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ON THE NILPOTENCY INDICES OF THE RADICALS OF
GROUP ALGEBRAS OF P-GROUPS WHICH HAVE
CYCLIC SUBGROUPS OF INDEX P

By

Shigeo KosHITANI

Let K be a field with characteristic >0, G a finite group, KG the group algebra
of G over K and J(KG) the radical of KG. We are interested in relations between
ring-theoretical properties of AG and the structure of G. Particularly, in the pre-
sent paper we shall study the nilpotency index #G) of J(KG), which is the least
positive integer #G) such that J(KG)*¢ =0.

For a finite p-group P of order p", S. A. Jennings [3] showed that #(p—1)+1=
t(P)=p". Recently K. Motose and Y. Ninomiya [7] determined all p-groups P of
order p” such that #P) are the lower bound #(p—1)+1 or the upper bound p". In
fact they proved that for a p-group Pof order p” with r=1, {P)=wp—1)+1 if and
only if P is elementary abelian and that #(P)=p" if and only if P is cyclic. So in
this paper we shall investigate p-groups P of order p” such that {(P) are not neces-
sarily equal to the lower bound #(p»—1)+1 or the upper bound p". By the results
of K. Motose [6, Theorem], K. Motose and Y. Ninomiya [7, Theorem 1] it follows
that when P is an abelian p-group of order p” with r=2, the secondarily highest
nilpotency index #(P) of J(KP) is p"-'+p—1 and in this case P is not cyclic and
has a cyclic subgroup of index p. Our main result of §1 is a generalization of the
above fact. This can be stated as follows: For an arbitrary p-group P of order
p" with =2, the next conditions are equivalent;

(i) HP)=p*+p—-1.

(i) Pi<HP)<D.

(iii) P is not cyclic and has a cyclic subgroup of index p.

There is a problem that when the value of #G) is given, what type is G?
About this there are some solutions ([9], [7]). D.A.R. Wallace [9] determined all
finite groups G with the property #G)=2. Further, K. Motose and Y. Ninomiya
[7] determined all finite p-solvable groups G such that #G)=3. In connection with
this in §2 we shall have all p-groups P such that #(P)=4,5 or 6 by calculating
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HE) for all p-groups @ of orders at most p'.

1. p-Groups which have cyclic subgroups of index p
To begin with we shall study #P) for metacyclic p-groups P.
LemMA 1.1, Let P be a metacyclic p-group containing a cyclic normal subgroup

Q=<b> of order p* and with a cyclic factor group PIQ=<{aQ) (acP) of order p™.
Put x=a—1 and y=b—1 in KP. Then

yate Y Kazxbyl, for all  s,t=0.
ESEYES
osizs

Proor. We may assume n=1. There is a positive integer 2 such that
{1) a'ba=>b",
Since a?™eQ, hiP"=1 (mod p*), and so
(1 /=1 (mod p).

At first we shall prove this lemma for s=1 and #=1 (cf. the proof of [4, Lemmal).
Put (1)=0 if i<j. By (1) and ('),

yr=ab'—a—b+l=(a+1)( T G/ +y+D-s—y—-1
jz2

=zy+ ¥ $z+Dyl.
j=2

This shows
(2) yre Y, Kuxiyl.

i+722

05151
From (2), we can prove
(3) ylze Y Kz, for all ¢=0

i+j2t+1

0£ig1

by induction on £ Using (3) we can verify this lemma by induction on s.
Put J(KP)=KP for a p-group P.

THEOREM 1.2. Let P be a metacyclic p-group containing a cyclic normal sub-
group Q of order p* and with a cyclic factor group P|Q=<{aQ) (acP) of order p™
and k an integer such that |a|=p™™ % Put

m, if m=k

h=
Sk, if m>k

Then we have HP)=pm+"-r4ph—1.
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Proor. Put @=¢b>. We can assume ¢’ =p?*. Set x and y as in Lemma 1.1.

