
TSUKUBA J. MATH.

Vol. 16 No. 1 (1992), 53-62

FIBREWISE CONVERGENCE AND EXPONENTIAL LAWS

By

Kyung Chan Min* and Seok Jong Lee

Abstract. We show that the category Convs of convergence spaces

over B is a convenient category for any 5eConv. It is shown that

without any condition on spaces the category Convs and the category

Convf of sectioned convergence spaces over B hold various expo-

nential laws in a natural way. In ConvB, we can construct expo-

nential object in terms of function spaces. Our fibrewise mapping

space structure generalizes the fibrewise compact-open topology in

some case.
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1. Introduction.

The fibrewise viewpoint is standard in the theory of fibre bundles. It also

has an important role to play in homotopy theory. Fibrewise topology, as a

natural generalization of topology, has emerged recently as a subject in its own

right with a rich potential for research. I.M. James has been promoting the

fibrewise viewpoint systematically in topology [13-19].

In homotopy theory, the category Top of topological spaces is not a very

good one to work in for many problems. Top is not cartesian closed. So is

not the category TopB of topological spaces and maps over a fixed space B.

So, many attempts have been made to find a suitable category, allowing a con-

venient category of fibred spaces. A convenient category means that it contains
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all the spaces of real interest, that it have alllimits and colimits, and that il

be cartesian closed. So far, compactly generated spaces and quasi-topologica!

spaces have been main objectives. However, in a structural point of view, it

has not been completely successful to finda convenient category of fibred spaces.

P.I. Booth [4] obtained many interesting exponential laws for quasi-topological

spaces. However, quasi-topological spaces do not form a category, but a quasi-

category, which is illegitimate and hence not a suitable replacement for Toj

(cf. [12]).

In this paper, we will introduce a new approach to fibrewise topology using

the notion of convergence [3, 9] and develop a theory of fibrewise convergence,

mainly focusing on the adjoints of the fibreproduct and the fibresmash product,

respectively. In 1986, Adamek and Herrlich [1] showed that a topological

category A is a quasitopos (=final epi-sinks in A are preserved by pullbacks^

if and only if, for each B(eA, the comma category AB is cartesian closed.

Thus, to find a convenient category of fibred spaces, we must firstchoose a

quasitopos. It is well-known that the category Conv of convergence spaces

forms a quasitopos (cf, [1, 21]) and itis very useful category in various respects,

containing the category Top as a bireflectivesubcategory (cf. [3, 21]). So, we

work with the category of convergence spaces. We will show that the category

Cohvb of convergence spaces over B is a convenient category for every BeConv.

In fact, it turns out that without any restrictionon spaces the category Conv£

and the category Convf of sectioned convergence spaces over B hold various

exponential laws including the exponential laws for fibred section spaces and

fibred relative lifting spaces and homotopy versions of all exponential laws

mentioned above. We note that an exponential object in ConvB can be con-

structed in terms of function spaces even though a constant map in ConvB is

not a morphism (cf. 27.18,[2]). Our fibrewise mapping space structure generalizes

the fibrewise compact-open topology in some cases. Using those exponential

laws, we can obtain naturally improved versions of many interesting properties

concerned by many researchers [4-8,14,18,20,22-24]. The terminology and

notation of [2,13] will be used throughout.

2. Convergence spaces over a base.

For a set X, we denote by 3(X) the set of all filters on X and &(CJ(X))

the power set of 3i(X). A convergence space [3] Is a pair (X, c) of a set X and

a function c: X-^&(3(X)), called a convergence structure,subject to the following

axioms: for each igI,

(1) iecfd where x is the filtergenerated by ＼x).
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(2) if Jgc(i) and CI^G, then Q(=c(x),

(3) if CJ,Qgc(x), then ffH5sc(x).

The filtersin c{x) are said to be convergent to x. We usually write S―>x

instead of ?gc(i). By a continuous map f: X->Y between convergence spaces

is meant a function /: X―>Y such that /(EF)->/(x) in Y whenever 3-^x in X

The category Conv is formed by all convergence spaces and all continuous

maps between them.

