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We have defined aconcept of almost M-projectives and almost M-injectives
in [4] and [9], respectively. In the first section of this paper we give some
relations among lifting modules, mutually almost relative projectivity and locally
semi- T-nilpotency. After giving a criterion of mutually almost relative projec-
tivity between two hollow modules in the second section, we give a characteri-
zation of lifting modules over a right artinian ring. Further we show a dif-
ference between M-projectives and almost M-projectives. Those dual properties
are gives in the third and fourth sections with sketch of proofs.

We shall give several characterizations of right Nakayama (resp. right co-
Nakayama) rings in terms of almost relative projectives (resp. almost relative
injectives) in forthcoming papers (cf. [9]).

1. Almost projectives.

Throughout this paper R is an associative ring with identity. Every module
M is a unitary right R-module. Let M be an R-module and K a submodule of
M. If M#M'+K for any proper submodule M’ of M, then K is called a small
submodule in M. If KNK'#0 for every non-zero submodule K’ of M, we say
that K is an essential submodule of M. If every proper submodule of M is
always small in M, M is called a hollow module and we dually call M a uniform
module, provided every non-zero submodule is essential in M. If Endg(M), the
ring of endomorphisms of M, is a local ring, M is called an le module. By
J(M) and Soc (M) we denote the Jacobson radical and the socle of M, respec-
tively and |M| is the length of M.

Following K. Oshiro [15] and [16] we define a lifting (resp. extending)
module. If for any submodule N of M, there exists a direct decomposition M=
M @M, such that
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(D)) NDOM, and NNM, is small in M, (and hence in M)
(resp. (C,) M,DN and N is essential in M),

then M is called a lifting (resp. extending) module. If M is a lifting (resp. ex-
tending) module with |M|<eco, M is a direct sum of le hollow (resp. uniform)
modules from the definition. Hence we shall study, in this paper, a lifting
(resp. extending) module which is a direct sum of le and hollow (resp. uniform)
modules.

We shall recall notations given in [9]. Let there be given a direct decom-
position M=M,PHM,, and let =, : M—M, and n,: M—M, be the projectives. We
shall use the following facts:

(i) Let f:M,—»M, be a homomorphism. Define M,(f)={x+f(x)|x&M,}.
Then M,(f) is a submodule of M isomorphic to M, and M=M,(f)PM,.

(ii) Let N;, N', N, and N? be submodules of M such that N;CN*CM; for
i=1,2 and let there exist an isomorphism A: N'/N,—N?/N,. We shall often
consider A as a homomorphism N'-—>N?/N, in the natural manner, so that N,
is the kernel of h. Let N={x+y|xeN! y=N? and y+N,=h(x)}. Then, as
is easily seen, N is a submodule of M and n,(N)=N!, 7 (N)=N? Further
NNM;=N; for ;=1, 2. We shall denote this N by

1) N'(h)N?,

(iii) Let N be any submodule of M. Put Ngy=M;N\N and z{N)=N* for
i=1,2. Then clearly N ,CN!CM,; for i=1,2. Let x&N' Then there is a
y&N? such that x+y< N, Such a y is not necessarily unique, but is unique
modulo N, By associating x-+N¢, with y+ N, we have an isomorphism
h: N'/Nyy—N?/Ng,. It is obvious that N=N'A)N? in the sense in (ii).

First we shall decompose a proof of Azumaya’s theorem [3] (see [2], Pro-
position 16.12) for an application to almost projectives, which is the dual ob-
servation of [4], Lemma I.

Let' M,, M, and N be R-modules. For a submodule K of M=M,(pBM,, take
a diagram :

@ M=MBM, —> MEMy)/ K —> 0

'[ h

N
Let 7;: M—M; be the projection for i=1, 2. Put Ki=z,K), Koy=KNM,; and
K=KYf)K* from (1), where f:K'/K ,—K?*/ Kgs,. Since KCK'@K? there
exists the natural epimorphism v’ : M/K—->M/(K'HK*»)=M,/K'*®M,/K*?. By z;
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we denote the projection onto M;/K*® in the last decomposition of M/(K'@K?)
and we put vi=z,’ for [=1,2. We note that v’=y{+vj and vjp|M; is nothing
but the natural epimorphism y; of M; onto M;/K*®. Further ker v'=(K'PK?)/K
=(K'DK)/ (KK o))/ (K/(Ky®DKw)). While (K'BK2/(KoyBKae)=~K/Kas
BK*/Kqey, and K/(Kauy@Ke)=(K(/)K*)/(KayBKa)=K'/Ka(f)=K*/Ka(f™),
(which is a graph in (K'®K?)/(KyDKw)TM,/Koy®M,/Ks,). Hence ker v'=
~K'/Ku;,=K*/ Ky, Let g be the canonical monomorphism of M,/K, into
M/K. Then g gives the above isomorphism: K!/K.,—kery’, and we obtain
the commutative diagram :

