
TSUKUBA J. MATH.

Vol 6 No 2 (1982). 305―318

ON Jf-RECURSIVELY SATURATED MODELS

OF ARITHMETIC

By

Akito Tsuboi

Iiitroducaion.

In [6], C. Smorynski investigated the properties of models of arithmetic

using the notions of recursive saturation and short recursive saturation. In this

paper, we shall generalize these notions and obtain new isomorphism criteria

(Theorems A and B) and embeddability criteria(Theorems D and E) for count-

able models of arithmetic.

Throughout, S'J. denotes Peano arithmetic with the induction schema for

all formulas in some finitelanguage L2 {0, ',+,･}. Ao denotes the set of all

quantifier bounded formulas in L. Let M and N be countable models of SJ.

with MQN. We say N is M-recursively saturated (Ms-recursively saturated) if

N realizes every (short) type r which is Ax on MFM, where r may contain

countably many parameters from M. It can be easily shown that M-recursive

saturation (Ms-recursive saturation) corresponds with (short) recursive saturation,

if M=((d; 0, ',+, ･>. For AQ＼N＼, Df(N, A) denotes the set of all elements in

N which are definable in N using parameters from A. We put:

ThM(N)={(p(cai, ■･■,Can): ai, ･･･,<zB =|M| and N＼=<j>{cai,■■■, caj},

Th£KN)={<f>(cai, -,can): ^eJ0, fli,- , an&＼M＼ and N＼=<t>(cai,- , c≪B)},

SS£*(N)={Xr＼＼M＼ : X is a subset of |AT| which is definable in N using a

Jo-formula with parameters from |iV|}.

Our main results of this paper are as follows:

Theorem A. Suppose that Nx and N2 are M-recursivelysaturatedcountable

models of SJi such that ThM{N1) = ThM{N2) and SS^(N1) = SS^(N2). Then there

is an isomorphism f: Ni~->N2which isidenticalon M.

Theorem B. Suppose that Nx and N2 are Ms-recursively saturated models of

&J. such that Th&≪{Ni)=Th^(N2) and SS&KNi)=SS&*(Nt). Suppose that both ^

and N2 are cofinalextensions of M. Then there is an isomorphism f: N^N^

Received



306 Akito Tsuboi

which is identical on M.

Theorem C. Suppose that Nx and JV2 are countable cofinal extensions of M

with T/z^0(Ari)=T/ijtf0(//2).Then there are Ms-recursively saturated elementary

cofinalextensions Nf of JV, and Nf of Nz such that SS^(Nf) = SSMNz).

Theorem D. Suppose that Nx and N2 are M-recursively saturated countable

models of SJ. such that Thu{N^ThM{N^) and SSdKNjQSSfriNt). Let A be

an arbitrary definable subset of jiV2| such that Df(Nz, ＼M＼)r＼A=-%. Then there

is an elementary embedding f: N^Nz which is identical on M and with the

property ran{f)r＼A―$.

Theorem E. Suppose that N is an M-recursively saturated countable model

of £PJl. Then N is an elementary extension of M if and onlyif for each element

b>M, there is an elementary embedding f: Nt―*iV2which is identical on M and

with the property ran(f)<b.

Theorem A is a generalizationof C. Smorynski's result included in [6].

(See Theorem 2.7in [6], for reference.) Theorem B is very useful and if we

combine this with Theorem C, we have the followingresult which is closely

relatedto the General SplittingTheorem. (See Theorem 0.17.)

Corollary. Let Nt and N2 be countable cofinal extensions of M. Then

ThdKN1)=Th4KNt) implies ThuCN^ThM).

Theorems A, B and C will appear in §1. In theorem D if A=[b, <i]=

{c: b^c^d}, we can choose / so that ran(/)is cofinalwith N. Theorem E is

an analogy of the resultof [41. Theorems D and E willappear in §3.

§0. Preliminaries.

Throughout this paper, we use the same symbol for a structure and its

universe. M, N, and Nt (i=l, 2, ･･･) are used to denote structures and we

usually assume that Mis a substructure of N or Nt (i=l, 2, ･･･)･ Elements of

M are denoted by a, at (z=l, 2, ･･-)and elements of N or Nt (t=l, 2, ･･･)are

denoted by b, d, e, bit dit e4 (i=l, 2, ･■･).

