COMPLETELY CELL SOLUBLE SPACES

(Dedicated to Professor Yukihiro Kodama on his 60th birthday)

By

Toshiji Terada

1. Introduction.

A topological space X is called homogeneous if for arbitrary points $x, y \in X$ there exists a homeomorphism f from X onto itself such that f(x)=y. Is every compact T_2 -space the continuous image of a homogeneous compact T_2 space (Arhangel'skii [2])? Particularly, is a compact T_2 -space nonhomogeneous if it can be mapped continuously onto βN (van Douwen [3])? These interesting problems remain unsolved. Related to these problems, Motorov showed that there exists a metrizable compact T_2 -space which is not a retract of any homogeneous compact T_2 -space. In the specific idea of Motorov, Arhangel'skii ([1], [2]) found an interesting topological property called cell solubility which every retract of an arbitrary homogeneous compact T_2 -space posesses. He raised some problems related to this topological property. We solved already one of his problems [6]. In this paper we will answer to some other problems of Arhangel'skii.

2. Definitions.

The following definitions were introduced by Arhangel'skii [1], [2].

2.1. DEFINITION. Let X be a topological space. A map F of X into the set of all closed subsets of X is called a *cellularity* on X if the following conditions are satisfied:

1) $x \in F(x)$,

2) if $y \in F(x)$ then $F(y) \subset F(x)$,

3) if f is a homeomorphism from X onto itself such that f(x)=y then f(F(x))=F(y).

The sets F(x) are called the *terms* of the cellularity F. A cellularity F on a space X is called *disjoint* if for any $x, y \in X$ either F(x)=F(y) or $F(x) \cap F(y)$ Received December 14, 1989.

Toshiji TERADA

 $=\emptyset$. Arhangel'skii showed that a topological space X is homogeneous if and only if every cellularity on X having a compact term is disjoint.

Let $q=(Y, Z, \mathcal{E})$ be a fixed triple, where Y is a topological space, Z a subspace of Y, and \mathcal{E} a family of subsets of Y. Let X be an arbitrary topological space. A closed subset P of X is said to be q-saturated if for any continuous map $f: Y \to X$ such that $f(E) \cap P \neq \emptyset$ for all $E \in \mathcal{E}$ we have $f(Z) \subset P$. For an arbitrary point $x \in X$ we denote $F_q(x)$ the intersection of all q-saturated subsets containing x. Then F_q is a cellularity on X. This cellularity is called the cellularity induced by the triple q.

2.2. DEFINITION. A topological space X is called *cell soluble* if for any triple q as above its induced cellularity is disjoint, provided that at least one of its terms is compact.

Arhangel'skii proved that every retract of an arbitrary homogeneous compact T_2 -space is cell soluble. We showed that every zero-dimensional space is cell soluble [6].

Let us denote by T the category of all Tychonoff spaces and all continuous maps between such spaces.

2.3. DEFINITION. An abstract cellularity is a rule that associates with each space $X \in \mathbf{T}$ some callularity $F^{\mathbf{X}}$ on X in such a way that the following condition is satisfied: for any map $f: X \to Y$ in the category \mathbf{T} ,

$$f(F^X(x)) \subset F^Y(f(x))$$

is held for all $x \in X$.

The above abstract cellularity is expressed by

$$\boldsymbol{F} = \{F^X : X \in \boldsymbol{T}\}.$$

Let $q=(Y, Z, \mathcal{E})$ be a triple as before. For each space $X \in \mathbf{T}$, let F_q^X be the cellularity induced on X by q. Then $\mathbf{F}_q = \{F_q^X : X \in \mathbf{T}\}$ is an abstract cellularity. This abstract cellularity is called a *representable* cellularity.

2.4. DEFINITION. A compact T_2 -space X is called *completely cell soluble* if for every abstract cellularity F the cellularity F^x on X is disjoint.

3. A non-representable abstract cellularity.

Arhangel'skii posed the following problem in [2].

3.1. PROBLEM. Is there an example of a non-representable abstract cellularity?

We will give an affirmative answer to this problem. For any space $X \in T$ let F_c^X be the map of X into the set of closed subsets of X defined by

 $F_c^{X}(x)$ is the connected component of x

for all $x \in X$. Then $F_c = \{F_c^X : X \in T\}$ is obviously an abstract cellularity.

