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LOCAL INJECTIVITY OF PRYM MAPS FOR SOME FAMILIES

OF COMPACT RIEMANN SURFACES

By

Katsuaki Yoshida

Introduction.

In this paper we consider some families of double coverings of compact

Riemann surfaces (or complete irreducible non-singular algebraic curves over C)

allowing ramifications,and we study the Prym varietiesof these double coverings.

Let tz: R-+R be a double covering, where R and R are compact Riemann

surfaces of genera g and g, and J{R) and J{R) be Jacobians of R and R,

respectively. If tc has 2n branch points, we have g=2g-＼-n ―1 by means of

the Riemann-Hurwitz relation. We denote by c the generator of the Galois

group of R/R. Moreover we denote by the same c the involution of J{R)

induced by that of R/R. The norm map Nm: J(R)-*J(R) is defined by the

induced map on divisor classes given by D ―*n(D) (D a divisor on R). The

Prym variety P=P(k~/R) of R/R (or (R3 c))is defined by the conneted com-

ponent containing the origin of the kernel of Nm, and we have an isogeny

c*: J(R)X P->J(R) naturally (see Mumford [5], Fay [5], Sasaki [7]). The

process taking Prym varieties defines the so-called Prym map P: R/R^>P(R/R)

from the family of (ic,c)'sto the moduli space of polarized abelian varieties.

In case of unramified double coverings, Mumford [5] states some beautiful

results concerning the relative dimension of the Prym map. For double cover-

ings with ramification points, however, the contribution of those points to the

Prym map might be unknown.

In this paper we will caluculate the relative dimension of the Prym map

for some typical examples of R/R with In (n^l) ramification points.

We consider the following three families of compact Riemann surfaces

parametrized by t or ^'s:

(I) Rt: yl=(x-l-t) (x2+x + l) genus 3

Rt: y'-(x-l-t) (x2+x+l) genus 1
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/=(jc-1-0 (x2+x + l) genus 4

Rt: y3=(x-i-t) (x2 + x + l) genus 1

(ffl) Rtl,t2,t3:y'=(x-l-U) (x-p-ph) (x-p*-p%)

X(x ―p*) (x ―p4) genus 6

Rtvtvt3: y2
= {x ― l ― ti) (x ― p ― pt2) (x ― p2 ― p2ts)

X(x-/)s) (x-p4) genus 2,

where jO=exp(27n/5).

(I) is an example for n ―2, and (II),(HI) are for n ―3.

Hereafter we write R and R instead of Rt, Rtl,t2,t3and Rt, Rtltt2,tzfor the

sake of convenience occasionary.

In case (I) or (HI), the surface R has an automorphism T of order 4

defined by T: (x, y) ―>(x, iy) where t―V―1, and the involution T2: (x, y)-+

(x, ―y). In case (II), R has an automorphism T of order 6 defined by T:

(x, ;y)―>(*,ay) where a=exp(2m/G) and the involution T3: (x, y)->(x, ―y).

<T> will denote the group generated by T and as usual R/(T} will denote

the surface obtained by identifying points on R which are equivalent under the

action of <T> on R. In case (I) or (ID), R/(T2) is canonically isomorphic to

R, and in case (II),R/(.T3) is canonically isomorphic to R.

Under these notations, we can give our main results as follows:

Theorem 1 (Joint work with Sasaki). In case (I), the Prym variety P has

a period matrix of the form
(

/.,

That is to say, P is isomorphic to the product JxJ where /=C/<1, z>

Theorem 2. In case (II) the Prym variety P has a period matrix of the

form (73,77) where II is the following:

2(1-(;){(2+(t)+z} ＼ 2 2(1-^(1+2-) 2<y+2<T(l-<rk/

where z= M/
R

(＼ (dA is the modulus of the surface R, and

y *=fx-l-t)(x2+x + l) and <j=exp(27ti/6)

Theorem 3. In case (HI), the Prvm variety P has a period matrix of the
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form (h, 17) where II is the following

77=

-1/2+i/s

where

1/2-ip/s iq/s (l-i)/2-ir/s

1/2-ip/s i/2+ip*/s (l-i)/2+ipq/s i+ipr/s

―iq/s (i―i)/2+ipq/s ―(l―i)+iq2/s ―i+iqr/s

(l-i)/2-ir/s

fy-JAl

i+ipr/s ―i+zqr/s

＼Q>! ＼(!)
-P―+(1-0, g=(t-l)^-j£*_+(l-O^-

JA4 JAa

1

＼

Ml

JA4

r=(l-i)-p―

＼ (Ox
＼

0>i

-d+0,

s= -2p*-qz-2pq+4p-2r-2.

Theorem 4. In case (I ),theKodaira-Spencer map

k: Ts,o ―> H＼&, cJr) is given by

K((d/dt)0)=(Sx)-1yidx.

z+z>2/s

+(*-!)

Theorem 5. In caie (II), the Kodaira-Spencer map k is given by

K((d/dt)0)=(l/3)x2dx.

Theorem 6. In case (HI), the Kodaira-Spencer map k is given by

l{d/dU＼ 1 1 1 lx'dx

k (d/dt2)0 =-| P* P* P*
I

x*dx ,

＼
{d/dU)a p* p p*

＼x23,

where p=exp(27ti/5).

(The above notations in Theorem 4, 5, 6 are explained in §2.)

＼

/

3

Observation. In case (I), the parameter t is not reflected in the Pryrn

variety as a variable, that is to say, the Prym is uniquely determined. In case

(II), t is refrected as a variable, and in case (HI), tu t2and ts are refrected as

independent variables in the Prym.

In section 1, we find a canonical homology basis and we compute the period

matrix of J(R) in each case. Moreover, by the operation of a second order
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transformation, we obtain the period matrix of the Prym variety. In section

2, we caluculate the Kodaira-Spencer map and we give not only to prove the

independency of parameter £f'sbut also to the explicitrepresentation of influence

of parameters on the Prym variety.

I would like to express my hearty thanks to Professor T. Sekiguchi for

his advices and encouragement during the preparation of this paper. In pati-

cular, he informed and teached me the notion and method of Kodaira-Spencer

map and gave me some instructive suggestions. Also I would like to thank

Professor R. Sasaki for his stimulative suggestions in our conversations which

gave me the motivation of this paper.

§1. Period matrices and Prym varieties.

In this section, we shall construct the period matrices of surfaces in cases

(I), (II) and (III),according to Farkas' method [1], [9].

CASE (I). R: y4=(x-l-t) (x2+x+l)

R: y*=(x-l-t)(x*+x + l)

where l+t^oo, exp(2;n/3), exp(4;≫/3).

Here we have an automorphis T: (x, y)-^(x, iy) of R.

Then R is regarded as a double covering of R with the involution T2:

(x, y)-+(x, ―y).

