STABILITY FOR INFINITE-DIMENSIONAL FIBRE BUNDLDS

By

Katsuro Sakai

Abstract. In this paper, we prove that any locally trivial fibre bundles $p: X \rightarrow B$ with fibre M a manifold modeled on an infinitedimensional space E (e.g. the Hilbert space l_2 or the Hilbert cube Q) is bundle isomorphic to the bundle $p \circ \text{proj}: X \times E \rightarrow B$. Further, we can obtain a strong version of this Bundle Stability Theorem. From Bundle Stability Theorem, we can introduce the notion of deficiency in bundles. We show that a finite union of locally deficient sets is deficient and we prove a bundle version of Mapping Replacement Theorem.

§0. Introduction.

A Hilbert (Hilbert cube) manifold, briefly l_2 -manifold (Q-manifold), is a paracompact space M admitting an open cover by sets homeomorphic (\cong) to open subsets of the Hilbert space l_2 (the Hilbert cube Q). These manifolds are topologically stable, that is, $M \cong M \times l_2$ ($M \cong M \times Q$). This Stability Theorem due to R. D. Anderson and R. M. Schori [A-S] is most fundamental in the theory of infinite-dimensional manifolds.

In this paper, we establish the stability theorem for locally trivial fibre bundles with fibre an l_2 -manifold or a Q-manifold. We will call these bundles l_2 -manifold bundles or Q-manifold bundles, respectively.

BUNDLE STABILITY THEOREM. (Assume B is metrizable.)

- (A) An l_2 -manifold bundle is bundle isomorphic to $p \circ \operatorname{proj}: X \times l_2 \rightarrow B$.
- (B) A Q-manifold bundle is bundle isomorphic to $p \circ \operatorname{proj}: X \times Q \rightarrow B$.

Here a bundle $p: X \rightarrow B$ is bundle isomorphic to a bundle $p': X' \rightarrow B$ if there exists homeomorphism $h: X \rightarrow X'$ such that p'h = p (such a homeomorphism is called a bundle homeomorphism).

In this theorem, there is a bundle homeomorphism $h: X \times l_2 \to X$ $(h: X \times Q - X)$ is homotopic to the projection proj: $X \times l_2 \to X$ (proj: $X \times Q \to X$) by a small bundle

Received October 8, 1980.

Katsuro SAKAI

homotopy. In practice, we prove a more strong result, i.e. Theorem 4-3 (and Remark 5-1), under the more general situation including (A) and (B).

A subset K of M is l_2 -deficient (Q-deficient) if there is a homeomorphism $h: M \rightarrow M \times l_2$ $(h: M \rightarrow M \times Q)$ such that $h(K) \subset M \times \{0\}$. A closed subset K of M is a Z-set if there is a continuous map $f: M \rightarrow M \setminus K$ arbitrarily near to the identity (or equivalently, if for each non-empty homotopically trivial open set U in $M, U \setminus K$ is also non-empty and homotopically trivial). It is well-known that these two notion are identical for closed sets in l_2 -manifolds or Q-manifolds. And these notion are very useful and very important in the theory of infinite-dimensional manifolds.

From Bundle Stability Theorem we can introduce the notion l_2 -deficiency (Q-deficiency) in l_2 -manifold (Q-manifold) bundles. In this paper, we see several easy properties of these deficient sets in bundles. We show that a locally deficient set is deficient and that a finite union of deficient sets is also deficient. And we prove a bundle version of Mapping Replacement Theorem due to R. D. Anderson and J. D. McCharen [A-M] which is an important tool in the theory of infinite-dimensional manifolds. Further aspects shall be developed in sequels [Sa_{2,3}].

R.Y.T. Wong and T.A. Chapman ($[Wo_{1,2}]$ and [C-W]) have developed an entirely satisfactory infinite-dimensional bundle theory *over finite complex*. And T.A. Chapman and S. Ferry ([C-F] and [Fe]) have proved several theorems for *product bundle* with a *Q*-manifold fibre. And H. Toruńczyk, is his dissertation, have proved several theorems of infinite-dimensional bundles.

§1. Semi-Reflective Isotopy Property.

The unit interval [0, 1] is denoted by I. A pointed topological space (L, 0) is said to have the *semi-reflective isotopy property*, briefly: SRIP, if there exists an ambient invertible isotopy $\sigma: L^2 \times I \rightarrow L^2$ (called a *semi-reflective isotopy*) such that

 $\sigma_0 = \text{id}$, $\sigma_1(x, y) = (y, e(x))$ for each $(x, y) \in L^2$ and $\sigma_t(0, 0) = (0, 0)$ for each $t \in I$

where $e: L \to L$ is a homeomorphism (called a *swerving homeomorphism*). If e=id, we call the *reflective isotopy property* (*RIP*). (See [B-P] p. 289) It is easy to see that if $e^n=id$, then $(L^n, 0)$ has *RIP*.

1-1 EXAMPLE: Any closed (or open) interval with a base point in its interior and any linear topological space with 0 a base point have SRIP and those semi-reflective isotopies have idenpotent swerving homeomorphisms (i.e. $e^2 = id$). If each $(L_{\lambda}, 0_{\lambda})$ has *SRIP*, then $(\prod_{\lambda \in A} L_{\lambda}, 0)$ and $(\sum_{\lambda \in A} L_{\lambda}, 0)$ have *SRIP* where $\prod_{\lambda \in A} L_{\lambda}$ is the product space of L_{λ} ($\lambda \in A$) and $\sum_{\lambda \in A} L_{\lambda} = \{x = (x_{\lambda}) \in \prod_{\lambda \in A} L \mid x_{\lambda} = 0$ for almost all $\lambda \in A$ } is a subspace of $\prod_{n \in N} L_{\lambda}$. We write $L^{\omega} = \sum_{n \in N} L_n$, $L_n^{\omega} = \sum L_n$ provided $L_n = L$ for each $n \in N$. If (L, 0) has a semi-reflective isotopy with an idenpotent swerving homeomorphism, then $(L^{\omega}, 0)$ and $(L_f^{\omega}, 0)$ has *RIP*. Then $Q = [-1, 1]^{\omega}$, $s = (-1, 1)^{\omega} \cong R^{\omega} \cong l_2$ and R_f^{ω} have *RIP*.

