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ORTHOCOMPACTNESS OF INVERSE LIMITS

AND PRODUCTS

By

Yasushi Aoki

Introduction. A topological space is said to be orthocompact if every open

cover has an interior-preserving open refinement. B. M. Scott and H. J.K. Junnila

have investigated the finiteproduct theory for orthocompactness and have shown

in [4] and [11] that several known theorems concerning normality of product

spaces with compact or metric factors remain true if one replaces "paracompact"

by "metacompact" and "normal" by "orthocompact" in the theorems. Scott has

also proved in [12] that a finite product of locally compact linearly ordered

topological space is orthocompact if and only if it is normal. In this paper we

study the behavior of orthocompactness of inverse limits and infinitely many

procuct spaces.

In Section 1 we present some definitionsand preliminary lemmas which are

used in later sections. Inverse systems are considered in Section 2. Let

{Xa> fap] be an inverse system over a directed set A and let X be the inverse

limit of this system. For each a^A, let fa : X-^Xa be the projection map. First

we deal with the case that X is |A |-paracompact and all /a's are pseudo-open

maps. Next we deal with the case that X is ＼A＼-metacompact and all /a's are

closed maps. In both cases we will prove that X is orthocompact if all Xa's are

orthocompact. The firstcase is used in Section 3 to investigate the orthocompact-

ness of product spaces. Metacompactness as well as normality and paracom-

pactness of the limit space X is also considered in this section.

In Section 3 we will consider product spaces. A. H. Stone [14] has proved

that the product of uncountably many copies of the countable discrete space is

not normal. We will show that this space is not orthocompact. The main

theorem of this section is that a product of arbitrarilymany ordinals is ortho-

compact if and only if it is normal. This is a partial generalization of Scott's

result [12] which is stated above.

The last section contains some examples.
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1. Preliminaries.

In this paper n, X and k will denote cardinal numbers and a> the firstinfinite

ordinal. As the usual convention, an ordinal is the set of smaller ordinals and

a cardinal is an initialordinal. Whenever we regard an ordinal as a topological

space, it will be assumed to have the order topology. The space kx is the

Tychonoff product of X copies of the space tc. The cofinality of an ordinal a

will be denoted by cf(a), and the cardinality of a set A will be denoted by ＼A＼.

Throughout this paper, no separation axioms are assumed unless otherwise

stated, and all maps are continuous. For a subset A of a space X, cl A (resp.

int A) denotes the closure (resp. interior) of A in X. The word "iff" reads "if

and only if".

Definition 1.1 (Junnila [5]). Let J be a family of subsets of a space X.

The family Jl is said to be interior-preserving (resp. closure-preserving) if we

havemt(r＼{A＼A<EJl'}=r＼{intA＼A(Ea'}(resp.clOJ{A＼AeJl'}=:＼J{clA＼A(=Jl'})

for every subfamily Jl' of Jl.

Definition 1.2. A space X is 1-orthocompact {X-metacompact, 1-paracompact,

resp.) if every open cover of X of cardinality^ has an interior-preserving(point-

finite,locally finite,resp.) open refinement. (In this paper, a refinement always

means a cover.)

Of course, a space is an orthocompact (metacompact, paracompact, resp.)

space iffit is /f-orthocompact (^-metacompact, ^-paracompact, resp.) for every 2.

In the case that we deal with ^-orthocompact spaces, /l-metacompact spaces,

etc., the following lemma is very useful, and we will use it without referring

explicitly. The proof of it is clear.

Lemma 1.3. A space X is 1-orthocompact {X-metacompact, 1-paracompact,

resp.) iff for every open cover CU={U^＼^S} of X with ＼S＼^1, there is an

interior-preserving {point-finite,locallyfinite,resp.) open cover cV={Vz＼^B) of

X such that VtQU? for each $<=B.

Definition 1.4 (Scott [11]). A space X is o(l)-orthocompact (o(l)-metacom-

pact, a(X)-paracompact, resp.)if every open cover of X has a refinement of type

＼J{c＼?r＼y<=r}such that ＼F＼^X and c[?r is an interior-preserving (point-finite,

locally finite,resp.) family of open subsets of X for every j"ef.