Since we can easily examine the divisorsof differentials,we obtain a basis

of the vector space of holomorphic differentialsgiven by

(0i=y~3dx, (i)z=y~3xdx, (03―y~2dx.

Then we see

T(Dj-=io)p T2a)j=-Q)j (/=1, 2)

T2(1)3= (03

that is to say, o>iand co2are the anti T2-invariante differentials and o>3is T2-

invariante differential. So, g>i and <d2 are the differentialswhich correspond to

the differentialsof Prym variety and <y3is considered as a differentialof R by

the natural projection R^R=R/<T2}.

Here we construct a canonical homology basis on R (cf. [6], [3]). We

consider the following closed curves a, jS,f and d on x-sphere as illustrated

in Fig. 1.
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a

5

Q

Fig. 1

y has four branches j^, y2(=iyi), ys(:= ―yi), yi{= ―iyi)- Let a, be the

lifting of a which is a path from jrbranch to 3>y+1-branch(/=1, 2, 3) and a4

be the Siftingof a from jvbranch to jrbranch. In the same way, let fih Jj

and 8j be the liftings of £,y and d, respectively.

Then we get the following relations

(2)

≪!+a2+a3+≪4~0 iS1+/S2+/33+/34~0

ri+r2+r3+r4~o 51+a2+a3+^4~o

≪i+j82+r8+34~0 a2+/33+r4+di~0

where a-fjS denotes the composition of a and /3 by joining the final point of

a and the initialpoint of /3,and ~ means homotopic equivalence.

Then a canonical homology basis is represented as follows;

(3)

Ax=ai―81―<54+a4 Bx=― a2+82+Ys―/33

7l3::::::<X3P3 1J$■― ^"iTs ･

Here A2 and B2 are considered as a canonical homology basis of R by the

natural projection $―>/?. We illustrate this homology basis in Appendix.

Then, from (2), we see the following

(4)

T2B1--B1 T2B2~BZ
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f A1^~AZ-BZ-TA2-TB2
(5)

I Brtz-TAt+Bt-Ai-Bi

where ≪ means homological equivalence.

We put ＼ (Di―dij,
＼

o)i=hij

JAj jBj

From (1) and (4), we see that

<2i3― ― fll2> G23= ― ^22) fl31==0, <2s2::= ^33 >

bi3=―biz, b%%=―b%i, bn=0, b<u―bw.

We put

W

(

an a

an

fbU

b'
J

Then

/

L/< =

From (1) and (5),we

a

1

22/

flu

We/

a.

G2i 02

1 0

0 1 -

0 1

see that

')

2/

1

0s=o>3/a32

bJ
x―bzil'aS2

L/< =≪

＼ 0

-L*'-k*-U*-S≫*

or tfB=-(l+≪)/2.

By the same way, we see that

b'n=l + i, b'21=-(l+i),

We put

Then we see that

Proposition 1. $ has

^2 = (02 + 03)/2

b[2

b'22

T

-M2＼

T
/

= -h'12+ibU

b'22=i

<p3=(03 ― $2)/2

a period matrix of the form

1 + i

= /, -(1+0/2

(1 + 0/2

where 13 is the 3x3 identity

-d+0/2

(r+0/2

(r-i)/2

(1+0

(r+0

matrix and v is the modulus of
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the homology basis on R determined by the natural projection $―>R

7

Recall that in general there are 2gx2g integral matrices (y, jA which

act on Siegel space cg in the following fashion cg3jr―>(An-＼-B){Cx+D) 'g@j

where A, B, C, D are gXg integral matrices, AlB and ClD are symmetric and

AtD―BtC―mI. If m=l, the action is so called the element of the Siegel

modular group or linear transformation, while the more general type of trans-

formation is called an m-th order transformation ([1]).

Proposition 2. There is a second order transformation of @3 which maps

the period matrix of R to the matrix

n

＼0 T

/ (1 + 0/2 -(1 + 0

where IJ=＼

＼-(l+0/2 i

")

Proof. The proofis by computation. We takke

1 0

4= 0 1 -

0 1

0

1

1

/2 0 0

D= 0 1 -1

＼0 1 1

B

<E<32

(c cwhere

c=o

Then a simple computation gives above result.

Proposition 3. There is a linear transformation of <B2 which maps U to

the matrix (i j)(E-Rz-

Proof. We take (q g)?ESp(2, Z) where

/-I 0＼ (I -1＼ /-I 0＼

111/ ＼0 1/ ＼-l -1/

Above matrix IJ or (q ■)is the period matrix of the Prym variety. As

a consequence of this, we hav
e

Theorem 1. In case (I), the Prym variety P has a period matrix of the

form (l2, a ･)･ That is to say, P is isomorphic to the product JxJ where

/=C/<1, i>.

CASE (H). #: y = (*-l-0 0i:8+x+l)
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where l+t^co, exp(2ni/3), exp(4;n/3).

Here T: {%, y)~^{x, ay) where <r=exp(2^76). Then R is regarded as a

double covering of R with the involution

Ts: (x, y)―>(x, -y).

Since we can easily examine the divisors of differentials,we obtain a basis

of the vector space of holomorphic differentialsgiven by

cDi―y^^dx, a)2=y~5dx, (i)3~y~&xdx, Q)4=y~idx.

Then we see

T(O1=―O)i, T(s)i=oa>u

T3(Di=-O)i,

TQ)4=a2(o4
(*=2, 3).

So, (Du (D2 and a)z are the anti T3-invariant differentialsand o>4 is T3-invariant

differential. Hence (ou a)2 and g>3 are the differentialsof the Prym variety and

(Dt is considered as the differentialof R by the natural projection R^R.

Here we construct a canonical homology basis on R. We consider the

following closed curves a, fa y and 8 on x-sphere as in Fig. 1. y has six bran-

ches yu y2(=ay1), y3{=azyi), yi{=―yl)t y6{= ―ay) and y(,(――a2yl). Let at be

the lifting of a which a path from jvbranch to 3>i+1-branch (i=l, ･･･,5) and

a6 be the lifting from 3vbranch to 3>rbranch. In the same way, let fa and yt

be the liftings of ^ and y, respectively. We must pay attention to the lifting

of d, for the branch points over infinity are of order 1. Let 8t be the lifting

of d from jvbrach to j>i+3-branch (s=l, 2, 3) and 8j be the lifting from yr

branch to 3'i_3-branch(/=4, 5, 6). Here we get the following relations

( a1+a2+a3+a4+a5+≪6~0, fa+fa+fa+fa+fa+fa~O

＼ri+r2+r3+r4+r5+r6~o,
^+^-0, 82+d5^o, 53+de~o

(7)

ai+i82+rs+^~0, a2+/33+r4+^~0, a3+fa+h+8t~0

a4+/36+r6+51~o, ≪5+iS6+ri+^2~o, ≪6+iSi+r2+^3~o

Then a canonical homology basis is represented as follows;

' -4i=ri+r?+r3-di B^S.-y.-y^y,

A2=ai+as+ai―d2 B2=fa+fa+fa―ab―ai―as

As=a1-fa Bs=yl-a1

l ^4=:≪4―/34 B4=yi―at.
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Here, Az and fi3 are considered as a canonical homology basis of R by the

natural projection /?―>7?. We illustratethis homology basis in Appendix.

