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ON CGDIMENSION ONE ISOMETRIC IMMERSIONS

BETWEEN INDEFINITE SPACE FORMS

By

Larry K. Graves

Introduction

This paper considers codimension one isometric immersions between manifolds

which carry nondegenerate, though possibly indefinite, metrics and which have

the same constant sectional curvature. Its major purpose is to study the com-

pleteness properties of the relative nullity foliationof such an immersion in the

event that the source manifold is geodesically complete. In addition, those im-

mersions in the case of zero curvature (and source manifold completeness) are

classified.

In [G], [HNj, and [Nl], a similar program has been accomplished for flat

Euclidean and Lorentz spaces. For Riemannian manifolds, the completeness

properties of the relative nullity foliation have been studies extensively. See,

e.g.,[N2J.

Section 1 of the present paper presents notation and necessary preliminary

results. Symmetric tensors of a relevant type and associated nullity distributions,

including the relative nullity foliation,are examined in Section 2. The complete-

ness properties of the relative nullity foliations of the immersions under con-

sideration are developed in the third section,Theorem (3.11)being the major result.

This theorem is combined with techniques from [G] to classify the immersions

between flatindefinite spaces in Section 4; the classificationappears as Theorem

(4.4).

1. Preliminaries

Consider an isometric immersion f:Mn-+Mn'rl{c) between manifolds carrying

nondegenerate metrics, denoted unambiguously by <, >, and where the target

manifold has constant sectional curvature c. Since the metrics are nondegenerate,

each point of M has a neighborhood (in M) on which is denned a vector field,

denoted by £,of unit normals (i.e.,!<?,f>|=l).
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Let the corresponding Levi-Civita connections on the source and target mani-

folds be denoted by V and F' respectively. Then V and F satisfy the following

formulas. If X and Y are vector fields on (an open set in) M, then the Gauss

formula

(1.1) P^Y=MFxY)+h(X, F)f

gives an orthogonal decomposition of F%Y into components tangential and normal

to M. In (1.1),h is a symmetric bilinear form, the second fundamental form. A

field A of tangent space endomorphisms, called the second fundamental tensor,is

defined by the following Weingarten formula:

(1.2) F£=-MAX).

A and h satisfy

(1.3) h(X,Y)-($,O = <AX, Y}

and

(1.4) (AX, Y> = <X,AY>.

If R is the curvature tensor of the connection V on M, then the equation of

Gauss relates R, A, and the curvature c of the target manifold:

(1.5) c(X/＼Y) = R(X, F)-<£,£> (AXaAY),

where the operation A is defined by

(1.6) (XA Y)Z= (Z, Y}X- (Z, X) Y.

Finally, the second fundamental tensor satisfiesthe equation of Codazzi:

(1.7) FX(AY) = FY(AX)+A([X, YJ).

We recite some standard facts about nondegenerate metrics. If V is a finite-

dimensional vector space, with nondegenerate metric (inner product) < ,>, of which

W is a (non-empty) subspace, then

Wx = {v£V: (v,w)=0 for all wsW}

is a subspace of V whose dimension complements that of W:

dim W+dim W^dim V.

Moreover, (WlY~W. However, V―Wf^W1 if and only if the metric induced on

W is nondegenerate.

The following lemma is from [GN]; see also, e.g.,[W]. A subspace of an

inner product space is (non) degenerate if the inner product induced on that

subspace is (non) degenerate.
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(1.8) Degeneracy Lemma. Suppose Xi and X2 are linearlyindependent vectors.

Then Span {Xu X2} is nondegenerate if and only if the 2x2" degeneracy

determinant"

det||CXi,-X≫|| i,y=l,2

is nonzero.

3. Nullity Distributions of Symmetric (1,1)-Type Tensors of Rank One

Let /: Mn~>Mn+1 be an isometric immersion between manifolds with non-

degenerate metrics and the same constant sectional curvature c. Then the equation

of Gauss (1.5)implies that the second fundamental tensor A has rank one when

it is nontrivial. According to (1.4),it is symmetric with respect to the metric

on M. In view of these facts, we turn our attention to symmetric (1,l)-type

tensors with rank at most one on M.

