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SEQUENTIAL POINT ESTIMATION WITH BOUNDED

RISK IN A MULTIVARIATE REGRESSION MODEL

By

Tatsuya Kubokawa

For the coefficientmatrix of the multivariate regression model,

consider the problem of finding an estimator with asymptotically

bounded risk. The paper proposes a sequential procedure resolving

the problem and investigates the asymptotic properties. Also it is

shown that if additional observations with the same coefficient

matrix are available, then the sequential estimator is improved on

by a combined procedure.

1. Introduction

Let xu xz, ･･･ be a sequence of mutually independent random vectors, xt

having p-variate normal distribution Np(t-ai,I) where at (rXl) is a known

vector and £ (pXr), I (pxp) are unknown matrices. Denote Xn=(xlf x2,

■■■,xn), An=(au a2,■■■, ajand <w=(f, 2"). Then Xn (pXn)has Np,n(£An; Z,In),

being a multivariate regression model.

For a preassigned constant e>0, we consider the problem of finding an

estimator |£of the coefficientmatrix £such that

(1.1) Rifi>,I^^.Cn-1 tr Q{L-&AnA>n{^-m^

for all a), where Q (pxp) is a positive definite matrix.

Throughout the paper, let m0 be the smallest integer (^r) such that

rank(^4mo)=r. In the case where 2" is known, for integer n (^m0), MLE of £

is given by

Un)=XnAfn(AnA'ny>

and from Muirhead (1982),

(1.2) Rifo,|o(n))=Je<u[n-1{vec(|o(n)-|)}'(^re^;(g)(?)vec(|o(n)-|)]

^n-1tr(AnA'6^Q)Coy(vecL(n))
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= n-J tr(AnA'nRQ){(AnA'n)-1<g)Z}

where the notation vecf denotes prXl vector (/･{,■･■,£0' for£=(£i, ･･･,£r)and

A<g>B stands for kronecker product defined by (ai}B) for A=(ai}). Hence we

get that R((o, $0(n))^s if and only if n^rtrQI/s ( = n*). Since I is unknown,

there is no fixed sample size rule to achieve the goal.

For the univariate case, Rao (1973, pp. 486-487) provided a two-stage rule

solving the problem (1.1) and multivariate extensions were given by Takada

(1988) and Kubokawa (1989, 90). When r―＼ and ai={l, ･■■,1) for each i,

Mukhopadhyay (1985) and Takada (1989) obtained three-stage and purely

sequential procedures satisfying

(1.3) ＼imB^oR(o>,$e)/s = l. (asymptotic consistency)

In the above multivariate regression model, we consider the purely sequ-

ential rule of the form

(1.4) iV=Min|n^m; n^
r

e(n ― r)
trQSn}

where Sn―Xn{In-A'n(AnA'nYlAn)Xn and m (;>max{m0, r+1}) is the firstsample

size. When £is estimated by

Section 2 demonstrates asymptotic consistency of £N and asymptotic efficiencyof

iV, that is,

(1.5) Hm.^[iV]/n*=l.

The asymptotic expansions of E＼_N~＼and R(a),$N) are also developed based on

Woodroofe (1977). These are extensions of the results given by Takada (1989).

In Section 3, we assume that additional observations Y (pxl) are taken

where Y has NPii(l-C;W,Ii) with known design matrix C (rXl), unknown posi-

tive definitematrix W and the common coefficientmatrix £. Using information

of additional sample, we construct a combined estimator and prove, by the

method of Ghosh, Nickerson and Sen (1987), that it exactly dominates $N. A

second order asymptotic comparison of their risks is presented in Section 4.

2. Asymptotic properties

Theorem 2.1. The sequential procedure $N is asymptotically consistent for

p(m ―r)^3. The stopping number N given by (1.4) is asymptotically efficient.
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To prove the theorem, we need the followinglemmas.
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Lemma 2.1. For integer n C^m^m,,), the pxp matrix Sn-=Xn(In―

A'n{AnA'nylAn)X^ is written as

(2.1)

where Tm, ■･■

(a) Each

Sn=31Tt
i=m

Tn satisfy the following conditions:

Ti is a statisticbased on only xu---.Xi, that is, independent of

(b) Tm,---,Tn are independently distributed as Tm~W' p{2,m―r) and

Tt~Wp(Z, 1) for *=m+l, ■■■,n.