Then, from (6),(7) and (8), we get the following

(9)

(10)

T351≪-jB2 T3Bt~-B2 T*B3~B4

1
A≪-TaA+5s 58≪-TM3-A-TA.

We put

＼
(Oi―aij,

r

From (6) and (9), we see thaat

<Z41― C42― ^41 ― ^42― 0, a43=G44! 643 = ^44

From (6) and (10), we see that

a n=

a 12

bn =

Jill

＼ tt>l

JSi
=L

r

612= ＼ Q≫i:

By the same way

a

a

JTA.

＼

= -bis 0 = 1,2,3)

f f f

ft>l+

3

I TV a

21 ―

31 =

(1)

3

f f

l= ―＼ G>i+＼ 0>i=(2i3 + 6l3

JA4 JBS

B3 JT^B,

f f

ff2a23 + (l ― G2)bn,

a2a3,+(l ― G2)b-)3,

62l=G23 + (l + <7)&23,

b3l=a3a+{l + a)bn,

We put an=k, b^―l, bi3/a43=z

Then

(M-1 (1)2

'0i

0

2

0

3

(222― ―<Ta28
+ ^23

G32:~: (7G33~rO33

O22==^^23

032~~~£0*33 ･

a)4/ai3―di4
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where

(11)

I*'

2b[1=

bsi

1

0

0

0

0

1

0

0

0

0

1

1

(! + </)£+ /
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0

0

2

1

0.-o){(2+a)k+l}

k
=bls=z

2^22

(l-a){(2+a)k+l＼

-3fe

(2+o)k+l
^33 =

2b'n 2b'n bU -bU

ZO21 <W22 ^23 "23

Z&31 Zt?32 O33 ―O33

0 0 r r

2&2i―2&(2―
a+a)k

k+l
t?32―#23―

(2+o)lc+l

a-a){(2+<r)k+l＼ *

We put <pi=^i(i=l, 2),(pz=(03+04)/2, (p4―($4―$.i)/2.Then we see that

Proposition 4. R has a period matrix of the form

I?- ta" = ''･

2b'n 2b[a b? -b'ls

2b'i2 2^22 bU ―b'z3

bU bf2s (b'3Z+z)/2 -(bU-r)/2

-bU -b'23 -Wn-T)/2 (b'33+T)/2

where b'a is that in (11) and r is the modulus of R with respect to the homology

basis on R determined by the natural projection from R―>R.

Proposition 5. The modulus z is of (<o=exp(27r*73)).

Proof. The proof is a direct calculation.

Proposition 6. There is a second order transformation of R4 which maps

the period matrix of R to the matrix (^ 2) where

u> w wOil Ol2 #13

TI= b[2 b^ b'2s gc3.

"13 t?23 ^33

Proof. We take a second order transformation M=(
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10 0 0

0 10 0

0 0 1 -1

0 0 1 1

B = C = Q

12 0 0 0

0 2 0 0

D=

0 0 1-1

*0
0 1 1

11

Summalizing above results, we have

Theorem 2. In case (II), the Pryrn variety P has a period matrix of the

form (/3,II) where II is that in Proposition 6, thatis

n

where z=

1

2(l-<7){(2+ff)+z}

//*=

(

(Oij

(l + o)+z

l-a'1

2

l-(72 2

-3(1 -a) 2(l-a)(l+z)

2(l-a)a+z) 2a+2o(l-<j)z

Proposition 7. z is corresponding to the modulus of the surface R: y2=

(x-l-t)(x2+x+l).

Proof. R/(T2} is canonically isomorphlc to R and a>iis the holomorphic

differential which corresponds to theodifferential of R and A3, Bz are the

homology basis on R determined by the natural projection from R ―>R.

CASE (ffl) R : y^x-l-U) (x-PQ.+t2)) (x-p'd+U)) (x-p3) (x-p4)

R : y^ix-l-t,) (x-p(l+U)) {x-p＼l+U)) (x-p3) (x-/)4)

where l+^i, p(l+t2), pz(l+t3), p＼ p4 and oo are distinct.

T: (x, y)-^(x, iy).

Then ft is regarded as a double covering of R with the involution

T2: (x, y)―>(x, -y).

Since we can easily examine the divisors of differentials,we obtain a basis

of the vector space of holomorphic differentialsgiven by

a)l―y~ldx, (oz=y'zdx, a)s―y'3xdx, a)i―y~:ix2dx!

(06―y

Then we see

zdx, (D6=y 2xdx
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Ta)i――io}i, T(Di―to)i, Ta)j=―(Dj

T2G>!=―Oil, T2(Di――(Di, T2(Dj ―(Oj

(*=2, 3, 4, y=5, 6)

namely, a)u a)2,<w3and o>4are anti ^-invariant differentialsand a>5and a)6 are

TMnvariant differentials. So o)u o)2,o>3and <o4are differentialsof Prym variety,

and gj5 and a>6 are considered as differentialsof R by the natural projection

R-≫R=R/(Ti}.

Here we construct a canonical homology basis on R. We consider the

following closed curves a, B, y, d, e and £ on ^-sphere in Fig. 2.

c

a

Fig. 2.

y has four branches yu yz(=iyi), y3(=―yi) and y4(= ―iyi). Let ≪< be the

lifting of a which is a path from 3vbranch to ;yi+1-branch (i=l, 2, 3) and aA

be the lifting of a from jvbranch to ^i-branch. In the same way, let jS*,yu

hu Si and Ci be the liftings of /3,y, 8, s and C respectively. Here we get the

following relations

(13)

ai+a2+a3+≪4~0 j9i+j82+|8s+j84M), ri+r*+r*+r*~o

54+5a+32+5l~0, £l+£2+£3+£4~0, Cl+C2+C3+C~0

≪l+ jS2+ r3+<54 + £3+ C4~0, a2 + |S3+ r4+^1+£4+Cl~0

≪3+ i84+ri+^2+£l+C2~0, ≪4+ iSl+?'2+^+£2 + C3~0

Then a canonical homology basis is represented as follows

A4=Ti+d2, i46=a3-/S3) AB=rz+d4

B1= -r3+53+£2+iSs-tfs+Ca, ^2=^3―<ar3―C2―Ti+^i ―£3

53=Ci―≪i> Bi―Si―Yi, Bb=Z3―a3) B6― s3―^3
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Here, A3, Bs, A4 and B4 are considered as a canonical homology basis of R by

the natural projection R―>R. We illustrate this homology basis in Appendix.

