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POLYNOMIAL TYPE HOPF ALGEBRAS
By
Roman KIELPINSKI

Summary. For any commutative ring K we denote by K<) the free graded
K-module éK-tn with grading given by degt,=2n. Any commutative and
n=0

cocommutative graded Hopf K-algebra on K<¢) is called a polynomial type Hopf
algebra over K. The main aim of this paper is to describe all polynomial type
Hopf algebras over an arbitrary commutative ring K.

Introduction.

In the study of graded Hopf algebras over commutative rings an important
role is played by Hopf algebras whose underlying algebra structures are poly-
nomial ones. This follows from the fact that in many cases interesting graded
Hopf algebras can be obtained from polynomial ones by applying standard cate-
gorical and ring constructions (see [8, 10, 11, 12, 13, 14]).

In this paper we are concerned with the problem of a description of all
commutative and cocommutative graded Hopf K-algebras on the free A-module

K= GTBK -t., where K is an arbitrary commutative ring and the grading is
n=0

given by degt¢,=2n. Any such graded Hopf algebra is called a polynomial type
Hopf algebra over K.

If K is a field a characterization of polynomial type Hopf algebras over K
can be deduced from the results proved in [8, 10, 11, 12, 13, 14]. For the ring
of integers the raised above problem has been solved in [5]. In the case of an
arbitrary commutative ring there are known two standard polynomial type Hopf
algebras: the well known polynomial algebra K[¢{] and the so-called algebra of
polynomials with divided powers (see [5, 9]). Here we give a rather simple
description of all polynomial type Hopf algebras over an arbitrary commutative
ring K. More precisely we shall show that there is one-to-one correspondence
between polynomial type Hopf algebras over K and pairs of sequences (x4, x5)aen+
N*==A1, 2, -}, of elements in K, which satisfy the following conditions
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x,=x1=1, xqxi=vs, deN*+,
where
{ 1, if d is not a power of a prime number or d=1,
Vag—

p, if d=p” where p is a prime number and r&N*

(compare the definition 1.6.4 in [4]). The correspondence is defined as follows.
Given such a pair of sequences we define the multiplication

m: KR Ky — K(t)
and the comultiplication

m' s K> — KORQKE, R=Qux,

by the following formulas
m{t ;) =ms, stirs,

ml(tn):i+12—__nmg.jti®tj

for any 7, j, neN={0, 1, 2, ---}, where
1704104

7ni,j:dg+x¢[

= Iy i EEI ]
(here [7] denotes the integral part of the real number 7). Then (K<), m, m")
with the obvious unity and counity maps is the polynomial type Hopf algebra
over K corresponding to the pair (xg4, xG)aen+

An important role in our proof of the stated above correspondence is played
by a generalized version of well-known Lazard’s Lemma [2, 4, 6] being the
crucial fact in the classification of one-dimensional formal groups.

1. Basic definitions and lemmas.
Let % be the category of commutative rings with unity. For any K in ¥,
K= é K-i, is the free graded K-module with free generators ¢,, n€N, and
n=0

with grading given by degt,=2n. We denote by ¢: K—K{> the K-linear map
such that e(1)=t,, and by e’: K{)—K the K-linear map such that e'(t,)=0n,s
where d;,; is the Kronecker index.

A pair of K-linear maps (m, m’) such that (K<, m, m’, e, ¢’) is a commuta-
tive and cocommutative graded Hopf K-algebra is called a polynomial type Hopf
structure over K, or equivalently an h-structure over K, and (K<{{), m, m’, e, ¢’)
is called a polynomial type Hopf algebra over K (see [7] or [8] for the defini-
tion of graded Hopf algebra).
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If ¢: K—>K’ is any morphism in ¥, then for any h-structure (m, m’) over K
the pair (1x.&Qm, 1x.®m’) may be considered in a natural way as an h-structure
over K’ and we denote it by (mg, mg).

Let & be the category of sets. We define a covariant functor

hl— 8

by assigning to each K from ¥ the set h(K) of all A-structures over K and to
each ¢: K—K’ in % the map @) : h(K)—h(K’) defined by h(p)(m, m’)=(m,, m)
for any (m, m’) from h(K).