Definition 1.5. A space X is a(X)-normal if for every open cover {Uu Uz}

of X, there is an open cover {Vir＼f<=r,i=l, 2} of X such that |Fj^^ and
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cl VirQUi for every yeT and i=l, 2.

Proposition 1.6 (Scott [11]). Let X be a X-metacompact and o(X)-ortho-

compact (resp. a(X)-metacompact) space, then X is orthocompact (resp. metaco?npact).

With a similar method of the proof of Proposition 1.6,we have the following

proposition.

Proposition 1.7. Let X be a A-paracornpact and a{X)-normal (resp. a(X)-

paracompact) space, then X is normal (resp. paracompact).

Definition 1.8 ([3]). A space X is 1-bounded if for each subset A<HkX with

＼A＼^X, there is a compact set CQX such that A^C.

Proposition 1.9 ([3]). Every A-bounded space is X-compact.

At the present, a space X Is X-cornpactiff each open cover of X of cardinality

<?. has a finitesubcover.

Proposition 1.10 ([3]). X-boundness is productive; that is, the product of

arbitrarily many X-bounded spaces is also A-bounded.

Proposition 1.11. Let a be an ordinal {with the order topology), and let X

be an infinitecardinal. Then the following are equivalent.

(1) a is X-bounded.

(2) a is 2-compact.

(3) cf(a)>X or cf(a)^l.

The proof of Proposition 1.11 is obvious. More generally, the equivalence of

(1) and (2) for a linearly ordered topological space is proved in [3].

Definition 1.12. A map /: Z―> Y is called pseudo-open if for each point

jeF and a neighborhood U of f~1(y),f{U) is a neighborhood of y.

It Is clear that pseudo-open maps are onto maps and both open onto maps

and closed onto maos are pseudo-open.

2. Inverse limits.

In this section we consider inverse systems and orthocompactness as well as

metacompactness, normality and paracompactness of theirlimits. There are two

cases that we consider here. One is an inverse system with pseudo-open pro-
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jections from its limit space and the other is an inverse system with closed pro-

jections from its limit space.

First of all, the following propositions are useful to investigate inverse

systems over a directed set A whose limit space are |A|-paracompact or ＼A＼-

metacompact. The first proposition is due to Mack [7], and the second is due

to Junnila [5]. Recall that a cover is directed if it is directed by set inclusion.

Proposition 2.1. Let 1 be an infinite cardinal. A space X is ＼-paracompact

iff for each directed open cover HJ of X with ＼cU＼f*X,there exists a locally finite

open cover ^ of X such that {cl V＼V&cv} refines <U.

Proposition 2.2. Let 1/ be an interior-preserving {especially,point-finite)

open cover of a space X. Then there exists a closure-preserving closed cover

={E{x)＼x^X) of X such that x^E(x)Q$t(x, 17) for every x^X, where

St(x, HJ)=yJ{U^cU＼x^U}.

Now we state and prove our theorems.

Lemma 2.3. Let {Xa, fap} be an inverse system over a directed set A, and

let X be the inverse limit of the system. Assume that all projections fa: X-^Xa

are pseudo-open maps and X is ＼A＼-paracompact,then we have the following.

(1) // all Xa's are orthocompact spaces, then X is a{＼A＼)-orthocompact.

(2) // all Xa's are metacompact spaces, then X is a{＼A＼)-metacompact.

(3) // all Xa's are normal spaces, then X is a(＼A＼)-normal.

(4) // all Xa's are paracompact spaces, then X is a(＼A＼)-paracompact.

Proof. If A is finite,then the theorem is obvious. Hence we can assume

that A is infinite. Let Iv4|―1

First of all,for each open subset U of X and a^A, let Ga{U) denote the

largest open subset of Xa such that faKGa(U))QU. Then it is easy to see that

(a) Ga(U)QGa(V) whenever U and V are open subsets of X such that

u QV.

If a^p, then fi＼fal{Ga{U)))^{f^f?)-＼Ga{U))^fa＼Ga{U))QU, and hence

fa＼i.Ga{U))^G^U) and fa＼Ga{U))Qfj＼G^{U)). Moreover, for each x^U, we

can take a^A and an open subset V of Xa such that x^faKV)QU. Then

VQGa(U), and hence x^faKGa(U)). Thus, for every open subset U of X, we

have the following.

