ON THE STRUCTURE OF THE MATRIX CORRESPONDING TO A FINITE TOPOLOGY

Dedicated to Professor Ryosuke Nakagawa on his 60th birthday

By

Shōji Ochiai

1. Introduction and preliminaries

In connection with enumeration of finite topologies on an n-set, we introduced a number $\alpha(K)$ which is defined on the matrix K corresponding to a finite topology on an n-set and investigated its properties [2]. In this paper, we shall carry on our studies on the structure of the matrix corresponding to a finite topology and show the following inequality for an arbitrary $n \times n$ matrix K which corresponds to a T_{0} topology :

$$
n(n+5) / 2+1 \leqq \alpha(K) \leqq 2^{n+1}+n-1
$$

Let $X=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ be a finite set and T a topology on X. Let U_{i} be the smallest open set containing x_{i}. Then we define an $n \times n$, zero-one matrix $K=\left[k_{i j}\right]$ by

$$
k_{i j}= \begin{cases}1 & x_{j} \in U_{i} \\ 0 & x_{j} \notin U_{i}\end{cases}
$$

We denote this matrix K corresponding to the topology T by $M(T)$.
Let $B_{0}=\{0,1\}$ be an ordered set $(0<1)$ with two binary operations + and * defined as follows : $0+0=0 * 1=1 * 0=0 * 0=0,1+0=0+1=1+1=1 * 1=1$. Let V_{n} be the set of all n-tuples $\left[a_{1}, a_{2}, \cdots, a_{n}\right]$ over B_{0}. An element of V_{n} is called a Boolean vector of dimension n. The system V_{n} together with the operation of componentwise addition is called the Boolean vector space of dimension n. A subspace of V_{n} is a subset which contains $[0,0, \cdots, 0]$ and is closed under addition of vectors. The span of a set U of vectors is the intersection of all subspace containing U. The row (column) space of a matrix K is the span of the set of all rows (columns) of K. We denote the row (column) space of K by $R(K)(C(K))$ and write simply 0 for $[0,0, \cdots, 0]$ or ${ }^{t}[0,0, \cdots, 0]$. In this paper except Section 6, all matrices are ones over B_{0}, i.e. Boolean matrices

[^0]where matrix multiplication involves Boolean operation.
The following is given by Sharp, H. J. R. [3].
Theorem a. A reflexive $n \times n$ matrix K corresponds to a topology on an n-set if and only if $K^{2}=K$.

Definition 1. Let K be an $n \times n$ matrix corresponding to a topology on an n-set and $L(K)$ the set of all $(n+1) \times(n+1)$ matrices of the form $\left[\begin{array}{ll}1 & A \\ B & K\end{array}\right]$ corresponding to a topology on an $(n+1)$-set, where A is a $1 \times n$ matrix and B is an $n \times 1$ matrix. Then we define $\alpha(K)$ by $\alpha(K)=|L(K)|$, the number of elements of the set $L(K)$.

From this definition, we can directly derive the following result (see [2]).
Theorem B. Let $T(n+1)$ be the number of topologies on an $(n+1)$-set. Then we have $T(n+1)=\Sigma_{K} \alpha(K)$ where K runs over all $n \times n$ matrices, each of which corresponds to a topology.

Many other properties on α are found in [2].
Throughout the rest of the paper, K denotes an $n \times n$ matrix corresponding to a topology on an n-set unless the contrary is mentioned.

2. Structure of matrices containing K

Let $T_{0}(n+1)$ be the number of T_{0} topologies on an $(n+1)$-set.
Then we have the following result.
THEOREM 1. $\quad T_{0}(n+1)=\sum_{i=0}^{n=1}(-1)^{i}[n]_{i}\left(\sum_{k=1}^{k(i)} \alpha\left(K_{n-i, k}\right)\right)+(-1)^{n}[n]_{n}$, where $K_{n-i, k}$ runs over all matrices of order $n-i$ corresponding to a T_{0} topology and $[n]_{i}=n(n-1) \cdots(n-i+1)$ for $0<i \leqq n,[n]_{0}=1$.

Proof. Let K^{\prime} be a matrix of order $n+1$ of the form $K^{\prime}=\left[\begin{array}{ll}1 & A \\ B & K\end{array}\right]$ corresponding to a topology where A is a $1 \times n$ matrix, B is an $n \times 1$ matrix and K is an $n \times n$ matrix. If K corresponds to a non $-T_{0}$ topology, then K^{\prime} corresponds to a non $-T_{0}$ topology. Suppose that K is a matrix corresponding to a T_{0} topology. Then K^{\prime} corresponds to a non $-T_{0}$ topology if and only in $A=K_{i *}$ and $B=K_{* i}$ for some i, where $K_{i *}\left(K_{*_{i}}\right)$ is i-th row (column) of K. Therefore, we get $T_{0}(n+1)=\Sigma_{K} \alpha(K)-n T_{0}(n)$, where K runs over all matrices of order n, each of which corresponds to a T_{0} topology.

Then we get

$$
T_{0}(n+1)=\sum_{i=0}^{n-1}(-1)^{i}[n]_{i}\left(\sum_{k=1}^{k(i)} \alpha\left(K_{n-i, k}\right)\right)+(-1)^{n}[n]_{n}
$$

where $K_{n-i, k}$ runs over all matrices of order $n-i$, each of which corresponds to a T_{0} topology. This concludes the proof.

Definition 2. Let $M=\left[m_{i j}\right]$ and $N=\left[n_{i j}\right]$ be $n \times m$ matrices. By $M \leqq N$, we mean that if $m_{i j}=1$, then $n_{i j}=1$ for each i and j. If M and N are incomparable, that is neither $M \leqq N$ nor $N \leqq M$, then we write $M \| N$. Define a function ζ by $\zeta(M, N)=1$ if $M \leqq N$ and otherwise $\zeta(M, N)=0$, where 0 and 1 are elements of B_{0}.

