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GLOBAL EXISTENCE FOR A CLASS OF QUASILINEAR

HYPERBOLIC-PARABOLIC EQUATIONS

By

Albert Milani

Abstract. We prove that classical solutions of the dissipative wave

equation

eutt + ut ― uxx―(f(ux))x=0

are globally defined in time, regardless of the size of the initial

data, if s is sufficiently small.

§1. Introduction.

1.1. We consider the quasilmear dissipative hyperbolic equation

(1.1) SUtt+ Ut-Ux.r!-(f(Ur))T = O

where £>0, xefi, u is a scalar function of (x, t) and / is a given smooth in-

creasing function on R. We study the global in time existence of classical

solutions of (1.1), corresponding to "large" initialvalues

(1.2) u{x, O)=uo{x), ut(x, 0)=u1(x),

and show that such solutions are globally defined, regardless of the size of the

initialvalues, if £sufficientlysmall. More precisely, given u0 and uu we find

£0>0 such that, if s^e0, the corresponding solutions of (1.1), (1.2) are defined

for all *2>0; moreover, their derivatives decay to 0 as /^+co. This result is

somewhat complementary to our previous result of [7], where we considered a

firstorder system formally equivalent to the equation

(1.3) sytt+yt-Wyx))x=0

(so that here f(r)=o(r)―r), and showed that if (1.3)is locally strictlyhyperbolic

(i.e.if <r/(0)>0 and o"(0)^0), then solutions of (1.3) corresponding to data with

small ＼yOx＼do not develop singularitiesin their higher order derivatives if £is

small. In contrast, here we assume that (1.1) is globally strictlyhyperbolic,

i.e. f'(r)>0 Vrei2. and show that no restriction on the size of the data is
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required to prove global existence of the solutions if £is small. Although this

result may not be surprising, since the limitation on the size of ＼yx＼is needed

only to guarantee hyperbolicity of (1.3), we believe it is worth of explicit con-

sideration, because of the simpler, very direct method of proof, and its possible

generalization to higher dimensions. Indeed, our proof is based on direct a

priori estimates on the time derivatives of u, and exploits the presence of the

dissipation term ut in the equation in a way similar to that of Matsumura, [6],

replacing his smaliness requirements of the data with the smallness of s (which

is equivalent to require that the dissipationis sufficientlylarge).

In the higher dimensional case, we were able to generalize our result of

[7] in [8], where we considered the equation

(1.4)

n

=0

under the local strict hyperbolicity assumption 2Qi.;(0)gV'2S＼q＼i,and showed

that global existence of solutions in the Sobolev spaces Hs+1(Rn), s>(n/2)+l,

follows, if s is small, under the sole assumption that ||7mo||jobe small, where

so=[n/2] + l (in which case |7wo|l°°^I|7w0||s0)-In [9] we tried to remove this

restriction,at least for equations analogous to (1.1),i.e. of the form

n
(1.5) eutt+ ut―Au― 2 otij{yu)dijU=0,

under the global hyperbolicity assumption ^]aij(p)qiqi^:0 for all p, q^Rn, but

that proof contains an error that, so far, we have not been able to correct.

Thus, by considering the simpler model (1.1), we have tried to gain a better

understanding of the mutual balancing effect between the nonlinear and the

dissipative terms in the equation, with the hope to be able to generalize this

global existence result to equation (1.5), at least if the nonlinear operator is in

the conservative form ―div F(7u), with F monotone.

1.2. One of our main motivations in this study stems from the associated

singular perturbation problem, consisting in considering equation (1.1) as a per-

turbation of the limit parabolic equation

(1.6) ut-uxx-(f(ux))x=0.

Indeed, a lot of attention has recently been devoted to the general question of

the validity of modelling propagation phenomena by means of "parabolic" equa-

tions, such as the heat or the porous media equations, which give rise to such

inconsistencies as for instance the "instant propagation with infinitespeed" of

the heat flow. Alreadv in 1948, for instance, Cattaneo (fll) proposed equation
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(1.1) as a better model for the nonlinear heat equation, with the remark that

the "thermal relaxation" parameter s is very small, but not negligible.

A similar model is provided by Maxwell's equations for the electromagnetic

potential A, which can be written as

(1.7) eAtt+ aAt+curl C(curl A)-l div 4=0 ;

in this model, s and a measure respectively the displacement and eddy currents.