Let X be a topological spaces. By assigning to each x^X c(x)=the set of

all filterson X, convergent to x, we obtain a convergence structure. Hence

any topology can be interpreted as a convergence structure. Let (X, c) be a

convergence space. A subset U of X is said to be open if it belongs to every

filterwhich converges to a point of U. The collection rc of all open subsets

of X forms a topology on X. Note that (X, rc) is the topological reflection of

(X c).

Given a space .SeConv, an object (X, p) of the comma category ConvB is

called a convergence space over B and p the projection. As usual,{X, p) is also

simply denoted by X. A morphism /: {X, p)―>(Y,q) in Convs is called a con-

tinuous map over B. For topological space B, each ((X, c),p)^ConvB has the

topological reflection((X, rc),p). Hence Top.6 is a bireflective subcategory of

ConvB.

It is easy to see the following facts; Initial(resp. final)structures in Conv

determine initial(resp. final)structures in Convs over SetB. The limit (resp.

colimit) in Conv of a natural source (resp. sink) in CcnvB is the limit (resp.

colimit)in ConvB. Therefore, ConvB has initialstructures over Sets and, hence,

limits and colimits. Moreover, as does in Conv final epi-sinksin Convg are

preserved by pullbacks and hence finiteproducts of quotient maps are quotient

in Convs. From now on, B means any convergence space.

Note that, for (X, p), (Y, ^)eConvB, the pull-back XxBY of p and q is the

product of X and Y in ConvB. Since Convg is cartesian closed, the functor

XxB-- Couvb-^Cohvb has a right adjoint -x, an exponential functor. An ex-

ponential object Yx is not necessarily a function space. However, in CcnvB,

we can construct exponential object in terms of function spaces.

For (X, p), (Y, ^)GConvB, consider the set

mapB{X, Y)= U map{Xb, Yb)

with the natural projection (pq), where map(Xb, Yb) denotes the set of continuous

maps of Xb into Yb and we define a convergence structure c on mapB{X, Y) as

follows; For a filter 3 on mapB(X, Y) and f<=map(Xb, Yb), 5gc(/) if and
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only if

(1)
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for each x<=Xb, (3 r＼f)(Jir＼x)-^f(x)in Y whenever J.->x in X, where

F(A)=KJbeBFb(Ab) for Feffn/ and A^JlfM,

(2) (pqX9)-<PqXf) in B.

By a routine work, we can show that c is a convergence structureover B.

We note thatif B is a singletonspace, then c is the continuous convergence

structureon map(X, Y).

Theorem 2.1. For any convergence space X over B, mapB{X, J) is a right

adjoint of XxB~. Therefore the exponential object Yx is isomorphic to

mapB{X, Y) in Conv/j.

Proof. Consider the evaluation map ev: XxBmapB{X, F)->F defined by

ev(x, f)=f(x). Then ev is a map over B. For the continuity of ev, let cL/-≫

(x, /) in XxBmapB(X, Y) with (x, f)(^XbXmap{Xb, Yb). Then there exist filters

J. on X and 3" on mapB(X, Y) such that J―>x in X and EF―>/in mapB{X, Y)

and JXB2r^cU, where JXB5 is the filtergenerated by {AxBF＼A^JL, Feff}.

Note thatev(i4xBF)=F(.A). Hence (2rn/)(Jni)£ey(ciXB3)Sey(cU). Therefore

ey is continuous. In fact, ev is a co-universal map for Y with respect to the

functor XXb-> Let (Z, r)eConvB and /: XxBZ->Y a continuous map over B.

