

Since £F[Z] is a Frechet space, there is a sequence {FB: neiV} of points of

£F[X] converging to F such that {Fre: n&N}ClcI[_X~]- {F}. Without loss of

generality, we may assume that FdFn for each n^N. Let E=f~＼F) and En

= f~1(Fn)for each nGJV. Put

Un=＼j[s(x,
~-d(x,

E)): ie£≫}

for each n^N, where S(x, s)={y <eM: d(x, y)<e}. Then each 0n=3[.X~]

―f(M―Un) is an open neighborhood of Fn. Then thereis an open neighborhood

Vn of Fn In X such that[FB, VB]COB for nsJV. Since FcFn for nsAT, we

have FciFn. We shallprove that{[F, Vn]: ?ieiV} is a countableneighborhood

base at F in ^[Z]. To see this,let W be an open neighborhood of F in X

and let G=f~H[F, Wl). Then G is an open neighborhood of E. Put

G'=u{s(jc, ^d(x, M-G)): xe#j

and let O' = 3[X^ ―f(M―G'). Since O' is an open neighborhood of F, there is

an n<=N such that Fn<=0'. Pick an arbitrary HG0n and let x^f~＼H). Since

Heon, there is an element j>eiin such that cf(x,y)<(l/2)d(y, E). Since £",=

f-＼Fn)(ZG', there is an element ze£ such that d(y, z)<(l/2)d(z, M―G). Thus

d(y, E)<(l/2)d(z, M-G). Hence
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d(x,z)Sd(x, y)+ d(y, z)

<~d{z, M-G)+＼-d(z, M~-G)=~d(z, M-G).
~k Li 4r

Thus xeG and hence, f~＼H)(ZG. Since H is an arbitraryelement of On, we

have On(Z[_F,W]. Thus [_Fn,VrJdlF, W~].It follows that [F, Fn]C[F, W].

The proofis completed.

Lemma 2.6 (Przymusinski [31]). For a space X,

(i) the following conditions are equivalent.

(a) £F[Z] is paracompact,

(b) for every non-empty finite subset F of X, one can choose an open

neighborhood U(F) so that the inclusions FdU(H) and HcU(F) imply FC＼H^0.

ill) the following conditions are equivalent.

(a) S^X] is hereditarilyparacompact,

(b) for every non-empty finite subset F of X, one can choose an open

neighborhood U(F) so that the inclusions FcU{H) and H(ZU{F) imply FczH or

Hr-F

Proof of Theorem 1.2. The implications (a)^(b)->(c)z^(d) follows from

Lemma 2.3 and G. Gruenhage [17] or [18].

(c)-Kb). Assume that 2r[Z] is a paracompact a-space. Then l?[-Y] Is

hereditarilyparacompact. For each JPe2r[J＼],let U{F) be an open neighborhood

of F in X satisfying the condition (b) of Lemma 2.6 (ii). By Lemma 2.3, every

point of X is a Go-point in X. Thus for each xgI, there is a decreasing sequence

{Vn{x): neiV} of open neighborhoods of x such that r＼{Vn(x): ?i^N} = {x}.

Put

S{n, F) = LF, (＼J{Vn(x): xeF})r＼U(F)l

for each neJV and F<=S[_X']- Thus for each F<^3[_X~], a sequence {S{n, F):

neN} of open neighborhoods of F is given. By Borges [8], it sufficesto prove

that for every closed subset S of ff[Z], e=r＼{cl3Lxl{＼J{3{n,F): Fe<?}): neiV}.

Let G be a closed subset of 2r[-Y] and let F&e. Then there is an open neigh-

borhood W of F in X such that (1) [F, TT]n<f=0, and (2) WcU(F). Thus for

each jBed?, either F<tE or EctPF. It is clear that if E&e and E(£W, then

[F, W]n^(l, E)―0. By using the condition (b) of Lemma 2.6 (ii),it follows

that if IF, W]r＼8(l, E)^0 for some E^e, then E is a proper subset of F.

Thus <?'={£e<?: ]F, TT]r＼£(l,F)^0} is finite. Then there is an u<eN such

that if£≪=<£',then F-W{Fre(x) :xg£}^0. Then [F, WHn(UMn, £):£e<?))
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= 0. Thus F&chtxiyJ {S{n, E): E^e}). It follows that e=C＼ {chixiVJ {9{n, E)

£e5}): neAT}. The proof is completed.