3.2. THEOREM. F_c is a non-representable abstract cellularity.

Before we give the proof of this theorem, let us recall the long line. Let τ be an arbitrary uncountable ordinal. The extended τ -long line L_{τ} is constructed from the ordinal space τ by placing between each ordinal α and its successor $\alpha+1$ a copy of the unit interval I=(0, 1). L_{τ} is then linearly ordered and we give it the order topology. L_{τ} has the following properties:

- (1) L_{τ} is connected.
- (2) If τ is a successor ordinal than L_{τ} is compact.

PROOF OF THEOREM. This proof is much the same as that of our theorem in [6]. For any triple $q=(Y, Z, \mathcal{E})$ as before, we will show that $F_q \neq F_c$. We can assume that $Z \neq \emptyset$ since if $Z = \emptyset$ then $F_q^X(x) = \{x\}$ for any $X \in T$ and any $x \in X$. Further we can assume that $\mathcal{E} \neq \emptyset$ ($Z \neq \emptyset$ has been assumed) since if $\mathcal{E} = \emptyset$ then $F_q^X(x) = X$ for any $X \in T$ and any $x \in X$.

Suppose that there exists a clopen subset G of Y such that $G \cap Z \neq \emptyset$ and $E - G \neq \emptyset$ for every $E \in \mathcal{E}$. Then we can show that $F_q^X(x) = X$ for any $X \in T$ and any $x \in X$, and hence $F_q^X \neq F_c^X$ for non-connected spaces X. In fact, if a non-empty subset P of X satisfies $P \neq X$, then there exists a continuous map $f: Y \to X$ such that $f(G) \subset X - P$ and $f(Y - G) \subset P$. This shows that P is not q-saturated.

The case remained is the following: For any clopen subset G of Y, if $G \cap Z \neq \emptyset$ then there exists some member E of \mathcal{E} such that $E \subset G$. In this case, it will be proved that there exists a space $L \in \mathbf{T}$ such that $F_q^{L} \neq F_c^{L}$. Let κ be the cardinality of Y. Let L be the (κ^++1) -extended long line. The linearly order relation of L is expressed by \leq . Since L is connected, $F_c^X(x) = L$ for any $x \in L$. On the other hand, for the last point κ^+ of L it will be shown that $F_q^L(\kappa^+) = \{\kappa^+\}$. In fact, let $f: Y \to L$ be a continuous map such that $f(E) \cap \{\kappa^+\} \neq \emptyset$ for any $E \in \mathcal{E}$. It suffices to show that $f(Z) = \{\kappa^+\}$. Assume that $f(Z) \neq \{\kappa^+\}$. Let y be a point of f(Z) which is distinct from the point κ^+ . Then,

since the cardinality of $\{x \in L \mid y \leq x \leq \kappa^+\}$ is greater than the cardinally of Y, there exists a point $z \in L - f(Y)$ between y and κ^+ . Let $U = \{x \in L \mid x \leq z\}$. Then $f^{-1}(U)$ is a clopen subset of Y satisfying $f^{-1}(U) \cap Z \neq \emptyset$ and $E - f^{-1}(U) \neq \emptyset$ for any $E \in \mathcal{E}$. This contradicts the assumption of the last case. It follows that $f(Z) = \{\kappa^+\}$.

In connection with the above result the following problem arises.

3.3. PROBLEM. Is every cell soluble compact T_2 -space completely cell soluble?

4. Complete cell solubility of zero-dimensional spaces.

Arhangel'skii posed also the following problems in [2].

4.1. PROBLEM. Is every zero-dimensional compact T_2 -space completely cell soluble?

4.2. PROBLEM. Is it true that $\beta N - N$ is completely cell soluble?

We will show that these problems are solved affirmatively. It suffices to give the affirmative answer to 4.1.

4.3. THEOREM. Every zero-dimensional compact T_2 -space is completely cell soluble.

PROOF. Let F be an arbitrary abstract cellularity. Let $2=\{0, 1\}$ be the two-point discrete space. Now, let us consider the cellularity F^2 on 2 which is associated with F. Since 2 is a compact homogeneous space, the following two case occur:

(1) $F^2(0) = \{0\}$ and $F^2(1) = \{1\}$.

(2)
$$F^2(0) = F^2(1) = 2$$
.

Case (1). Let X be an arbitrary zero-dimensional compact T_2 -space. Then it will be shown that $F^X(x) = \{x\}$ for any $x \in X$, and hence the cellularity F^X on X is disjoint. In fact, assume that $F^X(x)$ contains more than one point. Then there exists a continuous map $f: X \to 2$ such that $f(F^X(x)) = 2$. This contradicts one of the conditions of abstract cellularity since $f(F^X(x)) \supseteq F^2(f(x))$.

