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1. Introduction.

A topologicalproperty £Pis said to be nowhere densely generated in a class

C of topological spaces if each Xg C has £P whenever every nowhere dense

closed subset of X has £p[5]. For example, Katetov showed in [4] that the sub-

space of nonisolated points of a Tx -space X is compact if each nowhere dense

closed subset is compact. This means that compactness is a nowhere densely

generated property in the classof 7＼-spaces without isolated points. More general-

ly, it was showed in [1] [5] that [k, ^-compactness is also a nowhere densely

generated property in the same class. Other nowhere densely generated propert-

ies were investigated in [1], a-closed-completeness, a-compactness and pseudo-(≪,

^-compactness. The purpose of this paper is to consider nowhere densely gene-

rated properties in topologicalmeasure theory. In this paper we examine measure-

compactness, (weak) Borel measure-completeness, Borel measure-compactness, pre-

Radon-ness and Radon-ness.

Terminologies and notations are due to [3]. we denote by <B(X) (<B*(X)) the

Borel (Baire) a-algebra in a space X. A Borel (Baire) measure fiis a <7-additive

non-negative real-valued set function on £B(X){<B*{X)). We assume that all mea-

sures are finite(i.e.ft(X)<oo). A measure ft which is fi{X)―＼is called a pro-

bability. A Borel measure ft is called regular (Radon) if for each Bz<B{X) ft(B)

is the supremum of measures of closed (compact) subsets contained to B. A non-

empty family JL of sets is called directed upwards if for each A, BeJL there

exists CgJI such that AuBczC. A Borel measure ftis called weakly r-additive

if for each directed upwards open cover Jl of X, ft(X)=sup{ft(U): UzJl). A

Borel measure ft is called r-additive if for given open subset V and a directed

upwards open cover Jl of V, ft(V)=s＼ip{ft(U):UzJl). Regularity and r-additivity

of Baire measures are also defined by the same way.

We assume all spaces are T2.
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2. Nowhere densely generated properties.

Definition 2. 1. [3] A space X is called

(1) measure-compact if each Baire measure in X is r-additive.

(2) (weakly) Borel measure-complete if each Borel measure in X is (weakly)

r-additive.

(3) Borel measure-compact if each regular Borel measure in X is r-additive.

These concepts are motivated by the characterization of real-compactness as-

sociated with 2-valued Baire measures. A space is realcompact if and only if

each 2-valued Baire muasure in the space is r-additive.

Definition 2. 2. [3] A space X is called

(1) pre-Radon if each r-additive Borel measure in X is Radon.

(2) Radon if each Borel measure in X is Radon.

Compact spaces are pre-Radon [3, 11. 3].

A cardinal k is called real-valued measurable if there is a discrete space X

with ＼X＼―k and a diffused Borel probablity ftin X, where a diffused measure is

a measure such that //({#})=0 for any xgX. By (*) (cl(*)) we denote the condi-

tion that the cardinality of each (closed) discrete subspace is not real-valued

mpnQnraHip

Theorem 2. 3. Let X be a Tychonoff space satisfying cl(*), and assume that

$*(Y) = {BC)Y:Bg£B*(X)} for each closed subset Y in X. Then X is measure-

compact if each nowhere dense closed subset of X is measure-compact.

Proof. It is known that a space X is measure-compact if and only if each

Baire probabilityin X has a nonempty support [3, 14. 4], where the support of a

Baire (Borel) measure p. in X is the set of all xzX such that fi(U)>0 for each

cozen) (open) neighborhood U of x. We assume that there exists a Baire pro-

bability n in X having the empty support. For each xsX we take a cozero

neighborhood Ux of x such that p(JJx)=Q. Let cU={Ua: a£A} be a maximal dis-

joint collectionof nonempty open subsets refining {Ux:xeX}. Then F=X―＼JCU

is nowhere densely closed, so F is measure-compact. Since we can extend Baire

set of F to a Baire set of X, we can consider the restricted Baire measure ixF in

F [3, 3.2], where fxF is constructed in the following manner: piF(E)~ini{n(B):

EaB£<B*(X)} for each E£<B*(F). Obviously the support of //*>is empty, hence ptF

=0. Therefore there exists Be$*(X) such that FaB and ft(B)<l. Since //(Z

―B)>0 and a Baire measure is always regular [3, 14.21 there exists a zero set
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Z in X such that ZcX-B and p(Z)>0. Set A' = {aeA:ZnUa^4>} and take xqZ

f＼Uafor aeA'. Then D={xa: at A'} is closed discretein X. We define a Borel

measure v in D by the following equation, v{E)= l/[x(Z).(iz(Zr＼(＼JUa)) for EaD.
xa£E

It is easy to show that v is a diffused Borel probability. Hence ＼D＼is real-valued

measurable. This is a cotradiction.