§3. Proof of Theorem 1.3.

In [9], it was pointed out that if a Tychonoff space X is a p-space, then

the following condition is satisfied:

thereis a sequence {VLn:n^N} of open covers of X

such thatif x(EUn^Un for n&N, then r＼{clUn:n^N)

is a compact subset of X

Lemma 3.1. Let X be a space. If £F[Z] satisfies the condition (%), then

every point of X is a Gs-point in X. Hence <3＼_X~＼is semi-stratifiable.

Proof. Let {lln: neA7} be a sequence of open covers of 3[_X^ satisfying

the condition ($). Assume that x is not a Ga-point in X and let 1]n be an ele-

ment of Un containing {x} for nGiV, Then r＼{clgixfUn: n<aN} is a compact

subset of SFPf]. For we AT, let Vn be an open neighborhood of x such that:

(1) CW, VB]CU8 for each neA^, and

(2) 7B+1CFB for each neiV.

Then, using (1), H{[{x}, FB] : neA^}=[{x}, n{FK: neiV}] is a compact

subset of ZZX]. Since x is not a Grpoint in X, C＼{Vn: ?keN} contains un-

countably many points. Let {yn:n<=N} be a countable distinct points of

r＼{Vn: ne/V} and put

£n=[{x, yx, ■■■,yn), vn]

for each n e AT. Using (2), {<?, : n e A^} is a closed collection which satisfies the finite

intersection property. Since each en meets [{x}, C＼{V"n: nsAT}], n{£n: neA/'}

must be non-empty. However, it is clear that r＼{Sn: n^N} = 0, which is a

contradiction. Thus every point of X is a G5-point in X. By Lemma 2.3, 3[_X~＼

is semi-stratifiable. The proof is completed.

Since a paracompact Hausdorff space is metrizable if and only if it is a

Moore space (see ["151),Theorem 1.3 follows from the next theorem.

THEOREM 3.2. For a space X, the following conditions are equivalent.

(a) (3＼LX~]is a p-space,

(b) £?[X] is a Moore space,

(c) X is first countable.
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Proof. The equivalence of (b) and (c) was proved by E. K. van Douwen

[14] and the implication (b)->(a) is well known. The implication (a)->(b) im-

mediately follows from Lemma 3.1 and G. Creede [13].

Theorem 3.3. For a space X, the following conditions are equivalent.

(a) ff[Z] is metrizable,

(b) %＼_X~]is an M-space.

Proof. Since a metacompact M-space is a paracompact M-space (=a para-

compact />-space), this follows from Theorem 1.3.

For each neAf, let 2r7l[Z]={^e2rCX]: ＼F＼£n}, where ＼F＼stands for the

cardinality of F. Notice that for each neiV, 3n＼_X~]is a closed subspace oi

3LX2 and, in particular, ffiPQ is a closed discrete subspace of ^[Z].

We consider compact subsets in Pixley-Roy hyperspaces. Let A{o)i) be the

one-point compactification of a discrete space of cardinality o>i, where a>i is the

first uncountable ordinal and let oo be the non-isolated point of A(<Oi).

Theorem 3.4. For a space X, we consider the following conditions:

(a) £F[J＼]contains an uncountable compact subset,

(b) 3ZX1 contains a copy of A((Oi), and

(c) X contains a copy of A{a)i).

Then (c)->(a)^!(b). Furthermore, in case X is Hausdorff, all of the abovi

rnwditimri nro aniiit)nlo.nt

Proof. (b)->(a). Obvious.

(c)―>(b). Assume that X contains a copy of A{o)^).

too. Let Jl={{x, 00} ; x&A(a>i)― {oo}}W{oo}. Then

coov of A(o),).