In many situations,one has that e<a, so that the reduced equations

(1.8) aAt+curlC(curlA)-r7dwA=Q

are considered instead. The reason for this is of course that equation (1.8) is

much easier to study, both theoreticallyand numerically; for instance, when I

is monotone (so that (1.7) is of type (1.1)),a suitable weak solution theory can

be established for (1.8),with quite robust finiteelement methods for its numerical

treatment, while the same is not available, as far as we know, for (1.7), except

of course for its one-dimensional version (1.3). In this case, with the usua'

substitutions yt―u, yx=v, (1.3)is formally equivalent to the firstorder systerr

(1.9)
£Ut =(o(v))x―u ,

vt=ux;

when ro-//(r)>0 Vrel?, (1.9) represents a model, in nonlinear isothermal elastici-

tity, for the vibrations of an elasticstring influenced by a linear damping term;

when a{r)――r~r,l<f<3, (1.9) describes instead a model for the evolution of

a polytropic gas (in Lagrangean coordinates). In both instances, s is a measure

of the internal inertial forces; note that, when s=0 in (1.9), we formally derive

the porous media equation

(1.10) vt-(o(v))xx=0.

For this model, the singular convergence of weak solutions is described in [5] ;

for the general ^-dimensional case, we refer to [10] where, however, the global

existence of smooth solutions of (1.4), at least when e is small, is explicitly

assumed. Hence, we believe, the importance of global existence results of the

tvne we nroDose to nresent.
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§2. Notations and Results.

As in [9], by the change of variable t-+t/s we transform (1.1), (1.2) into

the initialvalue problem

(2.1) uu + ut―suxx―s(/(kx))x=0,

(2.2) u{x, 0)=uQ(x), ut(x, 0)=sMi(x).

For integer raS^O we consider the Sobolev spaces Hm=Hn(R), with norm ||-l|m

and scalar product (･, -)m; we omit the index m=0 for H°=L2(R); also, |-

denotes the L°°norm. Following Kato, [3], we look for solutions of (2.1) in

the space Zs+1(T)=ni±o C*([0, T] ; Hs+1~k),where T>0 is arbitrary and s^2

an integer (to conform with Kato's theory, which requires s>(n/2)+l if x^Rn ;

here, n=l).

We assume that /: R->R is a Cm function, m^3, satisfying

(2.3) /(0)=0, /'(r)^0 Vrei?,

and that, for j=l, ■･･,m, there are continuous increasing functions hj: R+-≫R+

such that

(2.4) Vreft, ＼f^{r)＼^hj{＼r＼)

(as, for example, the one-dimensional version of the />-Laplacian considered by

Lions in Chapter 1.8 of [4], i.e. f(r)=＼r＼p-2r,p>2: then (2.4) holds with m=3

if />^4).

Under the said assumptions, a straightforward application of Kato's results

of [3] yields the local existence result

Theorem 1. Let m^>3, and s be such that 2^s^m―1. Given any uo<=Hs+l,

UxeH8 and s>0, there exist r>0 and a unique u^Xs+l{r), solution of (2.1),(2.2).

Our goal is now to show that, if s is sufficientlysmall, such a local solu-

tion can be extended to any interval [0, T] (and, in fact, to all of R+): setting,

for integer k, I,

Ckb(Ri;Hl)±{ftECk(＼Q, +cof; Hl)＼3M>0 W^O, W=0, ･･･k, WdUiDh^M},
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we claim

Theorem 2. Let m^3, and s be such that 2<s^m―l. Given any u<eHs+1

and Ui<^Hs, there exists so>O such that,if s^£0,problem (2.1),(2.2) has a unique

solution u^Xs+l{+^)=r＼sk±l Ckb(Rt; Hs+1~k).

We remark that, as will be evident from the proof of Theorem 2, we could

consider equations of type (1.3) directly,provided we assume global strict hyper-

bolicity,i.e. that 3v>0| VrtER, o'{r)^v.

As is to expected, such global solutions will be uniformly bounded as t―*

+ oo, and their derivatives will decay to 0 (although, as far as we can show,

with a rate of decay not uniform with respect to s). At least in the case s=0

(and, we believe, for s>2 as well, but we have not checked the details of the

proof), this is described bv

Theorem 3. Let s=2, s£e0, and j/g1s(|co) be the solution of (2.1),(2.2)

assured by Theorem 2. There exists M>0 such that

(2.5)

(2.6)

w^o,

＼lm(＼＼ux(t)＼＼l

2 ＼＼diu(t)＼＼l-i^M

1 = 0

+
h

II9J≪(0IIS-i)=0

§3. Proof of Theorem 2.

