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THE PRIME k-TUPLETS IN ARITHMETIC PROGRESSIONS

By

Koichi KAwADA

§1. Introduction and notation.

In this paper we discuss a problem on the distribution of prime multiplets
in arithmetic progressions. Before mentioning our problem we need to introduce
the following notation. (In connection with our problem, see also the introduc-
tion of Balog’s tract [1].)

For an integer £22, we let a;(0<j<k—1) be non-zero integers, and let
b;(0=<j<k—1) be integers, and put a@=/(a,, @y, -, a@p_y, bo), b="(by, -, bs_y),
(Later, we will fix all the coordinates of @, and treat an average over b. This
is why the unsymmetry of the definitions of @ and & occurs.),

R(b)=R(a, b):':g: o, I1. lab,—ap.l,

<iljs k-
N(x; b)=N(x; a, b)={n; 1<a;n+b;<x for all 0<;<k—1},
and define

U(x; b,a, 9=¥(x; a, b; a, )= 3 k_I'Il/I(ajn+bj),
Ay 17

where A denotes the von Mangoldt function. And, we let, for any prime b,
o(p)=p(p; a, b) be the number of solutions of the congruence

’;IiI: (a;n+b)=0  (mod p),

and set, if R(b)+0, p(p)< p for all prime p, and (a;a+b;, g)=1 for all 0/
k—1,
1

o3 0. 9=0(a, b; 0, 9= [T (1= L2) pr(1- £2)(1- Ly

and o¢(b; a, 9)=0 otherwise. Further, we put
Z(x)=Z(x; a)=1{b; |N(x; b)| #0},

where |N(x; b)| denote the length of the interval N(x; b).
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By a heuristic arguement due to Bateman and Horn [2], it is expected that
if ab; a, ¢)+0 then

U(x; b, a, q~ab;a q|Nx; bl
Now we consider the inequality

L) X max 3 |¥(x; b, a, q)—ab; a, ¢)|Nx; b)||Lx*(log x)™4,

gsQ 1sa=q beZ ()

for fixed a, and for any fixed positive constant A. Recently, Maier and
Pomerance [3] treated the inequality (1.1), for the case k=2, in order to apply
their arguement concerning with the difference between consecutive prime
numbers, and showed the validity for Q<x° with some (small) positive constant
8. Later, Balog [1] proved that the inequality (1.1) holds for the general case
k=2, and for a wider range of Q, namely Q< x'3(log x)~2 with some positive
constant B depending on A.

Very recently, Mikawa [4] extend the range of validity of (1.1), for the
case £=2, to Q<x'*(log x)8 with some positive constant B depending on A,
by means of the dispersion method. Mikawa’s result seems best possible, for
the present, by contrast with the Bombieri-Vinogradov theorem.

In this paper, we give a proof, owing to the traditional circle method, for
the validity of (1.1), in the general case k=2, for Q<x'?(log x)™® with a
positive constant B depending on k and A.

THEOREM 1. Let k=2, a and A>0 be fixed. Then the inequality (1.1) s

valid for
Q<x'*(log x)78,

where B is some positive constant depending on k and A.
Moreover, we shall prove a short interval version of Theorem 1. For 0<
y=x, we reset

N(x, y;: B)=N(x; a, b)={n; x—y<an+b;<x for all 0=;=k—1},

k-1
Ux,y; b5 0, 9=%0, y; 0, b5 0, 9= _ 5 M Alan+by),
nza(rr'loz;lq) -

Z=Z(x, y; a)=1{b; [N(x, y; b)| #0},

and write N=|N(x, v; b)| the length of the interval N(x, y; b), for simplicity.
Trivially, we see that

N<«y and #Z<Ly* 1,

where #Z means the number of elements of Z.
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THEOREM 2. Let k=2, a and A>0 be fixed, and assume that
x%%(log x)Co<y<x,
with some positive constant C, depending on k and A. Then we have

(1.2) > max X |¥(x, v; b, a, ¢)—a(b; a, ) N| <y*(log x)4,

gsQ 1sasq bezZ
providing that
Q=yx~(log x)7%,

where B is a positive constant depending on k and A.

Of course, Theorem 1 is a special case of Theorem 2, so we prove only
Theorem 2 in the sequel.