(b) If a, ^A and a^/3, then fa＼Ga{U))Qfj＼G^U)).

(c) U {/;i(Gtt(£/))Iaei4} = £/.
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Now we prove (1)―(4) simultaneously.

Let cU={Ue＼t-^B} be an open cover of X. (In the case of (3), assume that

＼S＼=2.) For each aeA let F≪=W{Ga(£/e)|£e=5}. They by virtue of (b) and

(c), cV={fa1(Va)＼a^A} is a directed open cover of X. Since X is >}-paracompact

it follows from Proposition 2.1 that there is a locally finiteopen cover W of X

such that {clWlW^W} refines <V. For each a =A, let Wa=V{WeW＼

cl WQfa^Va)}. Since W is as above, it is easy to see the following.

(d) Wa is an open subset of X such that cl WaQfa＼Va).

(e) If a, pziA and a^/3, then WaQWp.

(f) W{^a|ae>l}=X

For each xel, we can take aeA such that xePFa. By virtue of (c),

Wa=V{fzKGf)(Wa))＼pe=A}. Hence x^fjKG^Wa)) for some 0eA Let

T^A, J>a, /3. Then by virtue of (a),(b) and (e), x^fj＼G^Wa))^fr＼GT(Wa))

Qfr＼Gr(Wr)). Thus we have

(g) V{f?(Ga(Wa))＼a<=A}=X.

Moreover we can see that

(h) c＼Ga(Wa)QVa for every ae=A

In fact, for each y<=Xa＼Va, f*Ky)^faKXa＼Va)=X＼f≪KVa)QX＼cl Wa. Since /,

is pseudo-open, fa(X＼cl Wa) is a neighborhood of y. It is easy to see that

fa(X＼clWa)r＼Ga(Wa)=<f>. Hence y^Xa＼c＼Ga(Wa), and we have c＼Ga(Wa)QVa.

In the case of (1),(2) or (4),by virtue of (h), there is an interior-preserving

(point-finite,locally finite,resp.) family {Wa^＼^E} of open subsets of Xa such

that clGa(Wa)QU{WaS＼^S} and Wa?QGa(Us) for every fefl, and every

aeA Then the following are easily verified.

(i) {fal{Was)＼^S} is an interior-preserving(point-finite,locally finite,resp.)

family of open subsets of X for each a£A

(j) fa＼Wai)^Ue for every £e.B and ≪gA

(k) ＼J{fz＼Wa£)＼ZeB,aeA}=X.

Checking up conditions in Definition 1.4 we have shown that I is a a(X)-

orthocompact (o-(/0-metacompact, <r(^)-paracompact, resp.) space, by virtue of (i),

(j) and (k).

In the case of (3),let 3={!-1, £2}. For each a^A, since Xa is normal, we

can find open subsets WaSl and Wa^2 of Xa such that cl Ga(Wa)＼Ga(U$2)QWa^1

gel WaSlQGa(U?1) and clGa(Wa)＼WaSlQWahQcl Wa^Ga{UQ. Then it is easy

to see that cl Ga(Wa)QWa^WaSr

Moreover, for each x(Ec＼f*KWaSl), fa(x)efa(clfu＼Wah))£c＼ (UfaKW^)))

gel Wa^QGa(Uh), and hence we have x^faKGa(U?1)^U?1. Thus c＼faKWaSl)

QU?1. Similarly, c＼fal(WaS2)QUe2. Hence the famiy {fa1(WaSi)＼a^A,i=l,2}
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satisfies the conditions in Definition 1.5. Thus X is a ff(/)-normal space. The

proof is complete.

From Propositions 1.6,1.7 and Lemma 2.3,we get

Theorem 2.4. Under the same conditions as in Lemma 2.3, we have the

following.

(1) // all Xa's are orthocompact spaces, then so is X.

(2) // all Xa's are metacompact spaces, then so is X.

(3) // all Xa's are normal spaces, then so is X.

(4) If all Xn's are taracomtact spaces, then so is X.

