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POLYNOMIAL TYPE HOPF ALGEBRAS

By

Roman KiEfcPi&SKi

Summary. For any commutative ring K we denote by K(t} the free graded

if-module R K-tn with grading given by degtn―2n. Any commutative and
rc=o

cocommutative graded Hopf iT-algebra on K(t} is called a polynomial type Hopf

algebra over K. The main aim of this paper is to describe all polynomial type

Hopf algebras over an arbitrary commutative ring K.

Introduction.

In the study of graded Hopf algebras over commutative rings an important

role is played by Hopf algebras whose underlying algebra structures are poly-

nomial ones. This follows from the fact that in many cases interesting graded

Hopf algebras can be obtained from polynomial ones by applying standard cate-

gorical and ring constructions (see [8, 10, 11, 12, 13, 14]).

In this paper we are concerned with the problem of a description of all

commutative and cocommutative graded Hopf i£-algebrason the free if-module

K{t}= c K-tn, where K is an arbitrary commutative ring and the grading is
71=0

given by degtn―2n. Any such graded Hopf algebra is called a polynomial type

Hopf algebra over K.

If K is a fielda characterization of polynomial type Hopf algebras over K

can be deduced from the results proved in £8,10, 11, 12, 13, 143. For the ring

of integers the raised above problem has been solved in [5]. In the case of an

arbitrary commutative ring there are known two standard polynomial type Hopf

algebras: the well known polynomial algebra K[f] and the so-called algebra of

polynomials with divided powers (see [5, 9]). Here we give a rather simple

description of all polynomial type Hopf algebras over an arbitrary commutative

ring K. More precisely we shall show that there is one-to-one correspondence

between polynomial type Hopf algebras over K and pairs of sequences (xd, x'd)de.N+,

A/"+={l, 2, ･･･},of elements in K, which satisfy the following conditions

Received January 18, 1983.



192

where
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x1= x[=l, xdx'd= vd, d<=N+,

1,if d is not a power of a prime number or d=l,

p, if d=pr where p is a prime number and r<^N+

(compare the definition1.6.4 in [4]). The correspondence is defined as follows.

Given such a pair of sequences we define the multiplication

m:K<t>(g)K<0 >K(f)

and the comultiplication

m':K<t> ≫K<0(3K(t>, R=(8)x,

by the following formulas

for any i, j, n^N

m'(tn)= S m'i.Jti<g)tJ

= {0, 1, 2, ･･･}, where

mUi― II xd

mt.j=

r i+i i rj-i rj i
L~d~-i~L a -i~＼-~dJ

d<=N +

(here [r~]denotes the integral part of the real number r).

with the obvious unity and counity maps is the polynomial

over K corresponding to the pair (xd, x'd)d!=N+.

Then (tf<f>,m, m')

type Hopf algebra

An important role in our proof of the stated above correspondence is played

by a generalized version of well-known Lazard's Lemma [2, 4, 6] being the

crucial fact in the classificationof one-dimensional formal grouos.

1. Basic definitions and lemmas.

Let 91 be the category of commutative rings with unity. For any K in %

K(ty― 0 K-tn is the free graded /f-module with free generators tn, n<=N, and
ra=0

with grading given by deg tn―2n. We denote by e: K~>K(t} the if-linearmap

such that e(i)=t0, and by e': Kit}―>K the if-linear map such that e'(tn)= dn,0,

where ditjis the Kronecker index.

A pair of /C-Iinearmaps (m, m') such that {K<f}, m, m', e, e')is a commuta-

tive and cocommutative graded Hopf ilT-algebrais called a polynomial type Hopf

structure over K, or equivalently an h-structure over K, and (iT<0, m, m', e, ef)

is called a polynomial type Hopf algebra over K (see [7] or [8] for the defini-

tion of graded Hopf algebra).
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If <p: K->K' is any morphism in % then for any A-structure(m, m!) over K

the pair 0-K^ni, In^m') may be considered in a natural way as an /z-structure

over K' and we denote it by {m9, m'v).