Define /: Z->mapB{X, Y) by f(r)(x)=f(x, z). (If Xb=R, then /O) is the empty

map 06: Z6->F6.) Then / is a map over B. Let M-^z in Z with 2GZ6 and

■J-*x
in X with xeXb. Then

/((jini)xs(^ni))s(/(^)n/(2))(Jnx)

and (pq)°f=r. Hence f(M)->f(z) in mapB{X, Y). Thus / is continuous. Clearly,

ev°(ixXBf)=f and such a map / is unique.

Since Coevb is cartesian closed, we have the following exponential law as

a corollary.

Theorem 2.2. For X, Y, ZeConv*,

W: mapB(XxBY, Z) ―> mapB{X, mapB(Y, Z))

is an isomorphism in Convs, where W(f)(x)(y)=f(x, y).

For X, FeConvB, we denote by MapB(X, Y) the convergence space of all

continuous maps X->Y over B, equipped with a subspace structureof map{X, Y)

in Conv.

Lemma 2.3. For (X, p),(X, q)^CanrB> considerXxB and XxY as objects
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in ConvB with projections iz-land q°Tz%respectively. Then a: (XX-B)XBF―>XxF

is an isomorphism in Convs, where a{{x, b), y)―(x, y).

Proof. It Is immediate from the property of products in Conv.

Proposition 2.4. For X, FeConvB7

a : MapB(X, Y) ―> MapB{B, mapB{X, Y))

is an isomorphism in Conv B,where a(f)(b)=fb: Xb―>Yb, the restrictionof f on Xb

Proof. Using the cartesian closedness of Cony, Theorem 2.1. and Lemma

2.3., the following commutative diagram;

XXBmapB(X, Y) -^> Y

t t
1X Bev lev

XxB{BxMapB((X, Y))^XxMapB{X, Y)

Since Xx~ is a left adjoint of map(X, _), we have a continuous map

ev : MapB{X, Y)->map(B, mapB(X, Y)) such that ev>(lxXev)―ev. In fact, a is the

corestriction of ev. Consider the following diagram:

Xxmap(X, Y)

＼

XxMapB(B,maps((X, Y))

s

ev

ixXsev

Y

ev

XxB(BxMapB(B, mapB(X, Y))) * XxBmapB{X, Y)

Again, by the exponential law in Conv, we have a continuous map

B: MapB(B, mapB(X, Y))->map(X, Y) such that ev°{lxXBev)=ev°B.In fact,a~l

is the corestrictionof B.

Remark 2.5. The space MapB(B, mapB(X, Y)) is the space of sections of

mapsiX, Y). So, usually it is denoted by secBmapB(X, Y). This proposition

shows that exponential objectsin Coitv5 may not be hom-objects in that category.

By combining Theorem 2.2. and Proposition 2.4., we have another ex-

oonential law.

Theorem 2.6. For X, Y, ZeConvB,
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0 : MapB(XxBY, Z) ―->Maps{X, mapB(Y, Z))

is an isomorphism in COnvs, where 0(f)(x)(y)=f(x,y).

Proof. MapB(XxBY, Z)^MapB{B,mapB{XxBY, Z))

^MapB{B, mapB(X, mapB{Y, Z)))^MapB(X, rnapB(Y,Z)).

Remark 2.7. Since,in Convs, BxBX=X in a naturalway, Theorem 2.6.

implies Proposition 2.4. Therefore given the isomorphism in Theorem 2.2.,

Proposition2.4.and Theorem 2.6.are equivalent.

Mapping Spaces

We collect some interesting properties of mapping spaces in Conv*.

1. Since Convs is cartesian closed, we can show the followings (cf. [2]);

(a) XxB- preserves final epi-sinks, (b) mapB(X, _) preserves initial sources and (c)

mapn{-, X) carries final epi-sinks to initial sources. In particular. XxB(JJ.BYi)^.

TIdXxBYt), mapB(X, nBYi)^TLBmapB(X, F,)andmaPsiUsYi, X)^HBmapB(Yu X).