(c) (Tm, ■･･, Tn) is independent of XnA'n.

Proof. Let An

Dn
1

{An-U a), An.l=A, an

l + ≪n

= a＼AA'Yla and

IA'{AA'Yxaa＼AA'YlA -A'{AA'yla＼

＼ -a＼AA'YlA 1 /

Then we can express Sn as

Sn―Sn-＼-＼-XnDnXn

Further lettingAn.i={An.it 6),An^―B, an.1=h＼BB'ylb and

Dn-＼ ―

we have Sn

get

1_

14-a

/

71-1

＼

B'iBB'Y'bb'iBB'Y'B -B'(BB'Ylb

-b'(BB'YlB

0

1

0

o＼

0

0/

=Sn^2-＼-XnDn-lXn. By the same consideration,consequently,we

n
5n= 2 XnDiXn

It can be shown that D＼~Di, DiDj=Q (*'=£/)and AnDi=Q for i=m,---,n

that rank(Dm)=m―r, rank(Z>i)=l for i=m+l,---,n. Letting Ti=XnDiXn

establishesLemma 2.1.

Lemma 2.2. Assume that p(m-r)/2>X>0 or X<0. Then (n*/N)x is uni-

formly integrable for 0<s<£0 (specified).

Proof. Consider the case of X>0. We firsthave that for d,d>0,

(2.2) EUnVNyir^^^d-'EUnVNyv+'n,
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where /[.]designates the indicator function, so that it is sufficientto show that

supo<,<to{£[(n*/^<1+*)]}<00- Lemma 2.3 of Woodroofe (1977) gives that for

O<0<1,

P[iV^0n*] = O(ep<m-r≫2) as £^0.

[Woodroofe's notations c, tc, m, a, /3,p.,r2, Lo, 1 correspond to our s/r, N―r,

m ―r, 2, 1, trQS, 2tr(QZ)＼ r, n*, respectively.] Hence for 0<e<eo,

(2.3)
JB[(nV^y(1+S)]^£[(n*/A^)icl+6)/c^son*]]

+ ^"Kl+5)

^(n*/mya+e>P[N£dn*l + d-ia+d'

</^£PCm--r)/2-i(l+0)'＼Q-XO+d)

^^£p(m+r)/2-,ici+5)_j_^-;ci+o)

where K is a constant independent of e. The fourth inequality in (2.3) follows

from the fact that there exists a positive d satisfying p(m―r)/2―^(1 ―5)^0,

which always holds if p{m―r)/2>l.

When ^<0, from Lemma 2.1, note that tr C?S≪= S?=m tr QTt. Here tr^Ti

=tr W tS^QS1'2 for W^S-^'TtS-1'2, Wm~Wp(I,m-r) and for ≫=m+l,-,n,

Wt~Wp(1,1). Denote diag (au ･･･,op)=H'ZlliQZll*H for some orthogonal

matrix H. From the Bartlett's decomposition, we have

(2.4)
trQTt=i}OjWtj

where Wiu ■■･,Wip are mutually independent random variables, Wmj^X2m~r and

for i=m + l,･･･,n, WU~X＼. Then,

(2.5)

where £j"~n

(2.6)

tr QSn= 2
he,WtJ=h<rjQF-ri

―H^mWij having 11-r. Also from the definition of N,

AT<-t--

r

s(N-r-l)
tr (pSyv-i/[iv>TO+i]+ l+m.

Let r= ―^(1+5). In the rhs of the inequality (2.2),from (2.5) and (2.6), we can

see that for 0<s<s0,

£[(iV/n*n<JE[{(tr QJ)-1 S (;,(g^-''-1V(^-r-l))/civ2m+n+(l+m)/n*}^

p

CjEUQ^-'-v/iN-r-Dyhv^+al + Coel

< S CjE[supnim{Q(jn-r7U-r)p] + Cosor
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where Co, Cu ■･･,Cp are constants independent of e. The Doob's maximal in-

equality for reversed martingale sequence {Q<jn'r:>/{n―r)}nim gives that

£[supnim{Qj"~ry(?z―r)}r]<co. Therefore the uniform integrability of (n*/N)x

is completely proved.