Let ^4 denote such a tensor; if xeM", then define T0(x) to be the kernel of

Ax. Then T0(x) has dimension n or n ―＼. If ＼/is the set of allxGMn such that

T0(x) has dimension n ―t, then W is precisely the set of all x£Mn such that Ax

is nonzero. Therefore, W is open, and

xi―> T0(x)

defines an (≪―l)-dimensional distribution on W, called the nullity distributionof

the tensor A. In the case where A is the second fundamental tensor of an

immersion /: Mn―≫Mn+1 as described above, To is called the relative nullity dis-

tributionof /, and W may be called the " umbilic-free " set (see [G], §4).

(2.1) Lemma. If xgW, then the image of Ax is precisely the orthogonal com-

plement of Tn(x) in T-M.

Proof. Both spaces are one-dimensional, and if Xe T0(x), then (AZ, X} ―

(Z.AX^^Q. OED.

(2.2) Lemma. For a symmetric (1, l)-type tensor A with rank one, the following

statements are equivalent.

(i) The kernel of A is degenerate,

(ii) The image of A is a light line.

(iii) A*=R.

Proof, (i) =^>(ii). If Xe To satisfies <X, F>=0 for all Fe TOs then Xg To＼ which

is the image of A. Thus, the image of A is Span {X}, but (X,X)=Q.
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(ii)=>(ill). Denote the ambient (tangent) space by Rn. Write Rn as an alge-

braic direct sum

iSB=r0cSpan{L}.

If X£Ta> then (AZL, X> = (AL, AX> = 0; but also <A*L, L) = (AL, AL> = 0. Thus,

/12L is orthogonal to /2* and so A2L = 0, and /12=O.

(iii)=>(i).If /12= O, then the image of A is contained in To. But the image

of A is orthogonal to To, and hence is the axis of degeneracy in jT0- QED.

(2.3) Corollary. If G is the set of those x in W for which T0(x) is non-

degenerate, then G is open.

(2.4) Proposition. To is a differentiable distribution on W.

Proof. Let yeW. Choose L$T0(tj) such that Span ＼L,AL} is a nondegenerate

plane. If L is extended to a vector field near y, then the degeneracy determinant

for {L, AL} remains nonzero (perhaps in some smaller neighborhood of y). So,

for points near y, Span {L, AL} has a nondegenerate, hence algebraically comple-

mentary, orthogonal complement E, of dimension n ―2. By Lemma (2.1), E is

contained in To.

Now, L$T0 so (L, AIS)x ―l{x) 'IS nonzero at points x near y. Define V~

Span [L, AL} by

F=/4L-≪AL, Aiy/il, AL≫L.

That <F, /1L> = O implies that V spans ronSpan [L, AL}. It follows that

To = £0 Span {F}

near y, where the direct sum is an orthogonal sum as well. To see that To is

differentiable, it now suffices to see that the (≪―2)-dimensional distribution xy~>

E{x) is differentiable.

Give E(y) an orthonormal basis {Yj＼ O' = l,･･･,≪―2), and then extend F> near

?/ to a vector field Zh for each j. Because the degeneracy determinant of {L, AL}

is nonzero near y, the solutions of the linear system

a^zi^-c/j^Ly+djOiL/L)

(AL, Zj> = Cj<AL, L)=dj(AL, AL}

are smooth functions of inner products among L, AL, and Zf. Hence,

Z/^Zj-cjL-djAL ; = 1,-, n-2

are smooth vector fields near ?/. Moreover, (Z/)v= F,- so the set {27} (i = l,---,≫―2)
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is linearly independent near y. Since each Z/ is orthogonal to Span {L, AL), the

set spans E. QED.

In the case when A is a relative nullity distribution of such a codimension

one isometric immersion as described at the beginning of this section, we can

say more.

(2.5) Proposition. The relative nullity distribution of an isometric immersion

/: Mn(c)^Mn+1(c) is integrabie.

Proof. If X, YeT0, then A([X, Y])=Fz(AY)-Pr(AX) = Q, so [X, Y]£T0. QED.

