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ON THE ABSOLUTELY PARACOMPACT

SUBSETS OF v≫(<w+l)<*>

By

Shoulian Yang

Radin [R] firstproved under CH that the box product D^ffl+l) of count-

able many copies of <w+l is paracompact. But since then it is stillunknown

if this simplest box product is paracompact in ZFC. Kunen [K] showed that

the paracompactness of Ow((d+1) is equivalent to that of the reduced box pro-

duct V^ty-fl). In this paper, we give out some special subsets of V^ctf+l)

which is paracompact in ZFC (see Theorems 5, 8), hoping that our results will

become helpful toward the solution of the paracompactness of V^w+l) itself.

For survey of box products see van Douwan [vDl.

Given spaces Xi(i<=o)),an open box in the Cartesian product JjXt is a set

of the form n Uif where Ut is an open subset of Xt. The topology generated

by all open boxes is the box topology, n Xi with the product is denoted by

JGCO

□ Xt and is called the box product. We define the reduced (or nabla) product

V Xt as the quotient space □ Xt/=* by the equivalence relation =* such that
iecu iE.<i>

f=*g iff f{i)―g{i)for almost all *e<w, that is, {i^m: f(i)=g(i)＼is finite. Let

us use q to denote the quotient map

q: D Xt ―> V Xt.

When all factors are the same space X, we denote □ Xu V Xt by W°X, VI

respectively. In this paper, we simply denote □(tw+1), V (q>+1) by D, V
ie<≪ tea*

respectively.

We make our convention that members of □ are denoted by /, g, h, ･･･,

while members of V are denoted by x, y, z, ･･･. For each xe v, we choose

a fixed member of q~＼x)and denoted it by xR. To denote an arbitrary mem-

ber of q~＼x)we use the symbol xD.

For each xev, we put
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F(x)={i<=a>: xz(i)<a>} and l(x)={i&a>: xa(j)-m).

If E is an infinitesubset of <a,all the above definitions are naturally modified

to the product II Xt. Let
iBE

qE: □^ffl+D―> V*(a>+1)

be the quotient mapping. For each #ev, x＼E denotes qE(xa＼E), where x°＼E

is the function xne<w(y restricted on E.

For /, gGD, we define

fS*g iff f(i)£g(i) for almost all *<o>.

<* is defined by ^* and not =*. Note that ^* is a quasi-order in D. ^*

induces a partial order ^ in V, that is,

x^y if xa^*yn .

Similarly, <* induces <. For subsets A, Bdw, we define

Ad*B iff A＼B is finite;

,4=*5 iff Ad*B and BcM.

Let wq)(ZD be the set of all functions from m to oj. Then the image of a>o)by

^ is Vft)CV. Let us denote this V°(dby Vo>.

Since the togology of o+l is the order topology, the basic set in □ is of

the form II Leu, bi], where di<(D, or more strictly,we can add the condition

that ai―bi if bi<a). Hence, in V, we make a convention that a basic set in V

means an interval

Lx, 3≫]={zev: x^z^y} ■

such that (1). xeV(o;

(2). x ―y on F(y), that is, xa(i)=ya(i) for almost all i(=F(y).

We say a point jgvw is increasing or unbounded if some xne<w(y is so.

Let E be an infinite subset of w. For an unbounded function f(EEo) we

define a function /i(/)e<uw by

Kf)(n)=f(j), new

where

/=min{*'e.E: ?;>n and /(*")=max{/(fc): k^E, k^i}}.

Note that the condition /(z)=max{/(&): i^g£, ^^?} is always satisfiedif / is

increasing.

We call this h{f) the hat of /. For an unbounded xGV£(≪ the hat of x is

defined by
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h(x)=q(h(xD))^V<0.

For xgv such that x＼F(x)is unbounded, we often use

h{x＼F(x))

and abbreviatethisto h{x). Note that h(x)^S7<o,and that h(x)^x if x＼F(x)

is increasing. When we consider h(x),we always assume that x＼F{x)is un-

bounded.