Lemma 1. Let M be an $m \times m$ reflexive matrix. Partition M into the following blocks;

$$
\left.M=\left[\begin{array}{ccc}
\overbrace{M_{11}}^{m_{1}} & \overbrace{M_{12}}, \cdots, \overbrace{M_{1 p}} \\
M_{21} & M_{22}, \cdots, M_{2 p} \\
\cdots \cdots \cdots \cdots \\
\cdots \cdots \cdots \cdots \\
M_{p 1} \\
M_{p 1} & M_{p 2}, \cdots, M_{p p}
\end{array}\right]^{m_{1}},\right\} \begin{gathered}
m_{1} \\
m_{2} \\
\vdots \\
\vdots \\
m_{p}
\end{gathered}
$$

where $M_{i j}$ is an $m_{i} \times m_{j}$ matrix for each i and j.
Then the matrix M corresponds to a topology if and only if for each i and j with $1 \leqq i, j \leqq p, M_{i k} M_{k j} \leqq M_{i j}$ holds for $k, 1 \leqq k \leqq p$.

Proof. By Theorem A, M corresponds to a topology if and only if $M^{2}=M$, that is,

$$
M_{i 1} M_{1 j}+M_{i 2} M_{2 j}+\cdots+M_{i p} M_{p j}=M_{i j}
$$

for each i and j with $1 \leqq i, j \leqq p$. Further, for fixed i and j, the validity of this equation is equivalent to that $M_{i k} M_{k j} \leqq M_{i j}$ holds for each $k, 1 \leqq k \leqq p$.

Corollary. Let A be a $1 \times n$ matrix and B an $n \times 1$ matrix. The matrix $\left[\begin{array}{ll}1 & A \\ B & K\end{array}\right]$ corresponds to a topology if and only if $A \in R(K), B \in C(K)$ and $B A \leqq K$.

We write simply (A, B) for a matrix $\left[\begin{array}{ll}1 & A \\ B & K\end{array}\right]$. That is,

$$
L(K)=\{(A, B) \mid A \in R(K), B \in C(K), B A \leqq K\}
$$

The proof of the following lemma is easy and omitted. Let [n] be the set $[n]=\{1,2, \cdots, n\}$.

Lemma 2. Let $A=\left[a_{1}, \cdots, a_{i}, \cdots, a_{n}\right],{ }^{t} B=\left[b_{1}, \cdots, b_{j}, \cdots, b_{n}\right]$ and $K^{\prime}=$ $(A, B) \in L(K)$. Define subsets Ω and Ψ of $[n]$ by $\Omega=\left\{i \mid a_{i}=0\right\}$ and $\Psi=\left\{i \mid b_{i}=0\right\}$ respectively. If $\Omega \neq \varnothing$ and $\Omega \neq[n]$, then $k_{i j}=0$, for $i \in[n]-\Omega, j \in \Omega$ and if $\Psi \neq \varnothing$ and $\Psi \neq[n]$, then $k_{i j}=0$, for $i \in \Psi, j \in[n]-\Psi$, where $k_{i j}$ is an (i, j) element of K.

Lemma 3. For any two elements $(A, B),(C, D)$ of $L(K)$, the following facts hold.
(1) If either $A \| C$ or $D \| B$, then $C B=A D=0$,
(2) If either $A>C$ or $D>B$, then $C B=0$,
(3) If either $A<C$ or $D<B$, then $A D=0$.

Proof. (1) Suppose that A and C are incomparable. If $a_{i}=1$, there exists j such that $c_{j}=1$ and $a_{j}=0$. By Lemma 2, we can see $k_{i j}=0$ in the matrix $K=\left\lceil k_{i j}\right\rceil$. If $d_{i}=1$, then $D C \nsubseteq K$, a contradiction. Thus we have $d_{i}=0$, which implies $A D=0$. We can similarly obtain $C B=0$. (2) and (3) can be proved by the same method.

TheOrem 2. Let K^{\prime} be an $(n+2) \times(n+2)$ matrix of the form

$$
K^{\prime}=\left[\begin{array}{lll}
1 & e & C \\
f & 1 & A \\
D & B & K
\end{array}\right]
$$

where $e, f \in B_{0}, A$ and C are $1 \times n$ matrices and B and D are $n \times 1$ matrices. Then K^{\prime} corresponds to a topology if and only if the following conditions are satisfied
(1) (A, B) and (C, D) are elements of $L(K)$.
(2) $C B \leqq e \leqq \zeta(A, C) * \zeta(D, B)$.
(3) $A D \leqq f \leqq \zeta(C, A) * \zeta(B, D)$.

Proof. Using Lemma 1, K^{\prime} corresponds to a topology if and only if the following conditions are satisfied.
(a) $A K=A$ and $C K=C$.
(b) $K B=B$ and $K D=D$.
(c) $B A \leqq K$ and $D C \leqq K$.
(d) $C B \leqq e$ and $A D \leqq f$.
(e) $e A \leqq C$ and $D e \leqq B$.
(f) $f C \leqq A$ and $B f \leqq D$.

The condition (a) is equivalent to that both A and C are elements of the
row space of K and (b) to that both B and D are elements of the column space of K. Hence (a), (b) and (c) are equivalent to that (A, B) and (C, D) are elements of $L(K)$.

The condition (e) is equivalent to $e \leqq \zeta(A, C)$ and $e \leqq \zeta(D, B)$ and hence to $e \leqq \zeta(A, C) * \zeta(D, B)$. By the same way, the condition (f) is equivalent to $f \leqq$ $\zeta(C, A) * \zeta(B, D)$ and the proof is completed.

By Lemma 3, note that if (A, B) and (C, D) are elements of $L(K)$, then $\zeta(A, C) * \zeta(D, B)=0$ implies $C B=0$ and $\zeta(C, A) * \zeta(B, D)=0$ implies $A D=0$.

3. $\boldsymbol{N}((\boldsymbol{A}, \boldsymbol{B}),(\boldsymbol{C}, \boldsymbol{D}), \boldsymbol{K})$

Definition 3. Let A and C be $1 \times n$ matrices, and B and $D, n \times 1$ matrices. We denote the number of $(n+2) \times(n+2)$ matrices K^{\prime} of the form $K^{\prime}=$ $\left[\begin{array}{lll}1 & * & C \\ * & 1 & A \\ D & B & K\end{array}\right]$ corresponding to a topology by $N((A, B),(C, D), K)$.

By this definition, we get the following lemmas, which are easily proved.
Lemma 4. For any two elements $(A, B),(C, D)$ of $L(K), N((A, B),(C, D), K)$ $=1,2$ or 4 and $N((A, B),(C, D), K)=N((C, D),(A, B), K)$.

Lemma 5. Let $K^{\prime}=(A, B)$ be an element of $L(K)$. Then we get $\alpha((A, B))$ $=\sum_{(c, D) \in L(K)} N((A, B),(C, D), K)$. The number of terms on the righthand side is equal to $\alpha(K)$.

