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Abstract. The classical homological characterization theorem of

(Lebesgue) covering dimension for compact Hausdorff spaces of finite

covering dimension is generalized to proximity spaces in the sense

AMS (MOS) subject class,scheme (1980): 54E05, 54F45, 55M10, 55N05

§0 Introduction

It is a well-known fact that there is a characterization theorem of covering

dimension for compact Hausdorff spaces of finitecovering dimension by means

of Cech homology (cf. J. Nagata [10]). In order to extend this result to a

broader class of (not necessarily topological)spaces the following observations

are useful:

1) The category Prox of proximity spaces (and <5-maps)in the sense of

V.A. Efremovic [3] is isomorphic to the category of proximal nearness

spaces (and uniformly continuous maps) in the sense of H. Herrlich [5],

and the category of compact Hausdorff spaces can be embedded into

Prox.

2) There is a well-behaved dimension function for proximity spaces in-

vestigated by Yu. M. Smirnov [14] which coincides with Lebesgue

covering dimension for compact Hausdorff spaces.

3) Cech's homology theory for topological spaces can be generalized to

nearness spaces (cf. H.L. Bentley [1] and D. Czarcinsky [2]).

Thus, the following question arises: Is it possible to obtain an analogue to the

above mentioned characterization theorem for the broader class of proximity

spaces? It will be shown that the answer to this question is yes and that the

resulting;theorem contains the classical one as a corollary.
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§1. Preliminaries

1.1. Some notions from general topology

1.1.1. V.A. Efremovic [3] introduced proximity spaces by means of an

axiomatization of the concept of nearness of two sets. There is an alternative

description via uniform covers which can be explained in the realm of nearness

spaces invented by H. Herrlich [5]. For the convenience of the reader we

repeat some basic definitions.

1.1.2. Definitions. 1) A nearness space is a pair (X, ft),where X is a set

and piis a non-empty set of non-empty covers of X satisfying the following

axioms:

AVj If J. refines jR and Js/i, then $(Ept.

N2) If Jl<=fi and $(Efi, then JL/＼B = {Ar＼B: Ac~Jl and B<E&}<^p.

Ns) If Jl^pt, then {m^4: /le^1}^^, where m^4={x£l: {A, X＼{x}}<=ft},

(The elements of ft are called uniform covers.)

If (X, /i) and (F, -q) are nearness spaces, then a map /: X―>F is called uni-

formly continuous iff f~KA={f~1[A']: /IsjIJg^ for each J.^rj.

2) A nearness space (X, p.)is called

a) topologicalprovided that X=U{int!1A: A<=J.} implies Ji^fi.

b) uniform provided that each Jl^pi is star-refinedby some <B(E:fx.

c) contigual provided that each JL<=ptis refined by some finiteiBepi.

d) proximal provided that (X, a) is continual and uniform.

1.1.3. Remarks. 1) If Near denotes the category of nearness spaces (and

uniformly continuous maps), then the fullsubcategory T-Near of Near whose

object class consists of all topological nearness spaces is bicoreflectivein Near

and isomorphic to the category i?0-Top of topological i?0-spaces (and continuous

maps) [Note: A topological space X is called an i?0-spaceprovided that x<Bcl{y＼

implies y^cl{x＼ for each pair (x, )≫)gIxI).].

2) If U-Near denotes the fullsubcategory of Near whose object class con-

sists of all uniform nearness spaces, then U-Near is bireflectivein Near and

isomorphic to the category Unif of uniform spaces (and uniformly continuous

maps) in the usual sense.

3) If C-Near denotes the full subcategory of Near whose object class con-

sists of all contigual nearness spaces, then C-Near is bireflectivein Near and

isomorphic to the category Cont of contiguity spaces (and contiguity maps) in

the sense of V.M. Ivanova and A. A. Ivanov T81. Note: If (X. a) is a nearness
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space and ptc is the set of all covers of X which are refined by some finite

element of pi,then lx: (X, pt)~>(X,pic)is the bireflectionof (X, pt) with respect

to C-Near.