We denote It by A(coi),

it is clear that JL is a

(a)―Kb). Let 1 be a compact subset of SHX']. Since 9c^X'} is a closed

discrete subspace of £F[Z], Ji1=Jir＼9cl[_X~] is finite. Let
<Ki={{Xi) :iSnx) and

let U(xi) be an open subset in X containing xt for iSrii such that {[{%J, U(xi)']:

i^rii} is pairwise disjoint in £F[Z]. Let JC£=JC―U{[{zJ, £/(*<)!]: i^Mi}. Then

c#2 is a compact subset of ffCX]. If JK2-=,Kr2r＼9:2[_X'],then, since
£iC2

is a closed

discrete subspace of JC2, JC2 is finite. Let X2.― {{yi, z{} : f^nj and let U{yi,Zi)

be an open set in X containing {yt, zt] for each i^n2 such that:

(1) Iht, Zi), U(yt, z^rMVitixj}, U(xj)-}: j^n1})=0 for each i£n2, and

(2) {L{yu Zi＼,U{yiy Zi)~＼:z^n2} is pairwise disjoint in ffPQ.

Let JC*--=JC2-＼J{l{yu zt}, U(yif zt)l:i^nt} and let JC8=≪XjnarsCA']. Then

Jf3 is finite. Since JC is a compact subset of 9c[_X^＼,this process is finished by
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finitelymany times. Thus there is a finitesubset {Et: sfSn} of X and a finite

family {Ui'.i^n} of open subsets of X, where each Et is contained in U＼, such

that:

(3) {LEi, Ui]:iSn} covers X, and

(4) {LEir Ui~]＼iSn) is pairwise disjointin 1[_X'].

Let X be an uncountable compact subset of 1[_X~＼.By the above considera-

tion, we may assume that X is contained in a [_E, U＼ where EgJ( and U is

an open neighborhood of E in X. Let ＼E＼=n and for each m^N, let Xm―

{G^X: ＼G＼=m), where Xm―0 for me AT and?n<n. Since X is uncountable,

there is an rae/V such that Xm is uncountable. Let m be the least such a na-

tural number. Then n<m. Since E^X, we have {G^X: Xmr＼[__G,U~＼is

uncountable} =£0. Let s be the largest of {t<=N: Xmr＼[_G,I/] is uncountable

for some GeJCt and t<m) and let G={xt: i^s}<= Xs such that JCmn[G, £/]is

uncountable. Let J=J{n2rm[Z]n[G, i7]―U{[i/, t/]: i/e JCt and s<f<m}.

Then J is an uncountable compact subset of 3[Z]. If c?'=J― {G}, then it is

clear that J Is the one-point compactification of the uncountable discrete space

3'. Thus 3[_X~}contains a copy of A(o)i).

Assume that X is a Hausdorff space and let us show the implication (b)―>-(c).

Suppose that 5[X] contains a copy of A(coi). We denote it by J=^J'U{G},

where S' is a discrete space of cardinality o)^ Let G={xf:?^n} and let U(xi)

be an open neighborhood of xt for z'fSnsuch that {U(Xi):i^n} is pairwise dis-

joint in X. Since $~{G, ＼J{U{Xi): f^n}] is finite,without loss of generality,

we may assume that SC＼G, ＼J{U{xi): ffSn}]. For /fgn, let Ai―{y^U(Xi):

y^H for some H^J}. Then x^e./!,;for /fSn. Since |J|=o)i, we have |^ [=<^>1

for some i (i^n). Since S is the one-point compactification of J＼ At and At

―{x}, where x^Ai~{Xi}, are compact. Since X is a Hausdorff space, ^4*―{x}

is closed in ^4i for each x^At― {xj. Thus ./!*―{xj is discrete and hence, At

is a copy of A{m^). The proof is completed.

We cannot omit the condition "X is Hausdorff" in Theorem 3.4.

Example 3.5. There is a compact space X for which ^[X] contains an

uncountable compact subset, but X does not contain a copy of A(q>i).

Let X be a set of cardinality&>!. We topologize it as follows: closed sub-

setsof yYare 0, X and finitesubsets of X. It is clearthat X does not contain a

copy of i4(oji).If
<J.~{{x,

y} : yeX―{x}}VJ{x} for some xel, then Jl is an

uncountable compact subset of ^[X].

If X is a set linearly ordered by <, then X with the usual order topology
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^(<) induced by < Is said to be a linearly ordered topologicalspace (=LOTS).