Case 1. m=Fk: We shall claim that C;={a!|0=s=p"—1,0=¢t=p"~1, s+t=1}
is a K-basis of J(KP)* by induction on i. Every geP can be written as g=¢%", 0=
sspm—1, 0=t=p"—1 and the number of elements of C, is p™**. Thus C, isa K-
basis of KP. By [3, Theorem 1.2], C, is a K-basis of J(KP). Assume i=2. Since
z, yeJ(KP), we have C;SJ(KP):. Since J(KP)'=J(KP)J(KP)-!, it suffices to prove
that if 0=<s,s’=p*—1, 0=¢,#/=p"—1, s+t=1 and s’ +# =i—1, then (25" )z¥y*") can
be written as a K-linear combination of C;. From Lemma 1.1,

(4) @y y)= B avpa’ Pyt aepek.
3

Consider each term of (4). Put s+ =up™+u’, where u,2’ are integers with 0=
w=pm—1. Since zP™=y?*, it is seen that z® Iyl V=¥ (gPmyyl V=gt yret I,
Since y?* =0, we can put up*+j' +¢'< pr—1. We also have w’' +(up*+j’' +1')=1 since
kzm and ¥ +j/=s +t. Hence (4) can be written as a K-linear combination of C;.
This shows J(KP)?™»"-2 is of K-dimension one, and so #{(P)=p"+p"—1.

Case 2. m>k: As in Case 1 we can show that C;={z5|0=s=pm"%-1,0=
= pt—1, s+i=i} is a K-basis of JIKP)!. Thus {(P)=p "~ +p*—1. This completes
the proof of Theorem 1.2.

Put that

D,=<¢a,bla*=b""=1,a ba=b""Y for rz

\
«

Q,=<a, bla*=b*""" a'=1,a ba=b"") for r=z=3,
S, ={a, blat=b""=1,a"ba=0""""  for rz4,

M.(p)=<a,bla?=b"""'=1,a"'ba=b>"""")
for 7’24 if p=2, and for ”23 if pzs,

M(p)={a,b,cla?=bP=c?=1,a"ba=bc,a 'ca=c,b~*cb=c) for p=3.

LemMma 1.3, Let P be a p-group of order p7. If Pis not cyclic and has a cyclic
subgroup of index p, {P)=p"'+p—1.

Proor. This follows from (2, I 14.9 Satz] and Theorem 1.2.
Next, we shall compute #(M(p)) whose calculation is very fundamental in cal-
culating #(P) for the other p-groups P.

LemMa 14. For p=3, {M(p)=4p—3.

Proor. Put P=M(p). As in Lemma 1.1 set that x=a¢—1, y=b—1 and z=
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¢—1 in KP. Note that x?=y?=2z?=0 and z,v,z¢/(KP). We have zx=uxz,zy=yz
and yx=xyz-+xy+yz+xz+z Hence we know

(5) zeJ (KP)*,
(6) yae ¥ Kxiyizk.

Using (6) we can show

(7) ytre > Katylz¥, for all =0
0Bz

by induction on ¢ as in the proof of (3). From (7) we obtain

(8) yate 3 Katyizb, for all s5,t=0

by induction on s. Next, we shall show that C;={x%y'2*|0=s,¢, u=p—1,s+t+2u=i}
is a K-basis of J(KP)* by induction on i. For i=0 or 1, it is easy as in the proof
of Theorem 1.2. Assume i=2. By (§), C;SJ(KP). As in the proof of Theorem
1.2 it is sufficient to prove that (z*ytz*)(x*y*z*’) can be written as a K-linear com-
bination of C; when 0=s, s, 6, ¢, u, 0’ =p—1,s+t+2u=1 and &'+ +24' =i—1. By
8),

(-k) (.L"“y‘z”)(w""y”z"’) — Z (ijljl;.;r.l)s i'yjr : /’Zlul ot ,
S R
0z

@i jineK. Since aP=y?=2zP=0, we can assume that 0=s+ 7'+, k' +u+uw =p—1L
We have (s+i')+(j/ +t)+ 2K +u+u')=i. Thus C; is a K-basis of J(KP), and so
UP)=(p—D+(p—1)+2(p—1)+1=4p—3.

LemMA 1.5. Let P be a p-group of ovder p" with r=1. If {P)>p"*, then P
has an element of order pr.