Lemma 1. Let Earn be infinite, and xGV£(o be bounded. If y<=＼7o)is

increasing, then y＼E^x implies y^h(x).

Proof. The condition y＼E<^x implies h{y＼E)^h{x). Since y is increas-

ing, we know that y<>h(y＼E). Hence we get y<*h(x).

Recall our convention that the basic set [x, y~＼is chosen so that x ―y on

F(y). Then the following lemma is easy to see.

Lemma 2. Suppose that x, jgv, and Vx=＼_x, x~＼,Vv―[_y, y~＼are basic

sets. Then Vxr＼Vy^0 if all the following three conditions hold:

(1) x = y on F(x)r＼F(y);

(2) x^y on F(y)＼F(x);

(3) y<x on F(x)＼F(y).

We define a special relation in V, denoted -<, as follows. We write x-Ky

if the following two conditions are satisfied:

(i) x = y on F(x)nF(y);

(ii) h(x)<y on F(y)＼F(x).

Note that if x-^y, then h(x)^h(y).

A subset of V<w is called dominating if it is cofinal in <Vo>, ^>, or equi-

valently, cofinalin (a)m, fS*>. Define the cardinal

d=m＼n{＼D＼ : D is a dominating subset in Vtw}.

Note (O1^d^c=2a>. In the sequel, we fix a dominating family

R={qa:a^d}, qa=q(fa), /≪<=wo>

in X7a)CZV such that each fa is increasing. For every a<d put

IIa={x^V : x^qa on F(x)},

8<a
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Since 3) is dominating, we have

Focusing on the partial order -<, we call that a subset A(ZV is super-bounded

if for each xgv

{a<d: h(y＼F(y)＼F(x))<=IIa, x<y<=A}

is bounded in d. (Note that if there is no y with x-<Cy^A for each xGV,

then A is super-bounded.)

More precisely, let call A super-bounded by g: ＼7->dif for every igv

^(x)=sup{≪<rf: h(y＼F(y)＼F(x))^17a! x<y^A).

Let ^4 be super-bounded by g and let xgv be an arbitrary point. Since

{qa:a^g(x)} can not dominate Vg>, there exists yxev<y such that yxikqa for

all ≪<;#(*)･ Fix these yx's. Let C be an open cover of V. For each x(=A,

we call Vx=[x, x~＼a good basic neighborhood of x relative to A and C if it

satisfiesthe following:

(i ) Vx is a basic set and is contained in some member of C:

(ii) x>h(x);

(iii) Xyqp, where j@ is such that xe/^;

(iv) x>;)>*, where ^x is as above;

(v) x is increasing.

Lemma 3. Let A be super-bounded,and x, y^A. TfVx, Vy are good basic

neighborhoods,then the conditions

x£Vy and y£Vx

imply

VxC＼Vy=0,

Proof. We considerfivecases.

(1) xi=y on F(x)r＼F(y). Then VxnVy=0 by Lemma 2.

(2) FU)nF(≫=*0. Then, eithery>h(x) on F(y) or x>h(y) on F(x).

Indeed, if y>h(x) on F(y), then h(y)>h(x) since F(x)r＼F(y)=*0. Hence

x<h{y) on F(x). Since x>h{x) and y>h(y), it follows that eithery^x on

F(y) or x^y on F(x) happens; which means Vxr＼Vy=0 by Lemma 2.

Now in the following cases,we can assume that x―y on F(x)(~＼F(y)and

that F{x)t~＼F{y)is infinite.Take a, /3 such that x<=f!p,y^ffa and assume

that a^.

(3) F(xa)＼F(y)is infinite.Since xa^qa on F{xa), and y>qa, we have
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y^x on F(xa)＼F(y).

Since F(xa)cz*F(x), we get

y£x on F(x)＼F(y).

Hence Vxr＼Vy-=0 by Lemma 2.

(4) F(y)＼F(xa) is infiniteand F(xe)Cl*F(y). If %<j>, then h(x)<£y on

F(y)＼F(x) because x and y satisfy the firstcondition of x-<y. From x>h(x)

it follows that

x^y on F(y)＼F(x).