Now let (m, m’)eh(K). Then

(LD m(tQt)=my ;tivj, m’(t7z):i+§nm§,jti®tj ,

for some elements m; j, mi, in K and for all s, J» n in N and the following
conditions are satisfied :

(1.2) My, 0=M,,;=1, My, j=Mj, iy My Misj, k=M, jx 2 Mj, &
(1.2 myo=mg, =1, mi ;=m} ., mi Mis; e=m} 4 1m} 4
for all 4, j, & in N=1{0, 1, 2, ---},

(1.3) M, Mk, 1 =233 My, Mg, sTp, ML, 5

for any 7, j, £,/ in N such that ;+j=k+[ where the sum runs over all bogqrs
in N such that p+qg=i, r+s=j, p+r==~, qt+s=L

We put g(m, m")=(my,;, mi ;)i jen. Every pair of systems (ms, 5 M, )i jen
satisfying (1.2), (1.2"), (1.3) is called a polynomial type Hopf K-pair, or equivalently
an h-pair over K. It is easy to verify the following

LEMMA 1.1. The map (m, m’)— g(m, m’) establishes an one-to-one correspond-
ence between elements of h(K) and h-pairs over K. Moreover, if ¢o: K—K'isaq

morphism in " and g(m, m’)=(m;, ;, m}, )i, jen then glmy, my)=(p(ms, ), e(mi, Ni, jen.

For the proof we remark only that conditions (1.2) are equivalent to the fact
that (K>, m, ¢) is a graded commutative and associative K-algebra with unity,
conditions (1.2') correspond to the fact that (K<), m’, ¢’) is a graded, cocommu-
tative and coassociative K-coalgebra with counity and condition (1.3) is equivalent
to the fact that m’ is a graded K-algebra morphism i.e. that the following
diagram is commutative
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KO@KE — O e @K KOOKD
m l , l(m@m)(l@r@l)
Kt = > KRR

where 7: K4 Q KE)— K@) Q K is the twisting morphism.
By the above lemma we may identify the set h(K) with the set of A-pairs
over an arbitrary commutative ring K.

1
For any ¢, j in N we denote by (7, j) the binomial coefficient IZ.T—].—'% Note
that the pair of systems (m;;=1, m} ;=(@, /)i jev is a polynomial type Hopf
K-pair for an arbitrary ring K. The corresponding polynomial type Hopf algebra
over K is the K-algebra of polynomials K[t].

We have the following

LEMMA 1.2. If Omsi;, mh )i jen s a polynomial type Hopf K-paiv then
(1.4) ms, smi, =, J)
forall i, j in N.

PROOF. Remark that the condition (1.3) with ¢=F, j=[ in the case of the
K-algebra of polynomials K[¢] has the form
(1.5) G, D=2 (p, 9)g, s).
p+g=i

qts=j
It is clear that (1.4) holds in the case i=0 or j=0. Let n>1 and assume that
(1.4) holds for all 7, j in N satisfying ¢+ j<n. Now, lets, jin N satisfy i+j=n
and 7, 7>0. By (1.3) we have
My, ML, = 2 Mp, Mg, sMp,aMg,s

Fa=1
)

Hence, using the inductive assumption and (1.5) we see that

mi,jm;,J:p_%):i(p) (])((], S):(Z.y ]) .
gt+s=j

Then the lemma follows by induction.

For any sequence (my,)nen+ Of elements in a commutative ring K, we define
Mmol=1, Mps,\=my Mas. By a mudtiplication over K we mean any system
(4, D1, 5en, Of elements in K, which satisfles (1.2). We have

LEMMA 1.3. Let (m; ;)i jen be a multiplication over K and suppose that all
mi.; 4, €N are non-zevo-divisors in K. Then
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Sfor all i, j in N, where m,=m,_, ., neN*,

The proof is left to the reader. Compare Proposition 1.5 in [51.
For a real number » we denote by [#] the integral part of ». If iy, , is€NT,
de N7, then we put

= i
Remark that for any 4, j, k€N, deN*, we have
7, j: 11=0
[7, 0: dJ=0
L7, j: d]=[], i: d]
L3, j: d1+0i+y, ke dI=[4, j+k: d1+0], k: d].

For any sequence x=(xy)¢en+, of elements in an arbitrary commutative ring
K, we define a system m(x)=(m;, ,);, jen, by formulas

o= [i,j: d] L
My, j dg+xd . 7, JEN.
One easily checks the following
LEMMA 1.4, The system m(x) is a multiplication over K.

We define a sequence v=(vg)gen+ by

1, if d is not a power of a prime number or d=1,
(1.6) Vg=

b, if d=p” where p is a prime number and re N*.

Since n!=]] p§['z%] (see for example [3]) then the following lemma im-
»

mediately follows from definitions of v and [7, j: d].
LEMMA 1.5. m@)=(, j)i jen.

Let us denote by H the Z-algebra Z[ X, XJ: deN*] with relations X,=X}
=1, X¢-Xi{=vq, deN*. We shall need the following resuit.