Throughout this paper, let (E, 0) denote a paracompact, perfectly normal pointed space which has SRIP and is homeomorphic to $(E^{\omega}, 0)$ or $(E^{\omega}_{f}, 0)$.

A manifold modeled on E, briefly E-manifold, is a paracompact space M admitting an open cover by sets homeomorphic to open subsets of E. If E=Q, then M is a Hilbert cube manifold, and if $E=l_2$, then M is a Hilbert manifold. An E-manifold bundle is a locally trivial fibre bundle with an E-manifold fibre. An E-manifold bundle with fibre M is briefly called an M-bundle. Then an E-bundle is a locally trivial fibre bundle with fibre E.

The Stability Theorem for *E*-manifold has been established by R. M. Schori [Sch] and its strong version has been done by R. Geoghegan and D. W. Henderson [G-H] (cf. K. Sakai [Sa₁]. The stability theorem for product bundles is easily proved (cf. Theorem 4.6 in [Fe]). We present the Stability Theorem and its strong version for *E*-manifold bundles is Section 4. And in Section 5, we introduce deficiency in *E*-manifold bundles and we see several easy properties. The bundle version of Mapping Replacement Theorem is proved in Section 6.

§2. Reduced Cartesian Products.

Let X and Y be topological spaces and A a closed subset of X. The product of X and Y reduced over A, denoted by $(X \times Y)_A$, is defined to be the set $(X \setminus A) \times Y \cup A$ with the topology gererated by the basis consisting of all sets $(U \setminus A) \times V$ and $(U \setminus A) \times Y \cup (U \cap A)$ where U is open in X and V is open in Y. (See [B-P] p. 25). Note that $(X \times Y)_{\phi} = X \times Y$ and $(X \times Y)_X = X$.

Let $\pi_X = \pi_X^{X \times Y} : X \times Y \to X$, $\pi_Y = \pi_Y^{Y \times Y} : X \times Y \to Y$ be the natural projections, that is, $\pi_X(x, y) = x$ and $\pi_Y(x, y) = y$ for each $(x, y) \in X \times Y$. The natural map $\tau^A = \tau_X^{(X \times Y)_A} : (X \times Y)_A \to X$ is defined by $\tau^A | A = \text{id}$ and $\tau^A | (X \setminus A) \times Y = \pi_X (= \pi_{X \setminus Y})$, and the natural map $\tau_A = \tau_{(X \times Y)_A}^{(X \times Y)_A} : X \times Y \to (X \times Y)_A$ is defined by $\tau_A | A \times Y = \pi_X$ $(=\pi_A)$ and $\tau_A | (X \setminus A) \times Y = \text{id}$. Then τ^A and τ_A are continuous. Note that $\pi_X = \tau^A \tau_A, \ \tau^\phi = \tau_X = \pi_X, \ \tau^X = \text{id}_X$ and $\tau_\phi = \text{id}_{X \times Y}$.

Obviously if $(X, A) \cong (X', A')$ and $Y \cong Y'$, then $(X \times Y)_A \cong (X' \times Y')_{A'}$. Observe

that

$$(X \times (Y \times Z)_B)_A = ((X \times Y)_A \times Z)_{A \cup (X \setminus A) \times B},$$

so $X \times (Y \times Z)_B = ((X \times Y) \times Z)_{X \times B}$ and $(X \times (Y \times Z))_A = ((X \times Y)_A \times Z)_A$.

We shall define the *cone* C(X) and the *open cone* $C^{\circ}(X)$ of topological space X as reduced products:

 $C(X) = (I \times X)_{\{0\}}; C^{\circ}(X) = ([0, 1) \times X)_{\{0\}}.$

Let \mathcal{V} and \mathcal{V} be open covers of X. We say that \mathcal{V} is a refinement of \mathcal{V} or \mathcal{V} refines \mathcal{V} , denote $\mathcal{V} < \mathcal{V}$, provided each $U \in \mathcal{V}$ is contained in some $V \in \mathcal{V}$. For $A \subset X$, define st $(A; \mathcal{V}) = \bigcup \{U \in \mathcal{V} | A \cap U \neq \emptyset\}$ and st $(\mathcal{V}) = \{\text{st}(U; \mathcal{V}) | U \in \mathcal{V}\}$. If st $(\mathcal{V}) < \mathcal{V}$, then \mathcal{V} is called a *star-refinement* of \mathcal{V} . We say that a map $f: Y \rightarrow X$ is \mathcal{V} -near to a map $g: Y \rightarrow X$ or f and g are \mathcal{V} -near if for each $y \in Y$, there is some $U \in \mathcal{V}$ containing both f(y) and g(y). And a homotopy (an isotopy) $h: Y \times I \rightarrow X$ is a \mathcal{V} -homotopy (a \mathcal{V} -isotopy) if for each $y \in Y$, $h(\{y\} \times I)$ is contained in some $U \in \mathcal{V}$.

A map $f: B \times X \to B \times Y$ (or $f: X \times B \to Y \times B$) is said to be *B*-preserving if $\pi_B f = \pi_B$. When $f: B \times X \to B \times Y$ (or $f: X \times B \to Y \times B$) is *B*-preserving, for each $b \in B$, define $f_b: X \to Y$ by $f_b(x) = f(b, x)$ (or =f(x, b)). Let $p: X \to B$ and $q: Y \to B$ be maps. A map $f: X \to Y$ is *B*-preserving if qf = p. A map $g: X \times Z \to Y \times Z'$ is *B*-preserving if $q\pi_Y g = p\pi_X$. And a homotopy $h: X \times I \to Y$ is *B*-preserving if $qh_t = p$ for $t \in I$. If $p: X \to B$ and $q: Y \to B$ are bundles, then a *B*-preserving continuous map (embedding, homeomorphism, etc.) $f: X \to Y$ is called a *bundle map* (a *bundle embedding*, a *bundle homeomorphism*, etc.) and a *B*-preserving homotopy $h: X \times I \to Y$ is a called a *bundle homotopy* (a *bundle isotopy*).