Proposition (2.5) says that To, the relative nullity distribution of /, is a

foliation of the umbilic-free set W. We shall refer to To as the relativenullity

foliation.

(2.6) Proposition. The image of A is parallelin any jTy direction

Proof. If XeT0 and L$T0, then

FX(AL)=PL(AX)+A([X,L])

=A([X, L])

and so liesin the image of A. QED.

(2.7) Proposition. If X. Y£T0, then FxYeT0.

Proof. Choose L$%. Then Proposition (2.6) and the fact that A has rank

one imply that

(VXY, AU) = X-(Y, AL)-(Y,VX{AL))

for some constant k. By Lemma (2.1),(Y,AL) vanishes, and then also FxYsTq.

QED.

A distribution (or foliation)D which satisfiesF^YqD whenever X, YeD is

said to be totallygeodesic. (If D is a foliation, which is so in the presence of

zero torsion, then its integral submanifolds, called its leaves, are totally geodesic

as submanifolds. For a discussion of totally geodesic submanifolds, see [KN] or

[N2].)

We now have the following result for the relative nullity foliation To of an

isometric Immersion /: Mn(c)~^-Mrni(c). W denotes the umbilic-free set.

(2.8) Theorem. To is a totallygeodesic foliation of W.
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3. Completeness Properties of the Relative Nullity Foliation

This section will study the relative nullity foliationof an isometric immersion

/: Mn(c)-±Mn+1(c), where the source manifold Mn is (geodesically) complete; that

is, any geodesic in Mn may be extended to all values of its affine parameter.

A totally deodesic foliation F has the following property (see, e.g., [KN]).

Given a point x0, if xt is a geodesic whose tangent vector x0 at x0 liesin F(x0),

then xt lies in the leaf of F through x0 for all t in some neighborhood of 0. A

totally geodesic foliationis called complete if every affinely-parametrized geodesic

which is tangent to the foliation can be extended to all values of the parameter

and stilllie in a leaf of the foliation.

It has been seen (Theorem (2.8)) that the relative nullity foliation under

consideration is totally geodesic. The purpose of this section is to show that

(if Mn is complete) this foliationis complete.

To will denote the foliation,and W will denote the " umbilic-free" set, on

which the (n―l)-dimensional To lives. Let xoqW and let XogTo(^o). Let xt be

an affinely-parametrized geodesic such that xo=^Xo, and let xt be extended to all

values of t in the complete manifold Mn. Suppose b>0 satisfiesthat xt lies in

the leaf of To through x0 for R<t<b; such a b exists by Theorem (2.8). The

proof of the following lemma is essentially that of Lemma (5.9) of [G], which

argument also appears in [Nl].

(3.1) Lemma. If xb£W, then there exists a positive e such that for 0<t<b+e,xt

lies in the leaf of To through x0.

Hence, to show that To is complete, it is imperative to show that xt,£W. In what

follows, y=xtl will always denote a fixed point of the geodesic xt at which some

pertinent differentiationor function evaluation will occur. The second fundamental

tensor at a point x will be denoted A{x).

Let Q generate the image of A(x0). Extend Q as a parallelvector fieldalong

all of xt to a vector fieldQt. By Proposition (2.6),Qt generates the image of A(xt)

if t<b. Choose L$T0(x0) such that <L,£?>= ―1. Extend L as a parallel vector

field along xt, for all t. For t<b,L&T0(xt). Also define a smooth function/):

R~+R by

(3.2) W)=<AL,L>＼Xt.

p is denned for alli, but if i<b, then

(3.3) ALXt=-p(t)Qt.

Near any point v on the geodesic,we may extend x(lx)to a To-fieldX such
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that X(xt)~xt for each point xt of the geodesic near y. X will be called a To-

extension (of x(ti))near y, and is constructed as follows. Choose a normal coor-

dinate system (x1,---,xn) at y such that the geodesic xt is described by x2―---=xn

= 0. Choose a To-fieldon x1―0 extending x0, and consider the geodesies in those

directions. Their tangent vectors form a TVextension near y.