Intervals are denoted in the usual way. For example, we denote {xel: a^xSb]

by [a, b~]for a, b^X satisfying a^b. A subset C of a LOTS X is said to be

order-convex if whenever a, 6eC satisfying a^b, then [a, &]CC. If Y is a

set linearly ordered by < and v is a topology on Y such that (1) X≪)clt and

(2) r has a base consisting of order-convex sets, then X=(Y, z) is said to be a

generalized ordered space (―GO space) [24] and we often say that the GO space

X is constructed on the LOTS Y. Every GO space is known to be a hereditarily

collectionwise normal space.

A Hausdorff space X is said to be of pointwise countable type[2] if for each

xel, there is a compact subset K of X containing x such that K has a count-

able character in X. ^-spaces and firstcountable spaces are of pointwise countable

type.

For GO spaces, we obtain

Theorem 3.6. // X is a GO space, then the following conditions are equi-

valent.

(a)

(b)

(c)

£F[X] is a Moore space,

3[_X2 is of pointwise countable type,

X is firstcountable.

Proof. We shall prove the implication(b)->(c). By E. K. van Douwen [14],

it sufficesto prove that 9TX] is firstcountable. It is well known that A(a)d is

not a GO space. Since every subspace of a GO space is also a GO space, by

using Theorem 3.4, every compact subset of %[_X~]is countable (hence metri-

zable). Thus for each F<El'3[_X~],there is a compact metric space
<K{F)

contain-

ing F such that <K{F) has a countable character in £F[Z]. Hence £F[Z] is first

countable. The proof is completed.

By a space of ordinals, we mean a subspace of some ordinal.

Theorem 3.7. // X is a space of ordinals, then the following conditions are

equivalent.

(a) 3[_X^＼is metrizable,

(b) S[_X~＼is of pointwise countable type.

Proof. (a)-≫(b). Obvious.

(b)-≫(a). In [31] or [33], it was pointed out that if X is a space of ordinals,

then ^[X] is paracompact. Thus this follows from Theorem 3.6 and [15, 5.4.1],
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The proof is completed.

Hidenori Tanaka

§4. Partially separated spaces.

Definition 4.1. A space X is said to be weakly separated [35] if there is

a reflexive and antisymmetric relation S defined on X such that for each xel,

{jel: y^x} is an open set of X If, in addition, the relation is transitive

(i.e. the relation is a partialorder of X), then X is said to be partially separated

[4], [7].

As was seen in [35], a space X is weakly separated if and only if for each

i£l, there is an open neighborhood U(x) of x in X such that if y^U(x) and

xeU(y), then x ―y, or equivalently, X has an antisymmetric neighbornet in the

sense of H. J.K. Junnila C21]. Similarly partially separated spaces are charac-

terized as follows.

Lemma 4.2. A space X is partially separated if and only if there is a weak

separation VL={U(x): x^X} of X such that if y^U(x), then U(y)dU(x), or

equivalently, X has an antisymmetric and transitiveneighbornet.

A space X is said to be scatteredif X has no dense-in-itselfsubsets. It is

well known that X is scattered if and only if for some ordinal a, X(a) = 0,

where X(a) is the a-th derivative of X. A space X is said to be locally count-

able if every point of X has a neighborhood with cardinality at most coQ. a-

discrete spaces, scattered spaces and locally countable spaces are known to be

partiallyseparated spaces by M. G. Bell [41. Furthermore,

Lemma 4.3. For a space X, ffCZ] is partially separated.

Proof. For each Fe£F[Z], let <U(F)=[F, X] and let U={V(F): Feff[X]}.

It is to prove easy that II is a partial separation of 3＼~X~＼.The proof is completed.

As mentioned in the introduction, weakly (partially)separated spaces play

the fundamental role for the paracompactness of Pixley-Roy hyperspaces.

Lemma 4.4 (Bell [4], Bennett, Fleissner and Lutzer [7]). // X is partially

separated, then %[_X^＼is paracompact.

Lemma 4.5 (Przymusinski [31], Tanaka [33]). For a space X, the following

conditions are equivalent.
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Let us define S^X^^IX] and gn+1lXl=3£2nZXJ＼ for each tkeN. The

followingresultis an immediate consequence of Lemmas 4.3 and 4.4. However,

it has already obtainedby T. Przymusinski in [311.