Let c he the rafetrnrv nf sets We define a rovariant functor

h:% ><&

by assigning to each K from % the set h(K) of all /j-structuresover K and to

each <p:K-*K' in SI the map h(<p):h(K)-*h(K') defined by h(<p)(m,m')=(m9, m'9)

for any (m, m') from h{K).

Now let (m, m')^h{K). Then

(1.1) m(ti(g)tJ)=ini.jtn.J,m'(tn)= 2 m'ijt&tj,
i+j=n

for some elements m*,.,-,m^ in /f and for all /,7, n in A^ and the following

(1.2) mi,o=mo,i = l, mi,j―mj,i,
7ni,jmi+j,k= mi,j+kmj,k

(1-2') mi,o=m'o.i = l, mlj―m^i, mi,jm'i+j,k= m'i,j+kmjtk

for all i, j, k in N= {0, 1, 2, ■･■},

(1-3) mi,Jm'k>i= '^lmp,rmq,sm'p,qm'T,s

for any /,7, k, I in N such that i-＼-j=k-＼-l,where the sum runs over allp, q, r, <

in N such that p+q―i, r+s―j, p~＼-r―k,q-＼-s=l.

We put g-(m, m') ―(jYii,hm'i,j)i,MN. Every pair of systems (muj> mj, _,-)<,j-e^

satisfying (1.2), (1.2'),(1.3) is called a polynomial type Hopf K-pair, or equivalently

an h-pair over /C It is easy to verify the following

Lemma 1.1. The map (m, m')>-*g{m, m') establishes an one-to-one correspond-

ence between elements of h{K) and h-pairs over K. Moreover, if <p: K-*K' is a

morphism in % and g(m, m/) = (mi,j, m'i>})itj&Nthen g(m9, m'v)= ((p(milj),(p(m'i,j))i,jGN.

For the proof we remark only that conditions (1.2) are equivalent to the fact

that (Kit), m, e) is a graded commutative and associative if-algebra with unity,

conditions (1.2') correspond to the fact that (K(.t), m', e') is a graded, cocommu-

tative and coassociative if-coaigebra with counity and condition (1.3) is equivalent

to the fact that m' is a graded iT-algebra morphism i.e. that the following



194 Roman KiEfcPiN'SKi

K<f>RK<t> - *>K<frRK<t>RK<M8)K<t>

m (mRm)(l(g}rRl)

K<S>■ ^ K<t)RK<t>

where r: K<.t>R K<t>^>K(.t)<g)K(t> is the twisting morphism.

By the above lemma we may identify the set h(K) with the set of /i-pairs

over an arbitrary commutative ring K.

(i+j)!
For any i,j in N we denote by (z,j) the binomial coefficient-tt-.-t. Note

ii j I

that the pair of systems (mi,j=l, m'i,j={i,j))i,j<=Nis a polynomial type Hopf

impair for an arbitrary ring K. The corresponding polynomial type Hopf algebra

over K is the iiT-algebraof polynomials K[f＼.

We have the following

Lemma 1.2. // (mj;,7>m^)ivjGiV is a polynomial type Hopf K-pair then

(1.4) mi,jmt,j=(i, j)

for alli, j in N.

Proof. Remark that the condition (1.3) with i=k, j=l in the case of the

if-algebra of polynomials K[t~＼has the form

(1.5) (i,j)= S (/>,9)(^ ≪)･

It is clear that (1.4) holds in the case f―0 or j―Q. Let n>l and assume that

(1.4) holds for alli, j in N satisfying i-＼~j<n. Now, let i,j in Nsatisfy i+j~n

and i,;>0. By (1.3) we have

mi.jini.i― 2 mp,atria,sm'p.am'q.t

p+q=iq+S=i

Hence, using the inductive assumption and (1.5) we see that

mujm'i,)^ 2 (/>,q)(q,s)= (i,j).
p+q=iq+s~j

Then the lemma follows by induction.