LEMMA 1.6. The ring H is torsionless as an abelian group.

Proor. Note that H is generated as an abelian group by elements of the form
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(1‘7) Xg}. vee .Xﬁd‘;‘X/gi. .X’gg

where 1<d,< - <d,, 1<di< - <d}, di#d}, ay, =, &, B, -, Bs&SN*. Let
Q(T4: d=2) be the field of rational functions in variables T';, d=2. We define

the morphism in %
¢:H— Q(T4: d=2)

ﬂ d=2. The images of the elements (1.7)

by formulas ¢(X.)=Ta, $(Xi)= T
d

are monomials
g T T
ay ds
that are linearly independent over the field of rational numbers Q. It follows
that ¢ is an injection. Consequently elements (1.7) form a free abelian group
basis of H and the lemma is proved.

2. The main theorems.

Let K be a commutative ring. A reduced h-pair over K is a pair of sequences
(x=(xq)aen+ X' =(x3)aen+) of elements in K, satisfying the following conditions

2.1) x=x1=1, x4x3=ve, deN™.

THEOREM 2.1. Let (x=(xq)gen+ X'=x4)een+) be a reduced h-pair over K.
Then (m(x), m(x’)) is a polynomial type Hopf structure over K.

PrROOF. Let m(x)=(m., ;). jey and m(x")=(mi, ;) jey. By Lemma 1.4 the pair
of systems (my j;, mi )i jen satisfies (1.2) and (1.2). Now by (1.6), (2.1) and
Lemma 1.5 we have

(2.2) My, ymy, =, 1)

for all 7,  in N. First we suppose that K is torsionless as an abelian group.
Then (2.2) implies that all elements m; ; m} ; are non-zero-divisors in K. Hence,
using Lemma 1.3, we see that

Mgzl My !
(2‘3) — i+ /- i+j

for all 7, j in N, where m,=my,_y,,, Mmhp=mp-1,; for all n in N*.
Now, let 7, 7, &, [ in N satisfy i+j=Fk+{. The equality (1.3) in the special
case of the K-algebra of polynomials K] has a form
(b, N=22(p, @)r, s)

where the sum runs as in (1.3). Combining this with (2.2) we have
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r ’ '
mk,lmk,l"z Mp, My, sy, gMr,s .

melmy!
mi!tm;!
the ring K) and using (2.3) we get (1.3). Hence, by Lemma 1.1, the pair
(m(x), m(x’)) is a polynomial type Hopf structure over K.

By the definition of the ring H we know that (£=(X)een+, X'=(Xaenx+)
is a reduced h-pair over H. Since H is torsionless as an abelian group the pair
(m(x), m(X’)) belongs to h(H). Now, if K is an arbitrary ring, we consider the
ring homomorphism ¢: H—K defined by ¢(Xi)=x4, o(Xj)=x3 deN*. It is
clear that (m(x), m(x")=h()m(Z), m(x")). Thus (m(x), m(x’)) belongs to h(K).
This completes the proof of the theorem.

Multiplying the above equality by (in the classical ring of quotients of

THEOREM 2.2. Let (m, m’) be an h-structure over K. Then there exists a
unique reduced h-pair (x, x’) over K such that (m, m")=(m(x), m(x’)).

PROOF. Let m=(mq 1)i,;exy and m’'=(mi ;)i ;ev. We have to construct a
unique pair of sequences (Xx=(xg)qen+ X'=(x3)aen+) of elements in K such that

x=x1=1, x¢xi=ve, dEN*,
2.4 . .
p— i, ’r 3, j: . .
mi,j IT x%7 J, mi,j"”dg+xd[l Fdl g, JEN-

deN+

Let n>>1 and assume that there exists a unique pair of sequences ((xy, - Xp-y),
(x7, ==+, xn-1) of elements in K satisfying (2.4) for d=<n—1 and i+;j=n—1.
We define

mi,j:;t[ixg’j‘dj, ﬁg,j:z].:[ixizu’j:d]
for all 7, 7 in N*, i4+j=n. It is easy to see that
(2.5) Mg, =My, WMi;=mi, i, JEN*, i+j=n
(2.6) My, Miag e =Mj, e Mg, japy Me, ;TG4 k=M, 2 TR, j40
for 7, 7, k in N*, i+j+k=n,
2.7 Mg, ;e 7=Cs,;