We start by remarking that it is sufficientto extend the local solution to a

global one in Xz: in fact, higher order derivatives can be bounded in terms of

the norm in X3 by means of standard estimates (see e. g. [8] or [9]). Given

then integers m, r>0 and a smooth function u(x, t),we introduce the functions

Em.r(u, ')=＼＼dlut＼＼l+(dlu,dlut)m+j＼＼dlu＼＼l + e＼＼dZux＼＼2m

(the "energy" norms), and the seminorms

Sm,r(u, 0=RrM£||2m + £|l^:X;

indeed, by Schwartz' inequality we easily check that, for instance, supta0 Eo,o(u, t)

is the square of a norm in Xu and in particular

(3.1) ＼＼ut＼＼2<2E0.0(u,･), ＼＼uf^4E0,o(u, ･), e＼＼ux＼＼2^E0,0(u,■);

similar ineaualities hold for the other norms Em r.

Exploiting the different behavior of the time and space derivatives of u
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with respect to the rescaling t-*t/e,we propose at firstto establish a direct a

priori estimate on the norm

£0.i(m, t)+E0,*(u, 0+y
＼＼s

0 1(u, 0)+So,2(u, d))dd
Jo

and then, by a sort of "elliptic"procedure, to use this estimate to provide an

analogous estimate for the norm

Et,0(u,O+4-rSs.o(u, 6)d8.
Z Jo

In the course of these estimates we shall also have to consider the functions

#K) =
j

F(u(x, -))dx, where F(r)=
R

Fm,r(u, >)=(f＼ux)&£drtu,d dlu

note that (2.3) implies that F, and therefore <j>and FTO>r, are all nonnegative.

We start from the local existence Theorem 1, from the proof of which we

know that

Proposition 1. Let Al=E2,0(u, O)+e(2#(uox)+Ft,Q(u, 0)+F8,0(m, 0)). For all

A>A0, there exists T>0 such that

V* =[0, T], E2i0(u, V+^Sz.oiu, d)d6^A＼
I Jo

f is standard, and we actually obtain the estimat

EUu, 0+4rsM(K, d)dd
Z Jo

(3.2) We|_U, 7'J, E2 0{u,t)+-pr＼o2 0[.u,ajao^n,-.
I Jo

(The proof is standard, and we actually obtain the estimate

(3.3) EUu, O+irS8.o(K, d)dd

+ e(2#ttx(0)+F2>0(K, t)+F3,Q(u, t))

Z Jo

which, however, we shall not need). We now claim:

Proposition 2. There exists M>A0, independent of e, such that,for all

A>A0, there exists sa>0 such that, for all s^£a, for all T>0 such that (3.2)

holds,

(3.4) V*e[0, T], £2.0(1/,O+4rS8,o(tt, 0)dd£Mz;

We shall prove this Proposition in the next section; assuming its validity,

we choose A―2M and, by Proposition 1, we first find Tx>0 such that We
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2 0(w,d)dd<=4:M2. Then, Proposition 2 ensures that,if

z<e2M> we have in fact We[O, T{＼, E2
0(u,

t)
lSt0(.u,

d)dd^M＼ This
0

means that the energy norm does not increase in [0, T{], so that we can repeat

the same argument to extend the local solution to a global one in the usual

way. Thus, Theorem 2 follows from Propositions 1 and 2, with the choice

§4. Proof of Proposition 2.

4.1. We shall obtain the a priori bounds on the space derivatives of u

described in Proposition 2 by means of analogous bounds on the time derivatives

of u, provided by

Proposition 3. For all A>A0, there exists sa>0 such that, for all e^SA,

for all T>0 such that (3.2) holds in [0, T], for all fe[0, T],

(4.1) E01(u, t)+E0.2(u, t)+eF1.1(u, t)+eFli2(u, t)

+4T(So.i(k, d)+S0,2(u, d))dd+~＼＼Flil(u,d)+FUu,0))dd
Z Jo Z Jo

^E0.i(u, 0)+Eo,z(u, 0)+sF1i1(m, 0)+eFll8(M, 0)+£2.

