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ON THE ABSOLUTELY PARACOMPACT
SUBSETS OF V“(w+1)*®

By

Shoulian YANG

Rudin [R] first proved under CH that the box product [J“(@-+1) of count-
able many copies of w-+1 is paracompact. But since then it is still unknown
if this simplest box product is paracompact in ZFC. Kunen [K] showed that
the paracompactness of [1“(w+1) is equivalent to that of the reduced box pro-
duct V% w+1). In this paper, we give out some special subsets of V¢(w-+1)
which is paracompact in ZFC (see Theorems 5, 8), hoping that our results will
become helpful toward the solution of the paracompactness of V9 (w@-+1) itself.
For survey of box products see van Douwan [vD].

Given spaces X;(iEw), an open box in the Cartesian product ig X; is a set

of the form T[JU,, where U, is an open subset of X;. The topology generated

1EW

by all open boxes is the box topology. ig X; with the product is denoted by
ED X; and is called the box product. We define the reduced (or nabla) product
iZH X; as the quotient space 1,EDw Xi/=* by the equivalence relation =* such that
[f=*g iff f(1)=g@) for almost all icw, that is, {icw: f(/)=g()} is finite. Let
us use ¢ to denote the quotient map

q. DXi—‘") VXi.

= icw
When all factors are the same space X, we denote g X, V Xy by 00X, veX
Ew e

respectively. In this paper, we simply denote O (w+1), V (w+1) by O, V¥
icw t€w

respectively.
We make our convention that members of [ are denoted by f, g, A, -,
while members of v are denoted by x, y, z, .. For each x&Vv, we choose

a fixed member of ¢~'(x) and denoted it by x°. To denote an arbitrary mem-
ber of ¢~'(x) we use the symbol xU.
For each x& Vv, we put
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F(x)={icw: x?({)<w} and I[(x)={icw: x?@)=0}.

If E is an infinite subset of @, all the above definitions are naturally modified
to the product IIEX, Let
ic

gz: O%w+1) — VEw+1)

be the quotient mapping. For each x=v, x|E denotes ¢gg(x"| E), where x| E
is the function x"&“w restricted on E.
For f, g1, we define

f<*g iff f()ZLg@) for almost all /<w.

<* is defined by <* and not =*. Note that <* is a quasi-order in [J. <*
induces a partial order < in v, that is,

X<y if x9<*y0,
Similarly, <* induces <. For subsets A, BCw, we define
AC*B iff ANB is finite;
A=*B iff AC*B and BC*A.

Let “ocC [0 be the set of all functions from @ to w. Then the image of “w by
q is V°@C V. Let us denote this vV by V.

Since the togology of w+1 is the order topology, the basic set in [J is of
the form 15 [a;, b;], where a;<w, or more strictly, we can add the condition

that a;=b; if b;<w. Hence, in V, we make a convention that a basic set in ¥V
means an interval
[x, y]={zeV:ix=szsy}

such that (1). x=vVw;

(2). x=y on F(y), that is, x°(#)=7y°(@F) for almost all i€ F(y).

We say a point ye Vw is increasing or unbounded if some x"<“w is so.

Let E be an infinite subset of w. For an unbounded function f&fw we
define a function A(f)E“w by

MOM=/(1), nEow

where
j=min{{€E: i=zn and f(@)=max{f(k): k€E, k<i}}.

Note that the condition f(7)=max{f(k): k= FE, k<:} is always satisfied if f is
increasing. :

We call this A(f) the hat of f. For an unbounded x< VEw the hat of x is
defined by
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h(x)=g(h(x")H)EVo.
For x&V such that x|F(x) is unbounded, we often use
h(x|F(x))

and abbreviate this to A(x). Note that A(x)E Vw, and that h(x)<zx if x|{F(x)
is increasing. When we consider h(x), we always assume that x|F(x) is un-
bounded.

LEMMA 1. Let ECw be infinite, and x<=VPw be bounded. If yevVw is
increasing, then y| E<x implies y< h(x).

ProoF. The condition y|E<x implies h(y| E)<h(x). Since y is increas-
ing, we know that y<h(y|E). Hence we get y<h(x).

Recall our convention that the basic set [x, y] is chosen so that x=y on
F(y). Then the following lemma is easy to see.

LEMMA 2. Suppose that x, yev, and V,.=[%, x], V,=[¥5, y] are basic
sets. Then V.MV =@ if all the following three conditions hola:

1) x=y on F(x)NF(y);

2) <y on F(yNF(x);

(3) §<x on F(x)\NF(y).

We define a special relation in v, denoted <, as follows. We write x<y
if the following two conditions are satisfied:

(i) x=y on F(x)NF(y);

(i) A(x)<y on F(y)\F(x).
Note that if x<y, then A(x)Z<h(y).

A subset of Vo is called dominating if it is cofinal in {(Vw, <), or equi-
valently, cofinal in {@“, <*). Define the cardinal

d=min{|D|: D is a dominating subset in Vw}.

