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INTEGRAL DOMAINS FINITE OVER EACH UNDERRING

By

David E. Dobbs

Abstract. A characterization is given of integral domains R such

that R is a finitely generated S-module for each subring S of R

which has the same quotient fieldas R. Apart from the absolutely

algebraic fields of positive characteristic, such R are subrings of

the rings of integers of certain global fields.

Throughout, let R denote a (commutative integral) domain with quotient

fieldK. As in [4], an under ring of R is a subring of R that also has quotient

fieldK. The main purpose of this note is to sharpen the focus of the follow-

ing main result of T4l from integrality to module-fmiteness.

Theorem A [4, Corollary 3.7]. R is integral over each underring of R if

and only if one of the following three conditions holds:

(1) R is isomorphic to a subring of the ring of all algebraic integers;

(2) R―K is an algebraic fieldextension of some Fp;

(3) ch(R)yO and precisely one valuation ring of K does not contain R.

More precisely, we shall determine which of the domains R in Theorem A

satisfy the stronger condition that R is module-finite over each of its under-

rings. The answer is stated next. (As usual, by an algebraic number field,

we mean a finite-dimensionalfield extension of Q.)

Theorem B. R is module-finiteover each under ring of R if and only if one

of the following three conditions holds:

(1) R is isomorphic to a subring of the ring of integers of some algebraic

number field;

(2) R=K is an algebraic field extension of some Fp;

(3) ch(R)=p>0, precisely one valuation ring of K does not contain R, and

K is a finitelygenerated fieldextension of Fv.

We pause to record a number-theoretic insight into one benefit of shifting
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focus from Theorem A to Theorem B.

If R satisfies(1) in Theorem B, then R is inside the ring of integers of a

global field; by [4, Theorem 2.3(iii)],the same conclusion holds if R satisfies

(3) in Theorem B. By way of a partial converse, note, by the proof of [4,

Remark 2.4(a)], that FPIX~] satisfies(3) in Theorem B. (A contrast between

the two results is afforded by the example of F＼_X~],where F denotes the alge-

braic closure of Fp; indeed, F[X~＼ satisfies(3) in Theorem A but does not

satisfy(3) in Theorem B.) However, it should be noted (in positive charac-

teristic)that not all rings of integers of global fieldssatisfy (3) in Theorem B.

Indeed, [4, Remark 2.4(c)] gives an example of a global field (in any positive

characteristic pi=2) whose ring of integers failsto satisfy the weaker condition

(3) in Theorem A.

Before proving Theorem B, we state the following variant. In view of

Theorem A, it is straightforward to show that Theorem C is equivalent to

Theorem B.

Theorem C. R is module-finite over each underring of R if and only if a,

least one of the following two conditions holds:

(i) R=K is an algebraic field extension of some Fp;

(ii) R is integral over each underring of R, and K is a finitelygeneratec

field extension of its prime subfield.

Following the proof of Theorem B and C, we remark on additional motiva-

tion for studying domains which are module-finite over each underring.

Proof of Theorems B and C. We prove the "if"assertion first. If R―K

is algebraic over Fv, then R is its only underring, and so R is module-finite

over each underring. Suppose next that R =£Ksatisfies(ii);let S be an under-

ring of R. If ch{R)=p>0, [4, Theorem 2.3(iii)]assures that t.d.(K/Fp)=l;

thus, we can find a transcendence basis {X} inside S (cf. [8]). Let T denote

the ring of integers of K; that is, the integral closure of FV＼_X~＼in K. By a

fundamental finiteness result (cf. [8, Theorem 9, p. 267]), T is module-finite

over A=FP[X']. Since AaSaRaT and A is a Noetherian ring, R is module-

finite over A, and so R is module-finite over S. A similar argument, with Z

replacing A=FP＼_X~], takes care of the case in which R^K satisfies(ii)and has

characteristic zero.

We turn now to the "only if" assertion. Suppose that R is module-finite

over each of its underrings. If R―K then, bv integrality, R has no orooer
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iinderrmgs, and so [4, Proposition 2.1] assures that (i) holds. We may assume

henceforth that R=£K. Since R is integral over each underring, it remains

only to show that K is a finitelygenerated fieldextension of its prime subfield.