81K/ Ky,
K'/Kyy, — kery’

I b
M/ Ky —— MK,

where 7 and 7’ are inclusions.

From those observations we obtain two diagrams :

viv| M,
3) M, —— M,/K! ———
Tu{h
N,
and
vav | M,
3" M, > My/K? ——— 0
Tv;h
N.

Here we assume that there exists N—M; such that (u}le;)ﬁ,zvﬂz for j=1,2.
Put t=u(hi+hs)—h: NoM/K. Then vit=v'u(R,+h)—v' h=vh-+vih—y' h=
(v'—vHh=0. Hence #N)Ckeryv'. Put g'=(g|(K'/Ku)': kerv'—»K!/K,C
M,/Ky,. Since v(M,)=g(M,/K,), g7 exists on v(M,). Thus we obtain a new
diagram :

g vIM,
—> My/K; ——— 0

e

N.

4) M,

Finally we assume in (4) that there exists h%: N—M, such that g='(v|M,)h¥=g"t,
i.e. (v|M,)h*t=t by operating g. Then
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h=v(hy+ha)—(| My)R¥=v((h,— h¥)+hs) and
(5)
(hy—h¥)+hs: N—> M.
We recall the definition of almost M-projectives [9]. Let M and N be R-
modules. For any exact sequence with K a submodule of M;

v
M— M/K—0

[n

N

if either there exists /i : N—M with vA=h or there exist a non-zero direct sum-
mand M, of M and A :M,—N with hh=y|M,, N is called almost M-projective
(if we always obtain the first half, we say N is M-projective [3]).

We note the following fact:

When N is almost M-projective and M is indecomposable,
€] if the h in the above diagram is not an epimorphism,
then there exists always an A : N—M with vhA=h.

We frequently use this fact without any reference.
The following lemma is useful on almost projectives.

LEMMA 1. Let My, M,, ---, M, be hollow modules and N an R-moddle. As-
sume that N is almost M;-projective for all i. Take a diagram with K a sub-
module of 2BM;:

S DM, —> (SOMo)/K —> 0
Th
N.
If h(N) is small in (SBM,)/K, h is liftable to R NoXBM,, i.e. h=vh.

PrOOF. We shall prove the lemma by induction on n. If n=1, it is clear
from the definition. We assume that the lemma holds true for M*=3>17.,DM;
and put M=M,DM*, Let n; be the projection of M=3}-.DM; onto M,. As-
sume first that 7,(K) (=K)=M,. Put n*=3:.7;: M—M* Kt=r¥*K), Ku=
KNM, and Kuo=KNM*. Further set M=M/(K.,DK ) DE=K/(KoyDK o).
Since K=K (h)K* with h: K*/Kq,~K*/Ka, from (1), we obtain KcM,/Ka,
BM*/ K =M/ K hYDM*/K y=M and K=(M,/K)h). Hence M*/K,=
M/K~M/K, and by ¢ we denote this isomorphism of M*/K, onto M/K.
Accordingly we have a commutative diagram :
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p*

M* —> M*/K — 0

li e

M —> M/K —>0
Th

N.

Since ¢ is an isomorphism, by assumptions there exists h*: N—M* such that
vii*=p 'h, and so w(ihi*)=@u*h*=h. Hence ih*: N—M is the desired map.
Thus we can assume that K's=M;. Since A(N)is small in M/K, for v}h in the
diagrams (3) and (3’), vih(N) and v;h(N) are small in M,/K' and M*/K*,
respectively. Hence by assumption and induction hypothesis, there exist
Ri: N=M, and F*: N—M?*, which make the diagrams (3) and (3’) commutative.
Let ¢ and g’ be the mappings defined after (3’). Since M, is indecomposable,
g'UN)CK'/K,, and K'#M,, there exists i,: N—M, which makes the diagram
(4) commutative. Therefore h is liftable to 4 : N—>3XPM; as is shown in (5).