Proor. We use induction on 7. It is clear for »=1 or 2. Assume 7=3. When
P is abelian, it follows from [6, Theorem]. When P is nonabelian, by [2, I 14.10
Satz], P is one of the following types;

(i) p=2 and P=D, or @,

(ii) p=3 and P=M(p) or M(p).
By Lemma 1.4 and #P)>p* P&M(p). Thus the assertion is proved for r=3. As-
sume #=4. There is an element ceZ(P) of order p, where Z(P) is the center of
P. C={¢) is normal in P. By [10, Theorem 2.4] and {(P)>p""*, it follows that
HPJC)>p =2 Thus, from the hypothesis of induction, P/C has an element 6C (beP)
of order p-%. Now, suppose that P has no elements of order p™*. Hence B=<h)
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has order p™2 By [2, I 14.9 Satz], Z/C is one of the following types;
Case 1. P|C is an abelian group of type (p"2,p),
Case 2. p=2 and P/C=D,_,,
Case 3. p=2 and P/C=Q,_,,
Case 4. p=2, r=5 and P/C=5,-,,
Case 5. rz=5 if p=2, and P/C=M,.(p).

Case 1: Put P/C={aC,bC|(aC)? =(bC)?"*=C, abC=baCy» and A={a). Clearly
lal=p or p~. 1If ja|=p we may put a¢?=c¢. Since P/C is abelian, A is normal in
P. Thus P is a semi-direct product of A by B, and so #P)=p"2+p*—1 from
Theorem 1.2. This is a contradiction, and so |a|=p. If b~'a~'ba=1, P is an abelian
group of type (p™%, p,p). Hence, by [6, Theorem], {(P)=p""*4+2p—2, a contradiction.
This shows that o'« 'ba+1, and so we may put b~'e ‘'ba=c. Thus P={a,b,c|a?
=p? P =P=1,a ba=bc,a ‘ca=c,b 'cb=c). Just as in the proof of Lemma 1.4, it
is seen {(P)=(p—1)+(p 2 =1)+2(p—1)+1=p""2+3p—3, a contradiction.

Case 2: Put p=2, PIC={aC,bC|(aC)}*=(bC)* *=C, a 'baC = b'C) and A=<a).
We know |a{=2 or 4. Put z,y and z as in the proof of Lemma 1.4.

(i) Put |e}=2 and ba~'ba=1. Then P is a direct product of AB=D,_, and
a cyclic group of order 2. It follows from [6, Theorem] and Lemma 1.3 that # /)
=27*42, a contradiction.

(ii) Put |a}=4 and be~'ba=1. Since @®=c, P=<{a,bla*=0"""=1,a 'ba=0"").
Thus, by Theorem 1.2, #(P)=27-*+3. This is a contradiction.

(iii) Put |a|=2 and ba—'ba+1. Then ba~‘ba=c. So P={a,b,cla*=0"""=c'=
1, e ba=b""c,a ‘ca=c, b 'cb=c). We have zx=axz and zy=yz. Set f=2"-2—1. Since
f=1 (mod 2), y.r=(x+1)(y+l)f(z+1)-—o:«y-—l:(x-}-l){Z{,Q(Jf)yj}(z-i-l)—l—myz-&-my%—yz
+xz+z Hence we have (5) and (6), and so we have (7) and
(8) yixte > Kaztyiz®, for all t=z0 and s=0,1.

Ser Sl
As in the proof of Lemma 1.4, #{(P)=1+(2""2—1)+2+1=2""%43, a contradiction.

(iv) Put |a|=4 and ba~*ba++1. Then a*=c and ba~'ba=c. Hence P=<{a,b,c|a*
=¢, b P=c2=1, 0 ba=b""c,a"ca=c, b~'ch=c). Note x*=2+#0 and y* *=22=0. As
(iii) we obtain (5) and (6), and so (7) and (8’) hold. We shall show that C;={z%y'2"|
0=s5,u=<1,0st=s2"2—1,s+t+2u=i} is a K-basis of J(KP)* by induction on @ It is
clear for i=0 or 1. Assume i=2. By (5), C;S/(KP)'. As usual it suffices to show
that (z%y'z%)(zs'y*'2*") can be written as a K-linear combination of C; if 0=s,s’,u, «’
=1,0=4¢=2""2—1,s+f+2u=1 and s’ 44 +2u'=i—1. From (8), we have (*). Con-
sider each term of (*). Put s+i'=2»+v’, where »,»’ are integers with 0=v'=1.
Since a?=z, sty gk vl = guiyilctigork/vwnl We may assume j 4/ =27 —~1 and
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v+R +u+u' =1 since y¥ F=z:=0. We also have v/ +(j +)+2v+k +u-+u)=i
This implies that C; is a K-basis of J(KP)’, and so {(P)=1+(2"*-1)+24+1=2""243,
a contradiction.