Theorem 3. Let $K^{\prime}=(A, B)$ be an element of $L(K)$. Then $A B=1$ if and only if $A=K_{i *}$ and $B=K_{* i}$ for some i.

Proof. To show the "only if" part, assume that $A=\left[a_{1}, \cdots, a_{i}, \cdots, a_{n}\right]$, $B=^{t}\left[b_{1}, \cdots, b_{i}, \cdots, b_{n}\right]$ and $a_{i}=b_{i}=1$ for some i. Then we get $K_{1 *}^{\prime} \geqq K_{i+1 *}^{\prime}$ and $K_{* 1}^{\prime} \geqq K_{* i+1}^{\prime}$. These imply $K_{* 1}^{\prime} \leqq K_{* i+1}^{\prime}, K_{i *}^{\prime} \leqq K_{i+1 *}^{\prime}$ and so $K_{1 *}^{\prime}=K_{i+1 *}^{\prime}, K_{* 1}^{\prime}=$ $K_{* i+1}^{\prime}$ [3]. These facts imply $A=K_{i *}$ and $B=K_{* i}$ for some i. The "if" part is obvious.

Theorem 4. Let K be a matrix corresponding to a T_{0} topology, A a $1 \times n$ matrix and B an $n \times 1$ matrix. Then $K^{\prime}=(A, B)$ corresponds to a T_{0} topology if and only if $K^{\prime} \in L(K)$ and $A B=0$.

Proof. Let (A, B) be an element of $L(K)$ such that $A B=1$. Then, by
using Theorem 3, we obtain $A=K_{i *}$ and $B=K_{* i}$ for some i and hence K^{\prime} does not correspond to a T_{0} topology. Conversely, if $K^{\prime}=(A, B)$ is an element of $L(K)$ such that $A B=0$, then K^{\prime} corresponds to a topology and by using Theorem 3, we see $(A, B) \neq\left(K_{i *}, K_{* i}\right)$ for each i. Therefore K^{\prime} corresponds to a T_{0} topology.

Theorem 5. For any two elements $(A, B),(C, D)$ of $L(K)$,
(1) $N((A, B),(A, B), K)=1$ if and only if $A=K_{i *}$ and $B=K_{* i}$ for some i.
(2) $N((A, B),(C, D), K)=4$ if and only if $A=C, B=D$ and $(A, B) \neq$ ($K_{i *}, K_{* i}$) for each i.

Proof. (1) Assume that $N((A, B),(A, B), K)=1$. Then a pair (e, f) is uniquely determined, so that $\left[\begin{array}{lll}1 & e & A \\ f & 1 & A \\ B & B & K\end{array}\right]$ corresponds to a topology. Apply Theorem 2 to the case $A=C, B=D$ and we get $A B=C B=A D=1$. Since $K^{\prime}=$ (A, B) is the matrix corresponding to a topology, we get $A=K_{i *}$ and $B=K_{* i}$ for some i by Theorem 3. Conversely, if $A=K_{i *}$ and $B=K_{*_{i}}$, then we get $e=f=1$ by Theorem 2 .
(2) If $N((A, B),(C, D), K)=4$, then we obtain $\zeta(A, C) * \zeta(D, B)=\zeta(C, A)$ $* \zeta(B, D)=1$ and $C B=A D=0$ by Theorem 2. These facts imply $A=C, D=B$ and so $A B=0$. By Theorem 3, we get $(A, B) \neq\left(K_{i *}, K_{* i}\right)$ for each i. Conversely, if $(A, B) \neq\left(K_{i *}, K_{* i}\right)$ for each i and $A=C, B=D$, then we obtain $A B=0$ by Theorem 3. By assumption, we obtain $C B=A B=A D=0$ and $\zeta(A, C) * \zeta(D, B)$ $=\zeta(C, A) * \zeta(B, D)=1$. By Theorem 2, we get $N((A, B),(C, D), K)=4$.

For a given matrix K, let \sim be an equivalence relation on $[n]$ defined by $i \sim j$ if and only if $K_{i *}=K_{j *}$. Choose a representative $k(i), i=1, \cdots, l$, for each equivalence class. Then we have an $l \times l$ matrix \tilde{K} such that $\tilde{K}=\left[k_{k(i), k(j)}\right]$, $1 \leqq i, j \leqq l$. It is easily verified that the matrix \tilde{K} corresponds to a T_{0} topology on an l-set. We shall call \tilde{K} a reduced matrix of K.

Lemma 6 ([2]). If \tilde{K} is a reduced matrix of a matrix K, then we have $\alpha(K)=\alpha(\tilde{K})$.

Lemma 7. Let (A, B) be an element of $L(K)$. Then $N((A, B),(C, D), K)$ $=1$ holds for all elements (C, D) of $L(K)$ if and only if $A=K_{i *}$ and $B=K_{* i}$ for some i.

Proof. If $(A, B) \neq\left(K_{i *}, K_{* i}\right)$ for all i, then by Theorem 5 , we get
$N((A, B),(A, B), K)=4$. Conversely, if $A=K_{i *}$ and $B=K_{* i}$ hold for some i, then K is a reduced matrix of ($K_{i *}, K_{* i}$). By using Lemmas 5 and 6 , we get

$$
\alpha(K)=\alpha\left(\left(K_{i *}, K_{* i}\right)\right)=\sum_{(c, D) \in L(K)} N\left(\left(K_{i *}, K_{* i}\right),(C, D), K\right) .
$$

Therefore, we conclude $N\left(\left(K_{i *}, K_{* i}\right),(C, D), K\right)=1$ for all elements (C, D) of $L(K)$ by Lemma 4.

4. An inequality $\alpha(K)<\alpha\left(I_{n}\right)$

Lemma 8. Let $\left[\begin{array}{cc}1 & C \\ D & I_{n}\end{array}\right]$ be an element of $L\left(I_{n}\right)$, where I_{n} is the identity matrix of order n. If $(C, D) \neq(0,0)$ and $(C, D) \neq\left(\left(I_{n}\right)_{i *},\left(I_{n}\right)_{* i}\right)$ for each i, then $N\left((0,0),(C, D), I_{n}\right)=2$.

Proof. Under the assumption, we shall consider three cases.
(a) $C=0, D \neq 0$.
(b) $C \neq 0, D=0$.
(c) $C \neq 0, D \neq 0$.