The followingtwo theorems are similarlyproved.

Theorem 2.4. Let X be a space satisfying(*). Then X is weakly Borel

measure-complete if each nowhere dense closed subset of X is weakly Borel

measure -complete.

Corollary 2. 5. A space X is Borel measure-complete if and only if each

nowhere dense closed subset of X is Borel measure-complete and (*) is satisfied.

Proof. Note that Borel measure-completeness is equivalent to be hereditari

ly weakly Borel measure-complete [3, 7. 41.

Theorem 2. 6. Let X be a space satisfying cl (*). Then X is Borel measure-

compact if each nowhere dense closed subset of X is Borel measure-compact.

Theorem 2. 3 and 2.6 generalize Corollary 2. 5 in [1]. In fact,it is known

that a space X is closed-complete if and only if each 2-valued regular Borel

measure in X is r-additive.

Lemma 2.7. If X is a countable union of pre-Radon subspaces, then X is

pre-Radon.

Proof. Let //bea r-additive Borel measure in X and Bg<B(X). Put X-

＼JXi, where Xt is pre-Radon. For any s>0, since the restricted Borel measure

pxi in Xi is r-additive,we can take a compact suset Ki such thatKiCBf]Xi and

ftXiiBHXi-Ki) <e/2i+1. Then v(B-＼JKi)<Zfixi(BnXi-Ki)<sl2<£. Since ^ is

(j-additive,[x{B―＼JKi)<sfor some ≪. This shows that X is pre-Radon.

A space X is calledlocally pre-Radon if each point of X has a pre-Radon

neighborhood.

Lemma 2. 8. Every locally pre-Radon space is pre-Radon.

Proof. Let p. be a r-additive Borel measure in a locally pre-Radon space X.

It is enough to show that dU) = $up{u(K) :K is a compact subset contained to
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U.) for each open set U in X [3, 6. 4]. Let U be an open set in X and for each

xgU, take a pre-Radon neighborhood Wx of x. We may assume that Wx is open

in X and JF^ct/ [3, 11. 6]. Since y.is r-additive,for any £>0, there exists xu

■■■,XntU such that fi(U)-y(Wxi U ･･･ U Wxn)<e＼2. W= Wxi U ･■･ U Wxn is pre-

Radon by Lemma 2.7 and the restricted Borel measure p>w is r-additive, hence

ftw is Radon. So there exists a compact set KdW such that yw(W) ―fuw(K)<£J2.

These facts show that u(U)―u(K)<e. Thus a is Radon.

Theorem 2. 9. A space X is pre-Radon if and only if the following (1)

and (2)

(1)

set.

(2)

are satisfied.

Each nowhere dense closed subset of X is pre-Radon.

Each nonempty open subset of X containsa nonempty open pre-Radon

Proof. A pre-Radon space obviously satisfies(1) and (2). Because each Borel

subset of a pre-Radon space is pre-Radon [3, 11. 6]. We assume (1) and (2). Let

V be a maximal disjointcollection of nonempty open pre-Radon subsets. Since

X― UV is nowhere dense closed in X, it is pre-Radon. By Lemma 2. 8, UCU is

pre-Radon, hence X is pre-Radon by Lemma 2.7.

There exists a non-pre-Radon space which satisfies(1) in Theorem 2. 9, refer

to T3. 5.111.

Theorem 2. 10. A space X is Radon if and only if the following (1),(2) and

(3) are satisfied.

(1) (*) is satisfied.

(2) Each nowhere dense closed subset of X is Radon.

(3) Each nonempty open subset of X contains nonempty open pre-Radon set.

Proof. Note that Radon-ness is equivalent to be Borel measure-complete and

pre-Radon. So each Radon space satisfies(1),(2) and (3). The converse follows

from Corollary 2. 5 and Theorem 2. 9.

We give an applicationof the above theorem. Fremlin proved under MA+2m

<o)m that a first-countablecompact space of weight <2a is Radon [2]. We gen-

eralizethisresult.

Theorem 2.11. [MA+2w<a)w] A space X satisfying(*) is Radon if each

nowhere dense closedsubset is a first-countablecompact set of weight <2a.
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Proof. As mentioned in the firstsection, the subspace of nonisolated points

of X is compact. Hence X is pre-Radon by Lemma 2.7. By Fremlin's result X

satisfies(2) of Theorem 2. 10. Thus X is Radon by Theorem 2.10.
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