Then, from (12),(13) and (14), we get the following

(15)

(

(16)

T2A1~-A1 T2A2*-A2 T2A^Ab T2A^Ae

T2B1^-B1 T2B2~-BZ T2Bs~Bb T2B,~B,

A1^A3+TAz-TAi-Ae-TB3-TBi-2Bb-TB,-B6

A2^2A.i+TA3-Ai-TAi+TAh-TB3-B5

B^-TAi+TAi-Ai+At+TBt+Bs+TBi+Be

Bi^Az-TAi~Ab+TA6-TB3-TBi-B,-B,

We put

＼ (Oi―aij,
＼

Q)i=bij

From (15), we see that

a 5i=a f,2= a ei= a 62=0, a&3=abb> aSi=a56, a6i=a65,

a 64―o,eS)

#33― #36>

a13= ― alb,

au― ― a,se> (Li%― (345, Clii― <246-

There are same relationsin {6^}

We put

(
^53 CL'oi

an an a13 au

0,21 Q-Z2 023 ^24

&%l G32 G33 034

<24i G42 O43 G44

Oil #12 fli3 0-U

(221 ^22 ^23 ^24

fl3i (Z32 #33 Q34

041 ^42 ^43 G44

1

)

■

(

0>!

Oil

(D4

^53 064

#63 #64

bu biz bn bu

b%＼ bz2 #23 L?24

t?31 O32 t?33 t?34

641 &42 ^43 b4i

where, from Riemann's equation, b'a

) (

0

i

＼

0

2

0

3

0

≪

'

bb3 bu

bts bu

I = (*≪)=*:

2b'n 2b'n b[3 b'u

Zt?21 £022 ^23 t?24

ZO31 Zt?32 O33 O34

26Jx 2^2 61, bL

= bji, 7Ti2=7r2i. Then
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2b'n

2b'12

2bU

1

0

0

0

0

0

0 0 0 0 0

10 0 0 0

0 10-1 0

0 0 0 0-1

0 10 1 0

0 0 1 0 1

^Ol2 013 t>14 t>＼3 ―0)4

^t?22
L?23 1^24 023

―1?24

･^023 033 ^34 ' O33 O34

2b'u 2bL bL bL ―bL

0

0

0

0

TTil 7T12 Xl

7Ti2 7^22 7^12

b'u

#12

We put

$i=Ct<Oi+$i (*= 1, 2, 3, 4)

where ^ are linear combinations of (d2,<y3 and <w4. Since Ct is the i-th entry

of the firstcolumn of (oy)"'i<i,;S4,

OiiCi+ a12C2+ai3C3+ai4C4::=l.

We put

f f
＼ Q)i=an=k ＼ Q)i=au=l
J.43 J^4

f f

Then

I $i=＼ {Ci(i)i + ^i)~2iCik―i＼ <j)u
＼

^i~2iCil―i＼ $t
jTAg JTA3 T Us JTA, )a,T

Jrs3

<f>i=2iCim―i＼ $i, ＼ ^i―2iCin ―i＼ <j>t

From (16), we see that

-2f

or

f fa+[ ^-( 0!-f 0,-[ ^-( 0!

s5 }tb
5 ^"6
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l=2iCl(k-l-n)+2bU+(＼+i)bfu>

We have the followingrelationssimilarly,

0=-2iC1(l+m)+(l+i)b'12

2b[1=2iC1(-k+l-m+n)-0--i)bi*-(＼+i)b'u

2b'lt=-2iC1(2l+m+n)+0.+iWi*+bu)

0=2iC2(k-l-n)+2bf23+a+i)h>2i

l=-2≫C8(/+m)+(l+0W≫

2b'li=2iC*(-k+l-m+n)-Q.-i)b'2≫-(X+i)b'u

2h'22=-2iC2(2l+m+n)+(l+i)(b'23+b'Zi)

0=(l-j)+2iC3(k-[-n)+2b'3S+a+i)bL

0=2-2*C,(/+m)+(l+0&.

2bU=(l+i)+2iCt(-k+l-m+n)-Q.-i)bU-Q.+i)b'n

2b/2S=2-2iC3(2l+m + n)+(l+i)(b'S3+bL)

0=a+i)+2iC4(k-l-n)+2h'Si + a+i)hU

0=-(l-i)-2*C4(/+m)+(l+0W4

2b[i=-a+t)+2iCl(-k+l-m+n)-a-i)bL-(X+i)b'u

2bii=2i-2iCi(2l+m+n)+0-+i)(b's*+bU)

From the above relations,we have

(17)

2b'n=-l+2i/s, 2b'lt=l-2ip/s, b'≫=-ig/s

b'u-(X-i)/2-ir/s, 2b'22=t+2ip2/s, b'tt=Q.-i)/2+ipq/s

bU=i+ipr/s, b33= ―(l―i)+tg2/s, b'≫t=―i+iqr/s

b'u=i+ir*/s

where p=k/l+(l-i)m/l+(l-i)

q=-{l-i)m/l-{l-i)

r=(X-i)k/l-2im/l-(X-i)n/l-(X+i)

s= -2p2-q2-2pq+Ap-2r-2

15

Remark 1. In (17), p, q and r are represented as other forms. Indeed,

we put
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^22 #23 024

#32 033 034

Q.4Z #43 G44

~lla2l p'

a3l = q'

＼

atl r'

then, we can find p=p', q―q' and r―r' by means of concrete caluculation.

Furthermore, we put

J(A3> A4, £3)=det

J(AS, B3, £4)=det

Then, we see,by means of caluculation

(18)

A(Aa, A<, B<)
p~{i l)± AA3! AA, 6t)

q=-a-i)-2
J(As,Au B3)

A{AS, A,, B4)

r=(l-0 + (l-0

or from (17)

(19)

≪23

d(A3,
A4> B4)=det

G33

^43

(a 24

a 34

a44

J(AS> A,, B4)

A(A%, A4, Bs)

A(A,, A,, B.)

A(At, B3, Bt)

x A(A

A{A

A(A

3,
At, Bt)

3,
BS, B4)

=(l-i)k/l-im/l

ri^T-'""+a-0

-tt+O
A(At, Bz, BA)

Ms, A4, b3)

We put

<fi=0i, ^>i+2:=(0≪+2+0≪+4)/2, <pi+i=(<f≫i+4―$i+2)/2 (i=l, 2)

Then we see that

Proposition 8. $ has a period matrix of the form

2L

＼＼ <pi, ＼ <Pi)= h, M

-M

M -M

(n+S)/2 (tt-S)/2

(ff-S)/2 (tt+S)/2



where

L =

Localinjectivityof prym maps for some families

/ -1/2+i/s 1/2-ip/s ＼

＼1/2-ip/s i/2+ip2/s I

H

M=

(l―i)+iq2/s ―i+iqr/s ＼

―i+iqr/s i+ifz/s J

(.

n=

―iq/s

i)/2+ipq/s

)

(1-0/2-ir/s ＼

i+ipr/s I

17

Furthermore, k is the period matrix for R with respect to the homology basis on

R determined by the natural projection R-^R.