Note w,<d<c=2¢. In the sequel, we fix a dominating family
D={gs: a=d}, ga=0¢(fa) [aE"w
in VoCV such that each f. is increasing. For every a<d put
H,={x=v:x<q9, on F(x)},

=m0~ Ull,;.
B<La
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Since 9@ is dominating, we have
v=U{ll,: a<d}.

Focusing on the partial order <, we call that a subset ACV is super-bounded
if for each xev
fa<d: h(yIF(YNF(x)ell,, x<ys A}

is bounded in d. (Note that if there is no y with x<y& A for each x= v,
then A is Super-bounded.)
More precisely, let call A super-bounded by g: vV—d if for every x&v

g(x)=sup{a<d: h(y|F(YNF(x)ell,, x<ysA}.

Let A be super-bounded by g and let x&v be an arbitrary point. Since
{ga:a<g(x)} can not dominate Vw, there exists vy, Vw such that y,Zq, for
all a<g(x). Fix these y,’s. Let C be an open cover of V. For each x4,
we call V,=[%, x] a good basic neighborhood of x relative to A and C if it
satisfies the following :

(i) V, is a basic set and is contained in some member of C:

(ii) Z>h(x);

(iii) %>gs, where B is such that xeﬁﬁ;

(iv) %>y., where y, is as above;

(v) % is increasing.

LEMMA 3. Let A be super-bounded, and x, yeA. If V., V, are good basic
neighborhoods, then the conditions

£V, ana y&EV,

imply
V.N\V,=@.

PrOOF. We consider five cases.

(1) x+y on F(xX)NF(y). Then V.N\V,=@® by Lemma 2.

(2) F(x)NF(y)=*@. Then, either y>»h(x) on F(y) or x>h(y) on F(x).

Indeed, if y>h(x) on F(v), then A(y)>h(x) since F(x)N\F(y)=*@. Hence
x<h(y) on F(x). Since ¥>h(x) and F>h(y), it follows that either y2% on
F(y) or x27% on F(x) happens; which means V,N\V,=@ by Lemma 2.

Now in the following cases, we can assume that x=y on F(x)"\F(y) and
that F(x)N\F(y) is infinite. Take «, 8 such that xeﬁp, yeﬁa and assume
that a<p.

() F(x)\NF(y) is infinite. Since XaZqq On F(x,), and §>¢,., we have
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j<x on F(x , \NF(y).
Since F(x,)C*F(x), we get
J<x on F(x)\F(y).

Hence V.N\V,=@ by Lemma 2.

(4) F(y)\F(x,) is infinite and F(x,)C*F(y). If x<y, then h(x)<y on
F(y)\F(x) because x and y satisfy the first condition of x<y. From %>h(x)
it follows that '

Ly on F(yNF(x).

Hence V,NV,=@ by Lemma 2. Note thrt F(y)\NF(x)=*F(y)\F(x,) because
FOONFxONF(xo))=*@. So F(y)NF(x) is infinite.
If x<y, then
(Y| F(yNF(x)ell,

for some &< g(x) because y= A and A is super-bounded by g. This means

My FOONF(x)=¢e .

On the otheer hand, by the definition of y,, we have

y.rg{];? .
From %>y, it follows that
fj(:45 .
Hence
FLAh(yIF(yNF(x).
By Lemma 1 we get
XLy on F(y\F(x).

which shows V.N\V ,=@ by Lemma 2.
(5) F(y)=*F(x,). Since x=y on F(y) and x&V,, there exists an infinite
subset GCF(x)\F(y) such that

x<y on G.
Hence V. NV ,=@.
This completes the proof of Lemma 3.
xEV is called a boundea point if x| F(x) is bounded. The points in the
previous lemma are unbounded points. For every bounded point x, we simply

choose an increasing % so that V.[%, x] is contained in some member of C.
Such V., is also called a good neighborhood. The next lemma is easy.

LeEmMMA 4. Suppose that x, y are boundea ana x+y, or that x is bounded
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but y is unbounded. Then
V.NV,=@
for good neighborhoods V., V.

Now we come to the main theorem.

THEOREM 5. Every super-bounded subset of < is paracompact. Precisely,
every open cover of a super-boundea subset of V has a refinement consisting of
pairwise disjoint basic sets.

PrROOF. Suppose that A is the super-bounded subset of V. By induction
we will define the families K(a) for a<<d so that the following hold:

(1) K(a) is a disjoint collection consisting of good basic neighborhoods of
some points in AN, ;

(2) K(a) refines C;

(3) K(a) covers ANII,;

1) Ka)CK(pB) if a<B.

For a stage f<d, let B=(ANIIp)\\U{K(a): a<B}, and define
K'(B)={V,: V. is good neighborhood of x& B},
K(B)=K'(B)JU{K(a): a<B}.

By Lemma 3 and 4 we can conclude that K(B) satisfies (1). Then, it is easy
to check that K(a), a<pf, satisfy (1)-(4). By (3). {K(a):a=d} covers A=
U{ANIT,: a<d}. By (1) and (2), {K(a): a<d} is a disjoint collection refining
¢. Thus we can conclude that A is paracompact.

x, yEV are said be compatible if x=y on F(x)"\F(y). Then, x\UyeV is
a point such that F(x\Uy)=F(x)UF(), (xU)|F(x)=x|F(x) and (xUy)|F(y)
=y F(y).