Corollary 2.5. Let {ATt|ie/} be a family of spaces,and let X=II{Xi＼i&I}

be ＼I＼-paracompact. Then X is orthocompact (metacompact, normal, paracompact,

resp.)ifffor each finite subset I' of I, U{Xi＼i^I'} is orthocompact {metacompact,

normal, taracomtact. rest).).

Proof. If / is finite,there is nothing to prove. Hence we can assume that

/ is infinite. Let A be the set of all finitesubsets of /, then A is a directed

set by set inclusion. For each ae.4, let Ya=IJ {Xi＼i^a}. And for each pair

a, fi^A with ≪£/?,let fap'. Yp-*Ya be the natural projection map, that is,

fap((xi)iep)=(Xi)iea for every (i-^^e^. Then it is well-known that [Ya, fap}

is an inverse system over A and the limit of this system is homeomorphic to X,

moreover the projection maps from the limit space can be viewed as the natural

projection maps from X, hence they are open onto, a fortiori pseudo-open. Since

|y4|= |/|, we can apply Theorem 2.4 to obtain Corollary 2.5. The proof is

cnmnlete.

Corollary 2.6. Let {Xn, fnm} be an inverse sequence over w, and let X be

the inverse limit of the sequence. Suppose all fnm's are open onto maps and X

is countably paracompact (that is, co-paracompact). Then the statements of Theorem

9.A are nls.ntrue.

Proof. If all fnm's are open onto maps, then all projections fn:X~*Xn are

also open onto maps. Hence by virtue of Theorem 2.4, the proof is complete.

Remark. The statements (3) and (4) of Corollary 2.6 are proved in Nagami

ran.

Lemma 2.7. Let {Xa, fa9} he an inverse system over a directed set A, and
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let X be the inverse limit of the system. Assume that all projections fa : X-*Xa

are closed maps and X is ＼A＼-metacompact, then we have the following.

(1) If all Xa's are orthocompact spaces, then X is a{＼A＼)-orthocompact.

(2) // all Xa's are metacompact spaces, then X is a(＼A＼)-metacompact.

(3) If all Xa's are normal spaces, then X is a(＼A＼)-normal.

(4) // all Xa's are paracompact spaces, then X is a(＼A＼)-paracompact.

Proof. If A is finite, then the theorem is obvious. Hence we can assume

that A is infinite. Let | ^41=^. We prove (1)―(4) simultaneously. The proof is

quite similar to that of Lemma 2.3, hence we use the same notations that are

defined in the proof of Lemma 2.3.

Let cU={Ue＼!;^3} be an open cover of X. (In the case of (3), assume that

|<5"|=2.) Then, as in the proof proof of Lemma 2.3, {fal{.Va)＼a<E.A} is a directed

open cover of X, where Va ―VJ{Ga{Ui)＼^3} for every ≪eA Since X is X-

metacompact, there is a point-finite open cover cW={Wa＼a<^A} of X such that

WaQf^iVa) for every aeA By virtue of Proposition 2.2, we can find a closure-

preserving closed cover {E(x)＼x^X} such that

(a) x^E(x)QSt(x, <W) for every igI

Let 0 be the set of all finite subsets of A, then it is clear that

(b) ＼0＼=X.

Since A is a directed set, for each Se#, we can take a{B)^A such that at^a(B)

for every aeJ3. Moreover, for each J3e(p, let E{B) denote the union of all

E(x) such that {a<=A＼x^Wa}=B, then

(c) {E{B)＼B(E§} is a closed cover of X, and

(d) E(B)£f≪MVa<B>)-

Indeed, (c) is obvious since W is a point-finite cover of X and by virtue of (a),

and (d) is implied by the following relations:

E(B)GV{Wa＼a^B}Q{f;KVa)＼a EB}Qf≪lw(VatB>).

By hypothesis, fatB> is a closed map. Hence faa≫(E(B)) is closed in Xa(,Bi,

and {Ga(B)(£/f)|£<=£■}is a family of open subsets of Xa(B> which covers /aCB)(E(B)),

by virtue of (d). Thus, as in the proof of Lemma 2.3, for each B<^@, there exists

an interior-preserving (point-finite, ―, locally finite, resp.) family {WB%＼^3} of

open subsets of XalB} such that facB>(E(B))c^J{Wb*＼£gB} and WBSQGaCBAU^

for every £ejj. (In the above and below, "―" reads "without any property".)