Hence V,nV,,=0 by Lemma 2. Note thrt F(;y)＼F(jc)=*F(:y)＼F(*n) because

F(y)r＼(F(x)＼F(xa))=*0. So F(y)＼F(x) is infinite.

If %-<;y, then

for some $<*g(x) because y<E.A and A is super-bounded by g. This means

/i(j,|FO0＼F(x))^.

On the otheer hand, by the definition of yx, we have

From x>y.r it follows that

x&qe.

Hence

By Lemma 1 we get

x£y on F(y)＼F(x).

which shows Vxr＼Vy=0 by Lemma 2.

(5) F(3')=:icF(xa). Since x―y on F(^) and x<£Vy, there exists an infinite

subset GdF(x)＼F(y) such that

;c<j> on G,

Hence VxnVy=0.

This completes the proof of Lemma 3.

igV is called a bounded point if x°＼F(x)is bounded. The points in the

previous lemma are unbounded points. For every bounded point x, we simply

choose an increasing x so that Vx[_x, x~＼is contained in some member of C.

Such Vx is also called a good neighborhood. The next lemma is easy.

Lemma 4. Suppose that x, y are bounded ana x^y, or that x is bounded
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but y is unbounded. Then

VxnVy=0

for good neighborhoods Vx, Vy.

Now we come to the main theorem.

Theorem 5. Every super-bounded subset of V is paracompact. Precisely,

every open cover of a super-bounded subset of V has a refinement consisting of

pairwise disjoint basic sets.

Proof. Suppose that A is the super-bounded subset of V. By induction

we will define the families K(a) for a<d so that the following hold:

(1) K(a) is a disjoint collection consisting of good basic neighborhoods of

some points in Ar＼IIa;

(2) K{a) refines C ;

(3) K(a) covers Ar＼IIa＼

(4) K(a)(ZK(P) if a</3.

For a stage j8<d, let B=(Ar＼IIp)W{K(a): a<@}, and define

K'(f})={Vx: Vx is good neighborhood of x<=B),

K{$)=K'{P)＼J＼J{K{a): a<$).

By Lemma 3 and 4 we can conclude that K{$) satisfies(1). Then, it is easy

to check that K(a), a^/J, satisfy (l)-(4). By (3). {K(a)＼aSi) covers A―

＼j{Ar＼IIa:a<d}. By (1) and (2),{K(a): a<d＼ is a disjoint collection refining

C. Thus we can conclude that A is paracompact.

x, j>ev are said be compatible if x―y on F(x)r＼F(y). Then, xljyev is

a point such that F(xUy)=F(x)＼jF(y), (xVJy)＼F(x)=x＼F(x) and (xUy)＼F(y)

= y＼F(y).

Let
^4,

5 are super-bounded, and x(=AdB. B is called on expansion of A

by x if we have x＼Jy^B whenever y is a point in /I such that: (i) x, y are

compatible; x>h(y) on F(x)＼F(y); (iii)y>h(x) on F(y)＼F(x). Let x^UJ,

where jZ is a family of super-bounded sets and 6 is a super-bounded set. Then

fi is called an expansion of Jl by x if x＼Jy<=B whenever y is a point in WJ

such that (i),(ii),(iii)as above.

Lemma 6. Suppose A is a super-hounded set, and x<£A. Then the least

expansion of A by x exists.

Proof. Let
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B=A＼j＼J＼x＼jy. ye A satisfiesthe above (i),(ii)and (Hi)}.

To show B is the desired expansion, it suffices to show B is super-bounded.

Note firstthat for each zev

{a: h{xVJy＼F(x＼jy)＼F{z))^na, x＼JyB, z<x＼Jy) (*)

is bounded in d.

Indeed,

{a: h(xUy＼F(xUy)＼F(z))^IIa> y^B, z<y)

is bounded in d. So let j8 be the supremum of this set; then

h{x＼jy|F(x＼Jy)＼F(z))<,qpVh{x |F(x)＼F{z))

where V is an operation on V such that

w＼/v=g(wnVvD), (w°Vvn)(i)=mSLx{wa(i), vD(i)}.