But the case (c) dose not occur, because $D C \leqq I_{n}$. Applying Theorem 2 to the case (a), we have

$$
\begin{aligned}
& 0 \leqq e \leqq \zeta(0,0) * \zeta(D, 0)=0 . \\
& 0 \leqq f \leqq \zeta(0,0) * \zeta(0, D)=1
\end{aligned}
$$

In case of (b), we obtain similarly,

$$
\begin{aligned}
& 0 \leqq e \leqq \zeta(0, C) * \zeta(0,0)=1 \\
& 0 \leqq f \leqq \zeta(C, 0) * \zeta(0,0)=0
\end{aligned}
$$

Therefore, we conclude $N\left((0,0),(C, D), I_{n}\right)=2$.
Lemma 9. Let (A, B) be an $(n+1) \times(n+1)$ non-identity matrix belonging to $L(K)$ where A and B are $1 \times n$ and $n \times 1$ matrices respectively. Then there exists an element (C, D) of $L(K)$ such that $(C, D) \neq\left(K_{i *}, K_{* i}\right)$ for all i and $N((A, B)$, $(C, D), K)=1$.

Proof. The proof is divided into the following four cases.
(a) $A=0, B=0$.

By assumtion, K is a non-identity matrix. Hence there exists a comparable pair $K_{i *}, K_{j *}$ such that $i \neq j$. Without loss of generality, we may assume $K_{i *} \leqq K_{j *}$. If we put $C=K_{i *}$ and $D=K_{* j}$, then these Boolean vectors C, D satisfy $D C \leqq K$. This implies $(C, D) \in L(K)$. We see easily $\zeta(D, B)=\zeta\left(K_{* j}, 0\right)$ $=0, \zeta(C, A)=\zeta\left(K_{i *}, 0\right)=0$. By Theorem 2, we can obtain $e=f=0$.
(b) $A=0, B \neq 0$.

Let $D=0$ and $B=^{t}\left[b_{1}, \cdots, b_{j}, \cdots, b_{n}\right]$ be an element of $C(K)$ such that $b_{j}=1$. If we put $C=K_{j *}$, then $D C=0 \leqq K$ and $C B=1$. By Theorem 2, we obtain $C B=1 \leqq e \leqq \zeta\left(0, K_{j *}\right) * \zeta(0, B)=1 . \quad A D=0 \leqq f \leqq \zeta\left(K_{j *}, 0\right) * \zeta(B, 0)=0$. Then we get $e=1$ and $f=0$.
(c) $A \neq 0, B=0$.

Let $C=0$ and D be an element of $C(K)$ such that $A D=1$. By the same method as above, we get $e=0$ and $f=1$.
(d) $A \neq 0, B \neq 0$.

Let $C=0$ and $D=0$. Then we similarly obtain $e=f=0$. These facts imply the lemma.

Theorem 6. Let K be an $n \times n$ non-identity matrix corresponding to a topo$\log y$. Then we obtain $\alpha(K)<\alpha\left(I_{n}\right)$.

Proof. By Lemma 6, if K corresponds to a non- T_{0} topology, there exists a reduced $m \times m(m<n)$ matrix \tilde{K} corresponding to T_{0}-topology and satisfying $\alpha(\tilde{K})=\alpha(K)$. Since $\alpha\left(I_{n}\right)=2^{n+1}+n-1 \quad$ [Lemma 6, [2]], we have $\alpha\left(I_{m}\right)<\alpha\left(I_{n}\right)$. Therefore, we prove this theorem for a matrix K corresponding to a T_{0} topology. The proof of our theorem will be done by induction on the order n of K. If $n=2$, then $\alpha(K)=8$ and $\alpha\left(I_{2}\right)=9$ and so this inequality is true. Assume that $\alpha(K)<\alpha\left(I_{k}\right)$ holds for a non-identity matrix $K\left(=K_{k}\right)$ of order k corresponding to a T_{0} topology $(2 \leqq k)$. Note that I_{k+1} is expressed by an element $(0,0)$ of $L\left(I_{k}\right)$. By Lemma $5, \alpha\left(I_{k+1}\right)=\alpha((0,0))=\sum_{(c, D) \in L\left(I_{k}\right)} N\left((0,0),(C, D), I_{k}\right) . \quad$ By Lemma 8 and Theorem 5 , the number of (C, D) with $N((0,0),(C, D), K)=1$ is k. Assume that K^{\prime} is a $(k+1) \times(k+1)$ non-identity matrix K_{k+1} of the form $K^{\prime}=(A, B)$. Then

$$
\alpha\left(K^{\prime}\right)=\alpha((A, B))=\sum_{(c, D) \in L(K 1} N((A, B),(C, D), K)
$$

By Lemma 9 , the number m of (C, D) with $N((A, B),(C, D), K)=1$ satisfies $k+1 \leqq m$. From these facts, we obtain $\alpha\left(I_{k+1}\right)=2 \alpha\left(I_{k}\right)-k+2$ and $\alpha\left(K_{k+1}\right)=$ $2 \alpha\left(K_{k}\right)-m+2$. Since $\alpha\left(K_{k}\right)<\alpha\left(I_{k}\right)$ and $k+1 \leqq m$, we obtain $\alpha\left(K_{k+1}\right)<\alpha\left(I_{k+1}\right)$. This completes the inductive step and the proof of the theorem.

5. A lattice $L(K)$

Let $A=\left[a_{1}, a_{2}, \cdots, a_{n}\right], C=\left[c_{1}, c_{2}, \cdots, c_{n}\right]$ and define $A \cdot C$ by $A \cdot C=$ $\left[a_{1} * c_{1}, a_{2} * c_{2}, \cdots, a_{n} * c_{n}\right]$. Similarly, define ${ }^{t} A \cdot{ }^{t} C$ by ${ }^{t} A \cdot{ }^{t} C={ }^{t}(A \cdot C)$ and $A+C$ as usual. Define an order in $L(K)$ by $(A, B) \leqq{ }_{L}\left(A^{\prime}, B^{\prime}\right)$ if and only if $A \leqq A^{\prime}$
and $B \geqq B^{\prime}$, and a join operation \vee and a meet operation \wedge in $L(K)$ by

$$
(A, B) \vee\left(A^{\prime}, B^{\prime}\right)=\left(A+A^{\prime}, B \cdot B^{\prime}\right), \quad(A, B) \wedge\left(A^{\prime}, B^{\prime}\right)=\left(A \cdot A^{\prime}, B+B^{\prime}\right)
$$

Then, it is easily checked that $L(K)$ is a distributive lattice. For terminology of lattice theory refer to [4].