§3. Main Lemma.

In this section, we will prove the following lemma.

3-1 LEMMA. Let X be a space such that $X \times E$ is perfectly normal and W an open subspace of $X \times E$. Then for any closed sets A, C and D in W such that $C \cap D = \emptyset$, there exists a homeomorphism $h: (W \times E)_A \rightarrow (W \times E)_{A \cup D}$ such that

- i) $\pi_X \tau^{A \cup D} h = \pi_X \tau^A$
- ii) $h|(C \setminus A) \times E \cup A = id$

PROOF: According as $(E, 0) \cong (E^{\omega}, 0)$ or $(E^{\omega}_{f}, 0)$, E^{*} denotes E^{ω} or E^{ω}_{f} . We may assume that W is an open set in $X \times E^{*}$. We will write $x = (x_{0}; x_{1}, x_{2}, \cdots) \in X \times E^{*}$. For each $n \in \mathbb{N}$, let $\pi_{n}: X \times E^{*} \to X \times E^{n}$ be the natural projection, i.e.

 $\pi_n(x) = (x_0; x_1, \dots, x_n)$. By an *n*-basic subset of $X \times E^*$, we will mean the inverse image of a subset of $X \times E^n$ by π_n , that is, $B \subset X \times E^*$ is *n*-basic if and only if $\pi_n^{-1}\pi_n(B) = B$. Note that if *B* is *n*-basic, then $\pi_n(\operatorname{int} B) = \operatorname{int} \pi_n(B), \pi_n(\operatorname{cl} B) = \operatorname{cl} \pi_n(B)$ and $\pi_n(\operatorname{bd} B) = \operatorname{bd} \pi_n(B)$. Each *m*-basic set is *n*-basic for $n \ge m$. A basic set is an *n*-basic for some *n*. (See [Sch] p. 89).

Since (E, 0) has *SRIP*, there is a semi-reflective isotopy $\sigma: E^2 \times I \rightarrow E^2$ with a swerving homeomorphism $e: E \rightarrow E$. Define an *I*-preserving continuous map $\theta: (X \times E^*) \times E \times I \rightarrow (X \times E^*) \times I$ by

$$\begin{cases} \theta(x, y, 0) = (x, 0) & \text{and} \\ \theta(x, y, t) = (x_0; x_1, \cdots, x_{n-1}, \\ \sigma(x_n, y, 2^n t - 1), e(x_{n+1}), e(x_{n+2}), \cdots; t) \\ & \text{if } 2^{-n} \leq t \leq 2^{-n+1}. \end{cases}$$

Note that $\theta \mid (X \times E^*) \times E \times (0, 1]$ is a homeomorphism and that if $t \leq 2^{-n}$, then $\pi_n \theta_t(x, y) = \pi_n(x)$.

Using normality, construct collections \mathscr{B} and \mathscr{B}' of basic open sets in $X \times E^*$ such that $\bigcup \mathscr{B} = W \setminus (A \cup D)$, $C \cap cl \cup \mathscr{B}' = \emptyset$ and $\bigcup (\mathscr{B} \cup \mathscr{B}') = W \setminus A$. Let \mathscr{B}_n and \mathscr{B}'_n denote the subcollections of \mathscr{B} and \mathscr{B}' consisting of all *n*-basic sets, respectively. By Lemma 5.2 of [Sch], take collections $\{K_n \mid n \in N\}$ and $\{K'_n \mid n \in N\}$ of closed sets in $X \times E^*$ such that $\bigcup_{n \in N} K_n = W \setminus (A \cup D) = \bigcup \mathscr{B}, \bigcup_{n \in N} K'_n = \bigcup \mathscr{B}'$ and each K_n and K'_n are *n*-basic and contained int $K_{n+1} \cap \bigcup \mathscr{B}_n$ and int $K'_{n+1} \cap \bigcup \mathscr{B}'_n$ respectively. Then $\bigcup_{n \in N} (K_n \cup K'_n) = W \setminus A$ and each $K_n \cup K'_n$ is *n*-basic and contained int $(K_{n+1} \cup K'_{n+1}) \cap \bigcup (\mathscr{B}_n \cup \mathscr{B}'_n)$.

From Tietze Extension Theorem, there are continuous maps $f_n : \pi_n(K_n \setminus K_{n-1}) \rightarrow [2^{-n-1}, 2^{-n}]$ and $f'_n : \pi_n(K_n \cup K'_n \setminus \operatorname{int} (K_{n-1} \cup K'_{n-1})) \rightarrow [2^{-n-1}, 2^{-n}]$ such that

$$f_n(\operatorname{bd} \pi_n(K_n)) = f'_n(\operatorname{bd} \pi_n(K_n \cup K'_n)) = 2^{-n-1} \quad \text{and} \\ f_n(\operatorname{bd} \pi_n(K_{n-1})) = f'_n(\operatorname{bd} \pi_n(K_{n-1} \cup K'_{n-1})) = 2^{-n}$$

where $K_0 = K'_0 = \emptyset$. Put $n(x) = \min \{n \in \mathbb{N} | x \in K_n\}$ for each $x \in W \setminus (A \cup D)$ and $m(x) = \min \{n \in \mathbb{N} | x \in K_n \cup K'_n\}$ for each $x \in W \setminus A$, and define continuous maps $f: W \setminus (A \cup D) \to (0, 1]$ and $f': W \setminus A \to (0, 1]$ by

$$f(x) = f_{n(x)} \pi_{n(x)}(x)$$
 and $f'(x) = f'_{m(x)} \pi_{m(x)}(x)$.