4) If Pr-Near denotes the full subcategory of Near whose object class

consists of all proximal nearness spaces, then Pr-Near is birefiectivein C-Near

as well as in U-Near. Furthermore, Pr-Near is isomorphic to the category

Prox of proximity spaces (and <5-maps)in the sense of V. A. Efremovic. Thus,

we identify proximity spaces and proximal nearness spaces in the following.

1.2. Homology and cohomology of nearness spaces

Using methods developed by S. Eilenberg and N. Steenrod [4], we give

some definitionsand results due to H.L. Bentley [1] and D. Czarcinski [2].

1.2.1. 1) Let Near2 be the category of pairs of nearness spaces: Objects

of Near2 are pairs {(X, p), (Y, fiY))―shortly(X, Y)―where (X, p.)is a nearness

space, Y a subset of X and pr={a/＼{Y}: a<=p.}, i.e. (Y, p.Y)is a subspace of

(X, fi). Morphisms f: (X, Y)-^(X', Y') are uniformly continuous maps /: X―>X'

such that /[F]cF'.

2) Let (K, L) be a simplicial pair (i.e. K is a simplicial complex and L a

subcomplex, possibly empty), and let G be an abelian group. Then the group

Cq{K, L; G) (resp. Cq(K, L; G)) of ^-dimensional chains (resp. ^-dimensional

cochains is defined in the usual way (cf.[4; VI. 4]). Thus the homology groups

of the chain complex {Cq(K, L; G), d} (resp. cochain complex {Cq(K, L; G), d})

may be defined and are called the homology groups of the pair(K, L) (resp. co-

homology groups of the pair(K, L)) [notation: Hq(K, L ; G) (resp. Hq(K, L ; G))].

The boundary homomorphism d: Hq{K, L; G)―>Hq^(L; G) (resp. coboundary

homomorphism d: Hq{L; G) ―>Hq+1{K, L; G)) and the homomorphism /#:

Hq{K, L; G)-*Hq(K', L'; G) (resp. /*: H＼K', V; G)^Hq(K, L; G)) for a sim-

plicialmap /: (K, L)-^(K', L') are defined in the usual way.

3) Let {X, F)e|Near2|. For every uniform cover a of X let (Xa, Ya) be

the following simplicial pair: Xa is the nerve of the covering a (i.e. the vertices

of Xa are the non-empty elements of a and the simplexes of Xa are those non-

empty sets of vertices of Xa whose intersection is non-empty) and Ya is a sub-

complex of Xa which is decribed as follows: The vertices of Ya are the ele-

ments of a'―{A&a: Af^Y=p0}; a simplex of Ya is a finiteset of elements oi

a' whose intersection meets Y. Thus, Ya is the nerve of af＼{Y) (up to an

isomorphism).

4) If B>a (covering 8 is a refinement of covering a), then any projection
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Il£:(Xp, Yp) -> (Xa, Ya) defines a homomorphism n£* : Hq(Xp, Yp; G) -)

#g(Za, Fa ; G) (resp. n£* : #*(*≪, Ya ; G)-+Hq(Xh Y^ ; G)) which is independent

of the choice of the projection n&- There results an inverse spectrum

{Hq(Xa, Ya; G);n^*} (resp. a direct spectrum {H＼Xa, Ya; G);Ht}) whose

limit group is designated by Hq{X, Y; G) (resp. Hq(X, Y; G)) and called the q-

v
v

dimensional Cech homology group (resp. q-dimensional Cech cohomology group) oi

the pair (X, Y) of nearness spaces. Using the same method as Eilenberg and

Steenrod [4; IX, 4] one can show that any Near2-morphism /: (X, Y)-*(X', Y']

induces homomorphisms Hq(f): Hq(X, Y ; G) -> Hq(X', Y'; G) (resp. H%f):

H9(X', Y'; G)->Hq{X, Y; G)). Thus, we obtain covariant functors Hq: Near2-^

Ab (resp. contravariant functors Hq: Near2―>Ab) from the category Near2 intc

the category Ab of abelian groups (and homomorphisms), the so-called Cech

homology functors (resp. Cech cohomology functors).