2. Given {X, p), (Y, tf)eConvB, if q is quotient or MapB(X, 7)^0, then

(pq): mapB(X, Y)-*B is quotient (cf. Theorem 5.1. in [4]). If we take Y=B,

((iBp),o
then this shows mapB(X, B)=B. Let a be the compositon mapB(B, X) ―>

ev
BxBmapB(B, X)~>X. Then a is bijective and the adjoint of ;r2: BxBX->X is

a~＼ Hence mapB(B, X)=X.

3. For each 5'eConv and a continuous map £: B'-^B, a functor £: ConvB

->ConvB. is defined, where %*X=XXBB' and £*(/)=fXBlB>. In fact, £* has a

left adjoint functor £*, defined by ^*(X, p)=(X, £°p)and ^*(/)=/, and hence

preserves products. By Theorem 1.1. and modification of proof of Proposition

6.9. in [14], we can show that the natural map £*: mapB'{H-*X, %*Y)->$*mapB(X, Y)

is an isomorphism in ConvB-.

4. For (Z, r)eC0nvB and a non-empty space F, define OF(Z) to be the

subspace of rnap{F, Z) of maps /: F-≫Z such that r°/ is constant. Then, OF(Z)

eConvs with the projection qp{r){f)=rf(x) and we have an isomorphism in

Cohvb a: OF(Z)->mapB(FxB, Z), where a(f)(x, b)=f{x), using Lemma 2.3. and

exponential laws in Conv and ConvB. Hence mapB(Fx B, Z) is embedded in

map{F, Z) (cf. Proposition 3.1. [7]).

5. Using the similar argument in Theorem 6.1. of [4], we can show the

following; Given (X, p), (Y, q)^Con＼B, if P and q are Hurewicz (resp. Dold)

fibrations, then so is (pq).

6. Let B be a discrete topological space, X a locally compact Hausdorff

topological space over B and Y a topological space over B. Then mapB(X, Y)
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carries the fibrewise compact-open topology: Suppose £F->/in mapB(X, Y) with

femap(Xb)Yb). Since B is discrete,(pq)(3)―>(pq)(f)―bin B implies map{Xb,Yb)

G2＼ Let {K, V) be a fibrewise compact-open neighborhood of /. Then, for

each x(EKb! V^(3r＼fXmx), where mx is the neighborhood filterat x in X.

Since Kb is compact, there exist xu ■■■,xn(=Xb, UXi<=JlXi and F^effn/ such

that Fx.(Ui)QV for each *= 1, ･･･,≪. Let F=FXlC＼ ■･･r＼FXnnmap(Xb, Yb). Then

F<=<3r＼fandFQ(K, V). Hence ff―>/with respect to the fibrewise compact-open

topology. Conversely, let 7lf be the neighborhood filterat / with respect to

the fibrewise compact-open topology, where f<^map(Xb, Yb). Let V be an open

neighborhood of f(x) in Y. Since X is locally compact over B, there is a

compact neighborhood K of x in ,＼6such that f(X)QVb. Note that K is com-

pact over B, since 5 is 7＼. In fact,{K, V)^mf and (K, V)(K)QV. Hence

32/->/ in mapB(X, Y). In general, mapB{X, Y) does not carry the fibrewise

compact-open topology. For example, let X=F=.B={0, 1}, the Sierpinski space

with the topology {0, {0},{0, 1}} and the identity map as its projection. Consider

the filter £F={{0,1}}, where 0: {0}->{Q} and 1: {1}->{1}. Then SF->1 in

mapB{X, Y), but £F-/>!with respect to the fibrewise compact-open topology.

Note that {!}=({!}, Y) is the fibrewise compact-open neighborhood of 1.

3. Sectioned space over a base.

A sectioned space over B is a triple consisting of a convergence space X and

continuous maps

s p
B―>X―> B

such that ps=lB. Usually X alone is a sufficientnotation. The map p is called

a projection and the map s the section. Let X, Y be sectioned space over B,

with projections p, q and sections s, t, respectively. By a map of sectioned

space over B, we mean a continuous map /: X-+Y of convergence spaces such

that gf=p and fs=t. The category Gonv| is formed by all sectioned spaces

over B and all maps between them. By a similar argument in Convs, the

category Top! is shown to be a bireflectivesubcategory of Convf. Note that

products of sectioned spaces in ConvB serve as products in Convf.