Proof of Theorem 2.1 Denote by 1n the tf-algebra generated by

Tm, ■･･,Tn given in Lemma 2.1. Similar to (1.2), the risk function of |# is

represented as

R((o,|jv)== Sn-'tr (AnA'nRQ)E[(yec |re-vec |)(vec |n-vec ^y/:^^] .

Since |n and (Tm,--, Tn) are independent by Lemma 2.1, we have

E[(vec !,―vec £)(vec£,―vec ?)'/[.v=,l]]

= £:[/CiV=re]£:[(vec|≫-vec £)(vec|n-vec ^)'|£F,]]

= E[IZN=ni Cov (vec |B)]

= {Un^;)-1(g)2'}£[/[iv^]],

which yields that

(2.7)

Since n*/N->l a.s. as s-≫0,applying Lemma 2.2 with X=l proves that R(o),%N)

/s-≫las e―s-0.The asymptotic efficiency of TV is trivial from Lemma 2.2, and

the proof is complete.

Theorem 2.1 shows the first order asymptotic efficiencyand consistency.

More detailed, the second order asymptotic expansions for £[iV] and R(a),|.v)

are presented based on Woodroofe (1977).

Theorem 2.2. For p(m―r)^5,

(2.8)

(2.9)

£[W] = n* +
V tr(Q2?

Rico,eN)=e+-―{i―^i.-

where v is defined by (2.4)in Woodroofe (1977).

}
+ o(£2)

The expansion (2.8) is from Woodroofe (1977). Note that n*/N=

(N-n*)*/(n*N)-N/n*+2 and that (N~n*)N-1/2-+N(0, 2 tr(Qlf/(tr Qlf) as

s―≫0. Hence (2.9) can be derived by combining (2.7), (2.8) and the following

lemma.
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Lemma 2.3. Assume that 0<X<p(m-r)/2. Then (＼N-n*＼/N1/2Y is uni-

formly integrable.

Proof. First, observe that for d, 8>0,

E[_{＼N-n*＼/W1'1)'/ *-≫･!/*!/.)*>≪]

£d-sE[( |N- n* |/Nll2Ya+S)2

^d-s{El(n*/Ny^d^El{＼N-n*＼/(n*y'z}2U1+5^}1/2 ･

From Lemma 2.2,(nVAO^1"1"^ is uniformly integrable for some <5>0 under the

condition 0<X<p(m ―r)/2. Also, Theorem 2.3 of Woodroofe (1977) demonstrates

that {(A7―n*f/n*}X(1+S:iis uniformly integrable under the same condition. Hence

there exists some constant M independent of e such that

E[(n*/Nyi+d)lEi{ ＼N-n*＼/(n*)1'2}2^1+3)]<M,

for 0<£<£0, which establishes Lemma 2.3.

3. Improving on the sequential procedure when an additional

sample is available

In this section, we discuss two-sample problem. Assume that for the prin-

cipal estimation of £, sample xu ■■･, xN is obtained based on the sequential

sampling rule in Section 2, each xt having Np{^ait I). We further assume

that supplementary observations Y (pxl) are taken where Y has NPti($C ;W, It)

with known matrix C (rXl), unknown positive definite matrix W and the com-

mon coefficientmatrix £. Using information of the additional sample, we want

to construct an estimator superior to fiV.

The problem of estimating the common parameters in the fixed sample size

case has been studied by several authors. [For the brief bibliography, see Kubo-

kawa (1988).] Since MLE based on only Y is ^YC'i.CC'Y1, we consider a

combined estimator of £iVand t-Yof the form

(3.1)

where

lN(a, b)=£x + aa + RNY＼£Y-$N)

Ry = b tr ANA'N(CC')~l tr QT/(rvN)

vN = trQSN/{3(N-l)},

T=Y(Il-C'(CC')-1C)Y',

and a, b are positive constants.
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Theorem 3.1. Assume that a^min{l, 2(/―r―4)6}. Then R(w, $N(a, b))^

R((o,iw) for all w.

Proof. By using Lemma 2.1, the risk difference is written as

(3.2) A=R(o>, iN)-R(a>, £N(a,b))

=E[(i^wuQ2-<iik)>{^QS+^tr(A"AMCC'riuQ＼}}

= ar tr Q'I'E^N'1 {2(1+ 6NUNY'-atl+dN){l+dNUNy2}^＼

where

(3.3) dN=txANA'N{CC')-ltrQW/{rtvQZ), UN = b(trQI)(tr QT)/(vN tr QW).