Lemma 4.6. Let n^2. For a space X, <3n[_X~]is paracompact.

Theorem 4.7. For a space X, there are a paracompact Hausdorff space Y

and an open finite-to-onemapping 0 from Y onto S:＼_X~].

Proof. By Lemma 4.6, £F2[X] is a paracompact Hausdorff space. As the

space Y, we take ff2[Z] and define <P: ff'OT-^OT by 0({FU ･■･,Fn})=

Ft＼J･･■＼JFn, where /?ie2r[Z] for i^n. ItIs clear that the mapping 0 is finite-

to-one. For {Flt ■■■,Fn) g^CZ], let [{F,, - , Fn}, [F2, t/JW ■･･U[FB, £/,]]be

a basic open neighborhood of {Ft, ･■･,Fn). Then

^([{Flf - , Fn], [Flf £7JU - U[FBf £/,]])

= CF1U-WFB, ^W-Ut/J.

Thus 0 is an open mapping. It is similar to the above argument that 0 is

a continuous mapping. The proof is completed.

COROLLARY 4.8. For a space X, the following conditions are equivalent.

(a) 3[X'] is a Moore space,

(b) ffCX] is the open finite-to-oneimage of a metric space,

(c) £FC^] is contained in MOBI in the sense of A. V. Arhangel'skii C3].

(d) X is firstcountable.

Rroof. We shall prove the implications (a)-≫(b)and (c)->(d).

(a)―Kb). If ff[Z] is a Moore space, then 32[X~] is a paracompact Moore

space and hence, metrizable. Thus thisimplication follows from the proof of

Theorem 4.7.

(c)->(d). If.SFOT is contained in the class MOBI, then 3[X] is firstcount-

able. Hence X is firstcountable. The proof is completed.

Remark 4.9. In [12], J. Chaber characterized open finite-to-oneimages of

metric spaces as follows: A space X is the open finite-to-oneimage of a metric

space if and only if X is a metacompact developable space having a countable
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cover by closed metrizabie subspaces.

Next we prove that partialseparatedness is preserved by perfect mappings.

Theorem 4.10. Let f : X->Y be a perfect mapping from X onto Y. Then

(a) if X is partially separated, then so is Y, and

(b) // Y is partially separated, X is a Hausdorff space and SF[X] is para-

compact, then X is partially separated.

Proof, (a) Let VL={U(x): xgI) be a partial separation of X. For each

Feff[X], let U(F)=KJ{U(x):xelF}. Then U'={tf(F): Fe£F[JT]} satisfiesthe

condition (b) of Lemma 2.6 (i)(for details,see M.G. Bell [4] and H.R. Bennett,

W.G. Fleissner and D. J. Lutzer [7]). For each y&Y, let Fy be a finitesubset

of f~＼y)such that f~1(y)C.U(Fy). Since 11 is a partialseparation of X, for each

yt=Y, U{U(x):x<sf-Ky)}=U(Fy). For each y<=Y, let V(y)=Y-f(X-U(Fv))

and let ^S~{V(y): j/gF}. We shall prove that 33 is a partial separation of Y".

To see this, assume that yeV(z) and zGV(y) for some y, zeY. Then f~＼y)

dU{Fz) and f-＼z)dU(Fy). Since II is a partial separation of X, U(Fy)=U(Fz).

Thus Fyr＼F!!^0 and hence, y=^. Thus S9 is a weak separation of Y. Since

II is a partialseparation of X, S9 is transitive. Thus 59 is a partial separation

of Y.

(b) Let Vl={U(y): y^Y} be a partialseparation of Y. By T. Przymusinski

[31], every fiber is a scattered subset of X. For x^f~＼y) and yeF, if xe

(/"1(3'))(a)~(/"1(3'))(a+1)for some a, let V{x)=f-l{V{y))-{{f-＼yYa)~{x}). Let

58=={7(x): xgI}. Assume that xgF(z) and ^eF(x) for some x, zel Then

f(x)e=U(f(z)) and /(z)e£/(/(x)). It follows that f(x)=f(z). By the definition

of S? jc=z. Hence S3 is a weak separation of X. Since 11 is a partial separa-

tion of Y, it is easy to prove that 58 is transitive. Thus 58 is a partial separa-

tion of X. The proof is completed.

