ON THE ABSOLUTELY PARACOMPACT SUBSETS OF $\nabla^{\omega}(\omega+1)^{(*)}$

By

Shoulian YANG

Rudin [R] first proved under CH that the box product $\Box^{\omega}(\omega+1)$ of countable many copies of $\omega+1$ is paracompact. But since then it is still unknown if this simplest box product is paracompact in ZFC. Kunen [K] showed that the paracompactness of $\Box^{\omega}(\omega+1)$ is equivalent to that of the reduced box product $\nabla^{\omega}(\omega+1)$. In this paper, we give out some special subsets of $\nabla^{\omega}(\omega+1)$ which is paracompact in ZFC (see Theorems 5, 8), hoping that our results will become helpful toward the solution of the paracompactness of $\nabla^{\omega}(\omega+1)$ itself. For survey of box products see van Douwan [vD].

Given spaces $X_i(i \in \omega)$, an open box in the Cartesian product $\prod_{i \in \omega} X_i$ is a set of the form $\prod_{i \in \omega} U_i$, where U_i is an open subset of X_i . The topology generated by all open boxes is the box topology. $\prod_{i \in \omega} X_i$ with the product is denoted by $\prod_{i \in \omega} X_i$ and is called the *box product*. We define the *reduced* (or nabla) product ∇X_i as the quotient space $\prod_{i \in \omega} X_i/=*$ by the equivalence relation =* such that f=*g iff f(i)=g(i) for almost all $i \in \omega$, that is, $\{i \in \omega : f(i)=g(i)\}$ is finite. Let us use q to denote the quotient map

$$q: \bigsqcup_{i\in\omega} X_i \longrightarrow \bigtriangledown_{i\in\omega} X_i.$$

When all factors are the same space X, we denote $\Box_{i\in\omega} X_i$, $\bigtriangledown_{i\in\omega} X_i$ by $\Box^{\omega} X$, $\bigtriangledown^{\omega} X$ respectively. In this paper, we simply denote $\Box_{i\in\omega} (\omega+1)$, $\bigtriangledown_{i\in\omega} (\omega+1)$ by \Box , \bigtriangledown respectively.

We make our convention that members of \Box are denoted by f, g, h, \dots , while members of ∇ are denoted by x, y, z, \dots . For each $x \in \nabla$, we choose a fixed member of $q^{-1}(x)$ and denoted it by x^{\Box} . To denote an arbitrary member of $q^{-1}(x)$ we use the symbol x^{\Box} .

For each $x \in \nabla$, we put

^(*) The project supported by National Science Foundation of China. Received May 1, 1991. Revised July 15, 1991.

$$F(x) = \{i \in \boldsymbol{\omega} : x^{\mathbb{Z}}(i) < \boldsymbol{\omega}\} \text{ and } l(x) = \{i \in \boldsymbol{\omega} : x^{\mathbb{Z}}(i) = \boldsymbol{\omega}\}.$$

If E is an infinite subset of ω , all the above definitions are naturally modified to the product $\prod_{i=1}^{n} X_i$. Let

$$q_E: \square^{E}(\omega+1) \longrightarrow \nabla^{E}(\omega+1)$$

be the quotient mapping. For each $x \in \nabla$, $x \mid E$ denotes $q_E(x^{\Box} \mid E)$, where $x^{\Box} \mid E$ is the function $x^{\Box} \in {}^{\omega}\omega$ restricted on E.

For $f, g \in \Box$, we define

$$f \leq g \text{ iff } f(i) \leq g(i)$$
 for almost all $i < \omega$.

<* is defined by \leq * and not =*. Note that \leq * is a quasi-order in \Box . \leq * induces a partial order \leq in \bigtriangledown , that is,

$$x \leq y$$
 if $x^{\Box} \leq x^{\Box}$.

Similarly, $<^*$ induces <. For subsets A, $B \subset \omega$, we define

$$A \subset *B$$
 iff $A \setminus B$ is finite;
 $A = *B$ iff $A \subset *B$ and $B \subset *A$.