Let X, Y be sectioned spaces over B, with projections £,#and sections s,t,

respectively. Consider the convergence space

XABY= U i(XbX Yb)/((s(b)XYb)＼J(XbXt(b))}

equipped with the quotient structure with respect to the natural map <f>:XxBY

->XABY. Then the triple(0°(s,0, XABY, p/＼q)is a sectioned space over B,
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called the smash product of X and Y, where the map pf＼qis induced by the

projection for XxBY. We note that the smash product is not the product in

the category Convjf. We denote by map%＼X, Y) the subspace of mapB{X, Y) of

pointed maps, where the base points in the fibres are determined by sections.

The space mapB(X, Y) is a sectioned space over B: In fact, the projection is

induced by (pq) and the section is induced by the adjoint of XxBB-^B->Y.

For any XeConvf, map＼＼B,X)=B via its projection. Denote /={0}IlU}-

Then mapsXBxi, I)sl, since mapB{-, X) carries coproducts into products.

Theorem 3.1. For any sectioned space X over B, mapWX, _) is a right

adjoint of X/＼B-.

Proof. Let FeConvf. Consider the map e: XABmapB(X,Y)->Y defined

by e([x, fj)=f(x), where [x, f]=$(x, /). Then e°$=ev implies that e is a

morphism in Convf. In fact, e is a co-universal map for Y with respect to the

functor XAb-- Given ZeConvf and a morphism /: X/＼BZ->Y in Convf, define

/: Z-^mapWX, Y) by /(*)(*)=/([>, z]). Then, using Theorem 2.1.,it is easy

to see that / is a unique morphism in Convf such that e°(lxABf)=f> since

mapWX, Y) is a subspace of mapB(X, Y).

Theorem 3.2. For X, Y, ZeComvf,

0: map%XxBY, Z) ―> mfl/>|(Z,ma/>|(F, Z))

/s an isomorphism in Conv|, where (J){f){x){y)―f(＼_x,y~＼).

Proof. Clearly, <pis bijective. Using Theorem 3.1. and a parallelmethod

in Theorem 2.2., we can show that <pis an isomorphism in Convf. We note

that the smash product As is commutative and associative.

Remark 3.3. If B is a singletonspace *, then thistheorem gives an ex-

ponentiallaw of pointed convergence spaces. This type of exponentiallaw

plays a centralrole on dualityin homotopy theory(cf.[10,11,23]).

For X, FeConvf, we denote by Map%(X, Y) the convergence space of all

morphisms X->F in Convf, equipped with a subspace structureof map(X, Y).

Clearly,Map%{X, Y) is a subspace of MapB(X, Y) in ConvB.

Proposition 3.4. For X, KeConvI,

a : MapBB(X, Y) ―> MapBB{B, mapBB{X, Y))

is an isomorphism in Convi, where o(f)(b)―fb:Xb~*Yb, the restrictionof f on Xb
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Proof. Clearly, a is bijective. We note that Map%(B, map%(X, Y))=

MapB(B, map%(X, Y)) and our a is the restrictionof a in Proposition 2.4. Since

map(B, _) preserves initialsources, the result follows immediately.

By combining Theorem 3.2. and Proposition 3.4., we have another ex

ponential law;

Theorem 3.5. For X, Y, ZeConvi

<p:Map%(XABY, Z) ―> MapBB(X, map&Y, Z))

is an isomorphism in Convl, where (p(f)(x)(y)=f(x,y).

Remark 3.6. Using our exponential laws and modifying the proof in [7],

we can obtain in our context the exponential laws for fibred section space, and

fibred relativelifting spaces and homotopy versions of all exponential laws

mentioned above without any restrictionon spaces.
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