By definition we have

LEMMA 2. Let {M,}; be a set of almost M-projectives for a fixed R-module
M. Then 3,PM, is almost M-projective.

We have given some relationships between lifting modules and almost pro-
jectives in [9]. We give here a simpler relation for a finite direct sum. This
is dual to [14], Theorem 12, however the proof is not, because we used injec-
tive hulls in [14], but we can not take here projective covers.

THEOREM 1. Let {M;}}, be a set of le and hollow modules. Then the fol-
lowing are equivalent :

1) M=32r.BM,; is lifting.

2) M; is almost M-projective for any i#j.

3) For any subset [ in I={1,2, -, n} 2,BM; is almost 3;_,PDM;-projec-
tive.

PROOF. 1)-3)—2). This is clear from the definition of almost projectives,
Lemma 2 and [9], Theorem 1”.

2)—1). If we can show that every non small submodule N in M contains
a non-zero direct summand of M (i.e., M satisfies (1—D,) in [9]), then M is
lifting by [9], Theorem 1”. In order to get the above fact, we shall show
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every non small submodule in M contained in M{BMD - MiP Ty i

(6) ---@T, contains a non-zero direct summand of M, where M= ,PM;
is any direct decomposition into indecomposable modules M} (=M,),
and the 7; are small in M} for i=k+1.

We may assume M{=M; in (6). If (6)is true for all k, taking k=n+1 (M, =
Tw1=0), we are done. Consider (6) with 2=1. Let N be a non-small sub-
module contained in M@XL.PT;, and put M*=M,PM,DP --- PM,. Let
7wy M—M, and n*: M—M?* be the projections. Since N is not small in M
and the T; is small in M; for all /=2, =,(N)=N'=M,. Then from (1) N=
M,(h)N*, where N*=g*N), Nuy=NNM, Nugpw=NNM* and h: M,/Ny=
N*/Ne. Since N*Cr,PT;, N* is small in M* and hence N*/N, is small
in My/Nu,. From those datas we obtain the diagram:

v
M*=M,DM,D --- DM, —> M*/N, —> 0
’[h
M,/ N,

t

M,

Since M, is almost M,-projective for all j=2 by assumption and A(M,/N,)=
N*/N, is small in M*/ Ny, there exists h: N-M* with yAi=hy, by Lemma
1. Hence N contains M,(h) a direct summand of M (consider M/(NuyPNey)D
N/(Noy®Nesy), cf. the proof of [9], Theorem 1). Assume that (6) is true for
all 2’<k and let NCM\D - PM B TrwofD - DTy (B=1). We may assume
n(N)=M,. Let p be the projection of M onto M**=M,PM,. Since x,(N)=
M,, p(N) is not small in M**, Then M** being lifting by [9], Theorem 17,
M¥*=L DL, and p(N)=L,D(L,Np(N)) with L,Np(N) small in M**  Since
L, is a direct sum of at most two direct summands, we put L,=M/BM}
(M!+#0), L,=M/, where M{=one of {M, M, (0)}. Then M=M*POM,D -
PM . OMIPMIBMIOMP - DMy D TrsaPD - BTDON. If MY=0, i.e., L=
M and L,=M’, N satisfies (6) by induction, since p(N)=M7PM;i;Np(N)) and
MiNp(N) is small in M4. Assume M7=+0 (and hence M{=0) i.e., po(N)=
MMy =M** Let n% be the projection of M onto Mj. Since p(N)=M**,
NN#4-%0) is not small in M and NNz} "(0)CMTBODMD - DM 1D Tr oD
- PT,. Hence (ND) NNzy '(0) contains a non zero direct summand of M by
assumption of induction. Therefore (6) is true for any %, and so N always
contains a non-zer¢ direct summand of M.
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THEOREM 1 is not true if {M,},; is an infinite set, even though {M,.}; is
locally semi T -nilpotent, which is given in [7], p. 174, and briefly 1sTn (see
example before Theorem 2 below). In [9], Theorem 1”7 the locally semi-T-
nilpotency is important. Concerning this fact we have the following lemma.
In the proof we make use of certain factor categories given in [7]. We do
not know a module theoretical proof.

LEMMA 3. Let {M.}; be a set of le modules. If M=3,DM, is lifting,
then {Mg},; is 1sTn.