Let ${}^{\omega}\omega \subset \Box$ be the set of all functions from ω to ω . Then the image of ${}^{\omega}\omega$ by q is $\nabla {}^{\omega}\omega \subset \nabla$. Let us denote this $\nabla {}^{\omega}\omega$ by $\nabla \omega$.

Since the togology of $\omega + 1$ is the order topology, the basic set in \Box is of the form $\prod_{i \in \omega} [a_i, b_i]$, where $a_i < \omega$, or more strictly, we can add the condition that $a_i = b_i$ if $b_i < \omega$. Hence, in \bigtriangledown , we make a convention that a *basic set* in \bigtriangledown means an interval

$$[x, y] = \{z \in \nabla : x \leq z \leq y\}$$

such that (1). $x \in \nabla \omega$;

(2). x = y on F(y), that is, $x^{\Box}(i) = y^{\Box}(i)$ for almost all $i \in F(y)$.

We say a point $y \in \nabla \omega$ is increasing or unbounded if some $x^{\Box} \in {}^{\omega} \omega$ is so.

Let E be an infinite subset of ω . For an unbounded function $f \in {}^{E}\omega$ we define a function $h(f) \in {}^{\omega}\omega$ by

$$h(f)(n) = f(j), \quad n \in \omega$$

where

 $j=\min\{i\in E: i\geq n \text{ and } f(i)=\max\{f(k): k\in E, k\leq i\}\}.$

Note that the condition $f(i)=\max\{f(k): k \in E, k \leq i\}$ is always satisfied if f is increasing.

We call this h(f) the hat of f. For an unbounded $x \in \nabla^E \omega$ the hat of x is defined by

$$h(x) = q(h(x^{\Box})) \in \nabla \boldsymbol{\omega}$$
.

For $x \in \nabla$ such that x | F(x) is unbounded, we often use

h(x | F(x))

and abbreviate this to h(x). Note that $h(x) \in \nabla \omega$, and that $h(x) \leq x$ if x | F(x) is increasing. When we consider h(x), we always assume that x | F(x) is unbounded.

LEMMA 1. Let $E \subset \omega$ be infinite, and $x \in \nabla^E \omega$ be bounded. If $y \in \nabla \omega$ is increasing, then $y \mid E \leq x$ implies $y \leq h(x)$.

PROOF. The condition $y | E \leq x$ implies $h(y | E) \leq h(x)$. Since y is increasing, we know that $y \leq h(y | E)$. Hence we get $y \leq h(x)$.

Recall our convention that the basic set [x, y] is chosen so that x=y on F(y). Then the following lemma is easy to see.

LEMMA 2. Suppose that $x, y \in \bigtriangledown$, and $V_x = [\tilde{x}, x], V_y = [\tilde{y}, y]$ are basic sets. Then $V_x \cap V_y \neq \emptyset$ if all the following three conditions hold:

- (1) x = y on $F(x) \cap F(y)$;
- (2) $\tilde{x} \leq y$ on $F(y) \setminus F(x)$;
- (3) $\tilde{y} \leq x$ on $F(x) \setminus F(y)$.

We define a special relation in \bigtriangledown , denoted \prec , as follows. We write $x \prec y$ if the following two conditions are satisfied:

- (i) x = y on $F(x) \cap F(y)$;
- (ii) h(x) < y on $F(y) \setminus F(x)$.

Note that if $x \prec y$, then $h(x) \leq h(y)$.

A subset of $\nabla \omega$ is called *dominating* if it is cofinal in $\langle \nabla \omega, \leq \rangle$, or equivalently, cofinal in $\langle \omega^{\omega}, \leq^* \rangle$. Define the cardinal

 $\underline{d} = \min\{|D|: D \text{ is a dominating subset in } \forall \omega\}.$

Note $\omega_1 \leq d \leq c = 2^{\omega}$. In the sequel, we fix a dominating family

$$\mathcal{D} = \{q_{\alpha} : \alpha \leq d\}, \quad q_{\alpha} = q(f_{\alpha}), \quad f_{\alpha} \in \mathcal{W}$$

in $\nabla \omega \subset \nabla$ such that each f_{α} is increasing. For every $\alpha < \underline{d}$ put

$$\Pi_{\alpha} = \{ x \in \nabla : x \leq q_{\alpha} \text{ on } F(x) \},$$
$$\tilde{\Pi}_{\alpha} = \Pi_{\alpha} \bigvee_{\beta < \alpha} \Pi_{\beta} .$$