[ would like to thank Professor S. Uchiyama for encouragement and for
careful reading of the manuscript of this paper. I would also like to thank
Dr. H. Mikawa for stimulating discussions and advice.

§2. Preliminaries.

We use a standard notation in number theory, especially, we denote the
greatest common divisor and the least common multiple by (, ) and [, ], res-
pectively. (We use the square bracket [, ] also to denote intervals, but one
may not be confused.) And throughout the paper, we let a;(0<;<%—1) be fixed
non-zero integers, and let b, be a fixed integer which is prime to a, (if (a,, bo)
>1 then our theorem is trivial), and assume that

2.1 xZ/S(log x)3C+657 <y<x,
with some positive constant C. Later, C will be chosen in terms of %2 and A.
Our proof is based on the circle method. We use the functions,

el@)y=e**",  Pla)=P(a; x, )= > Ame(na),
T-Yy<nsx

Poa)y=Pola; x, y)= > Alagn+bo)e(na),
P e

and define the major and minor arcs,
M, =[S -4, £44),
(¢, @ 7 p

M= U M, q,

qsQ; 1scsq
: c,)=1

m=[x"" 14+x"]—M
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where
le(log x)C, A:y"(log x)2A+20(k—1)+2'

Now we note that M(c, ¢)’s are disjoint for ¢=Q,, 1=<c=g, (¢, ¢)=1. We also
note that if #=m then there exist co-prime natural numbers ¢ and ¢ such that
¢g<Q, and A<|a—-{§~~§q“‘x“"6

or

Q,<g=x'" and 1a~%1§q"x‘”“.
Our proof is also based on following results.

LEMMA 1. Assume that a=M(c, q), ¢=Q,, 1=c=gq, (¢, ¢)=1, and write a=
(c/@)+B. Then we have

_ X9 _ s
Pla)= 50 T(B)+0(y exp(—d,(log x)'/%)),

where 8, is a positive constant and T(B)= X enp), and as usual, ¢ and p
T-y<nse

denote the Euler totient function and the Mibius function, respectively.

LEMMA 2.
max | P(a)| € y(log x)~¢+!.
acm

LEMMA 3. Let

I
E(x, y; ¢)= max max b A(n)—%
(laé,(;)égl Ictz-y. &1 nsayzmod Q ¢ (])

where I runs over all intervals in [x—y, x], and |I| denote the length of the
interval I. Then, for any positive constant A,, we have

2.2) S E(x, v; @<L y(log x)~*1,

gas

where ﬁzyx“”([og x)"Br with a positwe constant B, depending on A,.

Lemma 1 and Lemma 2 are minor modifications of Pan and Pan [5, Theorem
3 and p. 146]. Their proofs are based on the results about the zeros of Diriclet’s
L functions, and Lemma 1 is still true for y>x"/***¢ with any positive constant
¢, but Lemma 2 holds only for y satisfying (2.1).

Lemma 3 is a Bombieri-Vinogradov theorem for short intervals, and Perelli,
Pintz and Salerno [6] proved Lemma 3 for y>>x®%** with any ¢>0.
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§3. Proof of the Theorem 2.

47

At first, we note that we have an admissible bound in the case ¢(b; a, g)=0.

Indeed, if (aja+b; ¢)>1 for some 0Zj<k—1, or if p(p)=

p for some

prime p, then we have ¥(x, y; b; a, ¢9)<(log x)***. So these cases contribute
to the left-hand side of (1.2) at most O(y**Qlog x)**), since the number of

elements of Z is O(y*~1).

As for the case R(b)=0, we see that the number of b’s is O(y*~?). Thus,
using a trivial bound ¥(x, v; &; a, ¢)<(y/¢)(log x)*, this case contributes to the

left side of (1.2) at most O(y*'(log x)**).

So, in what follows, we consider only the case a(b, a, ¢)+0, that is,

3.1) (a;a+by, q)=1 for all 0<L;<k—1,
3.2) o(P)<p for all prime number p,
3.3) R(b)+0.