Case 3: Put p=2, PIC=<{aC, bCl{(aC)*=(bC)*" %, (aC)*=C, a~baC=>b"'C) and A=
{a>. We can put ¢*=02""%% for some i, and so a'=1. This implies |e|=4. Put
2,y and z as in the proof of Lemma 1.4.

(i) Put ba~'ba=1 and @*=0>"". Then P is a direct product of AB=Q,_, and
a cyclic group of order 2. Thus we have a contradiction as in (i) of Case 2.

(ii) Put ba~'ba=1 and @?=b*"°. Then AnB=1. Hence P=ABR={a,bla'=
0 *=1,a " ba=5b"", and so we have a contradiction as in (ii) of Case 2.

(ili) Put dba~‘ba+1 and a*=0*"". Since ba~'ba=c, P={a,b,cla*=b*""" 0" " =¢?
=1,a"ba=b"c,a ‘ca=c,b 'cb=c). As in (iii) of Case 2 we have (5), (6), (7) and
(8"). Note 0=a2=y*""" By 2-*z2, it is seen that C;={z’y'z*|0=s,u=1,0=f5272
—1,s+t+2u=i} is a K-basis of J(KP) as in (iv) of Case 2. Thus #{P)=2""*+3, a
contradiction.

(iv) Put ba'ba + 1 and «?=0*"°. Hence ba 'ba=c and a®>=b*""c. Thus P=
(@, b, c|l@=0""c,a' =" =¢*=1,a ba=b""c,a ca=c,b'chb=c). We have x?=y>""
(z++1)+2z This implies (5) and

(9) zie Kyiz* .
Jjtakzz

As in (iii) of Case 2 we also have (6), (7) and (8’). Note x*=0. By (9), as in (iv)
of Case 2, we know that C;={x%'2*[0=s, ©=1,0=¢=2"2—1, s+ +2u =i} is a K-basis
of J(KP)i and so we have a contradiction.

Case 4: As in Case 2 we have a contradiction.

Case 5: Put r=5 if p=2, and put P/C=<{aC, bC|(aC)?=(C)*" *=C,a 'baC=
b 7Cy and A={a). Set x,y and z as in the proof of Lemma 1.4. Put f=p-*+1,
and so f=1 (mod p). :

(1) Assume la|=p and b~7a ba=1. So P is a direct product of AB=M, ,(p)
and a cyclic group of order p, and so we have a contradiction by [6, Theorem] and
Lemma L1.3.

(ii) Assume |a|=p% and 0~/a~'ba=1. We may put a?=c. So P={a,bla?=
P =1, a ba=0"), hence {P)=p ~t+p*~1, by Theorem 1.2. This is a contradic-
tion.

(iii) Assume |a|=p and b7ea'ba+1. We can put b~7a '‘ba=c. Hence P=
¢a, b, cla?=b""=cP=1,a"ba=bc,a'ca = ¢,b-‘cb=c). Since f=1 (mod p), as (iii)
of Case 2, we have (5), (6), (7) and (8). As in the proof of Lemma 1.4, C;={x*y‘z"|
0=<s,u=zp—1,0=t=p *—1,s+t+2u=i} is a K-basis of J(KP), and so #{(P)=(p—1)
+(p 2 =D+2p—-1)+1=p2+3p—3, a contradiction.