Lemma 10. Let $K=M(T)$ and $J=M\left(T^{\prime}\right)$ be the matrices corresponding to topologies T and T^{\prime} respectively. If two matrices K and J are isomorphic (i.e. $K={ }^{t} P J P$, with a permutation matrix $\left.P\right)$, then $L(K)$ and $L(J)$ are isomorphic as lattices.

The proof is easy and so omitted. Note that T and T^{\prime} are homeomorphic if and only if K and J are isomorphic [2], [3].

As a matter of convenience, we call that (C, D) satisfies a condition $\mathcal{C}_{A, B}$ for a fixed element (A, B) of $L(K)$, if (C, D) satisfies the following conditions:
(1) (C, D) is an element of $L(K)$ and is different from (A, B).
(2) $A D=C B=0$.
(3) (C, D) is comparable to (A, B) in $L(K)$.

Lemma 11. Let (A, B) and (C, D) be two elements of $L(K)$. Then $N((A, B),(C, D), K)=2$ holds if and only if (C, D) satisfies $\mathcal{C}_{A, B}$.

Proof. Assume that (C, D) satisfies $\mathcal{C}_{A \cdot B}$. Then, one of two equations $\zeta(A, C) * \zeta(D, B)=1$ and $\zeta(C, A) * \zeta(B, D)=1$ is true. Hence, under the assumption $C B=A D=0$, we obtain $N((A, B),(C, D), K)=2$ by Theorem 2. Conversely, if $N((A, B),(C, D), K)=2$ holds, then the following four cases can be considered.
(a) $1=C B=\zeta(A, C) * \zeta(D, B)=1$, $0=A D \leqq \zeta(C, A) * \zeta(B, D)=1$.
(b) $0=C B \leqq \zeta(A, C) * \zeta(D, B)=1$, $1=A D=\zeta(C, A) * \zeta(B, D)=1$.
(c) $0=C B=\zeta(A, C) * \zeta(D, B)=0$, $0=A D \leqq \zeta(C, A) * \zeta(B, D)=1$.
(d) $0=C B \leqq \zeta(A, C) * \zeta(D, B)=1$,
$0=A D=\zeta(C, A) * \zeta(B, D)=0$.
In cases of (a) and (b), we can conclude $(A, B)=(C, D)$. But, these cases occur only if $N((A, B),(C, D), K)=1$ or 4 . In case (c), we get $(A, B) \neq(C, D)$, $C \leqq A, B \leqq D$ and so $(C, D) \leqq_{L}(A, B)$, that is, (C, D) satisfies $\mathcal{C}_{A, B}$. In case (d),
we get the same conclusion.
Lemma 12. Let K be a matrix corresponding to T_{0} topology. If $(A, B) \neq$ $\left(K_{i *}, K_{* i}\right)$ for each i, then the subset of $L(K)$ defined by $\{(C, D) \mid A D=C B=0$ and (C, D) is comparable to (A, B) in $L(K)\}$ contains (A, B) and is a sublattice of $L(K)$.

Proof. Since $(A, B) \neq\left(K_{i *}, K_{* i}\right)$ for each i, the above subset contains (A, B) by Theorem 4. The remaining part of the lemma can be proved by easy computations.

Definition 4. Let v be a Boolean vector of dimension n. We define a complement v^{c} of v by a vector such that $v_{i}^{c}=1$ if and only if $v_{i}=0$, where v_{i} v_{i}^{c} denote the i-th component of v and v^{c} respectively.

Theorem 7. Let K be an $n \times n$ matrix corresponding to a T_{0} topology, $A=$ $\left[a_{1}, \cdots, a_{i}, \cdots, a_{n}\right], B={ }^{t}\left[b_{1}, \cdots, b_{i}, \cdots, b_{n}\right]$ and $S=\left\{i \mid a_{i}=b_{i}=0\right\}, s=|S|$. Suppose that $(A, B) \in L(K)$ and $(A, B) \neq\left(K_{i *}, K_{* i}\right)$ for each i. Then there exists a chain in $L(K)$ satisfying the following conditions.
(a) The chain contains (A, B) and its length is $n+s$.
(b) Each element (C, D) of the chain, which is different from (A, B), satisfies $\mathcal{C}_{A, B}$.
(c) The maximal element of the chain is $\left(\left({ }^{(} B\right)^{c}, 0\right)$ and the minimal element of the chain is $\left(0,\left({ }^{t} A\right)^{c}\right)$.

Proof. Since K corresponds to a T_{0} topology, K is isomorphic to a triangular matrix [3]. Therefore, by Lemma 10 , we may assume that K is an upper triangular matrix.

If $(A, B)=([1,1, \cdots, 1], 0),\left(0,{ }^{t}[1,1, \cdots, 1]\right)$, or $(0,0)$, there exists clearly a chain satisfying the conditions of the theorem. Therefore, we may assume $(A, B) \neq([1,1, \cdots, 1], 0),\left(0,{ }^{t}[1,1, \cdots, 1]\right),(0,0)$. Let $R=\left\{i \mid a_{i}=0, b_{i}=1\right\}, r=$ $|R|, T=\left\{i \mid a_{i}=1, b_{i}=0\right\}, t=|T|, u:[r] \rightarrow R, v:[s] \rightarrow S, w:[t] \rightarrow T$ be strictly order reversing maps, where each order of these sets is natural one, and let

$$
\begin{aligned}
& R(m)=\{u(m+1), u(m+2), \cdots, u(r)\} \\
& S(m)=\{v(m+1), v(m+2), \cdots, v(s)\} \\
& T(m)=\{w(m+1), w(m+2), \cdots, w(t)\} .
\end{aligned}
$$