These are well-defined because each K_n and $K_n \cup K'_n$ are *n*-basic. Note that

$$f(x) = f(x_0; x_1, \cdots, x_{n(x)}, *, *, \cdots) \leq 2^{-n(x)}$$

for each $x \in W \setminus (A \cup D)$, and

$$f'(x) = f'(x_0; x_1, \cdots, x_{m(x)}, *, *, \cdots) \leq 2^{-m(x)}$$

for each $x \in W \setminus A$, and that $m(x) \leq n(x)$ for each $x \in W \setminus (A \cup D)$, and moreover if $x \in \bigcup \mathscr{B}'$, then n(x) = m(x). Take a continuous map $k: W \to I$ such that k(C) = 0 and $k(cl \cup \mathscr{B}') = 1$. And define a continuous map $g: W \setminus A \to (0, 1]$ by

$$g(x) = \begin{cases} f'(x) & \text{if } x \in D\\ (1-k(x))f(x) + k(x)f'(x) & \text{if } x \in D. \end{cases}$$

Then observe that $g|C \setminus A = f|C \setminus A$ and

$$g(x) = g(x_0: x_1, \dots, x_{m(x)}, *, *, \dots) \leq 2^{-m(x)}$$

for each $x \in W \setminus A$.

Now define $h_f: (W \times E)_{A \cup D} \to W$ and $h_g: (W \times E)_A \to W$ by

$$\begin{cases} h_f | A \cup D = \text{id} \\ h_f(x, y) = \theta_{f(x)} & \text{for each } (x, y) \in \langle W \setminus (A \cup D) \rangle \times E \end{cases}$$

and

$$\begin{cases} h_g | A = \mathrm{id} \\ h_g(x, y) = \theta_{g(x)}(x, y) & \text{for each } (x, y) \in (W \setminus A) \times E. \end{cases}$$

Then $h_f|(C \setminus A) \times E \cup A = h_g|(C \setminus A) \times E \cup A$.

Now, we will show that h_f and h_g are homeomorphisms. Then $h_f^{-1}h_g$: $(W \times E)_A \rightarrow (W \times E)_{A \cup D}$ is clearly a desired homeomorphism. From similarity, we may check up h_f alone.

Continuity of h_f : Since $h_f|(W \setminus (A \cup D)) \times E$ is continuous, we have to examine that h_f is continuous at $x \in A \cup D$. Let V be an n-basic neighbourhood of x in W. Since $K_n \cap (A \cup D) = \emptyset$, $V \setminus K_n$ is a neighbourhood of x in W, so

$$U = ((V \setminus K_n) \setminus (A \cup D)) \times E \cup ((V \setminus K_n) \cap (A \cup D))$$

is a neighbourhood of x in $(W \times E)_{A \cup D}$. For $(x', y') \in ((V \setminus K_n) \setminus (A \cup D)) \times E$, $x' \in K_n$ implies n(x') > n therefore $f(x') \leq 2^{-n(x')} < 2^{-n}$. Then

$$\pi_n h_f(x', y') = \pi_n \theta_{f(x')}(x', y') = \pi_n(x') \in \pi_n(V)$$

so $h_f(x', y') \in \pi_n^{-1} \pi_n(V) = V$. Hence $h_f(U) \subset V$.

Inverse of h_f : Define $h'_f: W \to (W \times E)_{A \cup D}$ by

$$h'_{f}(x) = \begin{cases} x & \text{if } x \in A \cup D \\ \theta_{f(x)}^{-1}(x) & \text{if } x \notin A \cup D \end{cases}$$

For each $x \in W \setminus (A \cup D)$ put $(x', y') = \theta_{f(x)}^{-1}(x) \in (W \setminus (A \cup D)) \times E$. Since $x = \theta_{f(x)}(x', y')$ and $f(x) \leq 2^{-n(x)}$,

$$\pi_{n(x)}(x) = \pi_{n(x)}\theta_{f(x)}(x', y') = \pi_{n(x)}(x')$$

therefore f(x)=f(x'). Hence

$$h_{f}(h'_{f}(x)) = h_{f}(x', y')$$

= $\theta_{f(x')}(x', y')$
= $\theta_{f(x)}(\theta_{f(x)}^{-1}(x))$
= x .

For each $(x, y) = (W \setminus (A \cup D)) \times E$, put $x' = \theta_{f(x)}(x, y) \in W \setminus (A \cup D)$. Similarly as above, f(x) = f(x'). Hence

Therefore $h_f = h_f^{-1}$.

Continuity of $h_f^{-1} = h'_f$: Since $h'_f |W \setminus (A \cup D)$ is continuous, we have to examine that h'_f is continuous at $x \in A \cup D$. Let V be an n-basic neighbourhood of x in W. Note that $V \setminus K_n$ is a neighbourhood of x in W. For $x' \in (V \setminus K_n) \setminus (A \cup D)$, put $h'_f(x') = (x'', y'')$. Then $\pi_{n(x')}(x') = \pi_{n(x')}(x'')$, so $\pi_n(x') = \pi_n(x'')$ because n < n(x'). Since V is n-basic, $x'' \in V$ that is $h'_f(x') = (x'', y'') \in (V \setminus (A \cup D)) \times E$. Hence

$$h'_f(V \setminus K_n) \subset (V \setminus (A \cup D)) \times E \cup (V \cap (A \cup D)).$$

3-2 REMARK: In the above proof, note that

$$\theta((x, 0), 0, t) = (x, 0, t)$$

for each $((x, 0), 0, t) \in X \times E^* \times E \times I$, then

$$h_{f}^{-1}h_{g}((x, 0), 0) = \begin{cases} ((x, 0), 0) & \text{if } (x, 0) \in (W \setminus (A \cup D)) \cap X \times \{0\} \\ (x, 0) & \text{if } (x, 0) \in (D \setminus A) \cap X \times \{0\} \end{cases}.$$

Hence we can require a homeomorphism h in Lemma 3-1 to satisfy

iii) $h \mid ((W \setminus A) \cap X \times \{0\}) \times \{0\} = \tau_{A \cup D}$.