The boundary operator d£x>r):Hq(X, Y ; G)->Hq y(Y,§; G) (resp. coboundary

operator b＼z.Y->＼Hq(Y, 0; G)->Hq+1(X, Y; G)) is defined in the usual way (cf.

[4; IX, 7]).

1.2.2. Theorem (cf. [1] and [2]). Let G be a fixed abelian group. For

each integer q, let Hq: Near2―> Ab {resp. Hq: Near2―>Ab) be the Cech homology

vfunctor (resp. Cech cohomology functor) and 93=(9gX'F3)cx,r:>e!Near2i(resp. dq=

(5^,r)cx,r)eiNear2i)the corresponding family of boundary operators(resp. cobound-

ary operators). Then d*=(9g)gez (resp. d*=(dq)q(=z)is a family of natural trans-

formations dq: Hq-+Hq_x°T (resp. dq: Hq°T->Hq+1) with a functor T : Near2->

Near2 defined by T(X, Y)=(Y, <j>)and T(f)--=f＼Y (^restriction of f to Y) for

each 'Ne&iz-morphism f:(X, Y)-±(X',Y'). Furthermore, the following are valid:

1) For any pair (X, Y) with inclusion maps i: (Y, (j))-^(X,(p) and j: (X, 0)

―>(X,Y) the homology sequence

Hq(i)
v

Hq(j) , 8qx^ ,

- -> Hq(Y, <?>;G) ―> Hq(X, 0 ; G) ―^ Hq(X, Y ; G) -^ Hq_x(Y, <j>;G) -->･･･

is of order 2 (/.e. the composition of any two successive homomorphisms of the

sequence is zero) and the cohomology sequence

HKj) , Hq(i) , dqiX,Y,v
･･･-> Hq(X, Y;G) ―> Hq(X, <f>;G)―> Hq(Y, <j>;G) ―> Hq+1(X, Y ; G) -* ･■･

zs exact,

2) // g: (X, Y)~>(Z,W) and h :(X, Y)->(Z, W) are uniformly homotopic (i.e.

there exists a uniformly continuous map F: (Xxl, Yxl)―>(Z, W) such that F(-,0)

=g and F(-, l)=h, where I denotes the unit interval [0, 1] with its usual uni-
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form (=topological nearness structure),then Hq(g)=Hq(h) and Hq(g)=Hq(h) for

each integer q.

3) // Y and U are subspaces of (X, p.)such that {X＼U, Y)^p. then the

inclusion map i: (X＼U, Y＼U)―>(X, Y) induces isomorphisms

Hq(i): Hq(X＼U, Y＼U ; G) ―> Hq(X, Y; G)

and

H%i): Hq{X, Y;G) ―> H(X＼U, Y＼U ; G)

for each integer q.

4) // P is a nearness space with a single point, then

Hq(P, <p; G)=0=Hq(P, §; G) for each integer <?^0 and

H0(P,§; G)~G = H＼P,<P; G)

1.2.3. Remarks. 1) Let G be a compact Hausdorff topological abelian

group. In this case the homology sequence under 1.2.2.1)is exact for any pair

(X, Y) of contigual nearness spaces [note, that each subspace Y of some con-

tigual nearness space X is contigual since C-Near is bireflectivein Near (cf.

1.1.3. 3))].

2) Let D2 be the two-point discrete nearness space where discrete means

that each cover is uniform. Then the following are equivalent for each non-

trivialabelian group G and each nearness space (X, fi):

(1) (X, (x) is uniformly connected, i.e. each uniformly continuous map

/: (X, n)-^>D2 from (X, p.)into D2 is constant.

(2) Ho(X,0;G)=G.

(3) Ho(X,0;G)=G.

[Note: A topological nearness space is uniformly connected iff it is connected

in the usual (topological) sense. The rationals endowed with its usual uniform

structure are uniformly connected.]. This result is obtained by using similar

arguments as in the topological case.