Since \mathcal{D} is dominating, we have

 $\nabla = \cup \{ \Pi_{\alpha} : \alpha < \underline{d} \}.$

Focusing on the partial order \prec , we call that a subset $A \subset \bigtriangledown$ is super-bounded if for each $x \in \bigtriangledown$

$$\{\alpha < \underline{d} : h(y | F(y) \setminus F(x)) \in \Pi_{\alpha}, x < y \in A\}$$

is bounded in <u>d</u>. (Note that if there is no y with $x \prec y \in A$ for each $x \in \nabla$, then A is super-bounded.)

More precisely, let call A super-bounded by $g: \nabla \rightarrow d$ if for every $x \in \nabla$

$$g(x) = \sup \{ \alpha < \underline{d} : h(y | F(y) \setminus F(x)) \in \Pi_{\alpha}, x < y \in A \}.$$

Let A be super-bounded by g and let $x \in \nabla$ be an arbitrary point. Since $\{q_{\alpha}: \alpha \leq g(x)\}$ can not dominate $\nabla \omega$, there exists $y_x \in \nabla \omega$ such that $y_x \leq q_{\alpha}$ for all $\alpha \leq g(x)$. Fix these y_x 's. Let C be an open cover of ∇ . For each $x \in A$, we call $V_x = [\tilde{x}, x]$ a good basic neighborhood of x relative to A and C if it satisfies the following:

- (i) V_x is a basic set and is contained in some member of C:
- (ii) $\tilde{x} > h(x);$
- (iii) $\tilde{x} > q_{\beta}$, where β is such that $x \in \tilde{\Pi}_{\beta}$;
- (iv) $\tilde{x} > y_x$, where y_x is as above;
- (v) \tilde{x} is increasing.

LEMMA 3. Let A be super-bounded, and x, $y \in A$. If V_x , V_y are good basic neighborhoods, then the conditions

$$x \notin V_y$$
 and $y \notin V_x$

imply

$$V_x \cap V_y = \emptyset$$
.

PROOF. We consider five cases.

(1) $x \neq y$ on $F(x) \cap F(y)$. Then $V_x \cap V_y = \emptyset$ by Lemma 2.

(2) $F(x) \cap F(y) = *\emptyset$. Then, either $y \ge h(x)$ on F(y) or $x \ge h(y)$ on F(x).

Indeed, if y > h(x) on F(y), then h(y) > h(x) since $F(x) \cap F(y) = *\emptyset$. Hence x < h(y) on F(x). Since $\tilde{x} > h(x)$ and $\tilde{y} > h(y)$, it follows that either $y \ge \tilde{x}$ on F(y) or $x \ge \tilde{y}$ on F(x) happens; which means $V_x \cap V_y = \emptyset$ by Lemma 2.

Now in the following cases, we can assume that x=y on $F(x)\cap F(y)$ and that $F(x)\cap F(y)$ is infinite. Take α , β such that $x\in \tilde{\Pi}_{\beta}$, $y\in \tilde{\Pi}_{\alpha}$ and assume that $\alpha\leq\beta$.

(3) $F(x_{\alpha}) \setminus F(y)$ is infinite. Since $x_{\alpha} \leq q_{\alpha}$ on $F(x_{\alpha})$, and $\tilde{y} > q_{\alpha}$, we have

$$\tilde{y} \leq x$$
 on $F(x_{\alpha}) \setminus F(y)$.

Since $F(x_{\alpha}) \subset F(x)$, we get

$$\tilde{y} \leq x$$
 on $F(x) \setminus F(y)$.

Hence $V_x \cap V_y = \emptyset$ by Lemma 2.

(4) $F(y) \ F(x_{\alpha})$ is infinite and $F(x_{\alpha}) \subset F(y)$. If $x \not< y$, then $h(x) \not< y$ on $F(y) \ F(x)$ because x and y satisfy the first condition of x < y. From $\tilde{x} > h(x)$ it follows that

$$\tilde{x} \leq y$$
 on $F(y) \setminus F(x)$.