Proof. We start by remarking that the right side of (4.1) is 0(s2): in

fact, from (2.1) and (2.2) we compute that

Utt(0)=(suxx+sf/(ux)uxx―Ut)(0)=eu2GH1,

and, from the differentiatedequation

(4.2) uttt+uu ―£Uxxt―z{f'(ux)uxt)x=R ,

Uttt(0)=(euxxt+e(f'(ux)uxt)x ―uu)(Q)= eu3(EL2.

Next, we multiply equation (2.1) in L2 by 2ut, obtaining

(4.3) jtQut＼＼*+ e＼＼ux＼＼2+2e0(ux))+2＼＼ut＼＼*=O;

from this we deduce that, for suitable A"1>0 independent of e,

(4.4) (＼＼utr+e＼＼ux＼＼2+2e$(ux))(t)+2[t＼＼ut＼＼2^Kle.
Jo

Multiplying then (2.1) by u as well, adding to (4.3) and integrating, we obtain
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(4.5)
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E0,0(u, t)+2e$(ux(t))+[＼so.o(u, s)+e(f(ux), ux)(s))ds
Jo

^E0.0(u, O)+2e0(uox);

since Vrei?, r(/(r))^O by (2.3), (4.5) means in particular that the norm of

{u, ut} in H1xLz is conserved.

4.2. Next, we multiply the differentiatedequation (4.2) in L2 by 2utt+ut,

obtaining

(4.6) j-t{＼＼utt＼＼>+e＼＼uxtr+e(f'(ux)uxt>
uxt)+(utt> ut)+~＼＼ut＼＼2}

+ ＼＼uttf+e＼＼uxt＼＼2+B{f'{ux)uxt,uxt)―e{f"(ux)uxtuxt, uxt)=I.

We estimate / by means of (2.4), using Nirenberg's interpolation inequalities

and (3.2), (4.4), noting that, by (3.1), these imply that ＼＼uxx＼＼^2A,＼＼uxxt＼＼^s/2A,

＼＼ut＼＼^VsKiand ＼＼ux＼＼^Ki:we obtain that, for suitable constant C>0 indepen-

dent of u,

＼ux＼<C＼＼uxx＼＼lia＼＼Ux＼＼1/a^Cy/2AK7,
(4.7)

|Mx£|^C||M^t||3/4||M£||1/4^23/8CA3/4^4£1/8,

and therefore, denoting here and in the sequel by R a generic positive constant

depending only on A,

(4.8) I^sh2(＼ux＼)＼uxt＼＼＼uxt＼＼^Rs^＼＼uxt＼＼＼

Consequently, if e is so small (in dependence of A) that

(4.9) 2Re≫*£j,

we obtain from (4.6) that, in particular,

(4.10) ~{EOil(u, O+sFuCm, *)}+
i(S0.i(K,

t)+eFUu, *))^0;
a? Z

and since Vr, VseU, /'(r)s2^0 because of (2.3),(4.10) means that the norm of

{ut, uu} in H^L2 is also conserved. In particular, (4.10) implies that there

exists K2>0, depending only on the norm of the initial values, but not on e

nor on A if s satisfies(4.9), such that

(4.11)

(4.12)

＼＼utt＼＼£Kae, ＼＼ut＼＼£Kte ＼＼uxt＼＼^K^e

Jo Jo

note that estimate (4.11b) allows us to improve estimate (4.7b): indeed, we now
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have

(4.13) ＼uxt＼<23l8CA3l4Kl'4s1/4.

In the sequel, we shall indicate by Kt a generic positiveconstant with the same

properties as Kx and K2.

4.3. We would now like to differentiate(4.2) once more with respect to

time; however, if s=2, we are prevented to do so by the fact that, in general,

Uttt and uxtt£C＼[0, T] ; L2). Thus, we shall regularize by means of Ikawa's

mollifiers:denoting by * the convolution with respect to time, for a>0 we set

wa = Aa^ut, that is, as in [2],

wa{x, o=f Z
ii^rv-y^'T)dT

where 6 is a C°°function with support in [―2, ―1], such that 02>O

I
+C"$(t)dt

= 1; we recall that if zeL2(0X]O, T+ao[) for some ao>O, then for 0<a<

(l/2)a0 0a*2eC°°([O,T^;L2), and <f>a*commutes with d/dt. Applying <pa* to

(4.2), we see that wa solves the equation

wft+ wf-6w°x-s(f＼ux)w$)x

= z{<j>a*{f'(ux)uxt)-f'(ux)wax)x= zR%.