PROOF. From the definition of IsTn, we way assume that / is an infinite
set.  Let My=3,.:HM; and {f;: M;—M,,,} a set of non-isomorphisms and
Mi=M(f)CM;®SM,.,. Since M, is lifting, for My=312.BM}, M=T.DT:;
My=TiOMNT, and M N T, is small in M,. Here we shall apply some theo-
rems on factor categories A4/J’ induced from le modules (see [7], Chapters 6
and 7), and use the same terminologies given there. First we note that M is
also a direct sum of le modules, i.e., My=A. Let T# and (MeNT,)* be full
submodules in T; and (M4NT,), respectively ([7], p. 169). Let iy, ¢r, and
imnr, be inclusions in M, Since MyNT, is small in Mo, iy,7r,=0 by the de-
finition of J’ in [7], p. 148. Further iy, is an isomorphism by [7], Theorem
7.3.13, and iy,=ir,+iynr,=Iir,. On the other hand, 1y,=ir,+1ir,. Hence ir,=0,
since iy, =iy, is an isomorphism and ir, ir, are mutually orthogonal idempot-
ents, and so 7,=0 by [7], Theorem 7.1.2. According M,=M,. Therefore
{M.}; is 1sTn by [7]. Theorem 7.2.7.

THEOREM 2. Let {M,}; be a set of le hollow and cyclic modules. Then the
following are equivalent:

1) M=2,5M, is lifting.

2) M, is almost My-projective for any a*b and {M.}; is 1sTn.

3) ZsDBM,, is almost 23, ,BM,, -projective for any subset J in I and {M};
is IsTn. (¢f. Theorem 4 below.)

Proor. This is clear from Theorem 1, Lemma 2 and 3 and [9], Theo-

rem 1”7,
We prepare the foillowing lemma for an example below.

LEMMA 4. Let M be an le and hollow module. If any infinite direct sum
of copies of M is always lifting, M is cyclic.
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PROOF. Assume that M is not cyclic. Then xR is a small submodule in
M for any x in M. Put D=3,cx®PM, (M,=M) and S=3,PxR, Taking an
epimorphism f: D—M such that f|M,=1y, we know that S is not small in
M. Hence M is not lifting from [9], Corollary 2.

Let Z be the ring of integers. Then FE(Z/p), injective hull of Z/p (p is
prime) is almost E(Z/p)-projective (see [12]). However X2.BDE; (E;=E(Z/p))
is not lifting by Lemma 4, even though {M;=E(Z/p)} is 1sTn. On the other
hand 33,PE(Z/p) is lifting.

2. Lifting property.

First we shall give a relationship between lifting module and lifting pro-
perty.

Let XDOY be R-modules and v: X—X/Y the natural epimorphism. If, for
a direct summand T of X/VY, there exists a direct summand T, of X such that
T=u(T,), we say that T is lifted to T,. If every direct summand of any factor
module X/Y’ is lifted, we say that X has the lifting property of direct sum-
mands modulo submodules. 1f, for any submodule ¥ of X and for any direct
decomposition X/Y=3YPT;, there exists a direct decomposition X=33PT; with
v(TH=T; for all i, we say that X has the [ifting property of direct sums modulo
submodules.

We take a direct decomposition M=>PM;. For a submodule N; of M; we
call 3XPN; a standard submodule of M with respect to this decomposition
SPDM;. 1If we say a standard submodule in the following, that is a standard
submodule with respect to decomposition into indecomposable modules. We
note that J(X) and Soc(X) are always standard submodules with respect to any
decompositions.

PROPOSITION 1. Let {Mg}; be a set of hollow and le modules and M=
S PM,. Assume that {Mgy}; is IsTn. Then the following are equivalent:

1) M is lifting.

2) M has the lifting property of direct summands modulo submodules (cf.
[15], § 4.

PrOOF. 1)—2) (The argument below is valid for any lifting module). Let
N be a submodule of M and T a direct summand of M/N. Let v: M—-M/N
be the natural epimorphism of M. We apply (D,) to the inverse image T, of
T. Then there exists a decomposition M=M'PM” such that T,=M'PHToNM"
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and T,\M” is small in M. Then T=u(Ty)=v(M")+u(T,NM”"). Since ToN\M”"
is small in M and T is a direct summand of M/N, w(T,N\M") is small in T.
Hence T=u(M").