Proposition 9. There is a second order transformation of <Be which maps

the period matrix of R to the matrix

( )

＼0 z

Proof. We take the

h o

A= 0 h

0 /.

where IJ

＼M Sj

second transformat

0

-/, , B = C

h

= 0

ec4

ion(c D)oi

D=

2/2

0

0

0

h

@6 where

/. /

Theorem 3. In case (HI), the Prym variety P has a period matrix of the

form (L, II) where U is thatin proposition 9, thatis.

77=

-1/2+i/s

l/2-ip/s

1/2―ip/s ―iq/s

i/2+ipVs (X-i)/2+ipg/s

-iq/s 0―i)/2+ipq/s -(l-i)+iq2/s

(1―0/2―j>/s i+ipr/s ―i+iqr/s

Q.-i)2-ir/s

i+ipr/s

―i+iqr/s

i+ir2/s

Remark 2. II has three parameters p, q and r. These parameters are

independednt, but the strictproof will be given at§2.

§2. Kodaira-Spencer map and localinjectivity.

Firstwe recall the Kodaira-Spencer map associatedwith a deformation

according to Sekiguchi'spaper ([8],[4]).

Let 5 be a ^-scheme, oeSa ^-rationalpointand it: X-*S be a smooth

and proper morphism. Denote Xo the fibreover ogS.

We have a short exact sequence of sheaves on X:
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0 ―> STx/s ―> cSx ―> 7r*ffs―> 0

defining the relative tangent sheaf 9ix/s- By restriction this to Xo> we obtain

an exact sequence

0 > 2-Xo ―> 2xR0Xo ―> Zs&uOxt ~> 0.

From the exact seqence of cohomology, we obtain the so-calledKodaira-Spencer

map

k: Ts.o―^H'iXo, £Tx0).

From now on, we will compute this map exactly in our cases by Seki-

guchi's method.

CASE (I). In the above general theory, k―C

X=Rt: 3>4=(jc-1-0(*2+*+1)

X0=R0: y4=x*-l

S=Spec(CW/O.

A smooth model of Rt is given by

with

HJt=$pec(C[_QlX, Yy(Y<-(X3-l)-t(X*+X+l)))

= Spec(C[/][x, yj)

cvt = Spec(C[U, VViV'+U'-U+tiW+U'+U2)))

=Spec (CM [u, vj)

and

<Utr＼CVt= Spec(C[tJ_x, y, %-1])=Spec(C[n[M, v, m"1])

where

i x ― u -

y=u~1v =u-iv

By using the Ceck cohomology over the covering {1Jt,cVt] of Rt, we can

compute the cohomology groups H^Rt, £T)for a coherent sheaf ST on Rt. In

particular,we obtain the following:

Lemma 1.

(i) A basisof H＼Ut, Qr) is given by

Q)i=y3dx, a)2=y~3xdx, (o3=y~2dx.
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(ii) A basis of H°(fit,QR*) is given by

Q^wl^ y'＼dxf, Qa=o>1<ot=y-ex(dx)t, Qs-<^=y~tx＼dx)i

Q 4=o)S=y'＼dx)＼ Qi=Q)1a)a=y-t(dx)i, Q6=a)2a)3=y'6x(dxy

19

Q1=o)21=y 6(dxf, Q!,=(D1Q)2=y~6x(dx)2, Q3=<ol=y~6x2(dxy,

Qi=(oi=y~i(dx)2, Qi=Q)iQ)3=y~＼dx)2, Qe=a)2a)3―y~6x(dx)2.

(iii) A basis of H1(Rt, Q$t) is given by

"i―x y Ox> "2―■* y "x> "3―x y Ox>

1/4―x y ox> ub―x y ox> f/6―x yox,

where dx is the derivation on C[x, 3;] defined by

dx(x)=l, dx(y)=dy/dx.

Proof. (i) is mentioned in §1. (ii) is asserted by Max Noeter's theorem

(iii) First, we have to compute Hl{$t, Qgt). We see

r(Vt. Q&t)=Ctx, y^y-3dx
and r(cvh %)=C[w, v]v-*du

rCVt, QSt)r＼r(<=vt,Qpt)=Ctx-＼ x-'y^y-'xdx.

Therefore x~ldx is a basis of H＼Rt, &&t). From Serre duality theorem, cor

responing to a basis of H°(Kt, QR*), we obtain

H＼Rtt Qn^x-'y'dz, x~zy'dx,x-≫y*dx,x-lyldx, x-2y'dx, x~1y*dx>

where Qrc coincides the tangent sheaf <Sr1 of Rt.

We look for derivations over C:

3): COT*, y~＼―+ Cp][*, y~＼and 9: CMC", V] ―> C＼f]lu,v~]

such that

3){t)-l and 3){t)=l.

If 3) and 3) are such derivations, then we get the following; Since

y4=x3-l-t(x2 + x+l) and v4~-u(u3-l)-tu2(u2+u+l),

(1) 4yiW(y)= {3*2-f(2*+l)}^(*)-(*B+* + l),

(1') 4y3^(y)={-4M3+l-^(4M2+3z/+2)}J(≪)-M2(w2+w+l).

(2)

(2)

f <D(x)=(A+By + Cyz+Dy3)+(G+Hy+Jy2+Ky3)t
＼

<D(y)=(L+My+Ny2+Pys)+(Q+Ry+Sy2+Tys)t

f W(u)=(A+Bv+Cv2+Dvs) + (G+Hv+jv*+Kv3)t
＼

3(v)=(L+Mv + Nv2+Pv3)-{-(Q+fiv+Sv2-＼-Tvs)t.
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From (1).(2),(10 and (2'), we set

(3)

(3)

4M(x3-l)=3Ax*~-{xz+x + l)

4N(x3-l)=Wx2

4P(x3-l)=3Cx2

4L=3Dx2

-4M(x2 + x + l)+4R(x3-l)=-A(2x + l)-＼-3Gxi

-4N(x2+x+l)+4:S(x5-l)=-B(2x+l)+3Hx2

-4P(x*+x + l)+4T(x*-i)=-C(2x + l)+3Jx2

AQ=D(2x+l)+3Kx2

( 4M(-ui+u)=A{-Aus+l)-{ui-＼-u3 + u2)

＼
AN(-ui + u)=B(-Au3 + l)

4P(-u4 + m)=C(-4m3 + 1)