Here bv the ineaualitv (2.5) of Kubokawa (1988).

(3.4)
2

i+eNuN

q+dN)a

a+dNuNy

which yields that A^O for all m if

(3.5)

a

l+0Na
(2U-N1-aU~Ni)

*[≪ ^-K&-G&)'"*＼
"bo

for all o),

where j?(n)=(l + 6naYl and o = trQI. Similar to (2.5)

(3.6) £[trQW/tt Qn ^ECS?^^)"1]
*> mm 2,i

E[_(tvQW/tvQTn £[(2f=ii7iU/i)-2]=i""Sp

where wlf ■■･, wv are mutually independent random variables, each Wi having

Zf_r and rjx,･･･, f]p are parameters satisfying S?=i^i ―1 and i)i>0, i=l, ･■■, p.

Here the inequality in (3.6) follows from theorem 2.2 of Bhattacharya (1984).

From the condition a£2(l―r―i)b and the fact that E[w^/E[w~i2~]=l―r―4,

the inequality (3.5) holds if E[g(N)N~1vN(l ―vN/a)Ji^0 for all a), which is

rewritten as

(3.7) S g(n)E[n-1vn(l-vn/o)IzN=ni']^0 for all w
7j=m

To prove (3.7), the arguments used in Ghosh, Nickerson and Sen (1987) are

available. Let n0 denote the smallest integer (2>m) such that sn(n-r)/{3r(n ―l)＼

^a. It should be noted that n0 is uniquely determined. Then we write

the Ihs of (3.7)

(3.8) 710-1 r i i ri i
= £mg(n)E[―vn(l―vJa)Ily=ni＼ + g(no)E＼―vnQ(l―vno/a)hirznoi']＼



since E＼_u]= a and £[m2]^3<;2. Note that the multiple of IiNzn+n in the ex-

treme rhs of (3.9) is a convex function of vn, where the minimum occurs at

yn=(4n ―l)ff/{3(3n―l)} ≪a). Here, recalling that on the set {A^^n + 1}, vn>a,

it follows that

extreme rhs of (3.9)

3n2(n + D

8n-2

3n2(n + l)

72-1r 3n-l

^ CiVan+4n2(n + l)

vn-＼ vl
n no J

1

_

aEW)

･]w-1

]･

m ―r

3(w-l)

(m-rXm-r+2)

-=(m-r)(2m + r-5)(T/{9(m-l)2}

>0.

E＼vm{l-vm/ay＼ =£[>m]-£[i4]/<r(3.10)

3n2(n + l)

^0.

Next, note that Izxinii= l with probability 1 and that
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00 f r i i
+ S ＼g{n + l)E＼ ― Vn + i(l-Vn + i/0)hNin +il＼

n = n0 *■ L n + 1 J

―gin)E＼―vn(l―Vn/ff)Izifin+ll＼j

where the firstterm in the rhs of (3.8) should be interpreted as zero if na=m.

Note that for n^n0, on the set {N^n + l}, vn>en(n ―r)/{3r(n ―l)}^a. Since

g(n) is nonincreasing,

third term in the rhs of (3.8)

> S g(n + l)E＼＼
1

n + 1
Vn +l(l-Vn + i/0) ― ― Vn(l ―Vn/0)jliN2n + a

Note that ItNzn+u is a 2Vmeasurable function. Also from Lemma 2.1, vn+l―

(n ―Dw'fn + On)"^ for w = trOTn+,. Then,

(3.9) E [ilk Vn + 1(l ― Vn + 1/a)――Vn{l ― Vn/o)jIlNzn + il＼3n＼

1 f/rc-1

w + ll＼ n

Vn +

＼2

r 3n-l

~hNin+11lnHn + Y)

2(

1

3w"

n-

3n

vlla-

-1)

2

EM}

vra£[w] +

Sn-2
-TSV n +

3n2(n + l)

1

9n2
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Thus, if no=rn then the first two terms in the rhs of (3.8)^0. For no>m, first

note that for n<n0―1, on the set {N=n}, vn^sn(n―r)/{3r(n ―l)}<a. Then

the firsttwo terms in the rhs of (3.8)