We can now differentiatethis equation in time; multiplying then by 2wft-＼-wf,

we obtain

(4.14) > att＼＼tJrz＼＼w%t＼＼2+t(p'(ux)w%t,w≪t)+(w?u wf)+j

+ ＼＼wft＼＼2+e＼＼waxt＼+e(f'(ux)waxt,waxt)

= £{f"{ux)uxtWaxt, Waxt)+2£(f"(ux)uxxtW %, w?t)

ikfll*}

+2s(f//(ux)uxtwaxx, wft)+2£(f'"(ux)uxxuxtwax,wft)

-eU"(ux)uxtwax, waxt)+e(Raxt,2wft+wf)

^A-＼-Bl+Bz+D,+Di+El+Ei.

We estimate A as in (4.8):

A££h2(＼ux＼)＼uxt＼＼＼wU＼z^R^s＼＼waxtr',

again by interpolationinequalities,(2.4),and recalling that, as we have remarked,

＼＼uxtt＼＼^V2A,we have
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B1^2shi(＼ux＼)＼＼uxxt＼＼＼w%＼＼＼wft＼＼

^eR＼w%＼＼＼wft＼＼^eR＼＼w%＼nwxx＼nwft＼＼

<£>R＼＼w"x＼＼＼＼waxx＼＼+v＼＼w?t＼＼＼

for any 37>0; similarly, recalling (4.13),

<Re5'2＼＼wxx＼＼*+V＼＼w?t＼＼*;

also, recalling (4.11c), for suitable c>0:

D1£2sh3(＼ux＼)＼＼uxx＼＼＼uxt＼＼wax＼＼＼wft＼＼

^2ce/i8(|M,|)||MM||||MMt||1/2||M,t||1'8||M;;||1/I!||M;S,||1/a||u;ft||

^Re^WKi＼＼w%＼＼^＼＼w%x＼＼^＼＼wU

<B"2R＼＼w%＼＼＼＼w%x＼＼+-q＼＼watt＼＼2;

D^sh2(＼ux＼)＼uxt＼＼＼wax＼＼＼＼waxt＼＼

^ec/≫,(|ttx|)||uMt||1'1||MXi||l'1||u;S||||u;M|

^e^iR＼＼wmw%t＼＼^^R＼＼w%＼＼"+rIe＼＼wU＼2-,

E1=2e(Raxt, wft)^Re*＼＼Rxt＼＼*+v＼＼w?t＼＼*,

E2=e(Raxt, w<?)=-e{R?, waxt)^Re＼＼Rf＼＼*+Ve＼＼waxt＼＼2･

Choosing -q small enough, we deduce then from (4.14) that

(4.15)
^.{£o.1(u>a,

t)+sFUwa, 0} +
4s0ll(u;a,

t)+eFUw", t)
at I

£Re^waxx＼＼"+ReB'2＼＼wax＼＼2+£2＼＼Raxt＼＼2+Re＼＼Rf＼＼＼

from which, integrating,

(4.16) EUwa, t)+sF1,1(wa) tn^iSo^iw", 0)+eFUwa, 6)}dd
I Jo

^£0,i(wa, 0)+sF1,1(wa, 0)+i?s5/2(£||w;Sxl!2
Jo

+i?s8/≪('||u;S||8+/?e8ft||/?xtll8+^er||i?f||2.
Jo Jo Jo

To estimate the right side of (4.16), we recall the following results on the

mollifier, whose proof can be obtained by adapting the arguments of Ikawa, [2] :

Lemma 1. Let u^Xs(T): then, as a 10:
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17)

18)

(4.19)
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Jo Jo

E0.i(wa, t)―>E0,i(ut, t), Fj

So,i(l^a, 0 >So,i(Mt, 0,

rt
―> ＼!|mxj||?,

Jo

AW, 0―>Fi.1(mj, 0

sup{||^(0liI+i|i??(0III}=O(l).

OUST

Thus, letting a ＼0 in (4.16), we obtain

£0.i(Kt,t)+eFul(ut, O+^-iVo.i^t, d)+eF1,1(ut, d)}dO
Z Jo

^E0>1(m(, O)+sF1|1(Mt, O)+Re54t＼＼uxxl＼＼i+ Rei'i＼t
Jo Jo

li≪.rt||2

491

rt
and therefore, recalling (4.12b) and that (3.2) implies in particular that I ＼＼uxxt＼＼2

Jo
^2A2,

(4.19) E0.a(u, t)+eFh2(u, t)+^[{S9,2(u, 0)+sF1,2(u, d)}d6
I Jo

<Eo,2{u, 0)+eFli8(w, 0)+i?£5/22A2+i?£3/2^2£ .