We set a=(ay, -+, a,_y), and

k-1 P k-1
F@= T P@)-Poe ~ 3 asa;),
then we can write
1 1 k-1
Uix,y; b; a, q):So---SoF(a)e(— Eb,m)dm cdagy
kE-1
(3~4) = [M _I— hgl ]m, Ry

where [ is the integral on the major arcs, and I, :’s are the
the minor arcs, that is,

]M:SM...SMF(a)e(——- ié}j bja]-)dal codatyog,

and, for 1<hgk—1,

B-1
I’"'hzgmgajeuuskm F(a)e(— %‘1 bjaj)dal dahe

apEm
ajEL0, 11(h<jsk-1)

In section 4, we shall prove

(35) S,,,_ = 2 q max > [[m N ‘ 2<<yk+1(10g x)~0+zk +1 ,
gsQ a bez

using Lemma 2. Then we have, by Cauchy-Schwartz inequality,

integrals on
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1\1/2
S max B al <(3Z,) 04 "Sn 0

7sQ a
(36) <<yk(10g x)—0/2+k+1 .

Next we turn to [y,. For a;=M(c;, ¢q;), we write a;=(c;/g;)+fB;, then by
Lemma 1,

Play= ggq@ T(8)+0(y exp(—dy(log 1)'19).

We put g=(qy, -, qr-1), €=(C1, =, Cr-1), ﬂ:(ﬂh e, }913-1) and

G(B; e, 0= TLTE)-Pu(~ 2 os(£ +5),

j=1

J(e, Q):g"'g G@B; . Q)e<— jgbjﬁj)dﬁl v dBioa,

iBisd

where |B] <A means |B,| <A for all 1<;<k—1. Now we can express

5 o= T (5 20 s -0 Lot 1),

where 0, is a positive constant and

g=(Q, means ¢;<Q, for all 1<;<k—1,

q
>* means the summation over all ¢ such that every coordinate
(4

¢; is prime to ¢;, and 1=¢;5¢;.

k_
Morover, we write J(e, q)=].(c, ¢)— Zl]h(c, q), where
h=1

1 1 k-1
jo(c’ q):So SOG(ﬂ; C, q)e(— ]Elbjﬁj)dﬁl v d[Bkﬁl,
and, for 1Sh<k—1,

Inte, = CB; ¢, qe(— Zbsfs)dBi - dBar.

ﬁ eto 11U1sj<h)
€[4,1-4]
lp]xsd(hdsk—n

In section 5, we will show that, for 1Sh<Ek—1,

(3.8) PIVACH q)lz<<%;A",

and that

(3.9) Joe, =g PN Sieo ('S 4 0,a,)
#(laollg r]) @ =g T

+OW(E(x, y; lallg, r)+1)(log x)¥*),
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where » denotes the least common muitiple of the coordinates of ¢, and d=

] . . e ..
(dy, -+, dr-1), and 3)* denotes the summation over d;’s satisfying the conditions
d

1=d;=5¢; for all 1=£;5k—1,
a=d; (mod(q, g;) for all 1</5k—-1,
d;=d; (mod{q;, ¢;)) for all 1Z5i<jgk—1,

and (a,d;+b,, g;)=1 for all 1<7<k—1.
(3.8) yields

> max >}

q=Q a beZle

- ) q k-1 (. k-1
0 Gy Sre(= 2 o) B/ve @)

(7)) (et gamx S2 W) £
(3.10) <L y*(log x)~4.
By (3.7), (3.9) and (3.10), we have
(3.11) > max X | Iy—a(b; a, ¢N|

qsQ a beZ

=3 maXZ}lS(b a, ¢)la|N—alb; a, ¢)N|

gsQ @

+0((log x)**' (»*'QQ '+ 2 2 E(x, y; laollg, rD))

7sQes

+0(y*(log x)™*+y* exp(—a,(log x)'/*)(log x)),
where

1
Q1 o(laollg, 7])

S a, 9= I=I iz* H caj(@sd;+by),

(g

and ¢ (n)= 2 e ﬂn) is the Ramanujan sum.
(m q) =1 q

In secton 6, we shall prove

(3.12) S; a, 9g=——0ab; a, g

1
[ad]
+0( tx(g)tx(R(b) (log x)7°*),

of course, on (3.1), (3.2) and (3.3). Here K isa natural number depending only
on k, and tx(m) is the number of ways of writing m as a product of K factors,
the order of the factors being taken account. It follows, by known results
about divisor functions, that
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559D c1og @)%, and S rx(RB)<y*og 1)1,
i g =3

with a constant K, depending only on k.
Then the first term of (3.11) contributes
(3.13) L y*(log x) C*Ke,

where K, is a constant depending only on k.
Estimation of the second term of (3.11), of course, relies on Lemma 3. It
follows that

> 2 E(x, y: la.lle, r])<<Q%"M

9sQ9esQ1

3.14) < y(log x)~4-k-1,

2 G E(x, v om)
] 1

12019 @
providing that la,|QQ1<0, that is,

Q=yx~'*(log x)~%.