In the above proof, put $A=D=\emptyset$, construct \mathscr{B} so fine that st $(\mathscr{B}) < \mathscr{U}$ for an open cover \mathscr{U} of W and define $\Theta^{\mathscr{U}}: (X \times E^*) \times E \times I \to (X \times E^*) \times I$ by

$$\Theta^{U}(x, y, t) = \begin{cases} (\theta_{\iota f(x)}(x, y), t) & \text{if } x \in W \\ (x, t) & \text{if } x \notin W. \end{cases}$$

Then note that $\Theta^{\mathcal{V}}$ is X-preserving because θ is so. From the proof of Lemma

2-1 of [Sa1], we have the following lemma:

3-3 LEMMA: Let X be a space such that $X \times E$ is perfectly normal and W an open subspace of $X \times E$. Then for each open U of W, there exists an X- and I-preserving continuous map $\Theta^{U}: X \times E \times E \times I \to X \times E \times I$ such that

- i) $\Theta^{U}(x, 0, 0, t) = (x, 0, t)$ for each $(x, 0, 0, t) \in X \times E \times E \times I$,
- ii) $\Theta_0^U = \pi_{X \times E}$,
- iii) $\Theta_t^U|((X \times E) \setminus W) \times E = \pi_{X \times E}$ for each $t \in I$,
- iv) $\Theta^{U}|W \times E \times (0, 1]: W \times E \times (0, 1] \rightarrow W \times (0, 1]$ is a homeomorphism,
- v) $\Theta^{U}|W \times \{0\} \times I: W \times \{0\} \times I \rightarrow W \times I$ is a closed embedding, and
- vi) for each $(x, y) \in W$, there is some $U \in \mathcal{U}$ such that $\Theta^{\mathcal{Q}}(\{(x, y)\} \times E \times I)$ $\subset U \times I$.

§4. Stability Theorem for Infinite-Dimensional Bundles.

In [Mi], E. Micheal established a useful criterion for a topological property \mathcal{P} in order that the implication "if a topological space X has \mathcal{P} locally, then X has \mathcal{P} " hold. In the proof of his theorem, he actually proved the following:

4-1 THEOREM (Micheal): Let X be a paracompact (i.e. fully normal) space and \mathcal{G} an open cover of X which satisfies the following conditions:

- a) U is open in X and $U \subset V \in \mathcal{G} \Rightarrow U \in \mathcal{G}$.
- b) $U, V \in \mathcal{G} \Rightarrow U \cup V \in \mathcal{G}$.
- c) For any discrete subcollection $\{\mathcal{B}_{\lambda} | \lambda \in \Lambda\}$ of $\mathcal{Q}, \bigcup_{\lambda \in \mathcal{A}} U_{\lambda} \in \mathcal{Q}$.

Then $X \in \mathcal{G}$.

Using this theorem, we establish the stability theorem for a locally trivial fibre bundle with fibre M a manifold modeled on $E \cong E^{\omega}$ or E_f^{ω} which has *SRIP*. It is a bundle version of Schori Stability Theorem (Theorem 5.10 in [Sch]).

4-2 BUNDLE STABILIEY THEOREM: Let $p: X \rightarrow B$ be an E-manifold bundle such that $X \times E$ and $B \times E$ are paracompact, perfectly normal. Then $p\pi_X: X \times E$ $\rightarrow B$ is bundle isomorphic to $p: X \rightarrow B$.

PROOF: Let \mathcal{Q} is the collection of all open sets in X whose each open subset W satisfies the following condition:

(*) For any closed sets A, C and D in W such that $C \cap D = \emptyset$, there exists a homeomorphism $h: (W \times E)_A \rightarrow (W \times E)_{A \cup D}$ such that $h \mid (C \setminus A) \times E \cup A = \text{id}, p\tau^{A \cup D} h = p\tau^A$.

Then \mathcal{Q} is an open cover of X, that is, each $x \in X$ has a neighbourhood which is a member of \mathcal{Q} . In fact, there are an open neighbourhood U of p(x)in B and a homeomorphism $f: p^{-1}(U) \rightarrow U \times M$ such that $\pi_U f = p$, where M is an E-manifold which is the fibre of $p: X \rightarrow B$. And there are an open neighbourhood V of $\pi_M f(x)$ in M homeomorphic to an open set in E. From Lemma 3-1, it is easily shown that each open subset of $f^{-1}(U \times V)$ satisfies the condition (*).

Now we will see that \mathcal{G} satisfies the conditions a), b) and c) in Theorem 4-1. Then it follows $X \in \mathcal{G}$, therefore there exists a homeomorphism $h: (X \times E)_{\mathfrak{g}} = X \times E$ $\rightarrow (X \times E)_X = X$ such that $ph = p\pi_X$.

Obviously, conditions a) and c) are satisfied. To see condition b), let $W = W' \cup W''$ where W' and W'' satisfy (*) and A, C and D closed sets in W so that $C \cup D = \emptyset$. Since W is normal, there are open sets V' and V'' in W such that $\operatorname{cl}_W V' \cap \operatorname{cl}_W V'' = \emptyset$, $W \setminus W'' \subset V'$ and $W \setminus W^* \subset V''$.

Let V be an open set in W so that $W \setminus W' \subset V \subset \operatorname{cl}_W V \subset V''$. Put $A' = A \cap W'$, $C' = (C \cup \operatorname{cl}_W V) \cap W'$ and $D' = D \setminus V''$. Since W' satisfies (*), there exists \mathfrak{e} homeomorphism $h' : (W' \times E)_{A'} \to (W' \times E)_{A' \cup D'}$ such that $h' | (C' \setminus A') \times E \cup A' = \operatorname{id}$ and $p\tau^{A' \cup D'} h' = p\tau^{A'}$. Define a homeomorphism $h_1 : (W \times E)_A \to (W \times E)_{A \cup D'}$ by $h_1 | (W' \times E)_{A'} = h'$ and $h_1 | (W \times E)_A \setminus (W' \times E)_{A'} = \operatorname{id}$. Then $h_1 | (C \setminus A) \times E \cup A = \operatorname{id}$ and $p\tau^{A \cup D'} h_1 = p\tau^A$.

Put $A'' = (A \cup D') \cap W''$, $C'' = (C \cup cl_W V') \cap W''$ and $D'' = D \cap cl_W V''$, then using above argument, we obtain a homeomorphism $h_2: (W \times E)_{A \cup D'} \to (W \times E)_{A \cup D}$ such that $h_2|(C \setminus (A \cup D')) \times E \cup (A \cup D') = id$ and $p \tau^{A \cup D} h_2 = p \tau^{A \cup D'}$.

Then $h = h_2 h_1 : (W \times E)_A \rightarrow (W \times E)_{A \cup D}$ is a desired homeomorphism.