First of all,we introduce two notions M-recursiveness and M-recursive satu-

ration. The former is a generalization of recursivehess and firstintroduced by

J. Barwise. The latter is a generalization of recursive saturation. To explain

these notions, we need the notion of hereditarily finiteset over M. (See [1],
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0.1. Definition. Let A be a set. Then HFA is the set of hereditarily

finitesets over A. The explicit definitionis as follows:

HFA(O)=0,

HFA(n + l)=the set of all finitesubset of HFA(n)VA,

HFx=the union of all HF^(n)'s.

If A is the empty set, we omit A in the above definitions.If M is a structure,

HF≫ denotes the structure (M: HF^, e).

0.2. Definition. Let L£HF be a finitelanguage and M an L-structure.

Then L{M) is the language obtained from L by the addition of new constant

ca―(a, 0> for each aeM. i.e.,

L(M)=LW{<G, 0>: a^M}.

0.3. Definition. Let A be a subset ofHF^. Then

i) A is M-recursiveiffy4is At on HF^,

ii) A is M-recursivelyenumerableiff ^4is 21!on HFjf.

We denote the set of allformulas formulatedin L(M) by L(M)*. L(M)*

is clearlyan M-recursive subset of HF^.

0.4. Definition. Let M and TV be structures for a finitelanguage L such

that MQN. Let z(x, yu ■■■,yn) be a subset of L(M)* and bly■■■,bn elements

of N. Then we say z(x, cbl,･･･,cbj) is an L(M)-type over N if it is finitely

satisfiablein (N, b)b(EN,i.e.,

(N, &)6eJvl=3xWro(x, cH, ■■･, cbn),

for every finitesubset r0 of r. An L(M)-type ^r(x,c&1,･･･,c6w) over AT is said

to be an M-recursive type {M-recursively enumerable type) if z(x! yu ･■･,yn) is

M-recursive (M-recursively enumerable).

0.5. Definition. Let M and iV be as above. Then we say JV is M-recur-

sively saturated if every M-recursive type over JV is realized in N.

The following theorem can be easily obtained by the elementary chain con-

struction.(See, e.g.,[6] for reference.)

0.6. Theorem. Let M and N be structures for a finite language L with
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MQN. Then thereis an M-recursivelysaturatedelementaryextensionN* of N

havins,the same cardinalityas N.

The following theorem willgive us some information concerning the rela

tion between recursivesaturationand M-recursive saturation.

0.7. THEOREM. // N is M-recursively saturated, then N is recursively satu-

rated.

Proof. It is clear that o>£HF, and a subset A of <ois recursive iff it is

Ax on HF. Since HF is Ax on BFM, every recursive set is Ax on BFM. Thus

every recursive type t over N is realizedin N, if N is M-recursively saturated. |~1

It is well-known that if N is recursively saturated, then N realizes every

recursively enumerable type over N. The following theorem is a generalization

of this fact and the idea of the proof is analogous to that of Theorem 4.13

of [2].

0.8. Theorem. // N is M-recursively saturated, then N realizes every

M-recursively enumerable type over N.

Proof. Let cx―{x, 0> be an M-recursive function which gives a new con-

stant of L(M)* corresponding to xgM. Let sub(x) be an M-recursive function

defined on L(M)* which gives the set of subformulas of x. Using these func-

tions, we define three formulas Eq(x), And(x) and //-And(x) by:

Eq(x) = " x is a sentence of the form cy=cy for some y ",

And(x)=Eq(x)V" x is the sentence 'ivo(v0=Vo)"

V3j>, zesub(x)(―iEq(3/)A" x is the sentence y/＼z"),

//-And(x) = And(x)AV3;esub(x)//-And(3;).

Clearly, they are Ariormulas of set theory. Next we define a function / by:

fica―c^ ―a,

/(Vyo(i;o=vo))=0,

f(xAy) = f(x)yJ{f(y)}.

Then ran(/)=HF,jf, and /can be expressed by a Ji-formula. Let r(x, Cbv ･･･, cbn)

be an M-recursively enumerable type over N and let 3zD(y, z) be a l^i-formula

which definesr(x, ylt ･･･, yn) on HF^. Let D*(x) denote the following Jrformula :

3y, z<=sub(x)(D(y, f{z))A" x is the sentence yAz"AH-And(z)).
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Then D* defines a certain set t*{x, yu ■■･, yn)^L(M)* on HF^. Evidently,

t*(x, cbl,■･･,cbn)is an M-recursive type over N and it is realizedby some beiV.