We will also need extensions of L and Q in certain directions transverse to

the geodesic xt. Define a map h: R2->Mrt by

h(t,u)=expXt(uLt).

Since

h*≪,o->(dldt)=xt,h*it,o->(dldu)=Lt,

for each t,there is a neighborhood U of (/,0) such that h: U-+h(U) is an em-

bedding. These [/-neighborhoods form a neighborhood V of {(/,0): teR}. The

vector fieldh*{dldu) is an extension of L to h( V). By shrinking the neighborhood

V, if need be, and restricting / to [0,/;),we may assume that AL^O; since L$T0,

<AL,L>^0. Now let

Q = (-IKAL,L))AL.

This extends Q to h(V). Finally, note that if Z is a vector fieldnear y ―x{ti),

then (VLZ)y depends only on the behavior of Z along the curve u->h(th u). In

particular, with the above extensions, {VLQ)Xt is a well-defined vector fieldalong

the geodesic xt.

Now we examine Codazzi's equation (1.7) near y, using L and a TVextension

X near y. Using zero torsion, the Codazzi equation reduces to

Fz(AL)=-A(PlX),

since L is parallelalong xt, and XgT0.

Next we consider the derivative of the function P of (3.2) and (3.3):

= (Vx(AL)}Ly+(AL,VxL>

= -(A(VLX),Ly

= ~~(FLX,AL},

so

(3.4) ~'-=P(tKFLX,Q}t

Since p is well-defined and smooth for all t, (3.4)implies that the function Q(t)―
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(FLX,Q)t Is well-defined and smooth on the Interval R<t<b. (In particular,Q(t)

is independent of the TVextension near xt, for each /.) Let us pause to study

the behavior of Q(t) along the geodesic xt.

By the Gauss equation (1.5) of the immersion,

(3.5) R(X, L)X= c(X, L>X- c(X, X}L.

Since there is no torsion,

(3.6) R(X, L)X=FxFlX-FlPxX-(PPxL-,lXX).

Equations (3.5) and (3.6) can be combined to give

(3.7) PxPlX= c(X, L>X- c(X, X)L + FLFXX+ FpxhX- VvLxX.

Now.

^-=x-<r>x,a>

= (PxFLX, L)}+ (FLX, VXQ}

=<yxVLX,Q＼

since Q is parallel along xt. From (3.7) the following equation obtains:

■
^

= c(X, L) {X, Q}~~c(XfX) (I, Dy + {VLVXX, Q)

(3.8)

(3.9) Lemma. The function Q satisfiesthe following differentialequation on the

interval 0<t<b:

dQ

dt
= Q(tY+c<xt,xty.

Remark. Note that c and <jt,xt) are constants.

Proof. Each term of the right-hand side of (3.8)is to be evaluated at y=x(ti)

where 0<ti<b.

Since Qy generates the image of Ay, the first term, vanishes. By design,

<L,£?>4=―l; since Xt = xt, the second term equals c(xttxt}. At y, VXL is zero (L

is parallelalong xt); therefore,(V?xlX)v, and the fourth term, vanish.

That the third term vanishes can be seen as follows. At y, near which a

fixed To-extension has been established, consider the equation

(VjfxX, Q-)y=Ly<yxX, Q>-≪PxX)y, (FLO)y)

= Ly(FxXJ)>.
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Near y, PxXz To. Since Q generates the image of A for points on the integral

curves of L constructed previously, (VxX, Q) vanishes on those curves. There-

fore, Ly(FxX, Q) is zero.

Finally, the fifthterm depends on (Ff1X)y,a vector well-defined at y since the

To-extension X and the integral curve of L through y are fixed. Now, if Z― FLX

+ (PLX,Q)L, then (Z,Q)--=(),and hence ZsTa{y). As well,(PzX)y lies in T0(y); so

(VzX, 0>≪= O. This implies that

<r,LXx, Q>y= -<pVlx.b>lX, o＼

In summary, then, equation (3.8) reduces to

(IQ

"dt
* = *!

Independently of the T^-extension near y. QED.

Now, to see whether the relative nullityis complete, which (by Lemma (3.1))

is equivalent to whether xb W, we consider the differentialequations in (3.4)and

(3.9),according to different cases for the constant c (xt,xt}.