On the Nilpotency Indices of the Radicals 143

(iv) Assume |a|=p? and b~7a~'ba+1. We may put a’=c. Since 1#b~7a ‘baeC,
b-fa-ba=c* for some % with 1=h=p—1. Thus P={q, b, claP=c, b *=cP=1,a 'ba

=bf¢h, a~rca=c, b 'cb=c). From z?=z,

(10) zeJ(KP)P.
Since =1 (mod p), yr= X auxy’z*+hz,  apueK.
i+j+k22
0=1£1
Hence
(11) yee 3 Kaiyizk.
it+jtpkz2
0sist

Using this, as in the proof of Lemma 1.1, by induction we have

(12) yae 5 Kaiylz®, for all 120,
i+ jHphzi+l
0121
(13) y'ae > Kziyiz*, for all s,1=0.
i+j§£?§?+z

Note 0#xP=z It follows from (10) and (13) that C;={z"y'z*{0=s, u=p—1,0=i=p"*
—1,s+t+pu=i} is a K-basis of J(KPY, and so {(P)=(p—-1)+(p*=1)+p(p—-1)+1
=pr-24+p*—1, a contradiction. This completes the proof of Lemma 1.5.

TuEOREM 1.6. Let P be a p-group of ovder p*. If r=2, then the next four
conditions (1)-(iv) are equivalent.

(i) {P)=p~'+p—1

(ii) pri<e(P)<p.

(iii) P is not cyclic and has a cyclic subgroup of index p.

(iv) P is one of the following types,

(@) P is an abelian group of type (p™%, D),

(b) p=2,r=3 and P=D; or @,

() p=2,r=4 and P=D,,Q,,S, or M,2),

(d) p=3,7=3 and P=M(p).

Proor. (i)=(ii) is clear. (ii)=p(iii) is obtained from [7, Theorem 1] and Lemma
1.5. (ii)=(iv) follows from [2, I 14.9 Satz]. (iv)=>(i) is easy from Lemma 1.3.

CoroLLARY 1.7. Let G be a finite grouwp with a p-Sylow subgroup P. If G is
a p-solvable group of p-length 1 and P has order P~ with r=2, then the next four
conditions are equivalent.

(i) HG)=p'+p—1.

(ii) pri<yG)<p.
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(ii1) Same as (iii) of Theorem 1.6.
(iv) Same as (iv) of Theorem 1.6.

Proor. It follows from [5, Theorems 2 and 7] (or [1, Theorem 2]) and [8, Lemma
2] that #G)=¢t(P). Thus this corollary is clear by Theorem 1.6.

Remark 1. For a p-solvable group G of p-length =2, the same statement as
Corollary 1.7 does not necessarily hold. Let G be the symmetric group of degree
4 and p=2. Then G is a 2-solvable group of 2-length 2 of order 24 with a dihedral
2-Sylow subgroup of order 8 On the other hand, by [7, Proposition], {(G)=422+
2-1.

2. p-Groups P with {(P)=4, 5 or 6

In this section, firstly, we shall compute #(P) for all p-groups P of orders at
most p*. Using this we shall have all p-groups P such that #2)=4, 5 or 6. All p-
groups of order p* are found in [2, I 14.10 Satz] and all p-groups of order p! are
found in [2, III 12.6 Satz] and [2, III §12 Aufgaben (29), (30)].

THeEOREM 2.1. Let P be a nonabelian p-group of ovder p*. Then we have the
followings.

(1) 7=8,p=3. There are two nonisomorphic nonabelian groups of order p*.

(1) If P=My(p),t(P)=p*+p—1.

(ii) If P=M(p),H(P)=4p-3.

(1) r=3,p=2. There are two nonisomorphic nonabelian groups of order 2°.

(1)-(1) If P=D; or Qs, t{(P)=5.

(1) »=4,p=5. There are ten nonisomorphic nonabelian groups of orvder p'.

(1) If P=M(p),{(P)=p*+p—1.

(i) If P is a divect product of Ms(p) and a cyclic group of ovder p,HP)=
PPH2p—2.

(iii) If Pis a divect product of M(p) and @ cyclic group of order p, {(P)=
5p—4.

(iv) If P={ag,blaP’=br*=1,a ba=b"+'), {P)=2p*—1.

(v) If P={a,b,cla?P=b=cP=1,a""ba=bc?, a~‘ca=c,b-'ch=c), t{P)=p*+2p—2.

(vi) If P={La,b,cla®=bP=c"=1,aba=>b,a ‘ca=bc, b-cb=c), t{P)=p*+3p—3.