4L(-w4+w)=D(-4m3+1)

-4M(ui + uz+ u2)+4R(-uA + u)=-A(£u3+3u*+2u) + G(-4:U3+ l)

-4N(u4 + u3+ u2)+4S(-m4+m)=-5(4m3+3m2+2m)-H(-4m3+1)

-4F(m4 + m3+ m2)+4T(-m4+m)=-C(4m4+3w2+2m)+/(-4m3+1)

4Q = -Z3(4m3+3u2+2u)+/C(-4m3+1)

In these equalities,we may put

B = C=D=H=J=K=N=P=L=S=T=Q=O

and ~~^~,v,v~~~,x.,s,~B=C=D=H=J=K=N=P=L=S=f=Q=O

Then, we get

(4)

(4')

-l)=3Axz-(x2+x + l)

x*+ x + l)+4R(x*-l)=-A(2x + l)+3Gx2

4M(-u4+u)=I(-4u3+l)-(u4 + tt3+u2)

-4M(ui + u*+ u2)+4fi(-u*+u)=-A{4u3+3u2+2u)+G(-4u3 + l).

Here, we can put

A-(x2 + x + l)/Z,

G = -(x2 + x + l)/3,

M=(x + l)/4

i?=-(3x+2)/12,



(5')

I A=
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w(m2+ ≪+ 1)/3, M=-(4w2+4m + 1)/12

G = u(u-l)(u2+u + l)/3, i?=(4^3+M-l)/12

Therefore, by (2),(2'),(5) and (5'), we get

(6)

I 2)(x)=(x2 + x + l)/3-(x2+x + l)t/3

<3)(y)=(x+ l)y/4:-(3x+2)yt/12

J 3>(u)=-u(u2+u + l)/3+u(u~-l)(u*+u+l)t/3

[ 3)(v)=-u(4:U2+4u+l)v/l2+(4u3+u-l)vt/l2.
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Now we put

Q―S) (mod*) S)-3) (modO

Then we get

$(x)=$(u-1)=-u-23(u)=(u + l-＼-u-1)/3=(x-＼-l+ x-1)/3

§(y)=§(u-1v)-u-z{u3(v)-v$)(u)}=(4u)-1v=y/4.

Hence on IJoH^o, we get

f (^-J)(x)=(x2+x + l)/3-(x + l + x-1)/3=(x2-x-1)/3=3;4/3x
(7)

[ (^-J)(3')=(^ + l)3'/4-3'/4=^/4=(y/3x)(d^/fl[x)

Here, we notice that

4(3/3,),)=(l-I)6i/1(i ff*0)

and from (7),

§-§ = (3x)-1y4dx.

Therefore, from lemma 1 (iii),we could prove the following

Theorem 4. The Kodaira-Spencer map k: Ts.o-^HKRo, ^r0) ≪ given by

(8) ≪((3/3t)o)=(3x)-13;43i=^4/3.

Remark 3. Theorem 4 is an alternative proof of the fact that there is n<

contribution of the parameter t to Prym variety (This is a direct result o:

Theorem 1). Indeed, from Serre duality, #4 corresponds to Q4 which is i

quadratic differentialfor R, while Q4=o)i does not corresponds to Prym varietj

since <d3is not a Prym differential.

CASE (H) X=8t: ye=(x-l-t)(x>+x + l)

X0=R0: y6=x3-l

S=Sne.r.(C,rtl/(t2))
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A smooth model of %t is given by

with
HJt=Spec(CmiX,YMYe-{Xs-l)+t(X"+X+l)))

=Spec(CW[xf yj)

q;£=Spec(C[f][{7, Wil-iV'-U^+tiV'U'+VU'+U")))

=Spec(CM[M, v~})

and

1/tnc^t=Spec(CWC^, y, j"13)=Spec(CMCw, v, u~lJ)

where

x = w~2y y~u~l.

Lemma 2.

(i) i4 basis of H°(Rt, 8&t) is given by

(Di=y~%dx, a)z―y~hdx, a)s=y~ixdx, o)4=y~4dx

(iii) A basis of H°($t, fiR2)is given by

i31=<y?=v~6(rfx)2, Qz―MMo―y^idxY, Q3=(t)1Q)a=y~sx(dxY

Q,=m＼=y~l＼dx)＼ Q5=Q}^)s=y-10x(dxy

Q1~a)la)i=y~＼dxy, Q%~(D^!)i=y＼dxf,

(iii) A basis of H＼Rt. Qr.) is siven bv

Q,=a,l=y-≫x＼dx)s

Q
9=ft>3<o4=:V"8

x(d xf

d^x^x, 62=x*y*dx, d,= xyzdx

04=x2;y4ax, e&=xy'dx, d≫=y4dx

$1=x2ydx> O8=x2y3dx, 09=xy3dx

Proof. The proof of the above is the same as the lemma 1 and is there-

fore omitted.

We look for derivationsover C

S>: CMC*, 3-]―> C[f][*, y] and 3>: Cp][≪,≫]~> CWCm, v]

Since
y=jc8-l-/(x2+x+l) and y^wHH^V+M^+M8),

we get the following

(9) 6y3>(;y)={3x8-f(2jc+l)}0(jO--(x8+*+ l)

and



Local injectivity of prym maps for some families

(90 {3v2-t(2u2v + u*)＼&(v)= {6u3+?(2ui;2-{-4u3y+6w5)} 3>(u)+(utv2 + uiv + u")

Put

23

{ £)(x)=A+By + Cy2+Dy3+Eyi+Fy&+t(G-{-Hy-＼-Iyi-hJy3 + Kyi + Ly5)
(10)

I W(y)=M+Ny+Oy2+Py3+Qyi+Ry6+t(S+Ty+Uy2+Vyz+Wyi^-Zyb)

( 3)(u)=A + Bv+Cv2+t0-＼-Ev+Fvi)

From (9), (10), (90 and (10'), we get

(11)

(11')

6iV(x3-l)=3;4x2-(x2 + x+l)

6O(x3-l)=3Bx2

6P(x3-l)=3Cx2

6Q(x3-l)=3Dx2

6R(xs-l)=3Ex*

6M=3Fx2

-6N(x2+x+l)+6T(x3-l)=-A(2x+l)+3Gx2

-6O(xz+x+l)+6U(x3-l)=-B(2x+l)+3Hx2

-QP(x2+x + l)+6V(x3-l)=~C(2x+l)+3Ix2

-6Q(x2+x+l)+6W(xs-l)=-D(2x+l)+3Jx2

-SRixt+x+V+bZixS-D^-EHx+l^Kx*

6S=-F(2x+l)+3Lx2

3H(u*+l)=6Au5+u6

3/(uB+l)=6fl?u8+tt4

3G=6Cu8+u2

-Gw4+3i/w6-f/w2(w6+I)-f3tf(ue+l)