2)—1). Let T, be a non-small submodule in M. Then there exists a sub-
module X (M) of M such that M=T,+X. Now M/(TNX)=T/(To\NX)D
X/ToNX) and T,/(Ty"X)#0. Since M has the lifting property, M=M'®M"
and (M'+ TN XN TonNX)=To/(TyNX), and so 0=M'CT,. Therefore M is lift-
ing by [9], Theorem 1”.

The following corollary shows us a difference between M-projectives and
almost M-projectives.

COROLLARY. Assume |I|=n<oco and |M;|<co in the above. Then the fol-
lowing two conditions are equivalent:

1) M, is almost M;-projective for all i+].

2) M has the lifting property of any indecomposable direct summands modulo
standard submodules.

Similarly the following two conditions are equivalent:

3) M, is M-projective for all i+#j.

4) M has the lifting property of direct sums modulo standard submodules,
(cf. [15], §4).

PrROOF. 1)—2). This is clear from Theorem 1 and Proposition 1.

2—1). Put M*=M,PM, We can show by routine work that M* has the
lifting property of indecomposable direct summands modulo standard submodules,
since so does M. Let X be a non-small submodule of M*. Then m,|X or m,| X
is an epimorphism, where =;: M*-sM; is the projection, say =,|X. Then
X/(Xy®Xew) is a graph of M,/ X, in M*/(X®Xe) provided Xa,#M,,
where Xu,=XNM,, and hence a direct summand of M*/(X,y®Xw). Further
X/(X1yPXey) is indecomposable, and X/(X,PXw) is lifted to a direct sum-
mand X’ of M* by assumption. Hence X'CX. If X,,=M, M,CX. Accord-
ingly M* is lifting, and hence M, and M, are mutually almost relative projec-
tive by Theorem 1.

3)—4) First assume that M,, M, are mutually relative projective and M=
M, BM,. Put ﬁ:M/(Nl@NZ). Let C be any submodule in M. We denote
(CHNBNN/NDN,) by C (CK). 1t is clear that M=K,DM, and M.~
M;/N;. Let ﬁ:AEBB. We note that if an R-module L is a finite direct sum
of le modules L;, every non-zero indecomposable direct summand of L is given
by a graph of some L, (see [7], Proposition 6.3.3). Since M,;/N; is an le
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module by assumption, we can assume A:AZ( f~1) ; ﬂ:]t711-+.1£712. Then there
exists a decomposition M=M,(f,)PM,, where f, is a lifted one of fi. Clearly
M(F=A. Since M (=M(F)DI)=ABN=ADB, B=NMf2); fo: A=
mzMl(f1)/(M,(f1)f\(N1€BNz)), (take the projection of M onto }\72). Hence
there exists f,:M,—M,(f,) and 1\71:(7528. Therefore M=M,(f)DM,(f,) is
the desired decomposition. Finally we study in a general case. Let A7I=2§L._,
PM,/N;=2.,PA;. Since M;/N; is an le module, the A; is a direct sum of
hollow modules by Krull-Schmidt’s theorem. Hence we may assume that all A,
are hollow. Without loss of generality we can put A1=A711(f1); f1:1l711—>2,-;2
DM, and M=ADT2:DMi=A,DAD - DA Let p be the projection of M
onto ZiggEBMi on the first decomposition of the above. Since p|(A4.D -~ DAn)
is an isomorphism onto ZingB}Vli, there exists, from the above remark, a pro-
jection 0j:2i;2@1\2i—>1\~4j such that ;0| A, is an isomorphism, say j=2, whence
A=A F2); For Moo KI(FODMG -+ DM, Similarly Ai=M(fi) with iz Mi—
MF)D - OMi(Fio ) DM - PM,. By virtue of Azumaya’s theorem [3]
we can apply the initial argument to those decompositions and obtain finally a
lifted direct decomposition M=3DBM;(f:).

4)—3) It is clear that if M=3L,PM; satisfies 4), then so does M.DM..
Let f:M,—M,/N, be a homomorphism (N.CM,). Then M=M,®M,/N,=M(f)
DM,/N, is lifted to M=T,®T, such that T\=M,(/) and T,=M,/N,. Let
0:M-T, and m,: M—M, be the projections. Then z,p|M, is a lifted one of 7
(see the proof of [8], Theorem 2). Hence M, is M,-projective.