Integrating (4.10) and adding to (4.19) yields then

£o.i(w, t)+EQ≫(u, t)+sF1,1(u, 0+eFli2(M, 0

h-k {SOi1(m,d)+S0,2(u, d^dd +
^iF^^u, 6)+Fl,2{u,

0)}d0
I Jo

^£o.i(k,0)+E0,2(u, O)+sF1.1(m, O)+sF1i2(m, 0)+i?£B/22A2+i?£3/2AT2£,

so that we obtain (4.1) if s is so small (again, in dependence of A) that, in

addition to (4.9),

(4.20) 2AiRVe+K2RVe£l

this ends the proof of Proposition 3. □

4.4. In particular, (4.1) implies that, for suitable K3>0,

(4.21)

(4.22)

＼uttt＼＼£K3e, ＼＼utt＼＼£K3£, ＼＼uxU＼＼£Ks^/s

Jo Jo

with these estimates,we are now ready to prove Proposition2, for which we

stillneed to estimate

r

ll≪*zll, l|M**t||, j

t

Wu-xxtW1;

0



492 Albert Milani

y/<£＼＼uXXx＼＼, e

From equation (2.1) we have

$>≪≫■･ 4

Uu + Ut
£UXX =

l+f＼ux)

t

IIm^xxII2

0

and since f'(ux)^O, recalling (4.11) we deduce that

(4.23) sil^x||^||M££!|+||Mt||^2K3S

From equation(4.2)we also have

(4.24)

from which

(4.25)

£Uxxt =
Uttt + Utt ―£f'(ux)uxxuxt

l+f＼ux)

z＼＼uxxt＼＼£＼＼uttt＼＼+＼＼Utt＼＼+s＼＼f'(ux)uxxUxt＼

Noting that (4.23) allows us to modify (4.7a) into ＼ux＼<CV2KzKlf recalling

(4.21) we proceed from (4.25) with

e＼＼uxxt＼＼£＼＼uttt＼＼-{'＼＼utt＼＼+ eh1(＼ux＼)＼uxt＼＼＼uxx＼＼

^eKz+eChACVMT&Uztnuzztnu.J

=2eKs+^iKi(e＼＼uxxt＼＼)1'2

therefore, we obtain that

2
^Kl + -e＼＼uxxt＼＼

1/2M-. II1/20 If'
2 Pill "≫-2

(4.26) s＼＼uxxt＼＼<AsK3+e3'2Kl^sKb.

From (4.24) we also have, using (4.23),(4.22a),(4.12a), that

s2＼t＼＼uxxt＼＼2£2＼t＼＼uttt+uttr+2＼t＼＼er(ux)uxxuxtr
Jo Jo Jo

^4riiMJ££ii2+4riiMJ£ii2+2iV£2r!iM;rx{|iiiMX£ii
Jo Jo Jo

^Kzsi+AK^+2N^＼＼uxtv)m{^＼＼uxxtr)m

^4^,e≪+4A-88>+CiVv(t||uxt||≪4-i-eirilMx*iir
Jo Z Jo

where N=ACK＼h1(C ^K.K,)2: thus, using(4.12b),we have



(4.27)
~2S

o
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＼＼uxxt＼＼2^4K3sz+4K2e2+ CNzK2sS£K6£2.

From (4.23),(4.12a) and (4.4) we also have

so that

(4.28)

rt rt
p2 ＼ ＼＼u Ii2<?＼

Jo Jo

＼uu＼＼2+2^
l＼＼utV^2K2t-2+K＼e

0

rt

S＼ ||wx;B||8^/f7
Jo

Differentiating equation (2.1) with respect to x we obtain that

(4.29) eil+f'{ux))uxxx = uUx + Utx ― s.f/'{ux)uxxuxx;

from this we obtain, as before, that

£＼＼uxxx＼＼^＼＼uxtt＼＼+＼＼uxt＼＼+e＼＼f"(ux)uxxuxx＼＼

^＼＼uxtt＼＼+ ＼＼uxt＼＼+eh2(＼ux＼)＼uxx＼l4

^＼＼uxu＼＼+ ＼＼uxt＼＼+ £Ch2(＼ux＼)＼＼uxxr'2＼＼uxxxV<*

^■v/eK3+VeK2+eCh2(CV2K;k2)(2K2y'2＼＼uxxx＼[1'2

^^/eKs+y/eKz+eCK+^eWuxxxW

for suitableCK>0; hence,

(4.30) e＼＼uxxx＼＼£VsKs.