Moreover, in the case of (3), we can take WBi such that cl WB^GacB)(Us). Then

it is easy to see the following.

(e) {fals}(WB^)＼^3} is an interior-preserving (point-finite, ―, locally finite,

resp.) family of open subsets of X.
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(f) f*U(Wm)QUt for every ^S.

(g) V{f*lB,{WBe)＼S<=S)=X.

Moreover, in the case of (3), we have

(f) clf^lB)(WBimU$ for every £eS.

In fact, since clWB^GaCB}(Us), we have /aCB)(cl/≪/s)(WBS))gel (faiBi(f≪lm(WBe)))

Qc＼WBSQGa(m(Uz). Hence cl/^C^^g/^C^^C^g^.

By virtue of (b), (e), (f) and (g) (or (b), (e), (f') and (g)), 'U has an appropriate

open refinement mentioned in Definition 1.4 (or Definition 1.5). Hence the proof

is complete.

From Propositions1.6 and 1.7 and Lemma 2.7,we get

Corollary 2.8(Katuta [6]). Let {Xa, fa^＼be an inverse system over a

directed set A, and let X be the inverselimit of the system. Assume thatall

projectionsfa: X->Xa are closedmaps and X is ＼A＼-paracompact,then we have

the following.

(a) // all Xa's are normal spaces,then so is X.

(b) // all Xa's are paracompact spaces,then so is X.

Theorem 2.9. Let {Xa, fap＼ be an inverse system over a directed set A, and

let X be the inverse limit of the system. Assume that all projections fa : X->Xa

are closed maps and X is ＼A＼-metacompact, then we have the following.

(a) // all Xa's are orthocompact spaces, then so is X.

(b) // all Xa's are metacompact spaces, then so is X.

Remark. (1) Since normality and paracompactness are closed hereditary

properties, in Corollary 2.8, we can assume that ail projections are closed onto

maps. Thus Corollary 2.8 is also from Theorem 2.4,since closed onto maps are

pseudo-open.

(2) Note that Theorem 2.9 is of the form which is obtained from Corollary

2.8 by replacing "paracompact" by "metacompact" and "normal" by "orthocompact".

3. Products.

In thissectionwe investigatethe product theory for orthocompactness.

Theorem 3.1. For a space X, the following are equivalent.

(1) X is X-metacompact.

(2) Jx Y is X-metacompactfor every compact space Y of weight at most X.

(3) Xx Y is X-orthocompactfor every compact space Y of weight at most X.
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(4) Xxlx is A-orthocompact, where I is the closed unit interval.

(5) Xx2x is X-orthocompact.

(6) XxA(X) is A-orthocompact, where A(X) is the space of one-point compacti-

fication of the discrete space of cardinality X.

Proof. Since the product of a /l-metacompact space with a compact space is

also ^-metacompact, the implication (l)-*(2)is obvious. The implications (2)―>(3)

-≫(4)―>(5)are clear. Since A(X) can be embedded in 2X as a closed subset, (5)->

(6) is also clear.

To prove (6)―Kl),we can assume that A(X)={aa＼a^X} and ax is the only

non-isolated point of A(X). Let cU―{Ua＼a<2.) be an open cover of X. Then it

is easy to see that {UaX(A(X)＼{aa})＼oc<X＼U{Xx(A(X)＼{ax})} is an open cover

of XxA(X). Since XxA(X) is ^-orthocompact, there is an interior-preserving open

cover {Va＼a^X＼ of XxA(X) such that VaQUaX(A(X)＼{aa}) for each a<X and

Vx<=.Xx{A{X)＼{ax＼). For each a<l, let Wa be the set of all x&X such that

(x, ax)^Va. Then we can easily show that °W―{Wa＼u<A is an open cover of

Zand WaQUa for every a<l Moreover, since {Fa|a^>l} is interior-preserving

and(x,ax)en{WaX{ax}＼xeWa,a<k}Qn{Va＼x =Wa,a<X}^n{Xx(A(X)＼{aa})＼

x^Wa, a<X}=Xx(A(JL)＼{aa＼xeWa, a<X}), {a<X＼x^Wa} must be finite for

every x£l Hence f is a point-finiteopen refinement of 17. Thus X is 1-

metacompact, and the proof is complete.