Next we shall give some criterion of almost relative projectivity for two
hollow (local) modules. Let e be a local idempotent, i.e., ¢R is hollow. Let A
and B be R-submodules in eR. We note that any element in Homg(eR/A, eR/B)
is given by x; (xEeRe), the left-sided multiplication of x.

From the definition and a fact: (eR/A)/J(eR/eA))=eR/e] we have

LEMMA 5. Assume that eR/A is almost eR/B-projective. Then for any
unit u in eRe there exists a unit x such that xACB and x=u (mod eje)or xBCA
and u~'=x (mod eje).

LEMMA 6. Let M be an indecomposable R-module and assume that eR/A is
almost M-projective, and take a non-epic homomorphism f of eR to M. Then f(A)
=0 ([11]; 7], Theorem 5.4.11).

ProoF. Consider a derived diagram from S :
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M —> M/ f(A) —> 0

17

eR/A.

Since f is not epic, i is same. Hence there exists h:eR/A—M with vAi=7 by
assumption. Let p:eR—eKR/A be the natural epimorphism and put h=hp:eR
—M. Since vhi=7],

vf(e)=F(e+A)=vh(e+A)=vh p(e)=vh(e),
Hence

(7N fle)—h(e)=f(a) for some a in A.

Now O0=h(a)=h(e)a=f(a)—f(a)a=f(a)1l—a) from (7). Hence, f(a)=0 for
acACe], and so f(A)=f(e)A=h(e)A=h(A)=0 from (7).

PROPOSITION 2. Let ¢ and e’ be local idempotents. Then

1) eR/A is ¢ R/B-projective if and only if ¢’ ReACB. If exe’, eR/A is
¢'R/B-projective if and only if eR/A is almost ¢’R/B-projective.

2) If eR/A is almost eR/B-projective, efJeACB.

3) eR/A and eR/B are mutually almost relative projective if and only if
eJeACB, eJeBC A and for any unit element u in eRe, uACB or BCuA. In
particular ACB or BCA.

ProoF. 1) is clear from [1], p. 22, Exercise 4 and 2) is clear from Lemma 6.

3) (This is the same argument given in [10]). Assume that eR/A and
eR/B are mutually almost relative projective. Then ¢JeAC B and ¢/BCA from
2). First assume that eR/B is almost eR/A-projective. Let u be any unit in
¢Re. Then by Lemma 5 there exists j in efe (resp. j’) such that

a) (u+jACB or b) (u™'4;)BCA.

a): uA=(u+7)—NAC(u+j)A+7ACB since eJeACB. We obtain similarly
u*BCA in case b).
The converse is clear from definition and the initial remark before Lemma 5.

Let R be a right artinian (basic) ring and {e;}%, a complete set of mutually
orthogonal primitive idempotents. Then every hollow module is of a form
e¢;R/A. Take an R-module M which is a direct sum of hollow modules:

M”;Zizn(ij)eziEB(eiR/Aij)("(””; eiR/Aij'r’ﬁevR/Ai'j' if (7, ]‘)
(8
#(2’7") (and n(i7)#0, which may be infinite, for all 7 and j),
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where K™ ig the direct sum of n(ij)-copies of K.
If M is lifting, then from Theorem 2 and Proposition 2, we obtain,
i) |1;|=ns< oo for all 7.
After changing induces
i) If n;=2
eiRDA“DRiA,-zDAiZD nee DRiAiniDAiniD
®
Eﬁ:leijek/lkl, where Ri:eiRei .
If n;=1, e;RDALDI st Jer Ay
i) If n(zy)=2, A;; is characteristic.
Thus we obtain from Theorem 2 and [8], Corollary to Theorem 4

THEOREM 3. Let R be a right artinian ring and M an R-module. Then the
following are equivalent:

1) M is lifting.

2) M is a direct sum of hollow modules as in (8), which satisfy (9).

3. Almost injectives.

Following [4] we recall the definition of almost V-injectives and study some

properties of them.

Let V and U be R-modules and V2OV’. Consider the following diagram
with 7 the inclusion and two conditions 1) and 2):

7
0—V' —V

|

U

1) There exists & :V—U such that hi=h or

2) There exist a non-zero direct summand V, of V and & :U—V, such
that f{h:m’, where 7 :V—V, is the projection of V onto V,. U is called almost
V-injective if the above 1) or 2) holds for any submodule V'’ of ¥V and any
h:V'>U (U is called M-injective if we have only 1) [3]).