Here Q corresponds to A,=A+3%k+1 in (2.2) of Lemma 3, and B is a constant
depending on A and k. We observe that any other terms is admissible only
if Q< y(log x)~Bo with some constant B,.

Hence, Theorem 1 follows from (3.4), (3.7), (3.11), (3.13) and (3.14) with a
suitable choice of C, under assumption of (3.5), (3.8), (3.9) and (3.12).

§4. Estimation of S, ;.

In this section, we prove (3.5). We use Bessel’s inequality repeatedly to
obtain

2 Hnnl?=2 2
bez by bp-1

SP(a,)(S S o day - dak_,)e(—bla,)da,lz

<fiP@irg - 3 1[Pa(] - das-r)e(—biandasltday

g ......
<ff, (L 1P@)1)| Peo = Z as05)| dets - detsy
a ;€M (15j<h)
a€L0, 1J(r<isk—1)
@.1) <| 1P@iU.dan,

where, for £=3,
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U= 1 1h-1 p e p k-1 k-1
=l L P@ P~ )| (T de)
J*+h ixh
= = 2 A(aom1+bo)A<aom2+bo)e(”‘ahah(ml”‘mz))
r—y<aopmy+bg, agMme+dgsz
my=Emg=a (mod ¢)
k-1
XTM( S 5 An)An)
J=1 Z—y<ny, Ngsx
JEh ny-no=aj(my—my)
= 3 e(—azan) 3 A(agm-+bo) A(ao(m—7)+by)
Irtsy r—y<agm+tbysx
r=0(mod q) m=a (mod qg)
r—y<ag(m-r)+dpsx
k-1
X2 2 Am)A(n—ayr))
j=1 T—y<nsx
J#h z—y<n—aﬂsz
(4-2) - I‘; e(_ahahr)Rh(r; a, CI); say,
TEO(mf)zdlzp
and, for k=2,
Ui=|Poo(—a1a))|?
= 2 2 Alagm,+by) A(agmy+bo)e(— a,a,(m,—m,))
r-y<agmy+bg, AgMatbosz
my=mg=a (mod g)
= 3 e(—aay) 2 A(aym+bo) A(ao(m—r)-+by)
Irisy r—y<agm+bysx
T=0(mod g) m=a (mod q)

r-y<ag(Mm—r)+dosz

4.3)

Il

lz e(—a,)R\(r; a, g), say.
r=b(mod o

Trivially, we have
(4.4) Ru(r; g, a)<y* g7 '(log x)**-2,
for both cases £=2 and £#=3. By (4.1). 4.2), (4.3) and (4.4),

Smr= 2 gmax 3 Ra(r; g, a)g [Plar)|*e(—ararr)das
as5Q a risy m

7=0(mod q)
<<y”“(log x)zk-zz » ‘g |p(a)|fte(—-a,,ar)da|
2=Q rsloy(}ngoyd [-)) "
(4.5) «y*-i(log x)**- 3 r(lrl)ij IP<a>|ze(““h“’>d"‘l
0T ISy m

+47Qlog x)*~*( | P(a)|*da,

where r denotes the divisor function. It is easy to see that

51
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[1P@da=_ 3 _amr<yiog),

and
S oe(|r)*g y(log x)°.

[Ny

So the second term of (4.5) is admissible in (3.5), and the sum in the first term
of (4.5) contributes

<<<u<g;§yr<lr|>2>“2(0<;;§y]SmwP(a)i?e@amr)daf)”
(ytlog 2| | P(e)|*da)”

<<(y(10g x)* ‘ES,Z‘ IP(a)lzgz | P(a)\zaloz)llZ

< y*log x)°*?,

by virtue of a bound of Lemma 2. Now we obtain (3.5).

