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Yoshitomo Baba and Manabu Harada

We have defined aconcept of almost M-projectives and almost M-injectives

in [4] and [9], respectively. In the firstsection of this paper we give some

relations among lifting modules, mutually almost relative projectivity and locally

semi-T-nilpotency. After giving a criterion of mutually almost relative projec-

tivity between two hollow modules in the second section, we give a characteri-

zation of lifting modules over a right artinian ring. Further we show a dif-

ference between M-projectives and almost M-projectives. Those dual properties

are gives in the third and fourth sections with sketch of proofs.

We shall give several characterizations of right Nakayama (resp. right co-

Nakayama) rings in terms of almost relative projectives(resp. almost relative

injectives)in forthcoming papers (cf. [9]).

1. Almost projectives.

Throughout this paper R is an associative ring with identity. Every module

M is a unitary right i?-module. Let M be an i?-module and K a submodule of

M. If M^M'-hK for any proper submodule M' of M, then K is called a small

submodule in M. If K(~＼K'^Q for every non-zero submodule K' of M, we say

that K is an essential submodule of M. If every proper submodule of M is

always small in M, M is called a hollow module and we dually call M a uniform

module, provided every non-zero submodule is essential in M. If Endfl(M), the

ring of endomorphisms of M, is a local ring, M is called an le module. By

KM) and Soc(M) we denote the Jacobson radical and the socle of M, respec-

tively and ＼M＼is the length of M.

Following K. Oshiro [15] and [16] we definea lifting(resp.extending)

module. If for any submodule N of M, there existsa directdecomposition M―

M,0M2 such that
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(DO Ni)Ml and NC＼M2 is small in M2 (and hence in M)

(resp. (CO MX~DN and N is essentialin My),

then M is called a lifting (resp. extending) module. If M is a lifting (resp. ex-

tending) module with |M|<oo, M is a direct sum of le hollow (resp. uniform)

modules from the definition. Hence we shall study, in this paper, a lifting

(resp. extending) module which is a direct sum of le and hollow (resp. uniform)

modules.

We shall recall notations given in [9], Let there be given a direct decom-

position M=Ml@Mz, and let rci:M-+Mt and k2: M-^M2 be the projectives. We

shall use the following facts:

(i) Let /: M!―>M2 be a homomorphism. Define Ml{f)―{x +f{x)＼xEzMi}.

Then M^f) is a submodule of M isomorphic to M, and M=Mi(/)0M2.

(ii) Let Nu N＼ N2 and N2 be submodules of M such that NiCN'aMt for

2= 1,2 and let there exist an isomorphism h: N1/Nl-^N2/N2. We shall often

consider h as a homomorphism N1-^N2/N2 in the natural manner, so that Ni

is the kernel of h. Let N={x + y ＼x^N＼ y^N2 and y + N2~h{x)}. Then, as

is easily seen, N is a submodule of M and kx(N)=N＼ k2(N)=N＼ Further

NnMi-Ni for *= 1, 2. We shall denote this AT by

(1) Nl(h)N＼

(iii) Let TV be any submodule of M. Put Nw = MtC＼N and ■Ki{N)=Ni for

*'=1,2. Then clearly N^d^czMi for i = l, 2. Let xeN1. Then there is a

y<=Nz such that x-＼-y^N. Such a j>is not necessarily unique, but is unique

modulo Nz. By associating x+Nxo with y+Nm, we have an isomorphism

h: A/'1/A/'ci)->A7'V^V(2).It is obvious that N=Nl(h)N* in the sense in (ii).

First we shall decompose a proof of Azumaya's theorem [3] (see [2], Pro-

position 16.12) for an application to almost projectives, which is the dual ob-

servation of [4], Lemma 1.

Let Mi, M2 and ./Vbe i?-modules. For a submodule K of M=MiRM2, take

a diagram:

(2) M=M^M2 -t> {MXRM2)/K ―> 0

I*

Let iZi'.M-^Mi be the projection for i―＼,2. Put Ki = Ki(K), Kay―Kr＼Mi and

K=K＼fW from (1), where /: Kl/Ku->-*K*/Kw. Since KdlO^K2, there

exists the natural epimorphism 1/: M//f->M/(/f'cyH^Mi/ZreM-i/iC2. By nt
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we denote the projectiononto Mi/Ki in the last decomposition of M/{K1RK'1)

and we put v^Htv' forI―I,2. We note thatv'=v(+i4 and ViV＼Mtis nothing

but the naturalepimorphism v< of Mt onto Mt/K*. Further ker v'―iK^K^/K

^{{K'@K')/{KWRKW))/{K/{KW@K^)). While {K'@K")/{KwRK^)^K^Ka,

RK2/Km and K/iK^^K^^K^WViK^^K^^K'/K^f^KVKUf-1),

(which is a graph in (K^K^/iKa^K^dMj'KCORM2/XC2)). Hence kerv'~

~J5C1//f(O^/if2/^(2).Let £ be the canonical monomorphism of MJK^ into

M/if. Then ^ gives the above isomorphism: ft'Vi^(O-*kerv', and we obtain

the commutative diagram:

KVKn, > kerx/

1' '

MJKM ―^ M/K,

where i and i' are inclusions.