For any sequence (raJne.v+, of elements in a commutative ring K, we define

mo! = l, mn+l != wtn! rnn+1. By a multiplication over /C we mean any system

(nii,j)i,j<=N,of elements in /f, which satisfies(1.2). We have

Lemma 1.3. Let (mi,j)z,jeiv̂^ 0 multiplicationover K and suppose that all

nti,j,i,j'gN are non-zero-divisorsin K. Then



Polynomial type Hopf algebras

i.j=
trii! rrij ＼

for all i,j in N, where mn ―mn-＼,i,n<=N+.

195

The proof is left to the reader. Compare Proposition 1.5 in [5].

For a real number r we denote by ＼Y] the integral part of r. If iu ■･■,is<=N+,

r＼(=.JSJ+ thpn wf nut

D"i,･･･, i,: d] =

i

1+
d

]-･■-[
is
d

Remark that for any i, j, k<=N, d^N+, we have

Li,j: 11=0

Li,0: d]=0

U, j- dl = Zj,i: <T＼

Li,j: dl+Li+j, k : dl=&, j+k : rf]+[y, k : d] .

For any sequence x=;(,rd)dejv+?of elements in an arbitrary commutative ring

K, we define a system mix) ―(m,-.,■),･.,･≪=v. bv formulas

mUj― JJ+*5f'=fl. '-/siV.

One easily checks the following

Lemma 1.4. The system m{x) is a multiplication over K.

We define a sequence v~{Vd)d^N+, by

f 1, if d is not a power of a prime number or d―1,
(1.6) va=＼

t>.if d=if where t is a Drime number and r^N*

Since nl=JIprLp^ (see for example [3]) then the followinglemma im

mediately follows from definitionsof v and [i, j: d~＼

Lemma 1.5. m(v)=(i, i)i.^N.

Let

= 1, Xd

us denote by H the Z-algebra Z[_Xd,X^: de7V+] with relationsX1=X[

Xh~vh. d<=N+. We shallneed the following'result.

Lemma 1.6. The ring H is torsionlessas an abelian group.

Proof. Note that H Is generated as an abelian group bv elements of the form
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(1.7)
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X%＼ Xadrr.Xf{＼ X'P*

where Kdx< ･･■<dr, Kd[< ■･･<d's, d^dj, au ■■■,ar, filt･･･, /3seN+. Let

Q(Td: d^2) be the fieldof rational functions in variables Td> d^2. We define

the morphism in %

d>:H―>Q{Td: d^2)

by formulas ^(Zd)=Td, <p(Xi)=^?-

are monomials

VH...

, d>2. The images of the elements (1.7)

Tal rTar

o d＼

* dr

1)PS - * '-

that are linearly independent over the fieldof rational numbers Q. It follows

that (p is an injection. Consequently elements (1.7) form a free abelian group

basis of H and the lemma is proved.

2. The main theorems.

(X

Let K be a commutative ring. A reduced h-pair over K＼$ a pair of sequences

=(xd)dev+, x'=(x'd)rf<=iv+)of elements in K, satisfying the following conditions

(2.1) Xl=x[=l, xdxd = vd, d(EN+.

Theorem 2.1. Let (x=(xd)deiN+, x'=(x'd)dl=x+)be a reduced h-pair over K,

Then (m(x), ra(x'))is a polynomial type Hopf structure over K.

Proof. Let m(x)=(mi,j)i,jeN and m(xf)=(m't,j)t,jeir.By Lemma 1.4 the pair

of systems (rtiij,m'i,j)i,j(£Nsatisfies(1.2) and (1.2'). Now by (1.6),(2.1) and

Lemma 1.5 we have

(2.2) mi,jm'i,j―{j,,j)

for all /,j in N. First we suppose that K is torsionless as an abelian group.

Then (2.2)implies that all elements mi,j,mij are non-zero-divisors in K. Hence,

using Lemma 1.3, we see that

mil mj＼ m＼＼my.

for alli, j in N, where mn=mn-i,u mi^i-u for all n in />/+.