Example 4.11. We cannot omit the condition "^[Z] is paracompact" in

Theorem 4.10 (b).

Let X be a partially separated space and let /: XxI-^X be a perfect map-

ping from Xxl onto X, where / is the closed unit interval. By M. E. Rudin's

theorem in [32], 1[_XxI~＼is not normal. Thus by Lemma 4.4,Xxl is not partially

separated.

In [33], the author has shown that for any GO space X, CJ.＼_X~＼Is paracom-
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pact if and only if X is weakly separated (i.e.,2r2[^Y] is paracompact by Lemma

4.5) as the affirmative answer to H. R. Bennett's problem in [5J. Furthermore,

we obtain the following theorem.

Theorem 4,12. Let X be a GO space. Then X is partially separated if and

only if X is weakly separated.

Proof. It sufficesto prove the "if"part. Let X be a GO space constructed

on a LOTS (Y, <). Let VL={U(x) :i£l} be a weak separation of X, Without

loss of generality, we may assume that each U(x) is order-convex. For each

x<=X, define a subset V(x) of X as follows: y^V(x) if and only if there is a

finite sequence {xlt ･･･, xn] of points of X such that x1eU(x), xi+1ef7(Xj) for

i<n and y(EU(xn).

We shall prove that the collection^&~{V(x): xeZ} is a partial separation

of X. It sufficesto prove that 33 satisfiesthe following conditions:

(1) V(x) is an open neighborhood of x for each xel,

(2) if xt=V(v) and veFO), then xgV(z). and

(3) if x&V(y) and y^V(x), then x ―y.

For each xel, we have U(x)cV(x). Since II is a weak separation of X, S3

satisfies (1). From the definition of S3, it is clear that 93 satisfies(2). It follows

from the following claim that S3 satisfies (3).

Claim. Let {x1} ･･･, xn] be a finitesequence of points of X such that xi+1

^U(Xi) for each i^=n, where xn+i=x1. Then xx― ■■･=xn.

Proof of Claim. Let us call such a sequence {xlt ■■■,xn} a cycle with

length n. We shall prove by induction on the length. If n=l, the claim is

obvious. Let n>l and we have already proven the claim with length <n. Let

{xu ■･･,xn) be a cycle with length n. Then there is an i^n such that Xi-^Xi

and xi+i^Xi, or Xi-^Xi and xi+i^Xi, where xo―xn and xn+1=Xi. We con-

sider the firstcase only. If xi+1^Xi-i (^xt), then 2i-i£[xi+i,Xi~]cU(Xi),be-

cause U(xi) is order-convex. Since IX is a weak separation of X, xi-l=xi and

hence, *i+1e£/(%i_i). If xi_1^xi+1 (t^Xi), then ^m6[^j.i, x^cf/C^f-i). In

either case, we have xi+1GU(xi-1). Hence {xu ■■･,x^x, xi+1,■■･,xn} is a cycle

with length n―1. By the induction hypothesis, xx= ■･■=xi-1=xi+1= ･■･―xn.

Moreover Xi= xi+1, because jcief/(xi_1)=f/(%j+1) and xi+i^U(xi). The proof is

pntnnipfp'rl

THNOREM 4.13. Let X be a GO space. Then the following conditions are

pniiiimlont
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(a)

(b)

(c)
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£F[X] is paracompact,

2r2C^] is paracompact,

X is partially separated.

Proof. This follows from Lemmas 4.4, 4.5 and Theorem 4.12immediately.

Corollary 4.14. Let X be a GO space. Then the following conditions are

equivalent*

(a) 3[_X~]is metrizable,

(b) izLX'] is metrizable,

(c) X is a first countable partially separated space.

Proof. By D. J. Lutzer [25], S^PG is first countable if and only if X is

firstcountable. Thus this follows from Theorem 4.13.

We furthermore characterize GO spaces constructed on separable LOTS's

whose Pixley-Roy hyperspaces are metrizable.

Theorem 4.15. Let X=(Y, t) be a GO space constructedon a separable LOTS

(Y, <). Then the following conditions are equivalent.