From those observationswe obtain two diagrams:

(3)
Mt

v[v＼M1

MJKX *0

and

vzv|
M2

(3') M2 > M2/K2 > 0

N.

Here we assume that there exists hj: N-+Mj such that(i>jv＼Mj)hj=vjh for j=l, 2.

Put t=v{h1-＼-ht)-h: N->M/K. Then v't=v'v(hl + h2)-v'h=v1h+v'2h~-v'h =

(v'-v')h=0. Hence t(N)dkerv＼ Put ^-(^K^V^co))-1: ker v'-^IO/K^cz

MJKm. Since v(Mj)=g(Af1/A'cl)), g~lexists on i/CAfO. Thus we obtain a new

diagram:

g~1v＼M1

(4) Mx > M/^i > 0

N.

Finally we assume in (4) that there exists /if:N->Mi such that g~＼v＼Mt)h*x=g't,

i.e.(y IMi )/*＼=£bv ooeratine ^, Then
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h=v(h1-hh2)-(v＼M1)h:t=u((h1-h*1)+h2) and

(5)

(hi-hf)+ht: N―^M.

We recall the definition of almost M-projectives [9], Let M and TV be R-

modules. For any exact sequence with K a submodule of M:

M ―> M/K ―> 0

I*

N

if either there exists h : N-*M with vh ―h or there exist a non-zero direct sum-

mand Ml of M and h : Mi―*N with hh―v＼Mu N is called almost M-projective

(if we always obtain the firsthalf, we say A^ is M-projective [3]).

We note the following fact:

When N is almost M-projective and M is indecomposable,

(#) if the h in the above diagram is not an epimorphism,

then there exists always an h: N―>M with vh ―h.

We frequently use this fact without any reference.

The following lemma is useful on almost projectives.

Lemma 1. Let Mu M2, ･･･, Mn be hollow modules and N an R-moddle. As-

sume that N is almost Mi-projectivefor alli. Take a diagram with K a sub-

module of S0Mf:

S?=i0M, -^ (20MO//C ― 0

I*

N.

If h{N) is smallin (E@Mt)/K, h is liftableto h : JV->acAfi( i.e. h=vh.

Proof. We shall prove the lemma by induction on n. If n ―1, it is clear

from the definition. We assume that the lemma holds true for M* = '£J=2Q)Mj

and put M=MX(BM*. Let nt be the projection of M=Sj!Li0Af/ onto Mt. As-

sume firstthat it^K) (=Ki)=zMu Put 7c*=2,aarc,: M-+M*, K*=n*(K), Kco =

Kr＼M, and K^ = Kr＼M*. Further set M=M/(Ka^Kc^)Z)K=K/(KiO@K^).

Since K=K＼h)K* with /i: Kl/KM≫K*/K^ from (1), we obtain KcMJK^

cM*/^c*)=(M1//C(O)(/i)cM*/^c*>=M and K={MJKw){h). Hence M*/Kw*

M/K~M/K, and by y> we denote this isomorphism of M*/Kc*-> onto M/AT.

Accordingly we have a commutative diagram :
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y*

M* ―> M*/Kw ―> 0

＼i ＼<p

y y r

M ―> M/K ―>0

I*

N.

Since <pis an isomorphism, by assumptions there exists h*: N―>M* such that

v*h*=(p~lh, and so v(ih*)=<pv*h* = h. Hence ih*: N->M is the desired map.

Thus we can assume that K1^M1. Since h(N) is small in M/ZT, for vj/iin the

diagrams (3) and (3'), v[h(N) and v'th(N) are small in Mi/ZC1 and M*/K*,

respectively. Hence by assumption and induction hypothesis, there exist

hi: N^Mi and h* : N^>M*, which make the diagrams (3) and (3') commutative.

Let t and g' be the mappings defined after (3'). Since Mx is indecomposable,

g't{N)ziKl/Kw and Kl=tMlt there exists h[＼N-^-Mi which makes the diagram

(4) commutative. Therefore h is liftable to h : A^-^l]cMi as is shown in (5).