Finally,from (4.29)we estimate

s^＼＼uxxAi^＼＼uxu＼＼2+^＼＼＼uA2+?!＼＼＼zf/＼ux)uxxuxx＼＼2
Jo Jo Jo Jo

£4Kse+4K2e+2e2Ch2(CV2K;K2)＼t＼＼uxxx＼＼＼＼uxxr
Jo

Jo Z Jo
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and therefore, recalling (4.28),

(4.31) e2f'Wu^J^SKse + K.e + eCKK^sK,.
Jo

Putting together estimates (4.5), (4.11c), (4.4), (4.23), (4.26), (4.30), (4.12b), (4.28),

(4.27) and (4.31), and recalling also (3.1), we deduce that

EUu, f)+-^S8.0(M, 0)dd^E0,0(u, O)+20(uQX)+Klo^M2.

To conclude the proof of Proposition 2, we only need to remark that M depends
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only on the norm of the initialvalues; finally,sa is defined by (4.9) and (4.20).

□

Remark. Using the same procedure, it would be possible to prove more

than (3.4), namely (compare to (3.3))

z Jo

+ e(2$(ux(t))+F2.0(u, t)+Fs,o(u, t))

+ ^-＼＼2<f>(ux{6))+FUu, 0)+F3,0(u, d))dd^M＼
Z Jo

§5. Proof of Theorem 3.

For e^s0, we consider the global solution u of (2.1) and (2.2) assured by

Theorem 2. At first we remark that, since ug!3(+co), estimate (4.19) holds

uniformly with respect to T ; consequently, from (4.15) we deduce that, with the

same meaning of wa,

jt{E0.i(wa, t)+eFltl(wa, t)}^Cs,

with 00 independent of t and a; adding this to (4.10) we have then that, in

particular,

(5.1) j{EOtl(u, i)+E0,,(wa, t)+eF1,1(u, t)+eFhl(wa, t)}^Ce .

Also, from (4.1) we have that, for all£]>0:

(5.2) E0>1(u, O+£o.*(m, t)+eF1.1(u, t)+sF1.i(u, t)

^EOil(u, 0)+E0.2(u, 0)+£F1,1(m,0)+eFli2(K, 0)+£2^C2£2.

Next, we easily see that

('(£,.
i(m,

d)+E0,2(u, O))dO^＼V
Jo Z Jo

(S0>1(m, 6)+S0,2(u, d^dd +
i'wutW2

Jo

so that from (4.1) and (4.4) we have that for all t^>Q

(5.3)
[{Eo.iiu, d)+EoAu, 0)+sFltl(u, d)+sFli2(u, d)}dd^5e2C2+±-eKl^Cse

Jo /

Recalling (4.19), inequalities (5.1), (5.2) and (5.3) show that

lim {£0.i(w, t)+E0 x(wa, 0+eFi x(m, t)+eF1 Aw", t)}=0
£-+oo

therefore, since Fx Au, t)+F1 i(wa, t)^0 and the convergence in (4.18) is uniform
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in t because weX,(+oo), letting a [ 0 we obtain that

lim {Eo ,{u, t)+E0,2(u, t)}=0
J-+OO

which in turn implies that

(0.4)

(5.5)

lim {＼＼uttt(tW+＼＼utt(t)＼＼

i-+oo
!+!M*)ll!}=0.

Because of (4.23), (4.25) and (4.29), (5.4) also implies that

lim{||u^(0ll?+l|u,x£(0ll2} =0
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finally,decay of ||mx(-)IIis a consequence of (4.3),(4.4),(4.5) and (5.4). O

Remark. As we have stated in the Introduction, it should not be difficult

to extend this procedure to equations in the conservative form

(5.6) sutt+ ut-Au-divF(yu)=O,

with F: Rn―>Rn monotone; on the other hand, however, extension to equations

in the divergence form

n
euu+Ut―Au― 2 5/a(7M)5iw)=0

seems to be out of our reach. Still,our method would clearly be applicable to

the initialboundary value problems corresponding to (1.1) or (5.6), with homo-

geneous Dirichlet boundary conditions.
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