(3.11)
,710-1 I

^g(n0)] S ELn~1vn(l-vJo)hN=n{]+E[_n-Qlvn{){l―VnJo)hN>na{]＼

(n = m >

Since vno=(no ―2)(rc0―l)~Iyr!o_1+{3(no―I)}"1tr QTno, it can be seen that

(3.12) Eln^1vno(l~vno/a)IUfZnol＼3no.l']'^{anovn^1-bn(jv^i/a + aCn0}hNzn0i

where anQ=(3n0-5)(n0~2)/{3(no-l)2no}, bno=(no-2)2/ {(no-l)2no} and cn{~

―(no-2)/{3no(no ―I)2}. If E[yn^{＼-vn^Jo)liNin^{＼>S), noting again that vn<a

on the set {N―n} for all n^no ―l, we prove that the rhs of (3.11)^0. Other-

wise using the fact that bn.<l/(n0 ―l), we get from (3.12) that

the rhs of (3.11) ^g(na){nj±''Eln-lvn(l-vJo)ILN=nl]

+ £[(n0―1) 1Vno-i('i--vno.i/a)Itirino-ir＼

Proceed inductively to get

the rhs of (3.11) ^g(na)E[m-lvm(l-vm/o)~]^

as shown earlier,and the proof of Theorem 3.1 is complete.

4. Asymptotic risk expansion

Now we reveal the asymptotic risk expansion of $N(a, b) and asymptotically

compare the risks of £N and iN{a, b).

From (3.2), the risk difference is written as

(4.1) A=-s2a(r tr QZyiE[(n*/NfPN'] ,

where PN=N{a(l+0*)(l+0nUn)'2-2(1+0nUvY1} . Then the following lemma

is essential for our purpose.

Lemma 4.1. Assume that n~lAnA'n-^Q>Q as n-^oo. If p(m―r)>8 and

l-r>8, then (n*/NYN(l + OiV)a+ ONUN)~2 and (n*/N)2Na+0NUN)-' are uni-

formly integrablefor 0<£<e0-

Proof. Put ZN=N(l + 0N)(l+0NUN)-2. Observe that for d, <5>0,
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(4.2)
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EUn*/N)*Z≫hin.ty>iZir>di-]£d->EUn*/Nri+≫Ztf'-]

Since (n*/A04<1+5) is uniformly integrable under the condition p{m―r)>2> by

Lemma 2.2, there exists some constant Mx independent of s such that

£[(n*/A04C1+a)]<Afi for 0<e<£0. Also,

(4.3) Z* jV ―

iV / l + dN y^ N (1+£)vsl

Noting that 6n^^ and OJn^tr Q{CC'Yl tr(Q＼)/(rtrQl) as n^~, we can

take a constantM9. such that

(4.4) nil + dnYKl + dn'T^M, for all n^m.

Since yAr=(N-r){3(Ar-l)}-1S?=1^.{<2j"-r7(Ar-r)} by (2.5),we obtain from (4.3)

and (4.4) that

(4.5) E[Z^+S^£ fj C,-£[(trQr)-4<1+5)]£[sup{(?f-rV(n-r)}4(1+5)]

7=1 nam

for constants Cj independent of s. From the proof of Lemma 2.2,it is seen

that the rhs of (4.5)is finitefor 0<e<e0 under the condition /―r>8. Hence

the uniform integrability of (n*/N)2ZN holds. Similarly we can show the uni-

form integrability of (n*/N)2N(l + dNUNy＼

Note that (n*/A02->l a.s. and

F,v―■*
rtxQl

(3b)*trQ(CCTltrQ

/tvQW

R(w, ^(a, b))=R(a),XN)+e2

＼2) -6b
tvQW 1

a. s

tvQT

as s->0. Then from Lemma 4.1, we get

Theorem 4.1. Assume that n~lAnA'n-^Q>Q as n->oo. If p(m―r)>8 and

/―r>8, then

R(a>,liv(G, b))=R(a>, $N)

-w^w^^n-^iw^
From Theorem 4.1 and the inequality (3.6),we can see that gN(a, b) asymp-

toticallydominates |.v if a^6(/―r―A)b. In the univariate case [_p―r--l, at―I,

Q = l, 2 = a＼ C=(l, ･･･, 1), ＼=<!>*],Theorems 2.2 and 4.1 give that

R((o,XN)=EJ(XiV-e?'] = s+ ssa-i(A-va-i)+o(e2).

al{a-6(l-5)b}
k +o(e2)

9b＼l-3)(l-5W
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