The following lemma is dual to a special case of Theorem 1.

LEMMA 8. Let U, and U, be le and uniform modules and U=U,PU,. Then
the following are equivalent:

1) U is extending.
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2) U, and U, are mutually almost relative injective.

PrOOF. 1)—2). Let V be a submodule in U=U,BU,. We may assume
that V is uniform. Let z; be the projection of U onto U,;. Since V is uniform,
V=ULf)) G=1 or 2), where U,=n, V) and f;:Uj->Uj (j#i). Assume V=
Ui(f,) and take a diagram

Z
0—U;—U,

|5

U.

Then since the U; are indecomposable, there exists f,:U,—U, or U,—U, with
Fifi=i or fui=f, by 2). Hence V=U{(f)CU.(f) or VCUF,), which is a
direct summand of U.

1)—2). Consider the above diagram and define U'=Uj(f,) in U,PU,. Since
U’ is uniform, there exists a decomposition U=V @V, and V,DU’. Since V,
has the exchange property, U=V ,PU, or =V,PU,. If the latter case occurs,
R==}|U, is a desired homomorphism, where x3:U—U, We obtain a similar
result for the former (note, in this case, that f, is a monomorphism).

The following theorem is the dual to Theorem 1, which is essentially given
in [14].

THEOREM 4. Let {Ug}; be a set of le uniform modules and U=3;DU,.
Assume that {U,}; is IsTn. Then the following are equivalent :

1) U is extending.

2) U, is almost Uj-injective for all a#b.

ProOF. 1)-2). It is clear from Lemma 8.

2)—1). (Essentially due to [14]) U=3,pU, satisfies (1—C,) (i.e., N is
uniform in C,) by Lemma 8 and [14], Lemma 11, and so every closed sub-
module 4 in U contains a non-zero indecomposable direct summand X of U by
[14], Proposition 6. Hence we can define a non-empty set F of direct sums of
uniform modules in U as follows: F={3.PX.|CA, X, is uniform and
SoPX, is a locally direct summand of U}. We can find a maximal member
SPBX, in F by Zorn’s lemma. Since {U.} is IsTn, 2P X, is a direct sum-
mand of U by [7], Theorem 7.3.15, say U=(Z.HX.)PU’ and A=(HX.)
PU'NA. It is clear that U’'NA is also closed in U. Hence U'NA=0 by the
maximality of 3} X.. Therefore U is extending.
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We consider a result similar to Lemma 3 for extending modules.

PROPOSITION 3. Let U=33DU, be as above. Assume that U is extending.
fl fZ

Jn
Then there do not exist any infinite sets {U, —> U, —> U, —> ---; the [ are

monomor phisms but not isomorphisms}.

Proor. Let {f;:U,—U;.,} be a set of non-isomorphisms and put U*=
SPU(f)T2PU;. Then we obtain a decomposition U’ (=3XPU,)=XDY and
U*C'X, i.e. U* is essential in X. Since 1x:U*—U’ is an isomorphism in A/J’,
Y=0 (see the proof of Lemma 3). Hence U*C'U’, and so U,NU*=+0. If we
use this argument for the case where all f; are monomorphisms, we know
that {f;} must be finite.

EXAMPLE. R, (resp. R,) is the ring of upper (lower) triangular matrices
over a field K with infinite degree. Let e¢;=e;; be matrix units. Then e¢.R;
is almost ¢,R;-projective and almost esR;-injective for any k, s and a fixed i=1
or 2, and further 3;,@Pe.R, is lifting and extending by Theorems 2 and 4. On
the other hand e,R, is almost 3},..Pe;R,-projective and almost SierPe; Ry
injective (cf. [4], Theorem) for all k, however 3);Pe;R, is neither lifting nor
extending by Lemma 3 and Proposition 3, since we have an infinite chain of
submodules; ¢,R,Ce,R,C -+ Ce,R,C ---. Further e,R, is always almost 3};..®
e;R;-injective for any n, but e¢,R, is not aimost 3);.,Pe;R,-injective. Because,
we assume that ¢,R were almost 3J;..Pe;R-injective, where R=R,. Put U=
2iz2Pe;R.  Then Soc (U)=3)..Pe:Re, and e¢;Re,=e,R,=e;R as R-modules.
Take a diagram:

0 — X)Pe;Re, —i> U
¥

elR ’

where f is given by the above isomorphisms. Since Homg(e R, ¢,R)==0 for i=>2,
we should have a decomposition U=AMB and fi :e,R—~A such that Rf=m4d
with m4:U—A. Further Soc(U)=Soc(A)YDSoc(B) and 7,|Soc(A)=1lsoccas-
Hence if=r,i implies that Soc(A4) is simple, and so A is indecomposable and
B is a direct sum of indecomposable modules B; (=2) by [7], Theorem 8.3.3.
Accordingly we may assume that A=e, R(f)); f,:es,R—>Z4sn,PesR and B;=
ean(fj); f,:eanAZH,,jéBekR. Since e;R#e;R if i+, n;#n; by Krull-Remark-
Schmidt-Azumaya’s theorem. Hence we can assume that A=e,R(f,) for some
n and By=e,R(f;) (j#n and B.=e,R(f,)); n may be 2. Since Homg(eR, ¢,;R)
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=0 for i>j, we know e, RCX;:nnPBB;CB from the structure of B;.
i f(ensiRe)=h(e,Re,)#0 since e,R=e,Re, is simple and Soc(A)CSoc ()=:.
De;Re,, while A f(epmRe)=nenRe))Cr4(B)=0, a contradiction.

4. Extending property.

We shall consider a dual concept to §2 (cf. [6] and [16]). Let UDV be
R-modules. Take a direct summand V, of V, ie, V=V,@V,. If U has a
decomposition U=U,HU, such that UNV=V, we say that V, is extendible
to U,. If, for any submodule V, every direct summand of V is extendible to a
direct summand of U, we say that U has the extending property of direct sum-
mands. 1f U has a decomposition U=U,PHU, such that V,=VNU, (i=1, 2) for
all V and V,;, we say that U has the extending property of direct sums.

The following results are dual to ones in §2. Hence we shall skip proofs
except Lemma 9 below.

In order to show a difference between U-injectives and almost U-injectives,
we shall give the dual to corollary to Proposition 1.

PROPOSITION 4. Let {U}ic; be a set of le and uniform modules and U=
S PU;. Then the following are equivalent :

1) U; is almost Uginjective for all i+].

2) U has the extending property of direct summands.
Further the following are equivalent :

3y U; is Usginjective for all i#j.

4) U has the extending property of direct sums.

Let £ be an indecomposable and injective module and T=Endg(E). Then
T is a local ring with radical ={f| <=7, ker fC'E} (see, [12] and {7], Proposi-
tion 5.4.9). Let U, and U, be uniform modules and E;=FE(U;). It is clear from
the definition that if E,#FE,, U, is almost U,-injective if and only if U, is U,-
injective.

Dually to Lemma 6 we have

LEMMA 9 ([12]; [7], Theorem 5.4.2). Let U, and U, be uniform modules
and E; an injective hull of U; for i=1, 2. Assume that U, is almost Us-injective.
Let f be not a monomorphism of E, to E,. Then f(U,)CU,.

Proor. Put U=f"'(U,)NU,, and take a diagram:
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0—U—1U,

| r1o
U,

Since fH0)NU=+0, there exists g: U,—U, such that g|U=f|U by assumption.
We may assume that g is an element in Homg(E,, E)). If (f—g)(U,)#0, then
since E{DU, there exist u,#0<U,, u,&U, such that (f—g)(u.)=u,. However
g(us)el,, and so u,cU,Nf'(U,)=U. Therefore (f—g)u,)=0, a contradiction.
Hence f(U,)=gU,cU,.

Finally we exhibit the following proposition dual to Proposition 2.

PROPOSITION 5. Lei E be an indecomposable and injective module and U,, U,
submodules of E. Then

1) If U, is almost Us-injective, J(TYU,CU,.

2) Uy and U, are mutually almost injective if and only if J(T)U,CU,,
J(DYU.CU, and for any unit f in T, f(U,)CU, or U,C f(U,), where T=Endg(E).

PROOF. We can prove the proposition by virtue of Lemma 9 and its proof.

If either U, or U, has finite length, for every unit f we have only a fixed
side of f(U,)CU, and U,Cf(U,) in 2). While let Z, be a local ring over the
ring of integers Z, where p is prime. Then (p") and Z, are mutually almost
injective. For units 1 and p~*Y in Q:Endzp(Q), Z,Cp~"(p™) and (p™)C
1-Z,.
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