@ 7

n

for all 7, f in N*, i4+j=n, where ¢; ;=
Consider K-modules
L,=(® K-X;;)/R,, Ly=(& K-Xi;)/Rn,
it+j=n i+j=n
1,7>0 1, 5>0
where X, ; Xi; are free generators and R,, R, are K-submodules generated
respectively by elements
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Xi,j—Xj,i, Xg,j"‘zY;,q;, Wlth i, ].€N+, H—]:n
mi,jXH_;:r‘mj,kXi.jw,
my, i Xivie—mj 2 Xt jen, with 4, 7, keN*, i+j+k=n

By conditions (2.5) and (2.6) there exist K-linear maps

i Ly— K, I: L, — K
given by
2.8 l-n(Xi,j):T’-ﬁi,j: (X5 =1t ;

for i, j in N*, i+j=n, where X, ; Xi; are cosets of X, , Xi; in La, L3,
respectively. We will show that [, and [, are isomorphisms.

It is well known that there exist rational integers d, j; 7, JEN*, i+j=mn,
such that

2.9) S di e =1

i+j=n
(see Section 4.1 in [4]).

If we put _ B
Xn:Z di,jmg,in,j

X:’LZE di,jmi,sz{,j
then from (2.7), (2.8) and (2.9) it follows that [,(X,)=1 and [;(X;)=1. Hence
I, and [, are epimorphisms. In the next section we prove that I, and [}, are

monomorphisms. Thus the elements X, and X, are free generators of the
cyclic K-modules L, and L4, respectively, and the following equalities hold

(2.10) Xi = Xn, Xij=mi X,
for all 7, j in N* such that i+ j=n.
Now we consider K-linear maps

l,:L,— K, l,: L, — K
defined as follows

L(X.)=mi;, W Xn)=mi;, i, JjENT, i+j=n.
Let x,=/.(X,) and x,=10,(X%). Then (2.10) implies that m; ;= ;x, and mj,;

=17} jxn. Moreover
Xnxn=( ds jCi. 1) Xnxn

=3 d; M4, XG50
’
=20 dy, mi, i,

=>ds, j(i, ].)
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= di,jci.j)vn

=v,.
Finally, if y,, y;, are elements in K such that YaYn=vn and m; ;=if; ;y,, mi
=7}, ;yn, then

Ya=21d; jCi,;9n

= di,jmi.jﬁé,jyn

=23 dy, jmy, ;G

=2 ds, iy ;] %n

=Xn.

Similarly one can prove that Vo =Xn.

Hence the pair of sequences (x5, =+, x,) and (x§, -, x4) is a unique pair
that satisfies (2.4) for d<n and i+ j=n. Consequently, by induction, the theorem
is proved.

Theorems 2.1 and 2.2 yield

COROLLARY 2.3. The functor h:9—S is representable by the ring H in the
sense that W—)=%(H, —).

COROLLARY 2.4. Let (up)new, uo=1, be sequence of invertible elements in K.
Then there exists a unique sequence (ag)gey+, of inverible elements in K such
that

Hiti o T glpsiad
U;Uj dEN T

for any i, j in N.

. . Uirs @ 7 .
ProoF. Since the pair (mi = ]:»-ZL) is an h-structure over
UiUj Mg, j /i, jeEN

K, then the corollary follows by Theorem 2.2.

3. A generalized Lazard’s Lemma.

We keep in this section the notation of the preceding sections, in particular,
the notation that has been introduced in the proof of Theorem 2.2, It is easy to
see that the following theorem is a generalization and a slight modification of
Lazard’s Lemma (see [2, 4, 6]).

THEOREM 3.1.  Let (my,j, mi, ;)i ;en be a polynomial type Hopf structure over
an arbitrary commutative ring K. Then for any n=2 the K-linear maps
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I,: L,—K and I,: Ly—K are isomorphisms.

PROOF. We already know that [, and [, are epimorphisms. Thus I, and
[* are monomorphisms too if and only if L, and L, are cyclic K-modules. More-
over, we may assume that K is a Zp-algebra for some prime number p (see for
example, Theorem 1 in [1, Chapter I, §3]). Here Z, denotes the localization
of rational integers Z with respect to the prime ideal pZ.

Let p be a prime number and let K be a Z-algebra. Let t, » be natural
numbers such that

n=pt+r and p'<n=ptth

We will show that X=X, is a generator of L, and X'=X': . is a gener-
ator of L,. The case of L, is proved only and its proof proceeds in several
steps.

1° Let j, s€N and 0=<j<p**—p°. Then mys,; is invertible in K.
2° Let j, seN and 0=<j<p*. Then mys+i-ps,; is invertible in K.

For the proof remark that by Lemma 1.2 we have ms, jmps, ;=(p°, j) and
Mps+1-ps, Mpsti-ps, j=(P**'—D" 1). Since K is a Z ) -algebra then it is sufficient
to prove that p-adic valuation of (p%, 7) and (p*+'—p*, J) is zero. But this is easy.