There are two cases, depending on ch(i?). Suppose that ch(R)=p>0. As

above, R contains a transcendence basis {X} of K over F―FP{X). Put A―

FP＼_X~＼.Consider any nonzero (proper) ideal / of R. By integrality, we can

pick a nonzero element neinA Then S=A-＼-nR is an underring of R (since

they share the nonzero ideal nR) and so, by hypothesis, R is a finitelygener-

ated 5-module. It follows that R*=R/nR is a finitely generated module over

S*=S/nR. By a standard homomorphism theorem, S* = A/(Ar＼nR). Since A

is integrally closed,it follows easily that Ar＼nR=nA, whence S*=A/nA. As

(the nonunit) n is a polynomial of positive degree, A/nA is a finite-dimensional

extension of Fp; thus, S*^A/nA is a finitering. Consequently, R* is also

finite,and hence so is its factor ring R/I. In particular, R/l is a Noetherian

ring. By a standard homomorphism theorem, there is no strictlyascending

chain of ideals in R that begins at I. Since / was arbitrary, R is a Noetherian

ring. Also, by integrality (cf. [3]), dim (i?)=dim (A)=l. It follows from the

Krull-Akizuki Theorem (cf. [3, Proposition 5, p. 500]) that R', the integral

closure of R, is a Dedekind domain. It also follows from the Krull-Akizuki

Theorem (cf. [7, Theorem 2]) that if PeSpec(i?') is nonzero, then R'/P is

finitely generated as a module over R and, a fortiori, module-finite over

R/{Pr＼R). We show next that IK: F]<oo.

Consider any nonzero prime ideal P of R'. Since A is a P1D, Pr＼A―pA

for some prime element p^A. Now, let L be a finite-dimensional field exten-

sion of F contained in K; let B be the integers of L (that is, the integral

closure of A in L). By classicalramification theory (cf.[8, Corollary, p. 287]),

2>i/i=[L:F], where pB=UPiei is a product of prime powers and ft―

IB/Pi: A/pA~]. Working in the Dedekind domain R', we can write PiR' =

ILPtfv. Then ftj^R'/Pij: A/pA] = IR'/Pij: i?/(P^ni?)] ･[i?/(P^n/?): A/pA}.

The first factor is bounded above by the size of a minimal generating set of

R'/Pii as an i?-module, and the second factor is bounded above by the (finite)

number of elements in R/iPuf^R)', thus, /i7-<oo. Also, fitsLfn. Consider

pR'=(pB)Rr=aiPiei)R'=mPiR')ei=iiPijei*et.

Since R' is a Dedekind domain, we see that the data (P^, eijei)is independent

of L. Moreover, for fixed i,
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Hence, 'Ei,j(eijei)fij'^'^ieifi=[_L:F]. If IK: F~]= co, algebraicity would per-

mit us to choose L so that [Z,: F]>2i./0*./0i)/i./>a contradiction. Thus, [_K: F~＼

<oo, completing the proof in case ch(/?)^0.

If ch(i?)=0, essentially the same argument as above goes through, by re-

placing (A, F) with (Z, Q). The proof is complete.

Remark, (a) As noted in the first paragraph of [4], new "underring"

studies can often be viewed as "dual" to corresponding known work on over-

rings. In this regard, the "dual" context that suggested the topic of Theorem

B was the work on "module-finite pairs" in [6]. It would be interesting to

find a "pair" generalization of the above results,in the same sense that the

"Noetherian pair" context of [7] generalizes the context of [5].

(b) Another concept that now seems to deserve attention is the one dual

to "conducive". Recall from [1] (cf.[2]) that R is a conducive domain in case

(R : T)^0 for each overring T^Kof R. Accordingly, we say that R is a cocon-

ducive domain in case (S:i?)=£0 for each underring S of R. It is clear that

if R is module-finite over each of its underrings, then R is coconducive. Hence,

if R satisfiesany of the conditions (l)-(3)in Theorem B, then R is coconducive.

It would be interesting to find other sufficientconditions for the "coconducive"

orooertv.
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