By definition we have

Lemma 2. Let {Ma}, be a set of almost M-projectives for a fixed R-module

M. Then 2fGWa is almost M-profective.

We have given some relationships between lifting modules and almost pro-

jectivesin [9]. We give here a simpler relation for a finitedirect sum. This

is dual to [14], Theorem 12, however the proof is not, because we used injec-

tive hulls in [14], but we can not take here protective covers.

Theorem 1. Let |MJf=1 be a set of le and hollow modules. Then the fol-

lowing are equivalent:

1) M=S?=icMi is lifting.

2) Mi is almost Mrprojective for any i=£j.

3) For any subset J in I={1, 2, ･･･, n) S_,-0My is almost ^li-jd&Mi-projec-

tiuo

Proof. l)-≫3)->2). This is clear from the definitionof almost projectives,

Lemma 2 and [9], Theorem 1".

2)->l). If we can show that every non small submodule N in M contains

a non-zero direct summand of M (i.e., M satisfies(1―DO in [9]), then M is

lifting by [9], Theorem 1". In order to get the above fact, we shall show
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every non small submodule in M contained in M'^M'zR ･･■M'kQ)Tk+lQ)

(6) ･･･0TB contains a non-zero direct summand of M, where M=2?=ic-A/J

is any direct decomposition into indecomposable modules M't (≪M<),

and the Tt are small in M＼ for i^.k-＼-l.

We may assume M'i=Mi in (6). If (6) is true for all k, taking k = n + l (Mfn+1 =

Tn+i=0), we are done. Consider (6) with k = l. Let jV be a non-small sub-

module contained in Mx(Blji=*RTu and put M*=M2($MS($ ･･･0M≫. Let

Xi: M->Mi and it*: M->M* be the projections. Since Af is not small in M

and the Tt is small in M* for all z"^2, n1(N)=N1 = M1. Then from (1) N=

M1(h)N*, where N*-n*(N), Nco = Nr＼Mu Nw = NnM*, and /i:Mx/No>≪

N*/N^. Since ^*CSS=.cTi, A^* is small in M* and hence #*/#(*> is small

in M^/ATc*). From those datas we obtain the diagram:

M*=M20M30 - cMn -^ M*/^(*) ―> 0

I"

Since Mx is almost M^-projective for all /2>2 by assumption and h(M1/NCo)=

N*/Nm is small in M*/N^, there exists /z: N->M* with vh=hv1 by Lemma

1. Hence A/"contains M^/i) a direct summand of M (consider M/(Af(1)ciV(≪)D

N/(Na-}RNi*)), cf. the proof of [9], Theorem 1). Assume that (6) is true for

all k'£k and let .VcM,R ■･･cM*+1cT,+2c ･■･cTn (^^1). We may assume

ic1(N)=M1. Let
(0

be the projection of M onto M**=MicM2. Since 7d(N)=

Mu p(N) is not small in M**. Then M** being lifting by [9], Theorem ＼",

M**=L1cL2 and p(N)=L1R(Ltr^p(N)) with L2r＼p{N) small in M**. Since

Lj is a direct sum of at most two direct summands, we put Ly=M"i@M'l

(M'/^O), L2=Ml where M'{-one of {Mlf M2, (0)}. Then M=A/**0Mg0 ･･■

RMnZ}M'{RM>lRM'l@MsR-$)Mk+lRTk^-@TnZ)N. If M?=0, i.e., Lx =

M'/ and Lt=M%, N satisfies(6) by induction, since /o(A^)=M//c(M/3/nio(A^)) and

M'lr＼p(N) is small in A/'^. Assume M'2'^0 (and hence M£=0) i.e., p(N)=

M'(@M'i=M**. Let ^^' be the projection of M onto M'i. Since p(N)=M**,

NnntKO) is not small in M and ATnffr'(O)cMV0O0M:I0 ■･･0M*+10T*+80

･･･cTn. Hence (iV3) iVn^TKO) contains a non zero direct,summand of M by

assumption of induction. Therefore (6) is true for any k, and so iV always

contains a non-zero direct summand of M.
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Theorem 1 is not true if {Ma)i is an infiniteset, even though {Ma}j is

locally semi T-nilpotent, which is given in [7], p. 174, and brieflylsTn (see

example before Theorem 2 below). In [9], Theorem 1" the locally semi-T-

nilpotency is important. Concerning this fact we have the following lemma.

In the proof we make use of certain factor categories given in [7]. We do

not know a module theoretical proof.