Now it is clear this h also realizes r(x, cbv ･･･, c&re)in N. □

In the remainder of this paper, we shall concentrate on the study of count-

able models of SBJ.. We fix some finitelanguage L^HF which contains 0, 1,

+ , ･. We assume that 3*Jlis formulated in L, i.e.,£PJlis a 1-st order Peano

arithmetic with the induction schema for every formula of L. M, N and Ni

(i=l, 2, ･･･)are used to denote countable models of S'J.. We usually identify

(N, b)bev with JV itself.

0.9. Definition. Let MQN, Then we say:

I) TV is an end extension of M (MQeN) iff every element of N which is

less than some element of M actually belongs to M.,

ii) N is a confinal extension of M (M£
CN)

iff for each element b e N, there

is an element aeM such that b<a.

M-<^eN and M-<ciV mean the elementary end extension and the elementary

cofinal extension, respectively.

0.10. Definition, Let MQN. Then:

i) N is M-short iff there is an element b e N such that every element d e N

is less than some eGJV which is definable with parameters from M^J {b}. N is

Af-tall iff N is not M-short.

ii) An L(M)-type t(x, cbl,■･■,cbjl)over N is s/zor? iff z contains a formula

of the form x<cb for some 6eMW{6l7 ･･･, 6n}.

iii) A^ is Ms-recursively saturated iffiV realizes every short M-recursive type.

0.11. Definition. A function r*1M: L(M)―>M is called a coding function

of L(M)* if it sufficesthe following conditions:

i) r^-w js one_one and M-recursive,

ii) r(p~]M>r<polMfor every <p<E:L(M)* and every subforrnula <ft0of <j>.

Coding functions do exist. Moreover, if MQN, r*lM can be taken as a

restrictionof r*nAr to L(M)*. In this context, we usually write r*n instead of

0.12. Definition. Let MQN, A<^N and PQL(M)*. Then SS^(N, A) is

the set which is definedby:
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SSm(N, A)―{Xr＼M: I is a subset of TV which is definable in N using a

/^-formula with parameters from A). If r=L(M)* we omit it,if A=N we

omit it,if A=N we omit it. If YQL(M)*, we use the expression Y(E*SSM(N)

to denote the relation: There is a set Y*^SSX(N) such that F={0: ^eF*}.

It is clear that if there is an element b>M, SSM(N) and SS£°(N)determine

0.13. Definitionn. Let M^N and FQL(M)*. Then we put:

i) ThM{N)={<p^L{M)*: N＼=0},

ii) Th%(N)={6(cau ･･･, can): au ■■■, an^M, 6<=r and N^(j){ca., ■■■, can)}

0.14. Definition. Let I7 be a subset of L(M)*. A formula Trp(x, y) is

said to be a truth definitionfor F in M if for each <j>(xu■■･, xJeFand each

M＼=Trr{r<p, ca)~<j>((ca)u- ,(c≪)≫),

where (x)y is the y-th index of the binary expansion of x.

A0{M) is the set of formulas in L(M)* which have only bounded quantifiers.

2n{M) is the set of formulas in L(M)* which have form 3x^X2^x^X4 ･･･Qnxn^,

where (p is a formula in AQ{M). It can be easily shown that there is a truth

definition for 2n(M) in M for each new. The reader who is not familiar with

the properties of truth definitionscan refer to§3 of Chapter 1 in [81.

0.15. Definition. Let M be a common submodel of Nx and N2. Then:

i) A partial function /: A^―>JV2is said to be M-identical iff / is identical

on M,

ii) A partial function /: N^N^ is said to be a partial elementary embedding

iff / is a restriction of some elementary embedding g: Ni-+N2,

iii) Emb(7Vi, N2; M)=the set of M-identical elementary embeddings of Ni

into N2. P-Emb(Nu N2; M)=the set of partial M-identical elementary embed-

dings of Ni into N2 such that dom(/)-M is finite. IsomCM, A^2;M)=the set of

M-identical isomorphisms of JVi onto N2.

Before beginning the study of models of arithmetic, we must state the

Elementary Splitting Theorem and the General Splitting Theorem. The latter

is. of course, an extension of the former.