Let A, B are super-bounded, and xc ACB. B is called on expansion of A
by x if we have x\UyeB whenever y is a point in A such that: (i) x, y are
compatible; x>h(y) on F(x)NF(y); (iii) y>h(x) on F(y)\F(x). Let x¢&\UA,
where A is a family of super-bounded sets and B is a super-bounded set. Then

B is called an expansion of A by x if x\Uy& B whenever y is a point in UA
such that (i), (ii), (iii) as above.

LEMMA 6. Suppose A is a super-bounded set, and x&A. Then the least
expansion of A by x exists.

PROOF. Let
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B=AUU{x\Uy: ye A satisfies the above (i), (ii) and (iii)}.

To show B is the desired expansion, It suffices to show B is super-bounded.
Note first that for each z& v

{a: W(x\Uy|F(xUyNF)ell,, xUyB, z<x\Uy} (*)

IS

is bounded in
Indeed,
{a: h(x\Uy| F(xUyNF(2)ell,, yeB, 2<y}

is bounded in d. So let 8 be the supremum of this set; then
hx Uy F(x UyNF(2)<qpV h(x | F{xONF(2))
where V is an operation on Vv such that
wVv=¢q(w V), (weVu)(@)=max {w°({), v°@)}.
From the fact (x) it follows that for each z& v,
{a: hW(y|F(YNF(2)ell,, yeB, z<y}

is bounded in d. Hence B is super-bounded.

Fix f<cof(d). Let A,, @<pB, be super-bounded subsets in V. Let & be
a refinement of C covering U{A.:a<B}. $ is called a good refinement if
every V.=[%, x]€4 is a good basic neighborhood of x relative to A4,, where

r=min{a<B:x=A, and V.c 8},

LEMMA 7. If B<cof(d), and B is a good refinement covering \U{A,: a<pB},
then \UB is closed in V.

ProoF. Let A, be super-bounded by g,. Let g: V—d be a function with
the property that g(x)zsup(g.(x):a<B}. (Such g exists because B<cof(d))
Fix a set B, which is super-bounded by g; then it is clear that U{A,: a<B)}

CBQ.
Assume x&£\UB. Let B be the expansion of B, by x, the existence of

which is assured by Lemma 6. Define an ¥= Ve so that:
(i) V.=[Z%, x] is a good basic neighborhood of x relative to B:
(i) %>ge where

g=sup{a: ()| FONF(x)ell,, x<y<B}.

To sho U2 is closed, we will claim that V.N\V ,=@ for every V & 3.
In the cases that (1) x#y on F(x)N\F(), or (2) F(x)NF(y)=*@, it is easy
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to prove V.NV,=@ by the same argument as in the proof of Lemma 3. So,
in the next cases (3) and (4), we assume that x=1y on the infinite F(x)NF(y).

Case 3): xells, yell, and Bza.

Suppose that yc A, and V, is the good neighborhood of y in A;. Since
g(x)=g/x) fir all x€v and we many assume that B is super-bounded by g,
we get that V.N\V,=@ by the same way as in Lemma 3.

CASE (4): xEﬁlg, yEﬁa and f<a.

If xXh(y) on F(x)\F(y) or y#h(x) on F(y)\F(x), then the conditions
#>h(x) and 5> h(y) imply that

x25 on F(x)\F(y) or yZ% on F(yNF(x).

Hence V.N\V,=@ by Lemma 2. If x>h(y) on F(x)\NF(y) and y>h(x) on
F(y)/F(x), then xUyeB. Then

h(x Uy F(x\UyNF(x)=¢,<% .
On the other hand,

(Y | F(yNF(x)=h(x\ Uy | F(x\UyNF(x))
since
VI FOONF(x)=xUy| F(x Uy)NF(x) .
So we have
Ry FONF(x) <% .

Hence, by Lemma 1, y2% on F(y)\F(x), which shows V,N\V,=@ by Lemma 2.
THEOREM 8. The union of cof(d) many super-bounded sets is paracompact.

PrOOF. Let A,, a<d, be super-bounded subsets. Applying Theorem 5 and
Lemma 7 we can show that \U{A,:a<cof(d)} is paracompact. Indeed, let
B<cof(d) and B be a disjoint good refinement covering U{Aq: a<f}. Then,
by Lemma 7, \U@® is closed. For the set (V\8)"\As, as a super-bounded set,
there is a good refinement covering it by Theorem 5. Since V\U% is open,
by suitable contraction we can make A satisfy that AU is a disjeint collec-
tion. Thus, by induction, we can get a refinement covering \U{A,: e<cof (d)}
consistinng of disjoint basic sets. This completes the proof.

Now remains an open question: Is ¥V a union of cof (d) many super-bounded
sets in ZFC? 1 conjecture NO. To answer this question, it may be useful to
answer first the question whether Lemma 7 remains true if one replaces § by
cof(d).
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