Lemma 3. Let {Ma}t be a set of le modules. If M=S/cM≪ is lifting,

then {Ma} i is lsTn.

Proof. From the definitionof lsTn, we way assume that / is an infinite

set. Ldt Mo=2j<=i0Mt and {ft: Mt―>Mi+l) a set of non-isomorphisms and

A/t=Mi(/,)cJtf≪cM1+1. Since Mo is lifting, for M*=2?-icM{, M*=T&T%;

M^=TlRM^r＼Ti and M*r＼T2 is small in M*. Here we shall apply some theo-

rems on factor categories A/J' induced from le modules (see [7], Chapters 6

and 7), and use the same terminologies given there. First we note that M* is

also a direct sum of le modules, i.e., M*<=vl. Let Tf and (M*C＼T2)* be full

submodules in Tt and (M#nT2), respectively ([7], p. 169). Let iMit,iT. and

*'jf*nr2be inclusions in M, Since M*r＼T2 is small in Mo> iM*oT2=:i0 by the de-

finition of J' in [7], p. 148. Further iM% is an isomorphism by [7], Theorem

7.3.13, and i^=ir14-ijf*nr8=ir1. On the other hand, ijfo=tri+ ir2. Hence irg=0,

since iTx= in* is an isomorphism and iTl,iT% are mutually orthogonal idempot-

ents, and so T2―0 by [7], Theorem 7.1.2. According Mo^M*. Therefore

＼Ma)i is lsTn by r71 Theorem 7.2.7.

Theorem 2. Let {Ma＼i be a set of le hollow and cyclic modules. Then the

following are equivalent:

1) M=S/0Ma is lifting.

2) Ma is almost Mb-projective for any ai^h and {Ma}i is isTn.

3) HjRMa, is almost S/_/cM6, -projectivefor any subset J in I and {M} f

is IsTn. (cf. Theorem 4 below.)

Proof. This is clear from Theorem 1, Lemma 2 and 3 and [9], Theo-

rem I".

We prepare the following lemma for an example below.

Lemma 4. Let M be an le and hollow module. If any infinite direct sum

of copies of M is always lifting, M is cyclic.
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Proof. Assume that M is not cyclic. Then xR is a small submodule in

M for any x in M. Put D=^XBM^MX {MX=M) and S=2*c*/?, Taking an

epimorphism /: D―≫Msuch that f＼Mx=lM, we know that S is not small in

M. Hence M is not liftingfrom [9], Corollary2.

Let Z be the ring of integers. Then E(Z/p), injective hull of Z/p (p is

prime) is almost £(Z//>)-projective(see [12]). However S?=ic£i {Et-=E{Z/p))

is not lifting by Lemma 4, even though {Mi ―E{Z/p)} is lsTn. On the other

hand T*PRE{Z/p) is lifting.

2. Lifting property.

First we shall give a relationship between lifting module and lifting pro-

perty.

Let X~DY be i?-modules and v: X^-X/Y the natural epimorphism. If, for

a direct summand T of X/ Y, there exists a direct summand To of X such that

T―v{T0), we say that T is lifted to To. If every direct summand of any factor

module X/Y' is lifted, we say that X has the lifting property of direct sum-

mands modulo submodules. If, for any submodule Y of X and for any direct

decomposition X/Y=J}RTi, there exists a direct decomposition Z=S0Tf with

v(T'i)=Ti for all /, we say that X has the lifting property of direct sums modulo

submodules.

We take a direct decomposition M=Sc^t- For a submodule Nt of Mt we

call SSA^j a standard submodule of M with respect to this decomposition

S0Mf. If we say a standard submodule in the following, that is a standard

submodule with respect to decomposition into indecomposable modules. We

note that J{X) and Soc (X) are always standard submodules with respect to any

decompositions.

Proposition 1. Let {Ma)i be a set of hollow and le modules and M―

S/0A^a. Assume that {Ma}i is lsTn. Then the following are equivalent'.

1) M is lifting.

2) M has the lifting property of direct summands modulo submodules (cf.

[15], §4).

Proof. 1)―>2)(The argument below is validfor any liftingmodule). Let

N be a submodule of M and T a directsummand of M/N. Let v: M-+M/N

be the natural epimorphism of M. We apply(DO to the inverse image To of

T. Then thereexistsa decompositionM=M'PdM" such that To= M'cTonM"
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and T.AM' is small in M. Then T=v(To)=v(M')+v(Tor＼M"). Since TonM"

is small in M and T is a direct summand of M/N, v{T0C＼M") is small in T.

Hence T=v(M').