0.16. Theorem. (Elementary Splitting Theorem) Let M<7V. Then

thereis another model M* such that M-<,M*-<JV.
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0.17. Theorem. (General Splitting Theorem by Gaifman) Let N be a

Jo-elementary extension of M. Then there is another model M* such that

§1. Isomorphism conditions.

In §0 we showed that if N is M-recursively saturated, it realizes every

M-recursively enumerable type. In case N is a model of arithmetic, the follow-

ing more useful result holds. The proof is almost the same as that of Theorem

1.12 of T61.

1.1. Proposition. Suppose that N is M-recursively saturated {Ms-recursively

saturated). Then every {short) L(M)-type z(x, cbl, ■■■, cbn)<B*SSM{N) is realized

in /V.

This proposition will be used freely without any mention. The following

theorem is also a generalization of C. Smorynski's result included in [61.

1.2. Theorem. Suppose that Nt and N2 are M-recursively saturated. Then

the following three conditions are equivalent:

i) IsomC/Vi, N2; M)*0,

ii) ThM(N1) = ThM(N2) and SSitf(A^1)=S5^(7V2),

iii) ThM(N1)=ThM(N2) and SS£KN1) = SS^(N2).

The following example shows that Theorem 1.2 failsif we assume only the

Ms-recursive saturation of N, and iV?.

1.3. Remark. Let M be an arbitrarymodel of 5＼X Then there are non-

isomorphic elementary extensionsNx and N2 of M such that

i) Ni and N2 are Ms-recursivelysaturated,and

ii) SSM(N1)=SSM(N2).

The existenceof such Nt and N2 can be shown by the method similar to

the one used in the proof of Theorem 3.9in [5]. In spiteof Remark 1.3,the

followingform of isomorphism conditionshold.

1.4. Theorem. Suppose that Nx and N2 are cofinal extensions of M. If N

and N2 are Mi'-recursivelysaturated, the following three conditionsare equivalent:

i) IsomC/Vi, JV2;M)=£0,

ii) ThM{Nx)=ThM{N) and SSuiN^SSuiN^),
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iii) Th&KN^ThHN,) and SS^(N1) = SS4°(Na).

Rroof. The Implications i)=>ii)and i)=>iii)are immediate. The proofs of

the implications ii)=?i)and iii)=>i)are similar and so we prove only the implica-

tion iii)=>i).Let Nr ―M= {bi}iGm, JV2―M= {fl?;}i&a.We construct partial iso-

morphisms /, by induction so that for all nea>,

a) fnQfn+i, dom(/B)2M'J{&i}i<B and ran(/B) 2 MU {</,}≪,,

b) for every 6{xu ･･■, xm)e/l0(M) and every eu ■･■, <zmedom(/J, if NL＼=

<j>{cei,■■■, cej then N2＼=$(cfnlei>,･■･,cfn≪J).

We put fa―idM. Then /0 satisfiesthe condition b) by the assumption Th^iNx)

= T/i^°(Ar2).We assume that fn is already defined. We shall specify the image

of bn and the inverse image of dn. Let r{x, yu ･･■, ym)= {0<^do(M): Nx＼=

<fi(cbjl,cVy,･■■,cb'm)},where {b[,･･･,b'm}=dom(fn) ―M. Choose a from M with

a>bn and <p0,■･■, ^er. Then lx<ca W^i(x, c^, ■■■, cb'm)holds in Nu so by

the induction hypothesis, 3x<caWI (/>i(x,cfnw^, ■■■, cj^^y) holds in JV2. This

shows that z(x, cfnWl-), ■■■, CjnWm^) is a short L(M)-type over N2. Since there

is truth definition for J0(M)-formulas, z(x, cfnWl-i, ･･･,Cfnu>'m))&*SS$°(Nz). So

that this type is realized by some d*<^N2. In the same way we choose ^g^

corresponding to dn. Finally, we put /B+1=/BW {<&,, d*}, (b*, dn)}. Then /=

＼Jfn is the desired isomorphism. □
nSco

1.5. Corollary. Suppose thatNx and N2 are M!'-recursivelysaturatedex-

tensionsof M with Th£°(Ni)= Th£o(Ns)and Mg^. // N, and N2 satisfythe

condition:

SSdKN^SS&KNi, Nf),

then thereis an M-identicalisomorphism f of Nx onto N*, where Nf={b(^N2: b

is less than some aeM}.