3) If {X, ft)is a nearness space and jx :(X, /*)-≫(Z*,/**)its canonical com-

pletion(cf. [12; 6.2.4]),then

Hq{jx): Hq(X, 0 ; G) --> Hq(X*, <f>;G)

and

HKJx)
■
Hq(X*, <J>;G)―> HKX, $ ; G)

are isomorphisms for each integer q, where G denotes a fixed abelian group.

4) If X is a topological nearness space (i.e. a topological i?0-space) and Y

is a closed subspace, then Hq(X, Y; G) (resp. Hq{X, Y; G)) is isomorphic to the
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usual ^-dimensional Cech homology (resp. cohomology) group of the closed pair

{X, Y) of topological spaces [4; IX, 8] (obviously the directed set of all open

coverings of I is a cofinal subset of the directed set of all uniform covers

of X).

1.2A. Convention. Let R be the additive group of real numbers, and Z

its subgroup of allintegers. We write Hq{X, Y) (resp. Hq(X, Y)) instead of

Hq(X, Y; G) (resp. Hq{X, Y; G)) provided that G coincides with the factor

group R/Z (resp. with the group Z). Furthermore, Hq(X) (resp. Hq(X)) denotes

Hq(X, <j>)(resp. H%X, 0)).

§2. Relation between homology and cohomology groups of a contiguity

space (=contigual nearness space)

2.1. Remarks. 1) If (X, p) is a contigual nearness space, then the directed

set (pf, <) of all finiteuniform covers of X is a cofinal subset of the directed

set (p, <) of all uniform covers of X. Thus, for each subspace Y of X, the

limit Hq(X, Y) (resp. Hq{X, Y)) may be taken to be based on (ptf,<).

2) As well-known, R/Z is the character group of Z (up to isomorphism).

In the following we will use some parts of the theory of character groups (cf.

[11]).

2.2. Proposition ([6; VIII. 2F)]. Let d and G2 be abelian groups and

h : GX―>G2 a homomorphism. Further, let G* be the character group of Gt for

z'e{l, 2} (i.e. the elements of G* are the homomorphisms of Gt into R/Z). Then

the following are equivalent:

(1) h : G1->G2 is surjective.

(2) h*: Gt^>Gt defined by h*(T)=l°h for each ZeGf is infective.

2.3. Proposition. Let (X, pi) be a contigual nearness space and (Y, fiY)a

subspace of {X, a). Then Hq(X, Y) is the character group of Hq{X, Y).

Proof. It is a well-known fact that,for each finiteuniform cover a of

(X, pi),Hq(Xa, Ya) is the character group of Hq(Xa, Ya). Thus, the desired

resultfollowsimmediately from [6; VIII.4D)].

2.4. Proposition. Let (X, pi)and (Y, pi) be contigual nearness spaces and

f: (X, pt)―>(Y,pt)a uniformly continuous map. Then the following are satisfied:

(1) Hq(X)=(fi%X))* and Hq(Y)=(H"(Y))*

(2) mf)={HKf))*.
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Proof. (1) follows from 2.3.

(2) is proved analogously to [6; VIII. 5F)1.
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§3. A homologlca! characterization of (finite)̂ -dimension

3.1. Definition. Let (X, pt)be a nearness space. Then the small dimension

dimiX, fi)of (A',ft)is said to be <,n provided every finiteuniform cover V of

X has a (finite)refinement c^g// of order ^n+1 (i.e. each xceX is contained

in at most n + 1 elements of Q7). The precise number is the smallest such n,

or ―1 for the special case that X is emty; and we write dimiX, [j)―ooif there

1C Y^f＼C!1/>ll-M

3.2.Remark. For uniform spaces dim coincideswith the uniform dimen-

sion 8d of Isbell[7]. For proximal nearness spaces(―proximity spaces)dim

coincideswith the 5-dimension of Smirnov [14]. For normal topologicalRo-

soaces dim is identicalwith the Lebesaue covering dimension.