2)->l). Let To be a non-small submodule in M. Then there exists a sub-

module Z (^M) of M such that M=T0+X. Now M/(TonZ)=To/(TonX)R

l/(ronl) and T0/(7;n^)^0. Since M has the lifting property, M=M'RM"

and (M' + Tor＼X)/{TonX)=T(l/(Tor＼X), and so 0^M'cT0. Therefore M islift-

ing by [9], Theorem I".

The following corollary shows us a difference between M-projectives and

almost M-projectives.

Corollary. Assume |/|=n<oo and |Mi|<°o in the above. Then the fol-

lowing two conditions are equivalent:

1) Mt is almost Mrprojective for all ii^j.

2) M has the lifting property of any indecomposable direct summands modulo

standard submodules.

Similarly the following two conditions are equivalent:

3) Mi is Mrprojective for alli^j.

4) M has the lifting property of direct sums modulo standard submodules,

(cf. [15],§4).

Proof. 1)―>2). This is clear from Theorem 1 and Proposition 1.

2)->l). Put M*=M1c&M2. We can show by routine work that M* has the

lifting property of indecomposable direct summands modulo standard submodules,

since so does M. Let X be a non-small submodule of M*. Then iti＼X or nz＼X

is an epimorphism, where ret: M*―>Mi is the projection, say 7rx| X. Then

X/(XMRXW) is a graph of MJXW in M*/(XC1)cZ(2)) provided XM^Mlt

where Xw ― Xr＼Mi, and hence a direct summand of M*/(Xa->(§)Xw). Further

X/{Xw@Xm) is indecomposable, and X/(Xw(^Xm) is lifted to a direct sum-

mand X' of A/* by assumption. Hence I'd If Za)=M!, M^X. Accord-

ingly M* is lifting, and hence Mi and M2 are mutually almost relative projec-

tive by Theorem 1.

3)-*4) First assume that Mu M2 are mutually relative projective and M―

MX@M2. Put M=M/(N1RNt). Let C be any submodule in M. We denote

(C+CMS^iMMSiVu) by C (CM). It is clear that M=M1^M2 and Mt≪

Mt/Ni. Let M―^405. We note that if an J?-module L is a finite direct sum

of le modules Liy every non-zero indecomposable direct summand of L is given

by a graph of some Lt (see [7], Proposition 6.3.3). Since Mi/Nt is an le
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module by assumption, we can assume A-Mi(fi); f1: Mi~>M2. Then there

exists a decomposition M=Mi(/1)cM2, where fx is a lifted one of f%. Clearly

mfd=A. Since M (=M1(f1)RM2)=ARM2=ARB, 5=M2(/2); ?t:Ma->A =

M1(f1)^M1(f1)/(M1(f1)n(N1^N2)), (take the projection of M onto M2). Hence

there exists f2'.M2-*Mlf x) and M2f7)=B. Therefore M=M1(/1)cM2(/2) is

the desired decomposition. Finally we study in a general case. Let M=S"=,.i

cMi/A/i=SJt1Ri4i. Since MJNi is an le module, the At is a direct sum of

hollow modules by Krull-Schmidt's theorem. Hence we may assume that all A%

are hollow. Without loss of generality we can put A1=Mi(f1); /i: Mi-≫Sis2

cMi, and Af=i410Sis,cMi=i410i42R ･･･(&An. Let p be the projection of M

onto Sta2cMi on the firstdecomposition of the above. Since p＼(A2(&･･･@An)

is an isomorphism onto Si22cMi, there exists, from the above remark, a pro-

jection 0j: Si22cMi―>Mj such that djp |A2 is an isomorphism, say j=2, whence

A2=M2(f2); f2: M*-*Mi(?l)RMi<& ･･･0MB. Similarly A^MIU) with /f: M,->

fe/Oe-eA-i^-i^fe-eM,,. By virtue of Azumaya's theorem [3]

we can apply the initialargument to those decompositions and obtain finally a

lifted direct decomposition M=2cA^(/i)-

4)-≫3) It is clear that if M=2?=i0Mi satisfies4), then so does MtcM2.

Let f:M1-*M2/N2 be a homomorphism (NsaMt). Then M=M1RM2/N2=M1(f)

(BM2/N2 is lifted to ^=7,07, such that f1=M1(f) and T2=M2/N2. Let

piM-^Ti and tc2'.M-+M2 be the projections. Then 7r2io|Miis a lifted one of /

(see the proof of [8], Theorem 2). Hence Mi is M2-projective.