Case (2). It will be proved that $F^{X}(x)=X$ for any $X \in T$ and any $x \in X$. In fact, let x be an arbitrary point of X. Then for any another point $y \in X$ there exists a continuous map $f: 2 \to X$ such that f(0)=x and f(1)=y. From $f(F^2(0)) \subset F^X(f(0)) = F^X(x)$

it follows that $y \in F^X(x)$. This implies that $F^X(x) = X$.

5. Weakly homogeneous spaces.

As a result of Arhangel'skii every retract of a homogeneous compact T_2 -space is completely cell soluble. And we showed that every zero-dimensional compact T_2 -space is completely cell soluble. Hence there arises the following natural question.

5.1. QUESTION. Is every zero-dimensional compact T_2 -space the retract of a homogeneous compact T_2 -space ?

In fact, the answer to the following problem of Arhangel'skii [2] is also unknown.

5.2. PROBLEM. For every zero-dimensional compact T_2 -space X, does there exist a homogeneous compact T_2 -space Y such that $X \times Y$ is homogeneous ?

We do not have perfect solutions for these problems. But we will give partial answers to these problems.

5.3. DEFINITION. A topological space X is called *weakly homogeneous* if, for arbitrary $x, y \in X$ and any neighborhoods U, V of x, y respectively, there exists a homeomorphism f from X onto itself such that $f(x) \in V$ and $f^{-1}(y) \in U$.

Every homogeneous space is clearly weakly homogeneous.

5.4. PROPOSITION. A zero-dimesional T_1 -space X is weakly homogeneous if and only if, for arbitrary $x, y \in X$ and any neighborhoods U, V of x, y respectively, there exist homeomorphic clopen neighborhoods U', V' of x, y respectively such that $U' \subset U, V' \subset V$.

PROOF. (if) Let x, y be distinct points of X. Let U, V be neighborhoods of x, y respectively. We can assume that U and V are disjoint clopen subsets of X. Then there exists a homeomorphism $g: U' \rightarrow V'$ for some clopen neighborhoods U', V' of x, y respectively such that $U' \subset U, V' \subset V$. Let $f: X \rightarrow X$ be the map defined by

$$f(x) = \begin{cases} g(x) & \text{if } x \in U' \\ g^{-1}(x) & \text{if } x \in V' \\ x & \text{otherwise.} \end{cases}$$

Toshiji TERADA

then f is a homeomorphism such that $f(x) \in V' \subset V$ and $f^{-1}(y) = g^{-1}(y) \in U' \subset U$.

(only if) We can assume that U and V are clopen subsets. Let $f: X \to X$ be a homeomorphism such that $f(x) \in V$, $f^{-1}(y) \in U$. Now, let $U' = U \cap f^{-1}(V)$ and $V' = V \cap f(U)$. Then U' is a neighborhood of x and V' is a neighborhood of y. Further $f | U' : U' \to V'$ is a homeomorphism.

Let us call an infinite, zero-dimensional compact T_2 -space X to be *B*-homogeneous if every non-empty clopen subspace of X is homeomorphic to X (cf. [4], [5]). Then every *B*-homogeneous space is weakly homogeneous. As noted by van Douwen [4], every first countable *B*-homogeneous space is homogeneous. Similarly, we can show the following.

5.5. PROPOSITION. Every first countable zero-dimensional weakly homogeneous T_1 -space is homogeneous.

PROOF. We can assume that X has no isolated point. Let x, y be arbitrary points of X.

CLAIM 1. Let U, V be homeomorphic clopen neighborhoods of x, y respectively. Then for arbitrary neighborhoods W^x , W^y of x, y respectively there exists a homeomorphism f from U onto V such that $f(x) \in W^y$, $f^{-1}(y) \in W^x$.

In fact, Let $g: U \to V$ be a homeomorphism. If g(x)=y, then there is nothing to do. Hence let $g(x) \neq y$. Then there are disjoint homeomorphic clopen neighborhoods $U_{g(x)}, V_y$ of g(x), y respectively such that $U_{g(x)} \subset V \cap g(W^x), V_y \subset V \cap W^y$. For a homeomorphism $h: U_{g(x)} \to V_y$ let $k: V \to V$ be the homeomorphism defined by

$$k(x) = \begin{cases} h(x) & \text{if } x \in U_{g(x)} \\ h^{-1}(x) & \text{if } x \in V_{y} \\ x & \text{otherwise.} \end{cases}$$

Then $f = k \circ g : U \to V$ is a homeomorphism and satisfies $f(x) = k(g(x)) \in k(U_{g(x)})$ $\in V_y \subset W^y$, $f^{-1}(y) = g^{-1}(k^{-1}(y)) \in g^{-1}(k^{-1}(V_y)) = g^{-1}(U_{g(x)}) \subset W^x$.