(vii) If P={a,b,cla?=bP=c"=1,aba=bc?, a~‘ca = bc,b~'cb = ¢, {(P)=p*+3p
-3.

(viii) If P=<{a,b,cla?= bP=c?*=1,a %ba= be’?, a~‘ca=bc, b-"cb=c), where f is
a quadratic nonresidue modulo p, t(P)=p*+3p—3,
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(ix) If P={a,b,c,d|aP=bP=c?=dP=1,b"cb=c,c'dc=d,b'db=d,a*ba=0b,a™!
ca=bc,a da=cd), {(P)=Tp—6.

(x) If P=£a,b,c,da?=0,bP=cP=dP=1,b"'ch=c,c 'dc=d, b 'db=d, a *ca=bc,
a~‘da=cd), {(P)=p*+3p—3.

(IV) 7=4,p=3. There are ten nonisomorphic nonabelian groups of order 3.

(1) If P={a,b, cla*=bb=c*=1,a ba=bc,a ‘ca=0b, b~ chb=c),#(P)=15.

(ii)~(x) For the other nine groups P of order 3', we can know t(P) by putting
p=3 in (III), where (ix) of (II1) and (x) of (III) are isomorphic.

(V) r=4,p=2. There are nine nonisomorphic nonabelian groups of order 2*.

(i)~(iv) If P=D,, Q4 S: or M,(2), {P)=9.

(v) If Pis a direct product of Ds and a cvclic group of order 2, t(P)=6.

(vi) If Pis a direct product of Qs and a cyclic group of order 2, t(P)=6.

(vil) If P=(a,blat=b=1,a ba=b%),{P)=".

(viii) If P={a,b,cla*=b"=c'=1,a ba=bc* a ‘ca=c, b-ch=c), {(L)=6.

(ix) If P=<a,b,cla*=b=c*=1,aba=b,a 'ca=bc,b~'cb=c), {(P)="T.

Proor. Put z=a—1,y=b—1,2=c—1 and w=d—1 in KP if they exist.
(I) (@) and (ii) are verified by Theorem 1.6 and Lemma 1.4, respectively.
(II) Clear from Theorem 1.6.
(IIT) (i) Trivial by Theorem L.6.
(ii)-(iii) These follow from [6, Theorem] and (I).
(iv) Easy from Theorem 1.2.
(v) Since yr=zyz?+xzP+yz?+2?+2y, we have
(14) yxre 3 Kxiylz*.

itjrk22
0sisl

Using this, as in the proof of Lemma 1.1, we know

(15) y'ze 3 Kuxiyizk, for all 120,
i j+keSt+1
0sis1

(16) ylxte Y, KaxiyizF, for all s,t=0.

By (16), it is seen that Ci={a*y'z*|0=s,¢=p—1,0=su=<p*—1,s+¢+u=i} is a K-basis
of J(KP). Hence H{P)=p*+2p—2.

(vi) As in Lemma 1.4, #{(P)=(p—~1)+2(p~1)+(p*~1)+1=p*+3p—3.

(vil) Since yz=zyz?+22?+yzP+ 2 +zy,
(17) yre Y, Kaxiyiz*,

+2j+k23
0sis1

By induction it follows from (17) that
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(18) ylxe x Kxiylz®, for all ¢=0.

i+2jtk22t+1
0=is1

On the other hand, since zz=zyz+zz+yz+2y+y, we have

(19) vel (KPR,
(20) zze Y Kziyizt.
t42j+k22
0=ist

Using (20), as (18), it is seen that

(21 Zhxe ST Kriylzk, for all u=0.
creltig

From (21) and (18), we can show

(22) yhete > Kuaiyizk, for all s,t=0
i+2€g¢§g+2l

by induction on s. Similarly, from (21) and (18),

(23) z*rie N Kaxiyizk, for all s,u=0.
i+2j+hk2s+u
sist

Now, we shall prove that C,={z%y'2*|0=s,t=p—1,0su=p*—1,s+2t+u=i} is a K-
basis of J(KP)' by induction on i. Put iz2. By (19), GESJ(KP).
sufficient to show that (x*y*z%)(x*'y*'2*") can be written as a K-linear combination of
C; if 0=s,s,t,¢/=<p—1, 0=su, v’ =p*—1, s+2t+u=1 and s’ +2¢'+u =i—1.
(23) and (22) we can show this. Hence #(P)=(p—1)+2(p—1)+(p*—1)+1=p*+3p—3.