§5. Evaluation of [,(c, q).

At first, we prove (3.8). It is well known that |7(8)| <|B]™*, where |||
denote the distance detween S and the nearest integer of it, as usual. So we
get

1-4 /2
[ ir@ap <l srapea.

Then, for 1<h<k—1, we repeat using Bessel’s inequality, similarly to (4.1),
to obtain

S ale, 91?
beZ

<f- (I

k-1 Ci 2
Pl S ol o)) ah - epn
l 2k-1 1 ND \. 1-4 .
<)L (irearas)f” e
k
<<9é2—A~1.
as required in (3.8).
Next we turn to prove (3.9). Caluculating the integrals about f,’s, we see
Jole, @)= > Aagn+by) (—kz_]l—cj— n
o€, )= y% 0 0)e q(aj>.

neN (x, j=1
nEa (o' q 4 J

We devide the above sum about residue classes of n to moduli ¢,’s, and write
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s =Sl — g
6.1) Joe, @=3e(=ad,)Vd, @),
where d=(d,, ---, d,_)). é] means the summation over all d,’s satisfying 1<
djé(]j, and
Vid, )= P Alagn+b,).

nEN (x, y: b)
n=a (mod q)
n=d j(mod aj) (1sjsk-1)

Unless
(5.2) a=d; (mod(g, ¢;)) for all 1<;<k—1,
(6.3) d:=d; (mod(q;, ¢;)) for all 1=Zi<j<k—1,
the sum V(d, q) is empty. And unless
(5.4) (aedj+bo, g)=1  for all 1<;<p-—1,

plainly, we get V({d, ¢)=0((log x)?).

If the conditions (5.2), (5.3) and (5.4) are satisfied, there is an integer M=
M(d, q; a, g) such that the congruence conditions apearing in the summation
of V(d, q) are equivalent to

n=M (mod g, r])

and (aoM+by, [q, ¥1)=1. Here r=[gqy, -, qs-.], that is, the least common
multiple of the all coordinates of g, as mentioned in section 3. Thus we can
write

Vd, )= b A(ayn+by)

neN (x, y; b)
n=M(mod [q, 7])
= > A(m)
(m—bg)/agEN (z, y; b)
m=agM+bg(modiayilq, 71

1
—WWW’GHN—FO(E(X’ ¥; laollg, r1).

These evaluations with (5.1) yield (3.9).

§6. Calculation of the singular series S(b; a, ¢).

In this section, we prove (3.12). We write

e e
04 0= R 0 te D et Flladlly 75
(6.1) =5:+S,, sy,

where
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k-1

-1 p(gs) &,
W= T o) 3" L eafasdstby),

rdi=r j=1 ~—5

and W,(») is the sum with the condition ¢<@, added to the above sum. The
symbol [g]=r means that the least common multiple of the all coordinates of
g is 7.

We can see that W(») is multiplicative by a simple arithmatical deduction.
Indeed, for [ql=r=rys, (ry, r)=1, we put g*=(g;, ro) and @:=(g{", -, ¢
for i=1, 2, 1<7<k—1. Then this correspondence between ¢'s satisfying [gl=r
and pairs (qi, g.) satisfying [g;]=r;(¢=1, 2) is one-to-one. Moreover, we can
set d;=e{0g®+ePgd, where ef” runs through residue classes of modulo ¢§¥,
for i=1,2 1<j<k—1. We have, for 1=<4, j<k—1,

d;=a(mod (g;, q)) &= efVqf®=a(mod(g5°, ¢)) and ef?¢;”=a(mod (g, 9)),
di=d;(mod (g;, g;) & ef*qf? =efVqf® (mod (¢{°, ¢;))

and efgf>=ef”q{> (mod(¢{®, ¢;)),
(@od j4bo, g5)=1 & (aoefPq5P + by, g5°)=1 and (@eef? s+ by, ¢i)=1.

Now we write d{¥=e{¢f®, df¥=ef®q>, d;=(d{®, -, di?) for =1, 2, and get

w(gs?) p(gs® )

W(?’l?’z)-—[ql] T;[Gz] = | <¢(Q§”) ¢((](2))’

9 92 k-1
X %* ?2* };I, (cam(a;dP+b)eem(a;d;® +b7)
=W{r)W(r,).