First, suppose that c (xt,xt)―(). Then, from (3.9),Q satisfiesthe differential

ea nation

It follows that either Q

dQ

dt
=Q2

= 0 on [0,b) or

Q(f) =

Q(0)

l-f-Q(O) *

Then (3.4)implies that either p(t)=p(O) on [0,6) or

(see [G]). In either case limP(t)--p(b) Is nonzero, and x^zW.

Next, suppose there is some r such that c (xt, xt}―― r2. The differential

equation for Q given by (3.9) is

cit
= Q8-7a,

for which Q(t)=r is a solution; in this event, p(f)~p(0)ert,so p(b) is nonzero.
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If Q^r, then it is easy to see that

Q{t)= r coth(k-rt)

where k is the inverse hyperbolic cotangent of Q(0)/r. Q(t) is well-defined for

0<t<b, so klr&[O,b). Now, from (3.4)it follows that for Q<t<b,

p(t)=p(O)exv(^Q(s)ds}

^n＼
Ti / sin life ＼1

(Note: since klr$[O,b),the quantities sinh& and s'mh(k-rt) have the same sign.)

So

P(t)= (p(0) sinh k)jsmh(k-rt)).

Since k^O, p(t)^O (0<t<h). Were k equal to rb, Mmp{f) would be infinite. How-

ever, p is well-defined and smooth for all t. Therefore, the limit exists and is

nonzero, and x^zW.

In the cases where c(xt,xt} is nonpositive, it has been shown that x&e W.

Lemma (3.1) now implies that

sup{^:xM l^ for. 0<u<t}

cannot be finite. Therefore, the (complete) geodesic xt lies in W.

Finally, consider the case where c(xt,xt}= r* for some r. Then (3.9)implies

that

Q(t)=rtan(rt+k)

where k=arctan(Q(O)lr). Note that k^n/2, since Q(t)is well-defined on [0,b). For

the same reason, the quantity

b' =
Tt-Zk

2r

does not lie in [0,b). This fact and (3.4) give

/>(/)=4>(0)exp(j
t
rtan(rs + k)ds

0

so

(3.10) P(t)=(p(O) cos k)/cos(rt+k).

Now, cos^^O since Q(0) is not infinite. However, since Mn is complete, h' is an

admissible parameter value, and so p(b') must be well-defined(and smooth there).
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But, by (3.10),lim p(t) does not exist,engendering a contradiction. The only viable
t-b'

conclusion is that, if Mn is complete, the case where c(xt,xt} is positive cannot

occur.

The basic completeness properties of the relative nullity foliation,derived in

this section, are summarized bv the following theorem.

(3.11) Theorem. Let f:Mn->Mn+1 be an isometricimmersion, where

(i) Mn and M"+1 have indefinitenondegenerate metrics;

(ii) Mn and Mn+1 have the same constant curvature c; and

(iii) Mn is (geodesically)complete.

Let W be the umbilic-freeset of the immersion, and let xt be an (affinely

parametrized)geodesic passing through a point of W. Then:

(1) c(xt,xt)is a nonpositiveconstant;

and (2) x> liesin W for allt.

If Mn is not complete, then it can be asserted that xte W for those values to

which the geodesic can be extended from a particular value t0 for which xto£W.

If c(xt,xt} is positive, then the contradiction involving V engendered during the

development of Theorem (3.11) can at best imply that b' is not a value to which

the geodesic can be extended.

4. Codlmension One Isometric Immersions Between Indefinite Euclidean Spaces

Let J2J be the w-dimensionai real vector space together with an indefinite

metric (inner product) of signature (s,n ―s) given by

<x,y>=-J]zJyi+ Z *kvk

j=V k=s+l

for x=(x＼---, xn) and y = (y1,--->y11)-R's will be called the indefinite {n-dimensional)

Euclidean space {with signature s). If 5 = 0, then R" is just the ordinary Euclidean

space En. If s―1, then R" is what is usually called the w-dlmensional Lorentz

space, Ln. Note that there is a natural isomorphism between R" and J?"_s. Under

this isomorphism, geometric properties of one correspond to geometric properties

of the other. This " independence of sign convention " has long been exploited

in the case of Ln versus R^-t.