Remark. The equivalence of (1)―(5)in Theorem 3.1 is essentiallyproved in

[11]. Since there is a space X such that XxA(X) is normal but X is not X-

paracompact (Example 4.3), the equivalence of (1) and (6) itself seems to be of

interest.

As an immediate application of Theorem 3.1, we will state two theorems

concerning orthocompactness of the product of uncountably many copies of a

space, which are compaired to the following propositions concerning normality of

the product of uncountably many copies of a space.

Let N denote the space of all positive integers with the discrete topology,

and a)!the firstuncountable ordinal.

Proposition 3.2 (Stone [14]). NW1 is not normal.

Proposition 3.3 (Noble [10]). For a T2-space X, the following are equivalent.

(1) Xx is normal for every 1.

(2) X is compact.
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Theorem 3.4. N(O1is not orthocompact.

Proof. Assume that Nmi is orthocompact. Since NwlxNa>1 is homeomorphic

to N011 and A^1 has a closed subspace homeomorphic to 2"1. Hence it follows

from Theorem 3.1 that NWl is o)!-metacompact. Since A^1 is of weight a>u it is

metacompact. It is well-known that A^1 is separable (e.g. [2] Pill), and that

every separable matacompact space is Lindelof. Hence A/^1is a Lindelof regular

space, which is a contradiction since N1"1is not normal by Proposition 3.2. Thus

Nai cannot be orthocompact.

Theorem 3.5. Let X be a Trspace of weight j. Then the following are

equivalent.

(1) Xx is orthocompact for every X.

(2) Xft is orthocompact, where ft=Max {<ou j).

(3) X is compact.

Proof. (3)-^(l)-*(2)are obvious.

(2)―≫(3):Since X'"1 is orthocompact, it follows from Theorem 3.4 that X

cannot contain a closed subspace homeomorphic to N. Hence X is countably

compact. Since Xr is orthocompact, it follows from Theorem 3.1 that X is

metacompact. As is well-known that every countably compact and metacompact

space is compact (e. g. [2] P40Q), X is compact. The proof is complete.

Concerning orthocompactness of finite products, Scott has firstshown in [11]

that a finite product of ordinals is orthocompact Iffit is normal, and later he

generalized his result as follows. Note that each ordinal is a locally compact

linearly ordered topological space.

Proposition 3.6 (Scott [12]). A finite product of locally compact linearly

ordered topological spaces is orthocompact iffit is normal.

In the rest of this section, we will show, together with Conover's result [1],

^that*a
product of arbitrarilymany ordinals is orthocompact iff it is normal. This

is^a partial generalization of Proposition 3.6.

From the result of Scott in [11], we have the following.

Proposition 3.7. Let a and /?be ordinals such that cf(a)Scf{fi) and aX/3

is orthocompact. Then one of the following is satisfied:

(a) cf(a)So) and c/(/3)^oj;

(b) cf(a)Sa), cf(P)>o and a<c/(/3);

(c) cf(a)―a>a) and a=B.
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Recall that an ordinal a is regular iff cf{a)―a, and a subset of a is calle<

stationary iff it intersects every closed unbounded subset of a. The following

lemma is known as the "Pressing Down Lemma". For a proof of this lemma

see [11].

Lemma. 3.8. Let tcbe an uncountable regular ordinal,and let S be a station

ary subset of k. If /: S―≫/cbe a function such that f(a)<a for every ≪gS

then there is ae/c such that f'1{a) is stationary in k.

Proposition 3.9. Let tcbe an uncountable regular ordinal, then the space i

is not K-metacompact.