Now we shall construct a chain $\left(A_{0}, B_{0}\right),\left(A_{1}, B_{1}\right), \cdots,\left(A_{n+s}, B_{n+8}\right)$ as follows.
First define the following Boolean vectors. $A_{0}=A_{1}=\cdots=A_{s}=0, A_{s+t+1}=\cdots$
$=A_{n}=A, B_{0}=^{t}\left[b_{1}^{0}, \cdots, b_{n}^{0}\right]$ with $b_{i}^{0}=a_{i}^{c}, i=1, \cdots, n, B_{s+1}=\cdots=B_{s+t}=B, B_{n+1}=$
$\cdots=B_{n+s}=0$.
Note that $\left(A_{0}, B_{0}\right)$ satisfies $\mathcal{C}_{A, B}$ by the corollary of Lemma 1 and Lemma 2.
(1). If $S=\varnothing$, then go to the next step (2). If $S \neq \varnothing$, then we shall define the Boolean vector B_{1} by replacing the $v(1)$-th component $b_{v(1)}^{0}=1$ of B_{0} by 0 . Then (A_{1}, B_{1}) covers (A_{0}, B_{0}) (denoted by $\left(A_{0}, B_{0}\right)<\cdot\left(A_{1}, B_{1}\right)$) and (A_{1}, B_{1}) satisfies $\mathcal{C}_{A, B}$. Assume that a saturated chain $\left(A_{0}, B_{0}\right)<\cdot\left(A_{1}, B_{1}\right)<\cdots<\cdot\left(A_{m}, B_{m}\right)$ is constructed and each $\left(A_{i}, B_{i}\right)$ satisfies $\mathcal{C}_{A, B}, 1 \leqq i \leqq m$. If $S(m)=\varnothing$, go to the next step (2). If $S(m) \neq \varnothing$, then we shall define the Boolean vector B_{m+1} by replacing the $v(m+1)$-th component $b_{v(m+1)}^{(m)}=1$ of $B_{m}=\left[b_{1}^{(m)}, b_{2}^{(m)}, \cdots, b_{n}^{(m)}\right]$ by 0 . Then $\left(A_{m}, B_{m}\right)<\cdot\left(A_{m+1}, B_{m+1}\right)$ and $\left(A_{m+1}, B_{m+1}\right)$ satisfies $\mathcal{C}_{A, B}$. This completes the inductive step and so we obtain $\left(A_{0}, B_{0}\right)<\cdot\left(A_{1}, B_{1}\right)<\cdots<\cdot\left(A_{s}, B_{s}\right)=(0, B)$ and each element (A_{i}, B_{i}) satisfies $\mathcal{C}_{A, B}, 0 \leqq i \leqq s$.
(2). If $T=\varnothing$, go to the next step (3). If $T \neq \varnothing$, then we define the Boolean vector $A_{s+1}=\left[a_{1}^{(s+1)}, \cdots, a_{i}^{(s+1)}, \cdots, a_{n}^{(s+1)}\right]$ by $w(1)$-th component $a_{w(1)}^{(s+1)}=1, a_{i}^{(s+1)}$ $=0, i \neq w(1)$. Then we obtain $\left(A_{s}, B_{s}\right)<\cdot\left(A_{s+1}, B_{s+1}\right)$ and $\left(A_{s+1}, B_{s+1}\right)$ satisfies $\mathcal{C}_{A, B}$. Assume that a saturated chain $\left(A_{s}, B_{s}\right)<\cdot\left(A_{s+1}, B_{s+1}\right)<\cdots<\cdot\left(A_{s+m}, B_{s+m}\right)$ is constructed and each $\left(A_{i}, B_{i}\right)$ satisfies $\mathcal{C}_{A, B}, s+1 \leqq i \leqq s+m$. If $T(m)=\varnothing$, go to the next step (3). If $T(m) \neq \varnothing$, then we define the Boolean vector A_{s+m+1} by replacing the $w(m+1)$-th component $a_{w(m+1)}^{(s+m)}=0$ of $A_{s+m}=\left[a_{1}^{(s+m)}, \cdots, a_{i}^{(s+m)}\right.$, $\left.\cdots, a_{n}^{(s+m)}\right]$ by 1. Then $\left(A_{s+m}, B_{s+m}\right)<\cdot\left(A_{s+m+1}, B_{s+m+1}\right)$ holds and $\left(A_{s+m+1}\right.$, $\left.B_{s+m+1}\right)$ satisfies $\mathcal{C}_{A, B}$. This completes the inductive step and we obtain the chain

$$
\left(A_{s}, B_{s}\right)<\cdot\left(A_{s+1}, B_{s+1}\right)<\cdots<\cdot\left(A_{s+t}, B_{s+t}\right)=(A, B)
$$

and each $\left(A_{s+i}, B_{s+i}\right)$ satisfies $C_{A, B}, 1 \leqq i \leqq t-1$.
(3). If $R=\varnothing$, go to the next step (4). If $R \neq \varnothing$, then we define the Boolean vector B_{s+t+1} by replacing the $u(1)$-th component $b_{u(1)}=1$ of $B=$ $\left[b_{1}, \cdots, b_{i}, \cdots, b_{n}\right]$ by 0 . Then $\left(A_{s+t}, B_{s+t}\right)<\cdot\left(A_{s+t+1}, B_{s+t+1}\right)$ holds and $\left(A_{s+t+1}\right.$, $\left.B_{s+t+1}\right)$ satisfies $\mathcal{C}_{A, B}$. Now, suppose that the saturated chain $\left(A_{s+t}, B_{s+t}\right)<$. $\left(A_{s+t+1}, B_{s+t+1}\right)<\cdots<\cdot\left(A_{s+t+m}, B_{s+t+m}\right)$ is constructed and each element $\left(A_{s+t+i}\right.$, $\left.B_{s+t+i}\right)$ satisfies $C_{A, B}, 1 \leqq i \leqq m$. If $R(m)=\varnothing$, go to the next step (4). If $R(m)$ $\neq \emptyset$, then we define the Boolean vector $B_{s+t+m+1}$ by replacing the $u(m+1)$-th component $b_{u(m+1)}^{(s+t+m)}=1$ of $B_{s+t+m}=\left[b_{1}^{(s+t+m)}, \cdots, b_{i}^{(s+t+m)}, \cdots, b_{n}^{(s+t+m)}\right]$ by 0 .