=6Au*+2Bu(u6+l)+4CuHu<i+l)+6BuB

-2Gu'i+2Hui+3Iu6+3L(u6+l)=4Au3+6Bus+2Cu+6Eu5

Hu2+2Iu4-h3l=2Au+4Bu"+6CuB+6Fu6

In these we may put

B = C = D^E=F=H=I=J=K=L=O

M=O=P=Q=^R=S^U=V^W=Z=Q
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Moreover we can put

C A=(x*+x+l)/3, G

(12) {
{ W=(jc+1)/6, T = -

r A=u

(12') I H=u

76, B=uB/6

73, /=m73,

= -(x2+x + l)/3

(3*+2)/18

D=u'/lS, G = u2/3

K=ue/9, L=2u4/9,

Therefore, by (10), (100, (12) and (12'), we get

(13)

(13')

f <3)(x)=(x2+x+l)/3-(x2+x+l)t/3
1

2Ky)=(x + l(y/6-(3x+2)yt/l&

[ w(u)=(u1+usv)/6+(u1+2u5v)t/18

I
3)(v)=(u2+uev+u4v2)/3+(2uiv + u6v2)t/9.

Now we put

§)=g, §~3) (modO-

Then, we get

<5(x)=3(u-2v) = u-s{u3)(v)-2v3){u)} = 1/3

$(y)=-u-23)(u) = -(x + l)y-6/6

Hence on IJaf^cVo, we get

f (R-$)(x) = (x*+x)/3

(14)
I (^-g)O0=(*73)(d;y/d%) + (*/3Xd3>/cU).

Here *((9/9t)0)=^―5 is determined by the part (^2/3)3i and (a;/3)3xis a boun-

dary component from lemma 2, (iii). Therefore, we could prove the following

Theorem 5. The Kodaira-Spencer map it: Ts.0-*H1(R0, 2"^0)is given by

(15) *((d/dt)o)=(*Y3)d*=0i/3.

Remark 4. Theorem 5 shows that there is the contribution of the para-

menter t to Prym variety. Indeed, from Serre duality, Qx corresponds to Q^

which is the quadratic differential for R, and Qx―(si＼corresponds to Prym

since a>iis a Prym differential.

CASE (HI)
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X=8tl.ta.ts:y'^x-1-tMx-p-pU)(x-p2-p2t3)(x-p3){x-p*)

X0 = R0,0,0:y^x'-l

S=Spec(C[R1) t2,*,]])

25

For our purpose, we may consider Rtl,o,o,Ro,t2,oand $o,o,i3separately. So

we reset

X = &,.,.,=&, : y = U--l-^)U4 + x3 + x2+x + l)

S=Spec(C[f ,]/(*?))

A smooth model of Rtl is given by

with

I^SpecCCMCA-, F]/(F4-(Z5-l)+^(Z4+^3+Z2+Z+l)))

= Spec(C[f1]|>, ?])

^tl=Spec(C[f,][£7, F]/(/7-F5+t/5+^(f7F4+^2l/3+f/3F2+f/4y+f/B)))

= Spece(C[f1][M,t;])

and

^tincVtl=Spec(C[^][x, j>, 3'-1])=Spec(CM[M) t>,m'1])

where

x ―u~xv y = u~l

Lemma 3.

(i) A basts of H＼X, Qx) is given by

Q}x―y~xdx, Q}2=y-3dx, Q)3―y~3xdx

(i)i=y~3x2dx, <i>h―y~2dx, a)B=y~2xdx

(ii) A basts of H＼X, QR*) is given by

Q1=a)2i=y~＼dx)2, i32=ft>1(y2=3'"4(rf^)25 Q3=(t)1(Ds=y~ix(dx)2

Q4=o)l(i)i= y~ix2(dx)＼ Q5―a)l―y-6(dx)2, Qe=a)2Q}s―y'6x(dx)2

Q1―o)2(Di―y~ix2{dxf, Qs=(i)za)i―y'&xz{dx)2, Q9=a)2=y~<ixi(dx)2

Q10=a}1Q)i=y~3(dx)2, Qn―mxWi―y^xidx)2, Ql2―Q)2<Dh=y~h{dx)2

Qis=(t)2(o6=^y~5x(dx)2, Qu=Q)3Q)e=y~5x2(dx)2, Qn=Q)ia)6=y~5xs(dxy

J210=<y1<y5=;y 3(dx)＼ Qn=(D1(i)6=y~sx(dx)2, Q12=o)2Q)6=y ＼dx]

Qi3=(D2(o6=:y~5x(dx)2, Qu=Q)3Q)e=y-5x2(dx)2, Qlh=a)io)^―y'bx-

(iii) A basis of Hl{X, Qx) is given by

"＼―y X Ox> V2―X Ox> 1/3―X Ox> "i―X Ox, "h―■* y "x
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*dx, d^x2y2dx, de^xy"dx, ds=y*dx,

y-'x3dx,

n ―..-ir4a
"10―y x "x

012=xiydx, du=x3ydz, Ou=xzydx, O15-=xydx

Proof. The proofis omitted as lemma 2

We look for derivationsover C

Six:CMf>, 3;]―> CM[x, j*], ^

such that

C[f,][u, v^―.>C[(,][b, v]

&&,)=!, $l(tl)=l

Since

/ = (;c5-1)-*1(x4 + %3 + jc2+;c + 1)

and

v6=uB+u+tii.uv* + uiva+ usvt+uiv + ui),

we get the following

(16) Ay'W^y)^ {5xi-t1(Axs+Zxz+2x+i)}g)1(x)-(xi-＼-xz^x2+x + i)

(16') {5vi-t1(4uvs+3u2vz+2u3v + ui)}3)1(v)-(uvi+u2v3 + usv2+u4v + u&)

= {(5u4+l)+t1(v4+2uvs+3u V+4w3y+5w4)} ^i(m)

Put

f W1(x)=^A+By-＼-Cyi+Dy3+tl(E+Fy+Gy2+Hy3)

(17)
I 01(y)=I+Jy + Ky2+Ly3+t1(M+Ny+Py2+Qy3)

f 3)1(u)=A + Bv+Cv2+Dv3+Rvi+t1(E+Pv+Gv2+Hv3+Sv4)

(17') . ≪ ~ ^

From (16),(17),(16') and (170, we get

(18)

4/(x5-l)=5,4x4-(x4 + x3+x2 + x+l)

4/C(x5-l)=5Bx4

4L(x6-l)=5Cx4

4/=5I>x4

-4/(x4+x3+x2+x44)+4AT(x5-l)=-,4(4x3+3x2+2x+l)+5£x4

-4ii:(x4+x3+ x2+jc+l)+4P(x5-l)---B(4x34-3x2+2x + l)+5Fx4

-4L(x4+x3+x2+x + l)+4(5(xB-l)=-C(4x3+3x2+2x + l)+5Gx4

4M=-D(4x3+3x2+2x + l)+5//x4
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I(5m4 + 1)+ m5=5/(m6 + m)