From 3-3 and 4-2, we can easily obtain the following strong version of 4-2 which is a bundle version of Geoghegan-Henderson Strong Stability Theorem [G-H] and Theorem 2-2 in $[Sa_1]$.

4-3 STRONG BUNDLE STABILITY THEOREM: Let $p: X \rightarrow B$ be an E-manifold bundle such that $X \times E$ and $B \times E$ paracompact, perfectly normal and let W be an open set in X. Then for each open cover \mathcal{U} of W, there exists an I-preserving continuous map $\mathcal{A}^{U}: X \times E \times I \rightarrow X \times I$ such that

- i) $p \Delta_t^U = p \pi_X$ for each $t \in I$,
- ii) $\Delta_0^{\mathcal{Q}} = \pi_X$,
- iii) $\Delta_t^U|(X \setminus W) \times E = \pi_X \text{ for each } t \in I$,
- iv) $\Delta^{U}|W \times E \times (0, 1]$ is a homeomorphism, and

v) for each $x \in W$, there is some $U \in U$ such that $\Delta^U(\{x\} \times E \times I) \subset U \times I$.

PROOF: Let $h: X \to X \times E$ be a bundle homeomorphism. Then $\mathcal{D}^{U} = (h^{-1} \times \mathrm{id}_{I}) \cdot \Theta^{h(\mathcal{U})}(h \times \mathrm{id}_{E \times I})$ fulfills our requirements. \Box

In particular, it follows from the above theorem that

1) for each open cover U of X, there exists a bundle homeomorphism $h: X \times E \to X$ homotopic to the projection $\pi_X: X \times E \to X$ by a bundle U-homotopy; and

II) for each open set W, there exists B-preserving homemorphisms $g: W \times E \rightarrow W$ B-preservingly homotopic to the projection $\pi_W: W \times E \rightarrow W$.

§5. Deficiency in Bundles.

Let $p: X \to B$ be a map. A subset K of X is said to be *B*-preservingly *E*deficient in X (with respect to $p: X \to B$) if there exists a homeomorphism $h: X \to X \times E$ such that $p\pi_X h = p$ and $\pi_E h(K) = 0$ (i. e. $h(K) \subset X \times \{0\}$). And if each $x \in K$ has a neighbourhood W in X such that $K \cap W$ is *B*-preservingly *E*-deficient in W with respect to $p|W: W \to B$, then K is said to be *locally B*-preservingly *E*-deficient in X (with respect to $p: X \to B$).

From Bundle Stability Theorem 4-2 and its strong version 4-3, these notion of deficiency and local deficiency have the sense for E-manifold bundles.

Throughout the following, let $p: X \rightarrow B$ denote an E-manifold bundle such that $X \times E$ and $B \times E$ are paracompact, perfectly normal.

First, we remark the following:

5-1 REMARK: In 4-3, let K be a B-preservingly E-deficient set in X. In the proof, using a bundle homeomorphism $h: X \to X \times E$ such that $h(K) \subset X \times \{0\}$, we can require Δ^{U} to satisfy

vi) $\Delta_t^U | K \times \{0\} = \pi_X$ for each $t \in I$.

This remark yields the following:

5-2 PROPOSITION: If K is a B-preservingly E-deficient in X, then there exists a bundle homeomorphism $h: X \rightarrow X \times E$ such that h(x) = (x, 0) for each $x \in K$.

And moreover if W is an open subset of X, then $K \cap W$ is B-preservingly E-deficient in W.

Now, we will show that any locally B-preservingly E-deficient set is B-

preservingly *E*-deficient.

5-3 THEOREM: If K is a locally B-preservingly E-deficient set in X, then K is B-preservingly E-deficient in X.

PROOF: Let \mathcal{Q}_K be the collection of all open sets in X whose each open subset W satisfied the following condition:

(*)_K For any closed sets A, C and D in W such that $C \cap D = \emptyset$, there exists a homeomorphism $h: (W \times E)_A \rightarrow (W \times E)_{A \cup D}$ such that $h \mid (C \setminus A) \times E \cup A = \text{id}$, $p\tau^{A \cup D}h = p\tau^A$ and $h \mid (K \setminus A) \times \{0\} = \tau_{A \cup D}$.

Using Remark 3-2, it is same as 4-2 to see that \mathcal{Q}_K is an open cover of X and that \mathcal{Q}_K satisfies the condition b) in Theorem 4-1. It is clear that conditions a) and c) in 4-1 are satisfied. Then the result follows from Theorem 4-1.

The following corollary is a direct consequence on 5-3.

5-4 COROLLARY: A necessary and sufficient condition that K is B-preservingly E-deficient in X is that for each $x \in B$, there exist a neighbourhood U of x in B and a bundle homemorphism $h: p^{-1}(U) \rightarrow U \times M$ such that $\pi_M h(K \cap p^{-1}(U))$ is E-deficient in M, where M is an E-manifold which is the fibre of $p: X \rightarrow B$.

In the following, we will show that a finite union of B-preservingly Edeficient sets in X is also B-preservingly E-deficient in X. We must assume that $(C(E), 0) \cong (E, 0)$. The Hilbert cube Q and any locally convex linear metric space F homeomorphic to F^{ω} or to F_{1}^{ω} satisfy this assumption. It is well known that $C(Q) \cong Q$ and Q is homogeneous (cf. $[Ch_2]$), then these imply (C(Q), 0) $\cong (Q, 0)$. Since $F \cong C^{\circ}(F)$ by Lemma 2 in [He] (with a remark in the proof of Theorem 3.1 in $[Ch_1]$) and $F \times (0, 1] \cong F$, C(F) is an F-manifold. From contractibility of C(F), $C(F) \cong F$ by Classification Theorem in [He]. (Using Negligibility Theorem in $[Cu_1]$, $C(F) \cong C(F) \setminus F \times \{1\} = C^{\circ}(F) \cong F$ because $F \times \{1\}$ is F-deficient closed in C(F).) Our theorem (5-6) is valid for not closed sets, thus it is an extension of Proposition 5.3 in $[Cu_2]$.