As a consequence of 1° and the equality m,,s,,-Xps“-,k:m,-_k)_(ps‘,-” in L, one
gets

3°  Xps:s 2 belongs to the submodule KXy jes forany 7, k, s in N, p*+j+k
=n, 0<j<p*—p®, 0<k.

Now by 3° we have

4° Xpt+1,r_1, Tty X‘n.—l,l belOng to K)_(.

5°  Xpe-1,n-pt-1 belongs to KX (if t>0).

We consider two cases: (1) 0<r<pt* and (ii) p''=r= pt+i—pt. In the case
(i) the element sz 1,a-pt-1 belongs to KX because of the equality mpi-1, pt-pt- 1X,,; -
=Mpt-pt-1,rXpt-1,n-pt-1 and 2°. In the case (ii) the equalities Xpe-1,n-pt-1=
Xo-pt-1,pt-1 and n—p*t=p+(r—p t-1) imply that Xpi-1,n-pt-1 belongs to KX

by 4°.

By 3° and 5° we get

60 )_(pb“Hl.n—pl*l—l, tty Xpt—l,n—pt+1 belong to KX.

The last statement follows from the inequality n—i >pt=t for 1<p*~" and the
equality X n-¢=Xn-s,s and 4° or 5° or 6°

7° Xinos - Xpt-1-1.n-pt-1s1 belong to KX (if t>1).
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This completes the proof of the theorem.

4. Isomorphisms.

We say that h-structures (m, m’) and (n, n’) over K are isomorphic if and
only if the polynomial type Hopf algebras (K<t>, m, m’, e, ¢') and (K<, n, n, e, ¢)
are isomorphic. An isomorphism ¢ : KH>— KL is called a strict isomorphism if
é(t.)=t,. Then the corresponding polynomial type Hopf algebras and hA-structures
over K are called strictly isomorphic. It is easy to see that if ¢: K(t)~K<{) is
an isomorphism and o(tn)=u,t,, nEN, then all u, are invertible elements in K,
u,=1, and for any invertible element u in K the K-linear map §: KH— K<)
defined by ¢(t.)=u"unt,, n=N, is an isomorphism, too. Hence we may restrict
our considerations to the strict isomorphisms only.

THEOREM 4.1. Let (m, m’) and (n, n’) be h-structures over K and let (x=
(Xa)aew+, X'=(x3)gen+) and W=0a)aev+, Y =(V3)aen+) be reduced h-pairs over K
such that (m, m’)=(m(x), m(x")) and (n, n’)=(my), m(y’)). Then (m, m’) and (n, n’)
are strictly isomorphic if and only if there exists a sequence (aq)aen+, of invertible
elements in K such that

4.1) Ye=axa, yi=az'xg, deN*

PrOOF. Let m=m(x)=(ms, )i, jen, m'=m(x")=(m3, ;)i, jen, n=m(y)=(ns, )i, jen,
n'=m(y)=(ny, )i jexr and let ¢: K&—K{> be a strict isomorphism of corre-
sponding Hopf algebras. If ¢(t.)=unts, neN, then uo=u,=1 and u, are inver-
tible elements in K. Since ¢ preserves multiplication and comultiplication then
it is easy to see that

— LA 4
4.2) Ui jMe, j=U U N4, 5, UU;Mg, 7=U N5, ;.

for all 7, j in N. By Corollary 2.4 there exists a unique sequence a&=(ag)gey+
a;=1, of invertible elements in K such that

(4.3) (u o= l”—"')i,jEN=m(a) .

UiUj
By the definition of m(x), (4.2) and (4.3) we have
ney= IT (@axa 75, ni = T (agx) 7

for all 7, j in N. Hence by the unique part of Theorem 2.2 we get (4.1).
Conversely, let (4.1) holds for some sequence of invertible elements a=
(ag)aen+ ay=1, in K. If we put m(e)=(uy, )i, jexw then by Lemma 1.3 we have
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lti,+j!

Ui == e
B ui!uj!

for all 4, 7 in N, where u,=un-1.1, neN*. It is clear that
(4.4) Wiwg ! g =ustuyt na g, wal ! my =g NY g

for all 4, j in N. Now let ¢: K&O—K{» be a K-linear map defined by ¢(tn)=
u,'t,. Then by (4.4) ¢ preserves multiplication and comultiplication of corre-
sponding polynomial type Hopf algebras and therefore it is a strict isomorphism.
This completes the proof of the theorem.
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