Next we shall give some criterion of almost relative projectivity for two

hollow (local) modules. Let e be a local idempotent, i.e., eR is hollow. Let A

and B be i?-submodules in eR. We note that any element in HomR(eR/A, eR/'B)

is given by xt (xeei?e), the left-sided multiplication of x.

From the definition and a fact: (eR/A)/J{eR/eA))^eR/eJ we have

Lemma 5. Assume that eR/A is almost eR/B-projective. Then for any

unit u in eRe there exists a unit x such that xAdB and x = u (mod eje)or xBczA

and u~l^x (modeje).

Lemma 6. Let M be an indecomposable R-module and assume that eR/A is

almost M-projective, and take a non-epichomomorphism f of eR to M. Then f(A)

=0 ([11]; [7], Theorem 5.4.11).

Proof. Consider a derived diagram from / :



On almost M-projectives and almost M-injectives 63

M ―> M/f(A) ―> 0

f;

eR/A.

Since / is not epic,h is same. Hence there existsh :eR/A-^M with vh―f by

assumption. Let p: eR-+eR/A be the naturalepimorphism and put h = hp:eR

―>M. Since vh―f,

vf(e)=f(e-＼-A)=vh(e+A)=vhp(e)=vh(e),

Hence

(7) f(e)―h(e)=f(a) for some a in A.

Now Q=h(a)=h(e)a=f(a)-f(a)a = f(aXl-a) from (7). Hence, /(a)=0 for

a<=AceJ, and so f(A)=f(e)A = h(e)A= h(A)=O from (7).

Proposition 2. Let e and e' be local idempotents. Then

1) eR/A is e'R/B-projective if and only if e'ReAczB. If e&e', eR/A is

e'R/B-projective if and only if eR/A is almost e'R/B-projective.

2) // eR/A is almost eR/B-projective, eJeAoB.

3) eR/A and eR/B are mutually almost relativeprojective if and only if

eJeAdB, eJeBcA and for any unit element u in eRe, uAdB or BduA. In

particular AdB or BdA.

Proof. 1) is clear from [1], p. 22, Exercise 4 and 2)is clear from Lemma 6.

3) (This is the same argument given in [10]). Assume that eR/A and

eR/B are mutually almost relative projective. Then eJeAcB and eJBcA from

2). First assume that eR/B is almost e/?/v4-projective. Let u be any unit in

eRe. Then by Lemma 5 there exists j in eje (resp. /') such that

a) (u+j)AczB or b) (u-l+j')B(ZA.

a): uA=((u+j)―j)Aa{u+j)A+jAcB since eJeAdB. We obtain similarly

m"'Bc/1 in case b).

The converse is clear from definitionand the initialremark before Lemma 5.

Let R be a right artinian(basic)ring and {ei＼f=1a complete set of mutually

orthogonal primitive idempotents. Then every hollow module is of a form

QiR/A. Take an i?-module M which is a direct sum of hollow modules:

(8)

M^&nufleiffleiR/AijY* "; etR/Atj^et.R/Atly if (i,j)

=£(*'/')(and n(ij)&0, which may be infinite,for alli and /)
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where KCnCij:i:>is the direct sum of n(z'/)-copiesof K.

If M is lifting,then from Theorem 2 and Proposition 2, we obtain,

i) ＼U＼=rii<oo for alli.

After changing induces

ii) If Ui^2

eiRZDAn-DRiAi^Ai.-D ･･･Z)RiAtntZDAiniZ)
(9)

S*=i≪t/e*i4*i, where Ri = etRet.

If rii―l, eiRZ)AiiZD^k＼iieiJekAki.

iii) If n{ij)^2, Atj is characteristic.

Thus we obtain from Theorem 2 and [8], Corollary to Theorem 4

Theorem 3. Let R be a right artinian ring and M an R-module. Then the

following are equivalent:

1) M is lifting.

2) M is a direct sum of hollow modules as in (8), which satisfy (9).

3. Almost injectives.

Following [4] we recall the definitionof almost 7-injectives and study some

properties of them.

Let V and U be i?-modules and VZDV. Consider the following diagram

with i the inclusion and two conditions 1) and 2):

0―>Y'―>V

I*

u

1) There exists h : V―>U such that hi―h or

2) There exist a non-zero direct summand Vo of V and /i: U―>V0 such

that hh―izi, where n : V―>V0 is the projection of V onto Vo. (/ is called almost

V-injectiveif the above 1) or 2) holds for any submodule V of V and any

h: V->t/ (U is called M-injactive,if we have only 1) [3]).

The following lemma is dual to a special case of Theorem 1.