Proof. The open cover {[0, oQ|a</c} of tchas no point-finiterefinement

In fact, let 1) be any open refinement of this cover, then there is a functior

/:/c＼{0}―* such that/(≪)<≪ for each a£t＼{0} and {{0}}U{(/(a), a]|ae*＼{0}}

is a refinement of HJ. By virtue of Lemma 3.8,there is a^tc such that ＼f~K<x)

―k. For each ^f~＼a), we can take Up&V and a(f})<ic such that (/(/3),{H~_

=(a, /T]££7/3£CO,≪($)]･ Since k is regular, we can find T^f'＼a) such that

＼{Up＼peT}＼=ic. It is obvious that a+len{t7/j|j8eT}. Thus HJ cannot be

point-finiteat a+1. The proof is complete.

From Propositions 3.1 and 3.9, we get

Proposition 3.10. Let tcbe an uncountable regular ordinal, then tcx2K is "not

orthocompact.

The following lemmas are well-known.

Lemma 3.11. Let f: X-^Y be a closed onto map such that f'Ky) is X-compac

for every jeF, // Y is l~paracompact, then so is X.

Lemma 3.12. Let X be a X-compact space and let Y be a space of character

t^X, then the projection from Xx Y onto Y is a closed map.

Recall that a map /: X-+Y is perfect iffit is a closed map such that f~＼y)

is compact for every y^Y. A space X is a paracompact M-space in the sence

of Morita [8] iff there are a metric space M and a perfect map from X onto M.

Proposition 3.13. Let X be a X-compact space and let Y be a paracompact

M-space. Then Xx Y is X-paracompact.
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Proof. There are a metric space M and a perfect onto map /: Y―>M.

Let g: XxY-+XxM be the map definedby g(x, y)=(x, f(y)) for every (x, y)

£lxK Let p: XxM-^M be the projectionmap. Then p is a closed map by

Lemma 3.12,and p~＼z)is ^-compact for every zeM. By virtueof Lemma 3.11,

XxM is /?-paracompact.Since g is a perfect map, it follows from Lemma 3.11

that XX Y is /i-paracompact.The proofis.complete.

Now we prove our main theorem in this section.

Theorem 3.14. Let {at＼i^I} be a collection of non-zero ordinals with

|/|^2. Let /1={ie/|c/(ai)=l}, 72={ie/| c/(a<)=a)} and Is={i^I＼cf(at)>a)}.

Then the following are equivalent.

(1) 17{aj|ie/} is orthocompact.

(2) 77{a*|ie/} is normal.

(3) |/2|^<w anrf one o/ ^Ae following is satisfied:

(a) 7,=0;

(b) 7S= {i0},|/i|<c/Ca*0) and <Xi<cf(aio)for every i^I^h;

(c) |/s|^2 anc? f/iereexists an uncountable regular ordinal k such that

cii=K for every fe/3, at<K for every i^IiSJI2 and lI^JhlKK.

Proof. The equivalence (2)^(3) is proved by Conover (Theorem 3 of [1]).

Hence we only prove the equivalence (1)^!(3).

First of all,let X=77{a<|ie/} and Xk=II{at＼i^Ik} for k = l, 2, 3. Since

/=/1U/2U/8, X=X1xX2xXs.

Now we prove (l)-*(3). Assume that X is orthocompact. Now that for

each fe/jW/g and j'e/3, otiXaj is orthocompact and cf{ai)^a)<cf{aj). Hence it

follows from (b) of Proposition 3.7 that a.i<cf{a}) for each ie/jW^ and ;e/3.

Similarly, from (c) of Proposition 3.7,it follows that if |/s|^2 then there is a

regular ordinal tcsuch that a^=je for every je/3. Thus it is sufficientto prove

that ＼h＼S(o and |/iW/2| <cf(aj) for every je/s. For each ie/2, at contains a

closed subspace which is homeomorphic to N. If |/2|><y, then X2 and hence X

contains a closed subspace homeomorphic to N 1 which is a contradiction by

virtue of Theorem 3.4. Hence |/2|^o>. If |/iW/2| ^>cf(a}) for some ;'e/s, then

we are led to a contradiction as follows. Let cf(a})―ic. Then k is an uncount-

able regular ordinal and a, contains a closed subspace homeomorphic to k. Since

|/jU/21 ^k, XiXX2 contains a closed subspace homeomorphic to 2*. Thus X

contains a closed subspace homeomorphic to tcX2K, which is a contradiction by

virtue of Proposition 3.10. Hence, as above, the implication (l)―>(3)is proved.