Then we see $\left(A_{s+t+m}, B_{s+t+m}\right)<\cdot\left(A_{s+t+m+1}, B_{s+l+m+1}\right)$ and $\left(A_{s+t+m+1}, B_{s+t+m+1}\right)$ satisfies $\mathcal{C}_{A, B}$. Then we obtain the saturated chain

$$
(A, B)=\left(A_{s+t}, B_{s+t}\right)<\cdot\left(A_{s+t+1}, B_{s+t+1}\right)<\cdots<\cdot\left(A_{n}, B_{n}\right)=(A, 0)
$$

and each $\left(A_{s+t+i}, B_{s+t+i}\right)$ satisfies $\mathcal{C}_{A, B}, 1 \leqq i \leqq r$. Note that $n=s+t+r$.
(4). If $S=\varnothing$, then the construction of the chain concludes. If $S \neq \varnothing$, then we define the Boolean vector A_{n+1} by replacing the $v(1)$-th component $a_{v(1)}=0$ of $A=\left[a_{1}, \cdots, a_{i}, \cdots, a_{n}\right]$ by (1) and then we obtain $\left(A_{n}, B_{n}\right)<\cdot\left(A_{n+1}, B_{n+1}\right)$ and $\left(A_{n+1}, B_{n+1}\right)$ satisfies $\mathcal{C}_{A, B}$. Now suppose that the saturated chain $\left(A_{n}, B_{n}\right)<$. $\left(A_{n+1}, B_{n+1}\right)<\cdots<\cdot\left(A_{n+m}, B_{n+m}\right)$ is constructed and each (A_{n+i}, B_{n+i}) satisfies $\mathcal{C}_{A, B}, 1 \leqq i \leqq m$. If $S(m)=\varnothing$, then concludes the construction of the chain. If $S(m) \neq \varnothing$, then we define the Boolean vector A_{n+m+1} by replacing the $v(m+1)$-th component $a_{v(m+1)}^{(n+m)}=0$ of $A_{n+m}=\left[a_{1}^{(n+m)}, a_{2}^{(n+m)}, \cdots, a_{n}^{(n+m)}\right]$ by replacing 1. Then we see $\left(A_{n+m}, B_{n+m}\right)<\cdot\left(A_{n+m+1}, B_{n+m+1}\right)$ and $\left(A_{n+m+1}, B_{n+m+1}\right)$ satisfies $\mathcal{C}_{A, B}$. This completes the inductive step and we have a chain $\left(A_{n}, B_{n}\right)<\cdot\left(A_{n+1}, B_{n+1}\right)$ $\left.<\cdots<\cdot\left(A_{n+s}, B_{n+s}\right)={ }^{(t}\left(B^{c}\right), 0\right)$.

From above facts, we constructed the chain satisfying the desired condition of the theorem ;

$$
\left(0,{ }^{t}\left(A^{c}\right)\right)=\left(A_{0}, B_{0}\right)<\cdot\left(A_{1}, B_{1}\right)<\cdots<\cdot\left(A_{n+s}, B_{n+s}\right)=\left({ }^{t}\left(B^{c}\right), 0\right) .
$$

Corollary. Let $(A, B) \neq\left(K_{i *}, K_{* i}\right)$ be a fixed element of $L(K)$, where K is an $n \times n$ matrix corresponding to T_{0} topology. In the multiset $\{N((A, B)$, ($C, D), K) \mid D C \leqq K, C \in R(K), D \in C(K)\}$, the number of 2 's is equal or greater than $n+s$, where the number s is mentioned above.

Proof. By Theorem 7, at least $n+s$ elements of $L(K)$ satisfy the conditions of Lemma 11. This implies the corollary.

The following lemma is easily proved by using Lemma 11 and the proof is omitted.

Lemma 13. Let L_{n} be the upper triangular matrix of order n defined as follows;

$$
L_{n}=\left[\begin{array}{ccccc}
1 & 1 & \cdots & \cdots & 1 \\
0 & 1 & \cdots & \cdots & 1 \\
\vdots & \ddots & . & \vdots \\
0 & \cdots & \cdots & 0 & 1
\end{array}\right]
$$

and A an n-dimensional Boolean vector where each component of A is 1 . Then $N\left((A, 0),(C, D), L_{n}\right)=2$ holds if and only if $(C, D)=\left(C_{i}, 0\right)$ holds where C_{i} is the n-dimensional Boolean vector such that $C_{i}=\left[c_{1}^{i}, \cdots, c_{n}^{i}\right]$ such that $c_{j}^{i}=0$ for $j \leqq i$ and $c_{j}^{i}=1$ for $j>i$ for some $i, 1 \leqq i \leqq n$.

This lemma implies that in the multiset $\left\{N\left((A, 0),(C, D), L_{n} \mid(C, D) \in L\left(L_{n}\right)\right\}\right.$, the number of 2 's is n, the number of 1 's is $\alpha\left(L_{n}\right)-(n+1)$ and remaining ele-
ment is 4
Theorem 8. Let K be an $n \times n$ matrix corresponding to a T_{0} topology. Then

$$
\alpha\left(L_{n}\right) \leqq \alpha(K)
$$

Proof. The proof is carried out by induction on the order of K. If $n=2$, then $\alpha\left(L_{2}\right)=8, \alpha(K)=8$ or 9 and so theorem is true. Assume that $\alpha\left(L_{k}\right) \leqq \alpha(K)$, $(2 \leqq k)$ holds for a $k \times k$ matrix K corresponding to a T_{0} topology. Let K^{\prime} be a $(k+1) \times(k+1)$ matrix of the form (A, B) corresponding to a T_{0} topology. By using Lemma 5, we obtain $\alpha\left(K^{\prime}\right)=\alpha((A, B))=\sum_{(C, D) \in L(K)} N((A, B),(C, D), K)$. By using the corollary of Theorem 7 , on the righthand side of this equation, the number of 2 's is equal or greater than $k+s$. If we denote this number of 2 's by m, the number of 1 's is $\alpha(K)-(m+1)$ and the remaining term is 4 . Therefore, $\alpha\left(K^{\prime}\right)=\alpha(K)+m+3$. Since $\alpha\left(L_{k+1}\right)=\alpha\left(L_{k}\right)+k+3$ and $\alpha\left(L_{k}\right) \leqq \alpha(K)$ hold, we obtain $\alpha\left(L_{k+1}\right) \leqq \alpha(K)$. This completes the inductive step and concludes the proof.

Theorem 9. For an arbitrary matrix K of order n which corresponds to a T_{0} topology, we have

$$
n(n+5) / 2+1 \leqq \alpha(K) \leqq 2^{n+1}+n-1
$$

Proof. It is known that $\alpha\left(L_{n}\right)=n(n+5) / 2+1$ and $\alpha\left(I_{n}\right)=2^{n+1}+n-1$ [2]. By Theorems 6 and 8 , we get the conclusion.