From the fact (*) it follows that for each zgv,

{a:h(y＼F(y)＼F(z))^na, y&B, z<y]

is bounded in d. Hence B is suoer-bounded.

Fix /3<cof(d)- Let Aa, ≪</3,be super-bounded subsetsin V. Let J be

a refinement of C covering ＼J{Aa:a<fi). <£is calleda good refinementif

every Vx=＼_x,x]e^ is a good basic neighborhood of x relativeto Ar, where

r=min{a</3: x<=Aa and Fxe^}.

Lemma 7. // /3<cof (d), and B is a good refinement covering ＼J{Aa: a<ft}

then V)Si is closed in V.

Proof. Let Aa be super-bounded by ga. Letg: V―>d be a function with

the property that g(x)^s＼ip(ga(x): <x</3}. (Such g exists because /3<cof(d))

Fix a set Bo which is super-bounded by g; then it is clear that ＼j{Aa: a<fi}

dB0.

Assume x<£＼JB. Let B be the expansion of Bo by x, the existence of

which is assured by Lemma 6. Define an IgVw so that:

(i) Vx=＼_x, x~＼is a good basic neighborhood of x relative to B:

(ii) x>q$, where

|=sup{≪: h{y)＼F{y)＼F(x))^na, x<y^B).

To sho U<B is closed, we will claim that Vxr＼Vy=0 for every Vy(E$.

In the cases that (1) x =£yon F(x)r＼F(y), or (2) F(x)nF(3')=*0J it is easy
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to prove Vxr＼Vy―0 by the same argument as in the proof of Lemma 3. So5

in the next cases (3) and (4), we assume that x ―y on the infiniteF(x)r＼F(y).

Case (3): x^ftp, y^Ua and j8^a.

Suppose that y^Ar and Vr is the good neighborhood of y in Ar. Since

g(x)^gr(x) fir all xev and we many assume that B is super-bounded by g,

we get that VXC＼Vy―0 by the same way as in Lemma 3.

Case (4): xg^, y^fta and £<≪.

If x^h(y) on F(x)＼F(y) or y^>h(x) on F(y)＼F(x), then the conditions

x>h(x) and ;y>/i(;y)imply that

x^jJ on F(x)＼F(y) or ;y^x on F(y)＼F(x).

Hence y^ny2/=0 by Lemma 2. If x>/i(;y) on F(x)＼F(y) and y>h(x) on

F(y)/F(x), then %U3>e5. Then

On the other hand,

/*(}>IF(y)＼F(x))=h(x＼Jy ＼F(xUy)＼F(x))

since

;y|F(>0＼F(x)=;cU3>|F(;tU3>)＼F(;t) .

So we have

h(y＼F(y)＼F(x))<x.

Hence, by Lemma 1, y^tx on F(y)＼F(x), which shows Vxf＼Vv=0 by Lemma 2.

Theorem 8. The union of cof(d) many super-bounded setsis paracompact.

Proof. Let Aa, a<d, be super-bounded subsets. Applying Theorem 5 and

Lemma 7 we can show that ＼J{Aa: a<cof(d)} is paracompact. Indeed, let

j8<cof(d)
and £Bbe a disjoint good refinement covering ＼J{Aa: ≪<iS}. Then,

by Lemma 7, ＼J<Bis closed. For the set (V＼^)n^4^, as a super-bounded set,

there is a good refinement covering it by Theorem 5. Since V＼w^ is open,

by suitable contraction we can make J. satisfy that J.＼J& is a disjoint collec-

tion. Thus, by induction, we can get a refinement covering ＼j{Aa:a<zof(d)}

consistinng of disjointbasic sets. This completes the proof.

Now remains an open question: Is V a union of cof(d) many super-bounded

setsin ZFC? I conjectureNO. To answer thisquestion,it may be useful to

answer firstthe question whether Lemma 7 remains trueif one replacesjS by

cof(d).
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