5(5u4+1)+m4=5^(m5 + u)

C(5m4+1) + m3=5L(m5+m)

Z3(5u4+I) + m2=:5WV + */)

$(5m4 + 1)+w=5/

5Im4+5(m5+m)+2Cm(u5+m)+3Dm2(m5+m)+4^u3(m6+w)+£(5m4+1)

= -Iui+5Ju5+Ku(uB+u)+2Lu＼u5+u)+3Wu3(u5+u)+5N(u5+u)

4Auz-＼-5Bui+C(u5+u)+2Du(u5+u)+3Ru2(u5-＼-u)+F(5ui+l)

= -2Iu3+4Jui-{-5Ku5+Lu(u*+u)+2Wu＼ui + u)+5P(u5+u)

3Au2+4Bu3+5Cu'0 + D(ui+u)+2Ru(u&+u)+G(5ui + l)

= -3Iu2+3Ju3-t-4Ku4+5Lub+Wu(u5+u)+5Q(u5+u)

2Au+3Bu2+4Cus-＼-5Dui+R(u& + u)+H(5ui+l)

= -AIu+2Ju2+3Ku3+4Lu4+5Wub+5Z(u5+u)

I+25m+3Cm2+4Dm3+5^m4+S(5m4 + 1)

= /w+2£w2+3Lw3+4HW5M

In these equalities,we may put

■A=(x' + x*+ xs+x + l)/5 / = (x3 + x2+x + l)/4

(19) ･ iV=-(lGx3+9x2+7x+4)/20 E^-2(xi + x'i+ x2+x+l)/5

B = C=D=F=G=H=I=K=L = M-P=Q=O

f A = u*/4 B = u*/A C = u3/4 D=u2/4 K=-u

/=u4/4 K=u3/4 L = u2/4 W=u/4 I=~ub

(19') ... ,
E = u5/4 F-=u'/2 G-=3m3/4 H=u2 Z = 0

S=Q M--us.

Therefore, by (17), (170, (19) and (190, we get

f ^1(x)=(x4 + x3 + x2+x + l)/5-2?1(x4 + .＼:3+ xg+x + l)/5

(20)
[ g)1(y)^(x3 + x2 + x + l)y/4~tia0x3+9x2+7x+A)y/20

(20')

f R1(u)=(ui+uiv + u3v2+u2v3-4uvi)/4+tl(u5+2uiv+3usv2+4u*vz)/4:

＼ w1(v)=(~4u5+uiv +
usv2+ u2v3+ uvi)/4+t1(~-4ui-3u4v~2u3v2-u2v3)/4

Now we put

27
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§)x=.g)i S)x= S)x (mod^).

Then we get

i)1(x)=(!)(uv-1)=u-2{u3)1(v)-vi)1(u)}

= M-2{(-4w6+M5y+M4y2+M2y3 + M2y4)-(M5y + M4y2+M3i;3+MV-4My6)}/4

= -m*+m-V=-m*+m-1(m8+m)=1

Hence on ^oHcVo, we get

(21)

(R1-$1)(x)=(x*+x*+x*)/5+(x-4)/5

(^1~§1)(y)=(.x3-＼-x2+x+l)y/4+(l + x + x2+x3-Axi)y-3/A

= (x4+x3+^2)(5x4)(4v3)-1/5+(x-4)(5x4)(4v3)-1/5

Hence K((d/dti)0)=3)i―S)iis determined by the part (x4+x3+x2)dx/5 and (x ―

4)dx/5 is a boundary component from lemma 3 (iii),that is

(22) ≪((3/af1)0)=(x4+x3+x2)ai/5=(^+^+^4)/5.

Next, we reset

X=R0,t2,0=Rt2: y'^x-lKx-p-pUXx-ptXx-p'Xx-p').

This equation is obtained by setting

x = pX, y ―Y and tz=t1

in the equation of &,.,.,: Y*=(X-l-t1) (X-p) (X-p2) (X-p3) (X-p4). Hence,

3)z and 3)2 which are corresponding derivations to Rti must satisfy the following

(J2-J2)(^)=(^1-J1)(^)=(o(^1-J1)(X)=(o(Z4+Z3+Z2)/5

= (p2xi+p*x3+pix2)/5

(R2-§2)(y)=(R1-31W)=(Xi+X3+X*)(5Xi)(4Y3)-1/5

= (,o2;c4+ io3;e+ lo4;t2)(5;c4)(4;y3)-75

Therefore

(23) ic((d/dt2)0)=($)2-32)=(p2d2+p*03+p4d4)/5.

Next, we reset again

X=R0,0,t=Rti: yl={x-l)(x-p)(x-p*-pHz)(x-p*){x-p*)

This equation is obtained by setting

x = p2X, y = Y tz ― t
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in the equation of Rtl.o.o-

Hence, 3)%,3)% which are correspoding derivations to Rt% must satisfy the

following

(^3-^3)(x)=(^1-J1)(/?2^)-iO2(^i-ii)(^)=|O2(Z4+Z3+Z2)/5

= (pixi + px3+p3x2)/5

(3t-§3)(y)=(Ri-$i)(Y)=(Xi+X3+X*)/5

= (io4^4+io^3+io3x2)(5x4)(43;3)-V5.

Therefore

(24) /C((5M3)o)=-(^3-^3)=(Jo4^2+io^3+p^4)/5.

From (22),(23) and (24), we could prove the following theorem for the

family X=Rtl.tt.ti

Theorem 6. The Kodaira-Spencer map k : Ts q―^HHX, £Tx)is given by

1 1 1

02

04

)

Corollary, k is injective.

Proof. It is clear since the matrix in (25) is nonsingular.

Remark 5. Theorem 6 and Corollary show that tu tzand t3are independent

parameters of Prym variety. Indeed d2, 03 and 6* correspond to Q2~(iii(i)z,Q3―

Q)iO)sand i34=o)1G)4where o>i,o)2,<n3 and gj4 are Prym differentials and the in-

jectivityasserts their independency.
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Appendix.

1. A canonical homology basis of the Riemann surface defined by

y*=(X-l-t)(xt + X + l) .

oo exp(4*ri/3) exp(2j≪/3) 1+/

0) (r) (j8) (a)
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2. A canonical homology basis of the Riemann surface defined by

oo exp(4ari/3) exp(2≫i/3) l+t

($) (r) (0 (a)

31
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3. A canonical homology basis of the Riemann surface defined by

y^x-l-tMx-p-pUXx-p^pHMx-p'Xx-p*).

p4 ps ~ p＼i+u) pa+u) i+ti

(0 (≪) (8) 00 (0 (≪)
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