The purpose of this section is to outline the classification of isometric im-

mersions of R" into Rrs+1. The case s ―0 was done by Hartman and Nirenberg

,[HN]; a proof also appears in [Nl]. The classification in the case s ―1 appears in

[Gl. All classifications are based upon the completeness properties of the relative
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nullity foliation. The natural isomorphism between R% and Rn-S may be applied

to the classificationof immersions j??-≫i?"+1to classify the immersions R^->R'l~+＼

as well.

Let Mo{x) denote the leaf through .rei?" of the relative nullity foliationof

an immersion R"s-yRV~l-

(4.1) Theorem. The umbilic-free set W is a union of parallelhyperplanes.

Proof. By (2) of Theorem (3.11), MQ(x) is contained in the (n ―l)-dimensional

subspace tangent to It at x, for x£W. Now, the hyperplanes M0(x) are the maximal

connected integral submanifolds of the relative nullity foliation. Distinct hyper-

planes therefore cannot intersect; but nonintersecting hyperplanes must be parallel

QED.

Since parallel hyperplanes inherit the same metric from. R , the following

theorem is immediate.

(4.2) Theorem. Either G=0 or G=W.

Now, if xo is a fixed origin in WqR%, write Mo ―M<,(xa). Choose a vector L

at Xa such that L$T0(x0); if T0(x0) is nondegenerate, choose L to be orthogonal

to To. Then

(4.3) M0cSpan{L} = /2J

describes R" as a direct sura of vector spaces which is orthogonal if MC) is non-

degenerate. If / is the immersion, then define /0: M0-+/2?+l and A: Span{L}->/2"+1

by

fo(x)=f(x,Q), if x£Ma;

A(s)=A(sL)=f(xo,s).

Invoking the " Moore Lemma " in [G] gives

f(x,s)=Mx)+A(s).

Using the Gauss formula (1.1), it is easy to see that f0 is an isometry of Mo onto

an (n ―l)-plane in R"+＼ If Mo is nondegenerate, and L is chosen orthogonal to

Mo, then /i maps Span{L} into the orthogonal complement, of f(M0) in J?" +1. If

Mo is degenerate, then for some (≪―2)-plane E and nonzero vector Q,

M0 = £cSpan{/2}

describes Mo as a direct and orthogonal sum of a nondegenerate (n ―2)-plane and

an axis of degeneracy. Let the vector L of (4.3) be chosen orthogonal to E. Since

Rns has a nondegenerate metric, <L, Q}4:-0- From the additional fact that (L＼[}} = {),
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it follows that SpanjL, Q] is an indefinite Euclidean plane with signature 1, i. e.,

an L2, which is orthogonal to E. The isometry f0: MQ~>f(M0) induces an isometry

of E onto an (≪―2)-plane /(is), and/(Span{L, 42}) lies in that L3 which is the

orthogonal complement of f(E) in R"+1. The methods of [G] now apply virtually

verbatim to establish the following theorem.

(4.4) Theorem. Up to a proper motion of JB≪+1,an isometric immersion /?*―>

R"+1 has one of the following forms.

(i) idXci/tfUlxL^/JHixL8

(ii) idXc: R^XE'-^Rl^xE2

(iii) id X g : Rnsz＼X L'^Rn, if X V

where: in (i), C.U-+U is a "unit-speed" time-like curve ({dcjdt,dcldt) ―

―1) in L2; in (ii),c : El-^E2 is a unit-speed Euclidean plane curve ; in each

case " id " is the appropriate identity map; and in (iii),g is an immersion

of L2 into L3 with degenerate relative nullity (as classified in [G]). More-

over, class (iii) consists of precisely those immersions R"-+Rs+1 with

degenerate relative nullities.

It should be noted that those immersions with nondegenerate relative nullities

are cylinders over curves, in analogy with the Hartman-Nirenberg result, whereas

the description (iii) is the best possible for those immersions with degenerate
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