Hence $V_x \cap V_y = \emptyset$ by Lemma 2. Note that $F(y) \setminus F(x) = *F(y) \setminus F(x_\alpha)$ because $F(y) \cap (F(x) \setminus F(x_\alpha)) = *\emptyset$. So $F(y) \setminus F(x)$ is infinite.

If $x \prec y$, then

$$h(y|F(y) \setminus F(x)) \in \Pi_{\xi}$$

for some $\xi \leq g(x)$ because $y \in A$ and A is super-bounded by g. This means

$$h(y|F(y) \setminus F(x)) \leq q_{\xi}.$$

On the otherr hand, by the definition of y_x , we have

 $y_x \not\leq q_{\xi}$.

From $\tilde{x} > y_x$ it follows that

 $\tilde{x} \not\leq q_{\xi}$.

Hence

$$\tilde{x} \leq h(y | F(y) \setminus F(x)).$$

By Lemma 1 we get

$$\tilde{x} \leq y$$
 on $F(y) \setminus F(x)$.

which shows $V_x \cap V_y = \emptyset$ by Lemma 2.

(5) $F(y) = F(x_{\alpha})$. Since x = y on F(y) and $x \notin V_y$, there exists an infinite subset $G \subset F(x) \setminus F(y)$ such that

$$x < y$$
 on G .

Hence $V_x \cap V_y = \emptyset$.

This completes the proof of Lemma 3.

 $x \in \nabla$ is called a *bounded* point if $x^{\Box}|F(x)$ is bounded. The points in the previous lemma are unbounded points. For every bounded point x, we simply choose an increasing \tilde{x} so that $V_x[\tilde{x}, x]$ is contained in some member of C. Such V_x is also called a good neighborhood. The next lemma is easy.

LEMMA 4. Suppose that x, y are bounded and $x \neq y$, or that x is bounded

but y is unbounded. Then

$$V_x \cap V_y = \emptyset$$

for good neighborhoods V_x , V_y .

Now we come to the main theorem.

THEOREM 5. Every super-bounded subset of \bigtriangledown is paracompact. Precisely, every open cover of a super-bounded subset of \bigtriangledown has a refinement consisting of pairwise disjoint basic sets.

PROOF. Suppose that A is the super-bounded subset of \bigtriangledown . By induction we will define the families $K(\alpha)$ for $\alpha < \underline{d}$ so that the following hold:

(1) $K(\alpha)$ is a disjoint collection consisting of good basic neighborhoods of some points in $A \cap \Pi_{\alpha}$;

(2) $K(\alpha)$ refines C;

(3) $K(\alpha)$ covers $A \cap \Pi_{\alpha}$;

(4) $K(\alpha) \subset K(\beta)$ if $\alpha < \beta$.

For a stage $\beta < \underline{d}$, let $B = (A \cap \Pi_{\beta}) \setminus \bigcup \{K(\alpha) : \alpha < \beta\}$, and define

 $K'(\beta) = \{V_x : V_x \text{ is good neighborhood of } x \in B\},\$

 $K(\beta) = K'(\beta) \cup \bigcup \{K(\alpha) : \alpha < \beta\}.$

By Lemma 3 and 4 we can conclude that $K(\beta)$ satisfies (1). Then, it is easy to check that $K(\alpha)$, $\alpha \leq \beta$, satisfy (1)-(4). By (3). $\{K(\alpha): \alpha \leq d\}$ covers $A = \bigcup \{A \cap \prod_{\alpha} : \alpha < d\}$. By (1) and (2), $\{K(\alpha): \alpha < d\}$ is a disjoint collection refining C. Thus we can conclude that A is paracompact.

x, $y \in \nabla$ are said be compatible if x = y on $F(x) \cap F(y)$. Then, $x \cup y \in \nabla$ is a point such that $F(x \cup y) = F(x) \cup F(y)$, $(x \cup y) | F(x) = x | F(x)$ and $(x \cup y) | F(y) = y | F(y)$.