(a) <3＼_X~＼is metrizable,

(b) 2F2DXI is metrizable,

(c) if we define

/={xeF: Wer},

L={xeF-/:>, i]£r},

R={x eY-~I:Lx, ->[er},

£=F-(7UIVJJ?),

(i) £ fs countable,

(ii) i? (res/>.L) can be written as R = ＼J{Rn: n(EN} (resp. L = ＼J{Ln: n<=N})

such that clTRnr＼L―0 (resp. clrLnr＼R= 0) for each n^N,

(iii) if x<=E(~＼clTRn,then for some y<x, ~]y,x[_r＼Rn=0, and

(iv) if x<=Er＼clTLn, then for some z>x, ~＼x,z＼_C＼Ln―0.

Remark 4.16. In [6], H.R. Bennett, W. G. Fleissner and D. J. Lutzer ob-

tained another characterization.

Proof of Theorem 4.15. (a)->(b). Obvious.

(b)->(c). This implication was in fact proved by H. R. Bennet, W. G. Fleissner
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and D. J. Lutzer in [6].

(c)->(a). By Theorem 4.12, it sufficesto prove that X is weakly separated.

(Notice thatX isfirstcountable.)Since X-E＼J(＼J{clTRn :neN})＼J(KJ{clzLn :ne^N})

＼Jl, by M.G. Bell [4], it suffices to prove that clrRn and clTLn are weakly

separated for neJV. Fix n and we shall prove that clTRn is weakly separated.

Using (ii),clTRnr＼L = 0. Clearly clTRnC＼I―0. For each x^dTRn, define an

open neighborhood U(x) of x in X as follows:

(1) if xeRr＼clTRn, let U(x) = [x, ->[.

(2) if x<=Ef~＼clzRn,then, using (iii),there is a y<x such that ~＼y,x＼ir＼Rn

= 0. Let U{x)=1y, ->[.

Let ll={U(x): x^clTRn}. Then U is a weak separation of dzRn- To see

this, assume that y^U(x) and x^U(y) for some x, y^clTRn. We devide two

cases.

Case 1. x^Rr＼clTRn. Since U{x)=＼_x, ->[, we have x^y. If y^Er＼clTRn,

then there isa z<j> such that ~＼z,yLr＼Rn=0 and f/(y)=]2', ->[. Then]^, ^[nc/ri?^

= 0. Thus it follows that x^z and hence, x^U(y), which is a contradiction.

Thus y^Rr＼cltRn- Hence yf^x. We have x = y.

Case 2. x^Er＼clzRn. Then there is a z<x such that ~]z,x[ni?n=0 and

U{x)=~＼z,―>[. Hence ]z, x[Mc/ri?n = 0. Since y<=clvRn, we have x^y. If

y<^Rr＼clzRn, then x=£;y and hence, x<3;, which contradicts the fact that xe

U{y). Thus y^Er＼clTRn. Hence we obtain y^x similarly. We have x = y.

The proof is completed.

Remark 4.17. The collectionVL={U(x): x^cltRn] constructed in the proof

of Theorem 4.15 is in fact a partialseparation of cLRn.

As other classes of spaces for which weak separatedness implies partial

separatedness,

Theorem 4.18. Let X be a semi-stratifiablespace. Then the following con-

ditionsare equivalent.

(a) ffCX] is paracompact,

(b) <3JlX~}is paracompact,

(c) X is a-discrete,

(d) X is partially separated.

Proof. This follows from H.J.K. Junnila [21].
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The following resultsare essentiallyproved by T. Przymusinski (see [31,§4])

and thus, the proofs are omitted.

v
Theorem 4.19. Let X he a locally Cech complete Tychonoff space. Then

the following conditions are equivalent.

(a) ^[JSQ is paracompact,

(b) ff[Z] is normal,

(c) <S<LX~]is paracompact,

(d) ffaCJY]is normal,

(e) X is scattered,

(f) X is tartiallvseparated.

Theorem 4.20. Let X be a compact Hausdorff space. Then the following

conditions are equivalent.

(a) SF[_X"2is metrizahle,

(b) SF2[_X~]is metrizable,

(c) X is countable,

(d) X is a firstcountable partially separated space.
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