As mentioned earlier,if M^N, then N can be elementarily extendable to an

M-recursively saturated model. Now we state some theorems concerning about

extendability.

1.6. Theorem. Suppose that N is M-tall (M-short). Then there is an

elementary cofinal extension N* of N such that N* is M-recursively satrated

{respectively,Ms-recursively saturated).

Proof. Let N' be an M-recursively saturated elementary extension of N.
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Then, using the Elementary Splitting Theorem, we have AT* such that N^CN*

<eN'. This N* is the desired one. □

1.7. Theorem. Let Nlf N2^M. Then there are M-recursively saturated

elementary extensions N* of Nx and N* of N2 such that SSm(N*) = SSm(N*).

1.8. Theorem. Suppose that Nt and N2 are cofinal extensions of M with

Th,M0(N1)= Th£0(N2). Then there are Ms-recursively saturated elementary cofinal

extensions Nf of iVx and Nf of N2 such that SS£°(Nf)= SS£°(Nt).

The proofs of the above two theorems are similar. So we give a prooi

only for the one that seems more difficult.

Proof of Theorem 1.8. Let SSio(N1)-{Xi}i&a) and C={ci}iew (a set oi

new constants). For each Xit choose 0jeJo(M), &jgJVi and a^M such that

Ii={fieM: N^Tr^ip, <Jbuctt≫}and^"1, bd<at, where Tr0 is a truth defini-

tion for J0(M)-formulas. We put T=ThNINz)＼J U {Tn(,{d)lf <(ct)t,ca≫: a^Xt)

WU {->Tro((Ci)i,<{fit)t,Co)): o Z,}UU {ci<ca＼. Clearly T is a consistent

theory. Let iVl be a model of T. Then N'2 is an elementary extension of ATj

with SS£0(Ni)QSS4°(N't). By the Elementary SplittingTheorem, there is another

model N£ such that N2<CN% and SSAKNjQSSiKNg). Now we extend iV£ to

an Ms-recursively saturated model Nl so that N2<CN°2 and SSiKNJQSSJlKNl).

Next we construct an Ms-recursively saturated extension Nl of A^ so that

Ni-<eNl and SS£°(Nl)QSS4°(NT). Iterating these constructions, we obtain ele-

mentary chains {Ni}iGa> and {Ni}iea) such that for each new,

a) Ni and N2 are Ms-recursively saturated,

b) N?<eN?+1 and m<cNV＼

c) SS$KN?)QSS£°(N2+1) and SS^N^QSSXNr1).

Finally we put Nf=＼JN＼ and Nf= U Ni It is a routine to check that Nf

and Nt have the desired properties. Q

Now we apply our results.

1.9. Theorem. Let Nx and N2 be cofinal extensions of M. Then Th&*(Nd

= Th4°(Nt) implies ThM{N1)=ThM{Ni).

Proof. Applying Theorem 1.8,we can construct two models Nf and Nf

such that
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a) Nf and Nt are Ms-recursivelysaturated,

b) Nt-<eNt and Nz<cNf,

c) SS4KNf)=SS^(Nt).

Then, by Theorem 1.4,we have

d) IsomCAff,JV£;M)^0.

From thisand b),it follows that ThjiiN^ThjiiN.). D

1.10. COROL1ARY. Let Nx and N2 be extensionsof M such that THmKN^ ―

Thi≪{N2).Let Nf={b^Nii b is lessthan some aeM} (z= l, 2). Suppose that

Nt and Nf are models of PA. Then ThM(Nt)=Thu(Nf).

Proof. Since NtQeNt (f=l, 2), we have Th£°(Nt)=Th£°(Nt) U=l, 2).

Hence T/z^°(Arf)= T/i^°(A''f).By the above theorem, we have the desired prop-

ertv. Fl

The reader should note that we used only the Elementary SplittingTheorem

to prove Theorem 1.9 and Corollary 1.10. Corollary 1.10 is closely related to

the General Splitting Theorem. But Corollary 1.10is neither stronger nor weaker

than the General Splitting Theorem.

§2. Embeddability Conditions.

In this section, we shall give some theorems concerning embeddability. The

main tool of this section is again the back and forth method and so we usually

omit the detailsof the proofs

2.1. Definition. Let i be a structure and B a subset of A. Then

Df(A, B) is the set defined by:

Df(A B)={a^A: a is definable in A with parameters from B}.