Let A, B are super-bounded, and $x \in A \subset B$. B is called on *expansion* of A by x if we have $x \cup y \in B$ whenever y is a point in A such that: (i) x, y are compatible; x > h(y) on $F(x) \setminus F(y)$; (iii) y > h(x) on $F(y) \setminus F(x)$. Let $x \notin \cup A$, where A is a family of super-bounded sets and B is a super-bounded set. Then B is called an *expansion* of A by x if $x \cup y \in B$ whenever y is a point in $\cup A$ such that (i), (ii), (iii) as above.

LEMMA 6. Suppose A is a super-bounded set, and $x \notin A$. Then the least expansion of A by x exists.

PROOF. Let

On the Absolutely paracompact subsets of $\nabla^{\omega}(\omega+1)$ 1

 $B = A \cup \bigcup \{x \cup y : y \in A \text{ satisfies the above (i), (ii) and (iii)} \}$.

To show B is the desired expansion, it suffices to show B is super-bounded. Note first that for each $z \in \nabla$

$$\{\alpha: h(x \cup y | F(x \cup y) \setminus F(z)) \in \Pi_{\alpha}, x \cup yB, z \prec x \cup y\}$$
(*)

is bounded in \underline{d} .

Indeed,

$$\{\alpha: h(x \cup y | F(x \cup y) \setminus F(z)) \in \mathring{\Pi}_{\alpha}, y \in B, z \prec y\}$$

is bounded in \underline{d} . So let β be the supremum of this set; then

$$h(x \cup y | F(x \cup y) \setminus F(z)) \leq q_{\beta} \vee h(x | F(x) \setminus F(z))$$

where \lor is an operation on \bigtriangledown such that

$$w \lor v = q(w^{\Box} \lor v^{\Box}), \qquad (w^{\Box} \lor v^{\Box})(i) = \max\{w^{\Box}(i), v^{\Box}(i)\}.$$

From the fact (*) it follows that for each $z \in \nabla$,

$$\{\alpha: h(y | F(y) \setminus F(z)) \in \Pi_{\alpha}, y \in B, z \prec y\}$$

is bounded in \underline{d} . Hence B is super-bounded.

Fix $\beta < \operatorname{cof}(\underline{d})$. Let A_{α} , $\alpha < \beta$, be super-bounded subsets in \bigtriangledown . Let $\tilde{\mathscr{B}}$ be a refinement of \mathcal{C} covering $\bigcup \{A_{\alpha} : \alpha < \beta\}$. $\tilde{\mathscr{B}}$ is called a *good refinement* if every $V_x = [\tilde{x}, x] \in \mathscr{B}$ is a good basic neighborhood of x relative to A_{γ} , where

$$\gamma = \min \{ \alpha < \beta : x \in A_{\alpha} \text{ and } V_x \in \mathcal{B} \}.$$

LEMMA 7. If $\beta < \operatorname{cof}(\underline{d})$, and \mathcal{B} is a good refinement covering $\cup \{A_{\alpha} : \alpha < \beta\}$, then $\cup \mathcal{B}$ is closed in ∇ .

PROOF. Let A_{α} be super-bounded by g_{α} . Let $g: \nabla \rightarrow \underline{d}$ be a function with the property that $g(x) \ge \sup(g_{\alpha}(x): \alpha < \beta)$. (Such g exists because $\beta < \operatorname{cof}(\underline{d})$) Fix a set B_0 which is super-bounded by g; then it is clear that $\bigcup \{A_{\alpha}: \alpha < \beta\} \subset B_0$.

Assume $x \notin \bigcup \mathcal{B}$. Let B be the expansion of B_0 by x, the existence of which is assured by Lemma 6. Define an $\tilde{x} \in \nabla \omega$ so that:

- (i) $V_x = [\tilde{x}, x]$ is a good basic neighborhood of x relative to B:
- (ii) $\tilde{x} > q_{\xi}$, where

$$\xi = \sup\{\alpha : h(y) | F(y) \setminus F(x)\} \in \Pi_{\alpha}, x \prec y \in B\}.$$

To sho $\cup \mathcal{B}$ is closed, we will claim that $V_x \cap V_y = \emptyset$ for every $V_y \in \mathcal{B}$.