Next, we attend to W(p) for a prime number p. If [q]=p then ¢;=1 or
p for all 1<7<k—1, and at least one ¢; is p. We denote by M the set of
subscript of ¢;’s such that ¢;=p. Then,

W=, 2 “Ly 4

P= ME Lo kel p—l d=1
d=a(mod (p, Q)
(agd+bg, P)=1

= dél (Mgnz-:-,k—ujg( o d+bl)> )

d=a (mod(p,q))
(agd+bg, pr=1

I k-1 o(a;d+b;

= 3 (II(I———[”(%*_{’?J')")”I)’
d=a(mod(p, q)

(agd+by, P)=1

.]._[ cp(azd-+by)
jeEM
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where #M denote the number of elements of M. Therefore, noticing that
(3.1), 3.2) and (3.3), we obtain

1 \-k+1 .
(1-5) -1 (if plg)
1\-k+1 o
W= p-e)(1-5)  —p  Gf pigand plan,

(r—on(1=) "' —p+1 G prgand pia)

and

(r)? 1 1\-1 1\-k+1
62 ¢<\«i|r[q, AV O= a1, 0-5) 1((0-5) Y

1 (=225 1 (=)0 ),

0 prag

'u‘c)'cs

Y
la
Further p )} R(b) implies p(p)==Fk, so

(1- fip&)(l— %)'k—1<<p‘2,

and, for p| R(b), the above term is «1/p, where the implied constants depend
only on k. Plainly, we also get

(1—%)"‘“—1«%, (1-%@(1-%)‘“’—1« %,

with the implied constants depending only on k. These inequalities and (6.2)

shows
et L L
wels—to 1 2 = -
¢(lasllg, D) (r)l_ laolg p'(l;l"q’ pt(aISI:,‘z]fTub)) Dy i P’
6.3) < Hel9) (0,1 grpy LY,

laolg

where L is a (sufficiently large) natural number which depends only on k. It
is known about the divisor function 7z,(») that

;trL(r) Lt(log 1),

for t=2, so we have, by partial summation, -

69 5 E('—fj%]) W< Tf‘;") fK<R<b>>—<logQ et

with K depending only on 2. And then, by (6.2),
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> p(r)?
2 Fanlte, D

: - Ly-st (D) 1\-k+1
= Tarz a3 BO-5) 7 2 0= E05)”

-t

pie b b
= (=) m (-2 1)
= jiglja(b; a, q).

Thus, with (6.4), we have

R S 7x(q) o
(6.5) Si= 1700 @ 9+0(FE xR og 1)),

Finally, we estimate S,. We let

q

W= 3 I 497 WY H caj(asd;+by),

W= = 9(q;)

then we can see, at once, that W,(r) is multiplicative by comparison with W (r),
and that

S
6.0 S 2o Bt g allg, 7D

For a prime p, we write W,(p), similarly to W(p), as follows.

q

11 cp(a;d;+b;)
d=1 JEM
d=a(mod(p, q)
(@gd+bg, p)=1

W=, = ()"

1
p—1
For plg, we have |W,(p, M)|<1 by (3.1). For p /g, noticing that

6.7) = 5

Mc L, - k=1
M=z1

#M
) Wap, M1, say.

| SV ep(a,d4+b)1 <1 unless TI (a;d-+b;)=0 (mod 5),
JjeM F=1
we have |Wy(p, M) <k(p—1)* +p,
Especially, we consider the case p/ (a,qR(b)). If #M=1 then
Walp, M)=(p—1)+(—=D(p—2)=1,
and if #M =2 then
[Wy(p, M)IZ(p—1)-(#M)+1-(p—1—M)<kp.
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By these evaluations and (6.7), it follows that W,(p)<1 for any prime p, and
that W,(p)&1/p for p ) (a,qR(b)), where the implied constants depend only on k.

Now we obtain an inequality similar to (6.3) for W,(r) instead of W(r), so

the right-hand side of (6.6) contributes

6.8)

<<ifq(i) ex(R®))log 1),

as before. Hence, (3.12) follows from (6.1), (6.5) and (6.8), and our proof of
Theorem 2 is completed.
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