5-5 LEMMA: If $(C(E), 0) \cong (E, 0)$, then there is a homeomorphism $f: I \times E \rightarrow C(E) = (I \times E)_{(0)}$ such that $f \mid I \times \{0\} = \tau_{(0)}$, that is, f(0, 0) = 0 and f(t, 0) = (t, 0) for each $t \in (0, 1]$. So $(C(E), 0) \cong (E, 0)$ implies $(E \times I, (0, 0)) \cong (E, 0)$.

PROOF: Let $h: E \to C(E) = (I \times E)_{(0)}$ be a homeomorphism such that h(0) = 0. Then h induces a homeomorphism $h^*: (I \times E)_{(0)} \to (I \times (I \times E)_{(0)})_{(0)}$ defined by $h^*(0) = 0$ and $h^*|_{(0, 1]} \times E = \mathrm{id}_{(0, 1]} \times h$. Observe that

$$(\mathbf{I} \times (\mathbf{I} \times E)_{(0)})_{(0)} = ((\mathbf{I} \times \mathbf{I})_{(0)} \times E)_{(0) \cup (0, 1] \times (0)}$$

and that

$$I \times (I \times E)_{\{0\}} = ((I \times I) \times E)_{I \times \{0\}}.$$

We can easily constract a homeomorphism $g: I \times I \rightarrow (I \times I)_{(0)}$ so that $g \mid I \times \{0\} = \tau_{(0)}$. This g induces a homeomorphism

$$g^*: ((I \times I) \times E)_{I \times \{0\}} \rightarrow ((I \times I)_{\{0\}} \times E)_{\{0\} \cup \{0, 1\} \times \{0\}}$$

defined by $g^* | I \times \{0\} = g | I \times \{0\}$ and $g^* | I \times (0, 1] \times E = (g | I \times (0, 1]) \times id_E$. Now define $f = h^{*-1}g^*(id_I \times h) : I \times E \to (I \times E)_{(0)}$.

For $t \in (0, 1]$, $f(t, 0) = h^{*-1}g^{*}(t, 0) = h^{*-1}(t, 0) = (t, 0)$ and $f(0, 0) = h^{*-1}g^{*}(0, 0) = h^{*-1}(0) = 0$. Hence f is a desired homeomorphism.

5-6 THEOREM: Assume $(C(E), 0) \cong (E, 0)$. Then a finite union of B-preservingly E-deficient sets in X is also B-preservingly E-deficient.

PROOF: Let K and L be B-preservingly E-deficient in X. We may show that $K \cup L$ is B-preservingly E-deficient in X. Since $(E \times I, (0, 0)) \cong (E, 0)$, there is a bundle homeomorphism $g: X \to X \times I$ such that $g(L) \subset X \times \{0\}$. Put $A = g^{-1}(X \times \{0\})$. Then g induces a B-preserving homeomorphism $g^*: (X \times E)_A \to ((X \times I) \times E)_{X \times \{0\}}$ defined by $g^* | A = g | A$ and $g^* | (X \setminus A) \times E = (g | X \setminus A) \times id_E$. By 5-5, there is a homeomorphism $f: I \times E \to (I \times E)_{\{0\}}$ such that $f | I \times \{0\} = \tau_{\{0\}}$.

Then $h' = g^{*-1}(\operatorname{id}_X \times f)(g \times \operatorname{id}_E) : X \times E \to (X \times E)_A$ is a *B*-preserving homeomorphism such that $h' | X \times \{0\} = \tau_A | X \times \{0\}$.

From proof of 5-3, there exists a *B*-preserving homeomorphism $h'': (X \times E)_A \to X$ such that $h''|A \cup (K \setminus A) \times \{0\} = \tau^A$. Then $h = h''h': X \times E \to X$ is a bundle homeomorphism such that $h|(K \cup L) \times \{0\} = \pi_X$. Hence $K \cup L$ is *B*-preservingly *E*-deficient in *X*. \Box

§6. Mapping Replacement.

Recall our assumption that $p: X \rightarrow B$ is an *E*-manifold bundle such that $X \times E$ and $B \times E$ are paracompact, perfectly normal.

In this section, we will prove two theorems, using results in Section 3. The first theorem is a bundle version of Theorem 4.1 in $[Ch_1]$ (Theorem 2-5 in $[Sa_1]$).

6-1 THEOREM: Let K be a B-preservingly E-deficient subset of X. Then for each open cover U of X, there exists an invertible bundle U-isotopy $g_t: X \to X$ $(t \in \mathbf{I})$ such that

- i) $g_0 = \mathrm{id}$,
- ii) $g_t | K = id for each t \in I$, and
- iii) $g_t(X)$ is a B-preservingly E-deficient closed set in X for each $t \in (0, 1]$.

PROOF: Since K is B-preservingly E-deficient in X, there is a bundle homeomorphism $h: X \to X \times E$ such that $h(K) \subset X \times \{0\}$. Define a closed embedding $i: X \times E \to X \times E \times E$ by i(x, y) = (x, y, 0). Then $g = h^{-1} \pi_{X \times E} \Theta^{h(Q)}$ $(ih \times id_I): X \times I \to X$ is a desired isotopy, where $\Theta^{h(Q)}$ is a map in Lemma 3-3. \Box

The second theorem is a bundle version of Mapping Replacement Theorem due to R.D. Anderson and J.D. McCharen [A-M] (Lemma 5.1 in $[Ch_1]$; Theorem 3-1 in $[Sa_1]$). In case of a product *Q*-manifold bundle, it has been

proved (Proposition 4.9 in [Fe], Corollary 2.4 in [C-F]). In the following, we assume metrizability of B and E, hence metrizability of all spaces and that $(E \times I, 0) \cong (E, 0)$. The Hilbert cube Q and any linear metric space F homeomorphic to F^{ω} or to F_{f}^{ω} have this property.

6-2 MAPPING REPLACEMENT THEOREM: Assume that E and B are metrizable and that $(E \times I, 0) \cong (E, 0)$. Let $Y \supset Z$ be closed subsets of $B \times E$. If $f: Y \rightarrow X$ is a B-preserving continuous map such that $f \mid Z$ is a closed embedding and f(Z) is B-preservingly E-deficient in X, then for each open cover U of X, there is a Bpreserving U-homotopy $f^*: Y \times I \rightarrow X$ such that

- i) $f_0^* = f$,
- ii) $f_t^*|Z=f|Z$ for each $t \in I$,
- iii) $f_1^*: Y \rightarrow X$ is a closed embedding, and
- iv) $f_1^*(Y)$ is B-preservingly E-deficient in X.