In the cases that (1) $x \neq y$ on $F(x) \cap F(y)$, or (2) $F(x) \cap F(y) = *\emptyset$, it is easy

to prove $V_x \cap V_y = \emptyset$ by the same argument as in the proof of Lemma 3. So, in the next cases (3) and (4), we assume that x = y on the infinite $F(x) \cap F(y)$. CASE (3): $x \in \tilde{\Pi}_{\beta}$, $y \in \tilde{\Pi}_{\alpha}$ and $\beta \ge \alpha$.

Suppose that $y \in A_r$ and V_r is the good neighborhood of y in A_r . Since $g(x) \ge g_r(x)$ fir all $x \in \nabla$ and we many assume that B is super-bounded by g, we get that $V_x \cap V_y = \emptyset$ by the same way as in Lemma 3.

CASE (4): $x \in \tilde{\Pi}_{\beta}$, $y \in \tilde{\Pi}_{\alpha}$ and $\beta < \alpha$.

If $x \not> h(y)$ on $F(x) \setminus F(y)$ or $y \not> h(x)$ on $F(y) \setminus F(x)$, then the conditions $\tilde{x} > h(x)$ and $\tilde{y} > h(y)$ imply that

$$x \not\geq \tilde{y}$$
 on $F(x) \setminus F(y)$ or $y \not\geq \tilde{x}$ on $F(y) \setminus F(x)$.

Hence $V_x \cap V_y = \emptyset$ by Lemma 2. If x > h(y) on $F(x) \setminus F(y)$ and y > h(x) on F(y)/F(x), then $x \cup y \in B$. Then

$$h(x \cup y | F(x \cup y) \setminus F(x)) \leq q_{\gamma} < \tilde{x} .$$

On the other hand,

$$h(y | F(y) \setminus F(x)) = h(x \cup y | F(x \cup y) \setminus F(x))$$

since

$$y | F(y) \setminus F(x) = x \cup y | F(x \cup y) \setminus F(x) .$$

So we have

$$h(y | F(y) \setminus F(x)) < \tilde{x}$$
.

Hence, by Lemma 1, $y \not\geq \tilde{x}$ on $F(y) \setminus F(x)$, which shows $V_x \cap V_y = \emptyset$ by Lemma 2.

THEOREM 8. The union of $cof(\underline{d})$ many super-bounded sets is paracompact.

PROOF. Let A_{α} , $\alpha < \underline{d}$, be super-bounded subsets. Applying Theorem 5 and Lemma 7 we can show that $\bigcup \{A_{\alpha} : \alpha < \operatorname{cof}(\underline{d})\}\$ is paracompact. Indeed, let $\beta < \operatorname{cof}(\underline{d})\$ and \mathcal{B} be a disjoint good refinement covering $\bigcup \{A_{\alpha} : \alpha < \beta\}$. Then, by Lemma 7, $\bigcup \mathcal{B}$ is closed. For the set $(\nabla \setminus \mathcal{B}) \cap A_{\beta}$, as a super-bounded set, there is a good refinement covering it by Theorem 5. Since $\nabla \setminus \cup \mathcal{B}$ is open, by suitable contraction we can make \mathcal{A} satisfy that $\mathcal{A} \cup \mathcal{B}$ is a disjoint collection. Thus, by induction, we can get a refinement covering $\bigcup \{A_{\alpha} : \alpha < \operatorname{cof}(\underline{d})\}$ consisting of disjoint basic sets. This completes the proof.

Now remains an open question: Is \bigtriangledown a union of cof(d) many super-bounded sets in ZFC? I conjecture NO. To answer this question, it may be useful to answer first the question whether Lemma 7 remains true if one replaces β by $cof(\underline{d})$.

References

- [vD] E.K. van Douwen, Covering and separation properties of box products, Surveys in General Topology (ed. G.M. Reed), Academic Press 1980, pp. 55-129.
- [k] K. Kunen, On paracompactness of box products of compact spaces, Trans. AMS. 240 (1978), pp. 307-318.
- [R] M.E. Rudin, The box product of countable many compact metric spaces, General Top. Appl., 2 (1972), pp. 293-298.

Mathematics Department Beijing Teacher's Collage Beijing, China