Now, let i, j, k, I in TV satisfyi+j=k+l. The equality (1.3)in the special

case of the K-algebra of polynomials K[f] has a form

(fc,/)=2 (/>,9)(r,s)

where the sum runs as in (1.3). Combining this with (2.2) we have
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mk.im'k,i='£ mp,nmr,sm'p,am'T,s.

Multiplying the above equality by
mk＼ mil

nii I m.j!
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(in the classicalring of quotients of

the ring K) and using (2.3) we get (1.3). Hence, by Lemma 1.1, the pair

(m(x), m(jc'))is a polynomial type Hopf structure over K.

By the definitionof the ring H we know that (T―(Xd)d&N+, 3£'=(Xd)d(EN+)

is a reduced /i-pairover H. Since H is torsionlessas an abelian group the pair

(m(2£),m{2£'))belongs to h(H). Now, if K is an arbitrary ring, we consider the

ring homomorphism (p:H->K defined by <p{Xd)―xd, (p{Xd)―x'd,d<BN+. It is

clear that (m(x), m{x'))^h{,(p){m{2£),m{X')). Thus (m(jc),m(x')) belongs to h(K).

This completes the proof of the theorem.

Theorem 2.2. Let (m, m') be an h-structure over K. Then there exists a

unique reduced h-pair (x, x') over K such that (m, m')=(m(x), ra(x')).

Proof. Let m=(jni,])i,j<=Nand m'―{mi,j)i,j<=N. We have to construct a

unique pair of sequences (x―(xd)deN+, xf=(x'd)deN+) of elements in K such that

(2.4)
x1=x[―l

mt.j=

xdx'd―vd, d^N+

Let n>l and assume that there exists a unique pair of sequences ((xu ･■■xn-i),

(x{, ■･■,x'n-x))of elements in K satisfying (2.4) for d^n―l and i+j-^n―1.

We define

d=l d=l

for all z,/ in N+, i+j=n. It is easy to see that

(2.5) m^j―m^i, fnlj―M^i, i, j<bN+, i+j=n

(2.6) ■mi,jmi+j,1l―mj,kfni,j+k,m'ijMi+j,k ―mj,kfni,j+k

for i, j, k in N+, t+j+k ―n,

(2.7) fni,imti,j=ci,j

for alli,j in N+, i+j=n, where ctj―

Consider /("-modules
Vn

LB=( 0 K-Xi.i)/Rn, /,;=( c K-XiJ/K,

i+j=n i+j=ni.j>o i,j>o

where Xitj,X'itj are free generators and Rn, R'n are /C-submodules generated

respectively by elements
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Xi.j-Xj.i, Xlj-X'j.i, with i,j<EEN+, i+j=n

m t,jXi+j,k~nij,kX{,j+k,

mljXi+j.t―mj.kXij+k, with i, j, k^N+, i+j+k^n

By conditions (2.5) and (2.6) there exist K"-linearmaps

L:Ln >K, I'n:L'n >K

given by

(2.8) UXi^muj, i'n(X'tJ=fni.j

for i, j in N+, i+j―n, where Xi,jt X'itj are cosets of Xitj, X'uj in Ln, L'n

respectively. We will show that ln and l'nare isomorphisms.

It is well known that there exist rational integers diliti, j^N+, i+j―n

such that

(2.9) 2 di.ja.,^1

(see Section 4.1 in [4]).

If we put

^ti~S di,jmi,jXiyj

Xfn=^di.jmi.JXij

then from (2.7),(2.8) and (2.9) it follows that /BCYB)=1 and i'n(X'n)=l. Hence

/, and l'nare epimorphisms. In the next section we prove that ln and l'nare

monomorphisms. Thus the elements Xn and X'n are free generators of the

cyclic 7<"-modules Ln and L'n,respectively,and the following equalitieshold

(2.10) Zt.j~mt.jZn, Z't,j=m't.jZn

for alli, j in N+ such that i-＼-j―n.

Now we consider /<"-linearmaps

defined as follows

ln(Zi,J)=mi.j, l'n(Zfn,j)=mi.j, i, j^N+, i+j=n.