Lemma 8. Let Ui and Uz be le and uniform modules and U―Ui^U2. Then

the following are equivalent:

1) U is extending.



On almost A/-proiectivesand almost M-injectives

2) Uy and U2 are mutually almost relativeinjective.
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Proof. l)->2). Let V be a submodule in U=U1kBU2. We may assume

that V is uniform. Let ittbe the projection of U onto £/f. Since V is uniform,

F=£7J(/i) (≫= 1 or 2), where £/{=jr<(V) and fi:U'i-+U'J (ji=i). Assume F =

U'lift)and take a diagram

0 ―>£/;_!_> ^

!'■

Then since the Ut are indecomposable, there exists /i: Ui-*U2 or f/2->f7iwith

/i/i=* or /!*= /! by 2). Hence V = U'l(f1)C.U1(Jf1)or 7cJ/,(/i), which is a

direct summand of £/.

l)->2). Consider the above diagram and define U' = U[{fi) m ^ic^2- Since

U' is uniform, there exists a decomposition U=VX@VZ and V{Z)U'. Since Fi

has the exchange property, U=VlRUl or =ViRf72. If the latter case occurs,

h―K'z＼Ux is a desired homomorphism, where x'z:U-^U2. We obtain a similar

result for the former (note, in this case, that f, is a monomorphism).

The following theorem is the dual to Theorem 1, which is essentiallygiven

in [14].

Theorem 4. Let ＼Ua)i be a set of le uniform modules and t/=S/0^a-

Assume that {Ua＼i is lsTn. Then the following are equivalent:

1) U is extending.

2) Ua is almost Ub-injectivefor all a^b.

Proof. l)->2). It is clear from Lemma 8.

2)->l). (Essentially due to [14]) £/=!!,c£/, satisfies(1-d) (i.e., N is

uniform in d) by Lemma 8 and [14], Lemma 11, and so every closed sub-

module A in U contains a non-zero indecomposable direct summand X of U by

[14], Proposition 6. Hence we can define a non-empty set F of direct sums of

uniform modules in U as follows: F={^ciRXc≫＼cA, Xc> is uniform and

'Sc'^BXc' is a locally direct summand of U). We can find a maximal member

Scc^ in F by Zorn's lemma. Since {Ua} is lsTn, J}C(&XC is a direct sum-

mand of U by [7], Theorem 7.3.15, say U=(^eQXe)RU' and ^=(Scc^c)

@U'r＼A. It is clear that UT＼A is also closed in U. Hence U'r＼A~0 by the

maximality of Scc^c- Therefore U is extending.
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We consider a result similar to Lemma 3 for extending modules.

Proposition 3. Let U=^}Q)Ua be as above. Assume that U is extending.

/. /. /.
Then there do not exist any infinitesets {Ui ―>UZ ―>Un ―> ･･･; the ft are

monomorphisms but not isomorphisms}.

Proof. Let {fi:Ui->Ui+1} be a set of non-isomorphisms and put U* ―

2ctfi(/<)C20£/i. Then we obtain a decomposition U' (=Z!c£7'<)=XcY and

U*d'X, i.e. U* is essentialin X Since i#: U*->U' is an isomorphism in
^4/J',

F=0 (see the proof of Lemma 3). Hence U*C'U', and so ^/1nf/*^0. If we

use this argument for the case where all ft are monomorphisms, we know

that ＼fi＼must be finite.

Example. Rx (resp. R2) is the ring of upper (lower) triangular matrices

over a fieldK with infinitedegree. Let Qi―eu be matrix units. Then ekRi

is almost e^-projective and almost es/?Hnjective for any k, s and a fixed 2= 1

or 2, and further Sji.00*/?! is liftingand extending by Theorems 2 and 4. On

the other hand ekRi is almost S;^*0eii?2-projective and almost 2^** 00^2-

injective (cf. [4], Theorem) for all k, however S,;0£ti?2is neither lifting nor

extending by Lemma 3 and Proposition 3, since we have an infinitechain of

submodules; ei/?2Ce2i?2C ･･･CenR2C ■･･.Further etR2 is always almost Si320

0t^2-injectivefor any n, but iR2 is not almost Sts20^f^2-injective. Because,

we assume that exR were almost St520^-K-injective, where R-―R2. Put U―

Sts20^i^- Then Soc(LO=]>]iS200t;#0i and eiRe^exRx ―eJi as 7?-modules.

Take a diagram:

i

0 ―> 2ce≪#ei ―> U

＼f

where / is given by the above isomorphisms. Since YiomR{eiR, gii?)―0for i^2,

we should have a decomposition U=A(BB and h:eiR-*A such that hf = xAi

with icA:U-*A. Further Soc(£/)=SocG4)0Soc(5) and rcJSoc01)^lSoc00.

