NOWHERE DENSELY GENERATED PROPERTIES IN TOPOLOGICAL MEASURE THEORY

By

Masami SAKAI

1. Introduction.

A topological property \mathcal{P} is said to be nowhere densely generated in a class \mathcal{C} of topological spaces if each $X \in \mathcal{C}$ has \mathcal{P} whenever every nowhere dense closed subset of X has \mathcal{P} [5]. For example, Katětov showed in [4] that the subspace of nonisolated points of a T_1 -space X is compact if each nowhere dense closed subset is compact. This means that compactness is a nowhere densely generated property in the class of T_1 -spaces without isolated points. More generally, it was showed in [1] [5] that $[\kappa, \lambda]$ -compactness is also a nowhere densely generated property in the same class. Other nowhere densely generated properties were investigated in [1], α -closed-completeness, α -compactness and pseudo-(κ , λ)-compactness. The purpose of this paper is to consider nowhere densely generated properties in topological measure theory. In this paper we examine measure-compactness, (weak) Borel measure-completeness, Borel measure-compactness, pre-Radon-ness and Radon-ness.

Terminologies and notations are due to [3]. we denote by $\mathcal{D}(X)$ ($\mathcal{D}^*(X)$) the Borel (Baire) σ -algebra in a space X. A Borel (Baire) measure μ is a σ -additive non-negative real-valued set function on $\mathcal{D}(X)$ ($\mathcal{D}^*(X)$). We assume that all measures are finite (i.e. $\mu(X) < \infty$). A measure μ which is $\mu(X)=1$ is called a probability. A Borel measure μ is called regular (Radon) if for each $B \in \mathcal{D}(X) \mu(B)$ is the supremum of measures of closed (compact) subsets contained to B. A nonempty family \mathcal{A} of sets is called directed upwards if for each $A, B \in \mathcal{A}$ there exists $C \in \mathcal{A}$ such that $A \cup B \subset C$. A Borel measure μ is called weakly τ -additive if for each directed upwards open cover \mathcal{A} of X, $\mu(X)=\sup\{\mu(U): U \in \mathcal{A}\}$. A Borel measure μ is called τ -additive if for given open subset V and a directed upwards open cover \mathcal{A} of V, $\mu(V)=\sup\{\mu(U): U \in \mathcal{A}\}$. Regularity and τ -additivity of Baire measures are also defined by the same way.

We assume all spaces are T_2 .

Received July 12, 1985.

2. Nowhere densely generated properties.

DEFINITION 2.1. [3] A space X is called

(1) measure-compact if each Baire measure in X is τ -additive.

(2) (weakly) Borel measure-complete if each Borel measure in X is (weakly) τ -additive.

(3) Borel measure-compact if each regular Borel measure in X is τ -additive.

These concepts are motivated by the characterization of real-compactness associated with 2-valued Baire measures. A space is realcompact if and only if each 2-valued Baire muasure in the space is τ -additive.

DEFINITION 2.2. [3] A space X is called

- (1) pre-Radon if each τ -additive Borel measure in X is Radon.
- (2) Radon if each Borel measure in X is Radon.

Compact spaces are pre-Radon [3, 11. 3].

A cardinal κ is called real-valued measurable if there is a discrete space X with $|X| = \kappa$ and a diffused Borel probability μ in X, where a diffused measure is a measure such that $\mu(\{x\})=0$ for any $x \in X$. By (*) (cl(*)) we denote the condition that the cardinality of each (closed) discrete subspace is not real-valued measurable.

THEOREM 2.3. Let X be a Tychonoff space satisfying cl(*), and assume that $\mathscr{B}^*(Y) = \{B \cap Y : B \in \mathscr{B}^*(X)\}$ for each closed subset Y in X. Then X is measure-compact if each nowhere dense closed subset of X is measure-compact.

PROOF. It is known that a space X is measure-compact if and only if each Baire probability in X has a nonempty support [3, 14. 4], where the support of a Baire (Borel) measure μ in X is the set of all $x \in X$ such that $\mu(U) > 0$ for each cozero (open) neighborhood U of x. We assume that there exists a Baire probability μ in X having the empty support. For each $x \in X$ we take a cozero neighborhood U_x of x such that $\mu(U_x)=0$. Let $\mathcal{U}=\{U_a: a \in A\}$ be a maximal disjoint collection of nonempty open subsets refining $\{U_x: x \in X\}$. Then $F=X-\cup \mathcal{V}$ is nowhere densely closed, so F is measure-compact. Since we can extend Baire set of F to a Baire set of X, we can consider the restricted Baire measure μ_F in F [3, 3. 2], where μ_F is constructed in the following manner: $\mu_F(E)=\inf\{\mu(B):$ $E \subset B \in \mathcal{B}^*(X)\}$ for each $E \in \mathcal{B}^*(F)$. Obviously the support of μ_F is empty, hence μ_F =0. Therefore there exists $B \in \mathcal{B}^*(X)$ such that $F \subset B$ and $\mu(B) < 1$. Since $\mu(X - B) > 0$ and a Baire measure is always regular [3, 14. 2], there exists a zero set

74

Z in X such that $Z \subset X - B$ and $\mu(Z) > 0$. Set $A' = \{\alpha \in A : Z \cap U_{\alpha} \neq \phi\}$ and take $x \in Z \cap U_{\alpha}$ for $\alpha \in A'$. Then $D = \{x_{\alpha} : \alpha \in A'\}$ is closed discrete in X. We define a Borel measure ν in D by the following equation, $\nu(E) = 1/\mu(Z)$. $\mu_Z(Z \cap (\bigcup_{x_{\alpha} \in E} U_{\alpha}))$ for $E \subset D$. It is easy to show that ν is a diffused Borel probability. Hence |D| is real-valued measurable. This is a cotradiction.