CLAIM 2. There are neighborhood bases $\{U_n\}$, $\{V_n\}$ of x, y respectively, consisting of clopen subsets such that

(a) $U_n \supset U_{n+1}, V_n \supset V_{n+1};$

(b) there is a homeomorphism f_n from $U_n - U_{n+1}$ onto $V_n - V_{n+1}$

for each $n \in \omega$.

224

Let $\{W^{x}_{n}\}$, $\{W^{y}_{n}\}$ be neighborhood bases of x, y respectively, consisting of clopen subsets of X. Then there are homeomorphic clopen neighborhoods U_{0}, V_{0} of x, y respectively such that $U_{0} \subset W^{x}_{0}, V_{0} \subset W^{y}_{0}$. From Claim 1 it follows that there is a homeomorphism $g_{1}: U_{0} \rightarrow V_{0}$ such that $g_{1}(x) \in W^{y}_{1}, g_{1}^{-1}(y)$ $\in W^{x}_{1}$. Let $U_{1} = g_{1}^{-1}(W^{y}_{1}) \cap W^{x}_{1}$ and $V_{1} = g_{1}(W^{x}_{1}) \cap W^{y}_{1}$. Then U_{1} and V_{1} are homeomorphic clopen neighborhoods of x, y respectively. Further $f_{1} = g_{1}|(U_{0} - U_{1})$ is a homeomorphism from $U_{0} - U_{1}$ onto $V_{0} - V_{1}$. Continuing this procedure, we can obtain the desired neighborhood bases of x, y respectively.

Let $f: X \rightarrow X$ be the map defined by

$$f(z) = \begin{cases} z & \text{if } z \in X - U_0 \\ f_n(z) & \text{if } z \in U_n - U_{n+1} \\ y & \text{if } z = x . \end{cases}$$

Then f is a homeomorphism such that f(x)=y. This completes the proof.

In the next theorem, the cardinal function w(X) means the weight of X.

5.6. THEOREM. Let X be a zero-dimensional compact T_2 -space. Then there exists a zero-dimensional compact T_2 -space Y with w(Y)=w(X) such that $X \times Y$ is weakly homogeneous.

PROOF. Let \mathscr{B} be an open basis of X consisting of clopen subsets. We can assume that $|\mathscr{B}| = w(X)$ and $X \in \mathscr{B}$. Let Y be the topological product

$$\Pi\{B^{\omega} \mid B \in \mathcal{B}\}.$$

Then the family of clopen subsets of Y which are homeomorphic to Y forms an open basis of Y. Hence Y is weakly homogeneous. Since $X \times Y$ is homeomorphic to Y, the product space $X \times Y$ is weakly homogeneous.

5.7. COROLLARY. Every zero-dimensional compact T_2 -space is a retract of a weakly homogeneous compact T_2 -space.

Since every compact T_2 -space is a continuous image of a zero-dimensional compact T_2 -space, we can give the following partial answer to the problem of Arhangel'skii stated in the introduction.

5.8. COROLLARY. Every compact T_2 -space is a continuous image of a weakly homogeneous compact T_2 -space.

Toshiji Terada

References

- [1] A.V. Arhangel'skii, Cell structure and homogeneity, Mat. Zametiki 37 (1985), 580-586.
- [2] ——, Topological homogeneity. Topological groups and their continuous images, Uspekhi Mat. Nauk 42: 2 (1987), 69-105=Russian Math. Surveys 42: 2 (1987), 83-131.
- [3] E.K. van Douwen, Non-homogeneity of products of preimages and π-weight, Proc. Amer. Math. Soc. 69 (1978), 183-192.
- [4] ——, A compact space with a measure that knows which sets are homeomorphic, Advances in Math. 52 (1984), 1-33.
- [5] J. van Mill, Characterization of some zero-dimensional separable metric spaces, Trans. Amer. Math. Soc. 264 (1981), 205-215.
- [6] T. Terada, Every zero-dimensional space is cell soluble, Proc. Amer. Math. Soc. 110 (1990), 569-571.

Department of Mathematics Faculty of Engineering Yokohama National University 156, Tokiwadai, Hodogaya Yokohama, Japan