6. Table of $N((A, B),(C, D), K)$

In this section, we state the results of computations of $N((A, B),(C, D), K)$ for several matrices K by using previous results.

They are expressed by matrices, whose elements are positive integers, and rows and columns are indexed by $L(K)$. For each K, we give a matrix [$m_{\lambda \mu}$] defined by

$$
m_{\lambda \mu}=N((A, B),(C, D), K) \quad \text { for } \lambda=(A, B), \mu=(C, D)
$$

This is symmetric by Lemma 4. In the following tables, each index $\lambda=(A, B)$ is expressed by t_{B}^{A} and the numbers on the left side or the upper side of $\lambda=t_{B}^{A}$ are $\alpha\left(\left[\begin{array}{ll}1 & A \\ B & K\end{array}\right]\right)$.

Shōji Ochiai

$$
K=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Table 1.

$$
K=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

	$\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}$	$\begin{array}{ll} 1 & 5 \\ 0 & 1 \\ 0 & 0 \\ \hline \end{array}$	$\begin{array}{ll} 0 & 0 \\ 1 & 0 \end{array}$	$\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}$	$\begin{array}{ll} 1 & 3 \\ 0 & 1 \\ 1 & 0 \\ \hline \end{array}$	$\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}$	8 0 0 1 1 1	$\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 1\end{array}$
	4	2	2	2	1	2	1	1
	2	4	2	2	2	1	1	1
	2	2	4	1	2	2	1	1
	2	2	1	4	1	1	1	1
	1	2	2	1	4	1	1	1
	2	1	2	1	1	4	1	1
8	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1

Table 2.

$$
K=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

Table 3.

$$
K=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

Table 4.

$$
K=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

Table 5.

$$
K=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

	$\begin{array}{lll} 3 & 5 & \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{r} 1000 \\ 008 \\ \hline \end{array}$	$\begin{array}{r} 000 \\ 010 \\ \hline \end{array}$	$\begin{aligned} & 000 \\ & 100 \\ & \hline \end{aligned}$	$\begin{array}{r} 2 \\ 000 \\ 111 \\ \hline \end{array}$	8 001 000	$\begin{array}{ll} 0 & 1 \\ 0 & 0 \\ 0 \end{array}$	$\begin{array}{r} 100 \\ 000 \\ \hline \end{array}$	111 000 10			000 101	$\begin{array}{r}2 \\ 000 \\ 110 \\ \hline\end{array}$	6 011 000	101 000	1110		$\begin{array}{r} 18 \\ 1010 \\ 1010 \\ \hline \end{array}$	$\begin{array}{lll} 1 & 0 & 0 \\ 1 & 0 & 0 \\ \hline \end{array}$
35000	4	2	2	2	2	2	2	2	2		2	2	2	2	2	2	1	1	1
0 0 0 0 0	2	4	1	1	2	1	2	2	1		2	2	1	1	1	2	1	1	1
000	2	1	4	1	2	2	1	2	1		2	1	2	1	2	1	1	1	1
000 100	2	1	1	4	2	2	2	1	1		1		2	2	1	1	1	1	1
000	2	2	2	2	4	1	1	1	1		2	2	2	1	1	1	1	1	1
28001	2	1	2	2	1	4	1		2		1		2	2	2	1	1	1	1
$\begin{array}{llll}00 & 0 & 0 \\ 0 & 1 & 0 \\ 0\end{array}$	2	2	1	2	1	1	4	1	2		1	2	1	2	1	2	1	1	1
0 100 100	2	2	2	1	1	1	1	4	2		2	1	1	1	2	2		1	1
10 0 1 1 0 1	2	1	1	1	1	2	2	2	4		1	1	1	2	2	2		1	1
000	2	2	2	1	2	1	1	2	1		4	1	1	1	1	1		1	1
000 101	2	2	1	2	2	1	2	1	1		1		1			1		1	1
1 0 1 0 0 0 1 0	2	2	2	2	2	2	1	1	1		1		4	1	1	1	1	1	1
$266 \begin{array}{cccc}1 & 1 & 0 \\ 0 & 1 & 1\end{array}$		1	1	2	1	2	2	1	2		1	1	1	4	1	1		1	1
00 100	2	1	1	2	1	2	2	1	2		1	1	1	1	4	1		1	
101 000	2	1	2	1	1	2	1	2	2		1	1	1	1	4	1		1	1
$\begin{array}{ll}1 & 1 \\ 1 & 0 \\ 0 & 0\end{array}$	2	2	1	1	1	1	2	2	2		1	1	1	1	1	4		1	1
$\begin{array}{lll}0 & 0 \\ 0 & 0 & 1 \\ 0\end{array}$	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1		11	1
188010	1	1	1	1	1	1	1	1			1		1	1	1	1		11	1
10 10 10	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1		11	1

Table 6.

Remark. From these numerical results, the following conjectures seem to be true. For each matrix K corresponding to a topology and positive numbers i and j, define a multiset $\left\{m_{\lambda_{\mu}}\right\}$, where λ runs over all λ satisfying $\alpha(\lambda)=i$ and μ runs over all μ satisfying $\alpha(\mu)=j$.

Conjecture 1: This multiset $\left\{m_{\lambda \mu}\right\}$ is uniquely determined by $\alpha(K), i$ and j.
Conjecture 2: Let M and M^{\prime} be matrices constructed from matrices K and K^{\prime} respectively as above. If $\alpha(K)=\alpha\left(K^{\prime}\right)$, then M and M^{\prime} are isomorphic (that is $M^{\prime}={ }^{t} P M P$, with a permutation matrix P).

References

[1] Kim, K.H., Boolean matrix theory and its applications, Marcel Dekker, N.Y. and Basel 1982.
[2] Ochiai, S., On a topological invariant of finite topological spaces and enumerations, Tsukuba Jour. of Math. Vol. 16, No. 1 (1992), 63-74.
[3] Sharp, H. J. R., Quasi-orderings and Topologies on Finite Sets, Proc. Amer. Math. Soc., 17 (1966), 1344-1349.
[4] Stanley, R.P., Enumerative Combinatrics Vol. 1, Wadsworth, Monterey, Calif., 1986.

Department of Mathematics
Utsunomiya University
Mine-machi Utsunomiya 321
Japan

[^0]: Received December 12, 1991. Revised March 19, 1993.