3.3. A general theorem on normal nearness spaces of finitesmall dimen-

sion due to the author (cf. [12; 7.3.3.] or [13]) contains a result of Kodama

[9] on normal topologicali?0-spaces of finitecovering dimension as well as the

fnllnwincr fhpnrpm p<!rnrnilnripcj･

Theorem. Let {X, p.) be a proximal nearness space of finite 5-dimension

Then the following are equivalent:

(1) dim{X, p)^kn.

(2) Hm(X, A)=0 for every integer m^n+1 and every subspace A of X.

(3) For every integer m^n and every subspace A of X the homomorphism

Hm(i):Hm(X)-^Hm(A)

induced by the inclusion map i: A―>X is a surfective mapping.

3.4. The above theorem can be stated in terms of homoloey as follows

Theorem. Let (X, p.)be a proximal nearness space of finite d-dimension.

Then the following are equivalent:

(1) dim(X, ft)£n.

(2) Hm(X, A)=0 for every integer m^n + 1 and every subspace A of X.

(3) For every integer m^n and every subspace A of X the homomorphism

Hm(i):Hm(A)―>Hm(X)
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induced by ihe inclusion map i: A-+X in an injective mapping.

Ppoof. (1)=K2). Apply 2.3. and 3.3.

(2)=X3). This implication is an immediate consequence of the fact that the

homology sequence is exact (cf. 1.2.3.1).

(3)=H1). Apply 2.2, 2.4. and 3.3.

3.5. Corollary (cf. Nagata [10; Theorem VIII. 3]). Let X be a compact

Hausdorff space of finitecovering dimension. Then the following are equivalent:

(1) dimX^n.

(2) Hm(X, .4)=0 for every integer mj^n + l and every closedsubspace A of X.

(3) For every integer m^n and every closed subspace A of X the homomor-

phism

HJj)＼fin{A)―+Hn(X)

induced by the inclusion map i: A―>X in an injective mapping.

Proof. If we don't make a notational distinctionbetween X and its under-

lying set, we may consider X to be the nearness space (X, ft)(note: i?0-Top=

T-Near), where ft consists of all covers of X which are refined by some open

cover of X. Then (X, fi)is uniform, topological, contigual and 7＼.

(1)=K2). Since a closed (topological) subspace is a nearness subspace, this

implication follows immediately from 3.4.

(2)=K3). Note, that for each (X, F)e|Near2|, Hm(X, Y)=Hm{X, clxY) (cf.

[1; 9]). Thus, the desired implication follows from 3.4.

(3)=4(1). In order to apply 3.4.,it sufficesto show that (3) is valid for each

nearness subspace of (X, p.)provided (3) is valid for each closed subspace of X

(=closed nearness subspace of (X, ft)): Let A be a subset of X and A the

closure of A in X. If (A, fiA)denotes the (nearness) subspace of (X, ft),then

the inclusion map /:(A, ftA)->(A,fix)is uniformly continuous because {A, ftA)is

also a (nearness) subspace of the (nearness) subspace (A, ft2) of {X, fi). Since

(A, fta) is topological(and therefore complete), uniform, contigual and Tx, it is a

complete separated uniform space (even a proximity space) and it contains the

separated uniform space (^4,ftA)as a dense subspace. If jA: {A, ftA)->(A*, fif)

denotes the canonical completion of (A, ftA)which coincides with the Hausdorff

completion (=complete hull)of {A, ftA)in the sense of A. Weil (cf.[12; 6.2.5.R]),

then there exists an isomorphism 15: (A, ≪j)->(A*,u*4)such that the diagram
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(A, fiA)
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04*, tit)
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commutes. Since Hq{jA): Hq((A, fiA))-^Hq((A*,ftf>)is an isomorphism (cf. 1.2.3.3))

it follows immediately from Hq{l^i)=Hq{liyHq{i)^Hq{jA) that Hq(i): Hq((A, ptA))

-^Ha((A, a a)) is an isomorphism. Thus, (3) is also valid for arbitrary subspaces.
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