Let xn~ln(Xn) and x'n―l'n{X'n). Then (2.10) implies that mi,j―mitjxn and m'itj

= fn'i,jx'n.Moreover

XnXn ＼2-iO-i.j^i,j)XnXn

= 2 dijfni.jXnfnljx'n

= 2 di,jm.i,jmi,}

=T,di.li, i)
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―(2 di,jCi,j)vn

Finally,if yn, y'n are elements in K such that yny'n=vn and miii^fnUjyn,

^fn'i.jy'n,then

yn~H dt,jCiwJyn

= 2 dijffii^m'ijyn

= 2 dijvti.jfnij

= 2 di.jfhijmljXn

xn
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m'i.j

Similarly one can prove that y'n―x'n.

Hence the pair of sequences (x1}■･･,xn) and (x'u ･･■,x'n) is a unique pair

that satisfies(2.4) for d^n and 2+7 = rc. Consequently, by induction, the theorem

is proved.

Theorems 2.1 and 2.2 yield

COROLLARY 2.3. The functor h : SI-+R is representable by the ring H in the

Corollary 2.4. Let {un)nGN, uo―l, be sequence of invertible elements in K.

Then there exists a unique sequence {ad)deN+, of inverible elements in K such

Ut+j

UjUj
= n <#･*≪

for any i,j in N.

Proof. Since the pair (mi j――L+--,Wj-,./=-"

K. then the cnroliarv follows bv Theorem 2.2.

j is an /z-structure over
/ i )i=N

3. A generalized Lazard's Lemma.

We keep in this section the notation of the preceding sections,in particular,

the notation that has been introduced in the proof of Theorem 2.2. It is easy to

see that the following theorem is a generalization and a slight modification of

Lazard's Lemma (see [2, 4, 6]).

Theorem 3.1. Let (mi.j,nii,j)i,j^Nbe a polynomial type Hopf structure over

an arbitrary commutative ring K. Then for any n^2 the K-linear maps
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/,: Ln-*K and Vn: L'n-*K are isomorphisms.

Proof. We already know that /",and l'nare epimorphisms. Thus ln and

i'nare monomorphisms too if and only if Ln and L'n are cyclic ^-modules. More-

over, we may assume that K is a Z(p)-algebra for some prime number p (see for

example, Theorem 1 in [1, Chapter II,§33). Here Z(p) denotes the localization

of rationalintegers Z with respect to the prime ideal pZ.

Let p be a prime number and let K be a Z(p)-algebra. Let t,r be natural

numbers such that
n^pt+r and pl<:n^pt+1.

We will show that X=Xpt,r is a generator of Ln and X'―X'vt,T is a gener-

ator of L'n. The case of Ln is proved only and its proof proceeds in several

steps.

1° Let j, sgN and O^j<ps+1-ps. Then mpS,j is invertible in K.

2° Let /,seAf and 0</</>＼ Then moS+i-os.,･is invertiblein K.

For the proof remark that by Lemma 1.2 we have mps,jmps,j―(ps, j) and

nips+i-ps,
jm'ps+i-ps,j^ip11*1―p＼

j). Since K is a Z(P)-aigebra then it is sufficient

to prove that p-adic valuation of (p*, j) and (ps+l―ps, j) is zero. But this is easy.

As a consequence of 1°and the equality mps,jXps+j, k=tnj, kXpS,j+k in Ln one

gets

3° Xps+j,k belongs to the submodule KXpS,j+k for any j, k, s in N, pSJrj+k

= n, 0<i<ps+1-ps, 0<k.

Now by 3° we have

4° Xpt+i.r-u ･･■,In-1,1 belong to KX.

5° Xpt-i,n-pt-i belongs to KX (if t>0).