(viil) We can put 2=f=p—1. Hence we have (17). Thus, just as in (vii), we

obtain #(P)=p*+3p—3.
(ix) It is clear that

(24) zy=yz,wz=zw,wy=yw and yr=zy.
Since
(25) zx=xyz+xz+yz+zy+y,

yeJ(KP)%. Similarly, since

(26) wr=xzw+zw-+zw+xrz+z,
(27 zef (KP)*.

From (25), (27) and ye/(KP)? we have

(28) yeJ (KP).

It follows from (25) and (26) that

As usual it is
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(29) zze 3, Kuriyigk
i+37+2k23
05is1

and

(30) wzxe ), Kaizkgr
i+2k+hz2 ’
vsis1

respectively. From (24) and (29),

(31 Zze Kaiyizk  f =
) i+3j3-§§gzu+1 » tor all #=0.
151

Similarly, from (24) and (30), we have

(32) wbze Y, Kxizbw", for all »=0.
i+2k+hzv+1 -
: 0sig)

By (31) and (24),

(33) e 2 Kz'yizF, for all s,u=0.
i+3j;$2€:§z:+2"

By (32), (31) and (24), we also have

(34) wizte x Kriyizkw®, for all s,0=0.
i+3j+2k+hzstr
05iss
As usual, by (24), (27), (28), (33) and (34), we can show that C;={x%y'z*w"|0=s, 1, u,
vsp—1,s+3t+2u+v=i} is a K-basis of J(KP). So #(P)=(p—1)+3(p—1)+2(p—1)
+(p—-1)+1=Tp—6.
(x) Since zP=y, it follows

(28) ve] (KP)®.

Using (28') instead of (28), as in (ix), we can show that Ci={z*y‘z*u"|0=<s,t, 4,05
p—1,s+pt+2u+v=i} is a K-basis of J(KP). Thus {P)=(p—1)+p(p—1)+2(p~-1)
+{(p—1)+1=p*+3p—3.

(IV) () Ci={z*y'z*|0=s, us2, 0=¢=8, s+¢+2u=1i} is a K-basis of J(KP)" Hence
tHP)=15.

(V) (i)~(iv) are easy by Theorem 1.6. (v) and (vi) are obtained from [6, Theo-
rem] and (II). (vii), (viii) and (ix) follow from (iv) of (III), (v) of (III) and (vi) of
(IIT), respectively.

COROLLARY 2.2. For a p-group P, we have the followings.
(1) HP)=4 if and only if P is one of the following types;
(1) p=2 and P is a cyclic group of order 2%,
(ii) p=2 and P is an elementary abeliar. group of order 2°.
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(II) KP)=5 if and only if P is one of the following types;
(1) p=2 and P is an abelian group of type (2°,2),
(il) p=2 and P=D,,
(iii) p=2 and P=Qs,
(iv) p=2 and P is an elementary abelian group of ovder 2°,
(v) p=3 and P is an elementary abelian group of ovder 3?,
(vi) p=>5 and P is a cyclic group of order 5.
(II) #(P)=6 if and only if P is one of the following types;
(1) p=2 and P is an abelian group of type (2%,2,2),
(ii) p=2 and P is a direct product of Ds; and a cyclic group of order 2,
(iii) p=2 and P is a direct product of Qs and a cyclic group of order 2,
(iv) p=2 and P={a,b,cla*=b=c*=1,a 'ba=bc?, a~'ca=c,b-'chb=c),

(v) p=2 and P is an elementary abelian group of ovder 2°.

Proor. The assertions are proved by [3, Theorem 3.7] (cf. [10, Lemma 2.3]),

[7, Theorem 1], [6, Theorem] and Theorem 2.1.

REMARK 2. As noting in the proof of Corollary 1.7 it is seen that {(G)=#P)

for a p-solvable group G of p-length 1 with a p-Sylow subgroup P. Thus, by Corol-
lary 2.2, we can have all p-solvable groups G of p-length 1 with #G)=4,5 or 6.
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