The following two theorems are similarly proved.

THEOREM 2.4. Let X be a space satisfying (*). Then X is weakly Borel measure-complete if each nowhere dense closed subset of X is weakly Borel measure-complete.

COROLLARY 2.5. A space X is Borel measure-complete if and only if each nowhere dense closed subset of X is Borel measure-complete and (*) is satisfied.

PROOF. Note that Borel measure-completeness is equivalent to be hereditarily weakly Borel measure-complete [3, 7. 4].

THEOREM 2.6. Let X be a space satisfying cl (*). Then X is Borel measurecompact if each nowhere dense closed subset of X is Borel measure-compact.

Theorem 2.3 and 2.6 generalize Corollary 2.5 in [1]. In fact, it is known that a space X is closed-complete if and only if each 2-valued regular Borel measure in X is τ -additive.

LEMMA 2.7. If X is a countable union of pre-Radon subspaces, then X is pre-Radon.

PROOF. Let μ be a τ -additive Borel measure in X and $B \in \mathcal{B}(X)$. Put $X = \bigcup_{i=1}^{\infty} X_i$, where X_i is pre-Radon. For any $\varepsilon > 0$, since the restricted Borel measure μ_{X_i} in X_i is τ -additive, we can take a compact suset K_i such that $K_i \subset B \cap X_i$ and $\mu_{X_i}(B \cap X_i - K_i) < \varepsilon/2^{i+1}$. Then $\mu(B - \bigcup_{i=1}^{\infty} K_i) \le \Sigma \mu_{X_i}(B \cap X_i - K_i) \le \varepsilon/2 < \varepsilon$. Since μ is σ -additive, $\mu(B - \bigcup_{i=1}^{n} K_i) < \varepsilon$ for some n. This shows that X is pre-Radon.

A space X is called locally pre-Radon if each point of X has a pre-Radon neighborhood.

LEMMA 2.8. Every locally pre-Radon space is pre-Radon.

PROOF. Let μ be a τ -additive Borel measure in a locally pre-Radon space X. It is enough to show that $\mu(U) = \sup \{\mu(K) : K \text{ is a compact subset contained to}\}$ U.) for each open set U in X [3, 6, 4]. Let U be an open set in X and for each $x \in U$, take a pre-Radon neighborhood W_x of x. We may assume that W_x is open in X and $W_x \subset U$ [3, 11, 6]. Since μ is τ -additive, for any $\varepsilon > 0$, there exists x_1 , \cdots , $x_n \in U$ such that $\mu(U) - \mu(W_{x_1} \cup \cdots \cup W_{x_n}) < \varepsilon/2$. $W = W_{x_1} \cup \cdots \cup W_{x_n}$ is pre-Radon by Lemma 2.7 and the restricted Borel measure μ_W is τ -additive, hence μ_W is Radon. So there exists a compact set $K \subset W$ such that $\mu(W) - \mu_W(K) < \varepsilon/2$. These facts show that $\mu(U) - \mu(K) < \varepsilon$. Thus μ is Radon.

THEOREM 2.9. A space X is pre-Radon if and only if the following (1) and (2) are satisfied.

(1) Each nowhere dense closed subset of X is pre-Radon.

(2) Each nonempty open subset of X contains a nonempty open pre-Radon set.

PROOF. A pre-Radon space obviously satisfies (1) and (2). Because each Borel subset of a pre-Radon space is pre-Radon [3, 11.6]. We assume (1) and (2). Let U be a maximal disjoint collection of nonempty open pre-Radon subsets. Since $X - \cup U$ is nowhere dense closed in X, it is pre-Radon. By Lemma 2. 8, $\cup U$ is pre-Radon, hence X is pre-Radon by Lemma 2. 7.

There exists a non-pre-Radon space which satisfies (1) in Theorem 2.9, refer to [3, 5.11].

THEOREM 2.10. A space X is Radon if and only if the following (1), (2) and (3) are satisfied.

- (1) (*) is satisfied.
- (2) Each nowhere dense closed subset of X is Radon.
- (3) Each nonempty open subset of X contains nonempty open pre-Radon set.

PROOF. Note that Radon-ness is equivalent to be Borel measure-complete and pre-Radon. So each Radon space satisfies (1), (2) and (3). The converse follows from Corollary 2.5 and Theorem 2.9.

We give an application of the above theorem. Fremlin proved under $MA+2^{\omega} < \omega_{\omega}$ that a first-countable compact space of weight $<2^{\omega}$ is Radon [2]. We generalize this result.

THEOREM 2.11. $[MA+2^{\omega} < \omega_{\omega}]$ A space X satisfying (*) is Radon if each nowhere dense closed subset is a first-countable compact set of weight $<2^{\omega}$.

PROOF. As mentioned in the first section, the subspace of nonisolated points of X is compact. Hence X is pre-Radon by Lemma 2.7. By Fremlin's result X satisfies (2) of Theorem 2.10. Thus X is Radon by Theorem 2.10.

References

- Blair, R. L., Some nowhere densely generated topological properties, 24, 3 (1983), 465-479.
- [2] Fremlin, D. H., Consequences of Martin's axioms, Cambridge University Press, 1984.
- [3] Gardner, P. J. and Pffefer, W. F., Borel measures, Handbook of Set-theoretic Topology, North-Holland (1984), 961-1043.
- [4] Katětov, M., On the equivalence of certain types of extensions of topological spaces, Časopis Pěst. mat. fys. 72 (1947), 101-106.
- [5] Mills, C. F. and Wattel, E., Nowhere densely generated topological properties, Topological structures II, Math. Centre Tracts 116 (1979), 191-198.

Institute of Mathematics University of Tsukuba Ibaraki, 305 Japan