Next, we prove (3)―(!). Assume that (3) holds. Since the implication (3)
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―>(2)is true, X is normal. Hence, from Proposition 3.6,/7{ai|ie/'} is ortho-

compact for every finitesubset /' of /. We can assume that / is an infiniteset

and let ＼I＼=X. By virtue of Corollary 2.5,it is sufficientto show that X is X-

paracompact. First, note that for each ie/2, at is a locally compact Lindelof

regular space and hence it is a paracompact M-space. Since |/2|^o>, X2 is also

a paracompact M-space. Moreover, since X1 is a compact T2-space XxxX2 is a

paracompact M-space.

In the case (a) of (3), there is nothing to prove. In the case (b),since it can

be easily seen that X<cf(ai0), X3~aiQ is ^-compact by Proposition 1.11. In the

case (c), since X<tc=cf(/c),it follows from Proposition 1.11 that ai―K is ^-bounded

for every i'e/3. Hence by virtue of Propositions 1.9 and 1.10, X3 is /{-compact.

Thus in any case of (a),(b) and (c), we have shown that Xz is /(-compact. By

virtue of Proposition 3.13, X―(X1xX2)xXs is ^-paracompact. The proof is

complete.

In the proof above we have also obtained

Corollary 3.15. Let {an＼n<w} be a countable family of ordinals. Then

IJ{an＼n<a)} is countably paracompact.

Corollary 3.16. Let {an＼n<<o} be a countable family of ordinals. Then

the following are equivalent.

(1) TI{an＼n<(t)} is orthocompact.

(2) II{an＼n^A} is orthocompact for every finite subset AQw.

(3) 17{an＼n<a)} is normal.

(4) IJ{an＼n^A} is normal for every finite subset AQco.

Corollary 3.17. Let k be an uncountable regular ordinal, and let / be. a

cardinal. Then the following are equivalent.

(1) tcxis orthocompact.

(2) kx is normal.

(3) ＼<k.

Remark. The equivalence (2)z!(3)in Corollary 3.17is proved by Conover [11.

4. Examples.

Example 4.1. Let Y be an orthocompact space which is not countably meta-

compact, such a space exists,e.g. Scott [13]. For each n<w, let Xn=Yx2n. And

for each nS.m, let fnm : Xm-^Xn be the natural projection map. Then {Xn, fnm}
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is an Inverse system over <o,and the inverse limit X of this system is homeo-

morphic to Yx2M. It is easy to see that all Xn are orthocompact spaces and all

projections fn : X―+ Xn are closed and open onto maps. But by virtue of Theorem

3.1 X is not orthocompact, since Y is not countably metacompact.

Thus for (a) of Thorem 2.9 the condition that X is |A ＼-metacompact cannot

he rlrnnnpH.

Example 4.2. Let Y be a Dowker space,(thatis,a normal space which is

not countably paracompact.) Then, as in Example 4.1, we can construct an

inverse system of normal spaces and open and closed bonding maps, whose

limitsnare is rtnfnormal.

Example 4.3. Let co{X) be the weight of a space X. Although that if

XxA(co(X)) is orthocompact then Xis metacompact by Theorem 3.1,the normality

of XxA(a)(X)) need not imply that X is paracompact. For example, (o^xAio)^

is a normal space but <oxis not paracompact. o)iX^4(<w:)is also a simple example

of a (collectionwise) normal space which is not orthocompact.

More generally, for each pair of cardinals X and tc such that oj<cf(/c)^X,

the product space tcXAQ) is collectionwise normal and not orthocompact.

Example 4.4. Let {a^lze/} be a family such that ＼I＼=w1 and ai=ft>1 for

every i<=L Then, by virtue of Corollary 3.17, n{cti＼ie.A} is orthocompact and

normal for every countable subset A of /, but 77{a*lie/} is neither orthocompact

nor normal. Hence Corollary 3.16 cannot be generalized to an uncountable

familv nf nrrHnais
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