Hence hf=KAi implies that SocG4) is simple, and so A is indecomposable and

B is a direct sum of indecomposable modules Bj O'^2) by [7], Theorem 8.3.3.

Accordingly we may assume that A = eniR(fl); /i: ≪Sli?-+S≫≪1c≪ji^and Bj=

enjR(fj); fj: enjR~*5}ki:nj@ekR. Since eiR^ejR ifii=j, nt^n, by Krull-Remark-

Schmidt-Azumaya's theorem. Hence we can assume that A = enR(fn) for some

n and B,=ejR(fj) (j^n and Bn=ezR{fi))', n may be 2. Since Homfl(ef/?,e,-i?)
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=0 for i>j, we know 0n+i^ClS./2n+i0-#/C:Z?from the structure of Bj.

hf{en+lRei)=h{eiRey)i^Qsince eyR―exRe^ is simple and Soc(74)cSoc(L0=Si22

C-$eiReuwhile hf(.en+1Re1)=::A(en+1Rel)c:7tA(B)=0>a contradiction.

4. Extending property.

We shall consider a dual concept to§2 (cf. [6] and [16]). Let Ui)V be

i?-modules. Take a direct summand Vx of V, i.e., V ―V^Vi. If U has a

decomposition U=UxRUz such that Uxr＼V ―Vu we say that T7! is extendible

to Ui. If, for any submodule V, every direct summand of V is extendible to a

direct summand of U, we say that U has the extending property of direct sum-

mands. If U has a decomposition U=UiQ)Uz such that Vi=Fnt/i (z= l, 2) for

all V and Fi? we say that U has the extending property of direct sums.

The following results are dual to ones in §2. Hence we shall skip proofs

except Lemma 9 below.

In order to show a difference between £/-injectivesand almost (7-injectives,

we shall give the dual to corollary to Proposition 1.

Proposition 4. Let {Ui＼ieibe a set of le and uniform modules and U=

Hi=i@Ut. Then the followingare equivalent:

1) Ui is almost Urinjectivefor alli=£j.

2) U has the extendingproperty of directsummands.

Further the followingare equivalent:

3) Ui is Upinjectivefor all*'=£/.

4) U has the extendingproperty of directsums.

Let E be an indecomposable and injective module and T=EndR{E). Then

T is a local ring with radical ={/|eT, ker fd'E} (see, [12] and [7], Proposi-

tion 5.4.9). Let Ui and U2 be uniform modules and Ei―E(Ui). It is clear from

the definition that if EX^E2, Ui is almost f/2-injectiveif and only if Ux is U%-

injective.

Dually to Lemma 6 we have

Lemma 9 ([12]; [7], Theorem 5.4.2). Let £A and Uz be uniform modules

and Et an injective hull of Utfor i=l, 2. Assume that Ux is almost Uz-injective.

Let f be not a monomorphism of E2 to Ei. Then f(U2)C.Ui.

Proof. Put U=f~i(Ul)i^U2, and take a diagram:
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0 ―>u ―>U2

＼f＼u

Since f~＼O)r＼U^Q, there exists g: U2->UX such that g＼U=f＼U by assumption.

We may assume that g is an element in HomR(E2, Ex). If (f―gXU^O, then

since E[zdU, there exist Wi^Qet/i, uz^U2 such that (f―g)(u2)=Ui. However

g{u2)^Uu and so u2(^U2r＼f~＼U1)―U. Therefore (/―g)(tt2)=0, a contradiction.

Hence f(U,)=e(U9)c:Ut.

Finally we exhibit the following proposition dual to Proposition 2.

Proposition 5. Let E be an indecomposable and injective module and Ux, U2

submodules of E. Then

1) // U1 is almost U2-injective,/(T)t/2c£7i.

2) Ur and U2 are mutually almost injective if and only if J{T)UiC.Ui,

J(T)U2dUl and for any unit f in T, fiU^dU, or U^fiU,), where r=EndB(£).

Proof. We can prove the proposition by virtue of Lemma 9 and its proof.

If either Ux or U2 has finitelength, for every unit / we have only a fixed

side of /(UJCLUt and U^dfiUx) in 2). While let Zp be a local ring over the

ring of integers Z, where p is prime. Then (pn) and Zp are mutually almost

injective. For units 1 and £-<"+I>in Q=EndZp(Q), ZpCZp-<n+1＼pn) and (pn)d

1-ZV.
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