We consider two cases: (i) 0<r<pt~1 and (ii)pt~1^r^pt+l―pt. In the case

(i) the element Xpt-i,n-Pt-ibelongs to KX because of the equality mpt-i,pt-pt-iXpt.,

―mpt-pt-i,rXpt-i,n-Pt-i and 2°. In the case (ii) the equalities Xpt-i,n-pt-i=

Xn-pt-i,pt-i and n―pt~1=pt+(r―pt~1) imply that Xpt-i,n-Pt-i belongs to
KX

by 4°.

By 3°and 5° we get

6° Xpt-i+1,n-pt'i~u■■･,Xpt-i,n-pt+i belong to KX.

The last statement follows from the inequality n―iyp1'1 for i<pt~1 and the

equality Xi,n-i=Xn-i,i and 4° or 5°or 6°

7° 3f,.n-,,･･･,lt-i.,.,.fl(-u, belong to KX (if f>1).
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This comoletes the oroof of the theorem.
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4. Isomorphisms.

We say that h-structures (m, m') and (n, n') over K are isomorphic if and

only if the polynomial type Hopf algebras (K(t}, m, m', e, e')and (K<t), n, n, e, e')

are isomorphic. An isomorphism <j>:K<,0-+K(t} is called a strictisomorphism if

<fi(t1)~t1.Then the corresponding polynomial type Hopf algebras and /^-structures

over K are called strictlyisomorphic. It is easy to see that if <fi:K(t)-^-K(t}is

an isomorphism and <fi(tn)=untn,neN, then all un are invertible elements in K,

uQ=l, and for any invertible element u in K the AMinear map $: K<.t}―>K<.ty

defined by <j>(tn)= ununtn, n^N, is an isomorphism, too. Hence we may restrict

our considerations to the strictisomorohisms onlv.

Theorem 4.1. Let (m, m') and (n, n') be h-structures over K and let (x=

(xd)d<BN+, x' ―(xrd)deN+) and {y={yd)d<zN+, yf=(y'd)dGN+) be reduced h-pairs over K

such that (m, m')―{m{x), m(x')) and (n, n')=(m(y), m(y')). Then (m, m') and (n, n')

are strictly isomorphic if and only if there exists a sequence (ad)d<=N+, of invertible

elements in K such that

(4.1) yd = ocdxd, y'd-a~dlXd, deN+.

Proof. Let m=m{x) = (mi,])i,j&N, mr=m(x')=(mi,j)i,j(EN, n=m(y)=(ni,j)t.jew,

n'=m{y')^={ni,j)i,j&N and let (f>;K(f>-*K<j;)> be a strict isomorphism of corre-

sponding Hopf algebras. If <j>(tn)=untn, n^N, then u^~Ui~l and un are inver-

tible elements in K. Since <f>preserves multiplication and comultiplication then

it is easy to see that

(4.2) Ui+jmi,j=UiUjni,j, uiUjmi,j=Ui+jniij.

for all /,j in N. By Corollary 2.4 there exists a unique sequence a=(ad)deN+,

rv.= 1 c＼iinvprf-ihlA plpmpnf-c in Tf cnrh fhsf

(4.3)

＼ UiUj /i.jeN
―m{a)

By the definitionof mix), (4.2) and (4.3) we have

≫<-*=MS>a<x*)Zi-lin> ≫<-'=M+{a*Xx*)Zt-'"n

for all i,j in N. Hence by the unique part of Theorem 2.2 we get (4.1).

Conversely, let (4.1) holds for some sequence of invertible elements a ―

(oCd)d^N+, &!= !, in K. If we put m{a) ―(ui <)<,-Gvthen by Lemma 1.3 we have
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Ui,j
Uj+j＼

Mi! Uj＼

for alli, j in N, where un = un-1,1,n^N+. It is clear that

(4.4) ui+j＼mitj=Ui＼ Uj＼tit,,, ut＼uj＼m'itj―ui+i＼n't,,

for alli, j in N. Now let <p:K(V>-+K<X> be a /(-linearmap defined by <f>(tn)=

unltn. Then by (4.4) <p preserves multiplicationand comultiplication of corre-

sponding polynomial type Hopf algebras and therefore it is a strictisomorphism.

This completes the proof of the theorem.
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