PROOF (cf. Proof of Theorem 3-1 in $[Sa_1]$): According as $E \cong E^{\omega}$ of $E \cong E_f^{\omega}$, E^* denotes E^{ω} or E_f^{ω} . Note that $(E, 0) \cong (E^* \times I, 0)$. Let d and d^* be metrics on Y and $X \times E^* \times I$, respectively, defined as follows

$$d(y, y') = d_Y(y, y') + d_X(f(y), f(y'))$$

and

$$d^{*}((x, z, t), (x', z', t')) = d_{X}(x, x') + \sum_{i=1}^{\infty} 2^{-i} d_{E}(z_{i}, z_{i}) + 2^{-1} |t - t'|$$

where d_X , d_Y and d_E are metrics bounded by 1/4 on X, Y and E respectively.

Let \mathcal{V} be a star-refinement of \mathcal{V} . From Theorem 6-1, we have an invertible bundle \mathcal{V} -isotopy $g: X \times I \to X$ such that $g_0 = \operatorname{id}, g_t | f(Z) = \operatorname{id}$ for each $t \in I$ and $g_1(X)$ is *B*-preservingly *E*-deficient closed in *X*. Let $h: X \to X \times E^* \times I$ be a homeomorphism so that $p\pi_X h = p$ and $hg_1(x) = (g_1(x), 0, 0)$ for each $x \in X$. Using the above metrics, define a continuous map $k: Y \to [0, 1/2]$ by

$$k(y) = d(y, Z) = \inf \{ d(y, y') | y' \in Z \}$$

and a continuous map $e: X \times E^* \times I \rightarrow I$ by

$$e(x, z, t) = \sup \{ d^*((x, z, t), X \times E^* \times I \setminus h(V)) | V \in \mathcal{V} \}$$

(Since $|e(x, z, t)-e(x', z', t')| < d^*((x, z, t), (x', z', t'))$, e is continuous. This map e is called a majorant for with respect to d^* in [Sa₁]; see [Cu] 2.)

Now, let $\theta: X \times E^* \times E \times I \to X \times E^* \times I$ be the X- and I-preserving continuous map defined in the proof of Lemma 3-1 and define a homotopy $f': Y \times I \to X$ by

$$f'_t(y) = h^{-1}\theta(g_1f(y), 0, \pi_E(y), tk(y)ehg_1f(y)),$$

Note that $(pg_1f(y), \pi_E(y)) = (\pi_B(y), \pi_E(y)) = y$ for each $y \in Y$. Then by the same arguments in the proof of Theorem 3-1 in [Sa₁], a homotopy $f^*: Y \times I \to X$ by

$$f_{t}^{*}(y) = \begin{cases} g_{2t}f(x) & \text{if } 0 \leq t \leq 1/2 \\ f_{2t-1}'(x) & \text{if } 1/2 \leq t \leq 1 \end{cases}$$

fulfills our requirements.

References

- [A-M] Anderson, R.D. and McCharen, J.D., On extending homeomorphisms to Fréchet manifolds, Proc. Amer. Math. Soc. 25 (1970) 283-289.
- [A-S] Anderson, R.D. and Schori, R.M., Factors of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 142 (1969) 315-330.
- [B-P] Bessaga, C. and Pełczyński, A., Selected topics in infinite-dimensional topology, PWN MM 58, Warszawa 1975.
- [Ch1] Chapman, T.A., Deficiency in infinite-dimensional manifolds, Gen. Top. and Appl. 1 (1971), 263-272.
- [Ch₂] Chapman, T.A., Lectures on Hilbert cube manifolds, CBMS Regional Conference Ser. in Math. 28, A.M.S., Providence, 1976.
- [C-F] Chapman, T.A. and Ferry, S., Hurewicz fiber maps with ANR fibers, Topology 16 (1977), 131-143.
- [Cu1] Cutler, W. H., Negligible subsets of infinite-dimensional Fréchet manifolds, Proc. Amer. Math. Soc. 23 (1969), 668-675.
- [Cu₂] Cutler, W. H., Deficiency in F-manifolds, Proc. Amer. Math. Soc. 34 (1972), 260-266.
- [Fe] Ferry, S., The homeomorphism group of a compact Hilbert cube manifold is an ANR, Ann. of Math. 106 (1977), 101-119.
- [G-H] Geoghegan, R. and Henderson, D. W., Stable function spaces, Amer. J. Math. 95 (1973), 461-470.
- [He] Henderson, D. W., Corrections and extensions of two papers about infinite-dimensional manifolds, Gen. Top. and Appl. 1 (1971), 321-327.
- [Mi] Micheal, E., Local properties of topological spaces, Duke Math. J., 21 (1954), 163-171.
- [Sa1] Sakai, K., Embeddings of infinite-dimensional manifold pairs and remarks on stability and deficiency, J. Math. Soc. Japan, 29 (1977), 261-280.
- [Sa₂] Sakai, K., Homeomorphisms of infinite-dimensional fibre bundles, preprint.
- [Sa₃] Sakai, K., Extending homeomorphisms to Hilbert cube manifold bundles, preprint.
- [Sch] Schori, R.M., Topological stability for infinite-dimensional manifolds, Comp. Math., 23 (1971), 87-100.
- [Wo1] Wong, R.Y.T., Homotopy negligible subsets of bundles, Comp. Math., 24 (1972), 119-128.
- [Wo₂] Wong, R.Y.T., On homeomorphisms of infinite-dimensional bundles I, Trans. Amer. Math. Soc., 191 (1974), 245-259.
- [C-W] Chapman, T.A. and Wong, R.Y.T., On homemorphisms of infinite-dimensional bundles II, III, Trans. Amer. Math. Soc., 191 (1974), 261-268, 269-276.

Institute of Mathematics University of Tsukuba Ibaraki, JAPAN