2.2. Proposition. Let A and B as above. Then:

i) BQDf(A, B),

ii) Df(A, B)=Df(A, Df(A, B)).

First we state a useful lemma, which is interesting of itself.

2.3. Lemma. Let Nx and N2 be M-recursivelysaturated elementary exten-

sionsof M with SSM{Ni)^SSM{N2). Suppose that A is a definablesubset of Nz

such that A^N2-M. Then for each /eP-EmbC/Vi, N2; M) with Df(Nit ran(/))
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r＼A=R, and each b^N1} thereis an extensionf*^P-Emb(N1> N2; M) of f such

that dom(/*)=dom(/)U{/?} and Df(N2, ran(/*))n^=0.

Proof. Suppose that dom(f)=Af＼J{bi, ■■■,bn} and t(x, xx, ･･･, xn)―{<p(x,

xx, ･･･, xJeL(M)*: Ni＼=<p(cb,cbv ■･･, cbn)}. Then for each finite subset z0 of

r, the sentence 3x/Ato(x, cfa>1-),･･･, C/C&B>) holds in A^2. Moreover, if Fa, ･･･, FTO

are L(M)-Skolem functions, the following sentence also holds in A^:

BxifA-iaiFiix, c/(6l),■･･, C/c6B)))A/Ar0(x, c/(6l),･･･, c/(6re))),

where a is the defining formula of A in N2. Hence the set z(x, c/C6l),･･･, C/c&n))

W{―i≪(F(x, c/(6l),･･■,C/(6n)): F an L(M)-Skolem function} is an L(M)-type over

Af2 and is realized by some de.N2. If we put /*―/^{<6, rf>}, then /* is the

desired partial elementary embedding, n

2.4. Theorem. Let Nlr N2, M and A be as in the above lemma. Then there

is an elementary embedding /£Emb(JVb A^; M) such that Df(N2, ran(/))n^:=0-

Proof. Let N2―M={bi}iBa). We construct partial elementary embeddings

/neP-Emb(ATi, N2; M) by induction so that for all new,

a) dom(/B)=MU {&,}≪,,

b) Df(iV2,ran(/n))n^4=0.

We put fa―i&M and assume that /, is already defined. Using the above lemma,

we take fn+1^P-Emh(N1} N2; M) so that dom(/B+1)=dom(/≫)W{6B}. Then /=

＼Jfn is the desired elementary embedding. □

ne≪)

2.5. Corollary. Let N be a J0-elementary extension of M and suppose that

N is M-recursively saturated. Then the following i) and ii) are equivalent:

i) iV is an elementary extension of M,

ii) For each b>M, there is an elementary embedding /eEmb(A^, N; M)

such that ran(/)<6.

Proof. The implication i)=>ii)is immediate by the above theorem. We

shall prove only the implication ii)=>i). Suppose that iV is not an elementary

extension of M. We only have to show that there is an element 6eDf(AT, M)

with b>M. By way of contradiction,we assume that there is no such element.

Then, by the General Splitting Theorem, Df(iV, M) must be an elementary

cofinal extension of M. Since Df(iV, M)-<^N is clear, we have M-^N. This is a

contradiction. PI



316 Aklto Tsuboi

In Corollary 2.5 we assumed that N is a J0-elementary extension of M. The

author doesn't know whether this assumotion can be eliminated or not.

2.6. Theorem. Let N be M-recursively saturated and suppose that M<b<d.

If Df(N, M)r＼[b, d2=$, then thereis an elementary embedding f<^Emb(N, N; M)

such that:

i) ran(/)nl>, d]=0,

ii) ran(/) is cofinal with N.

To prove Theorem 2.6, we need the following lemma.

2.7. Lemma. Let N be an M-recursively saturated extension of M. Suppose

that M<b<d and Df(N, MW{e1} ■■■,en})r＼[b,<d=0. Then thereis an arbitrarily

large element e such that Df(N, MW{e, eu ･･■, en})r＼Yb,d~＼=&.

Proof. Let e*G:N be an arbitrary element. Define the set z{x) by:

T(x)= {~^(b<F(x, eu ･･･,en)<d): F an L(M)-Skolem function}U{x>e*}.

It is sufficientto prove that z(x) is an M-recursive type over N. The M-recur-

siveness of z{x) is clear and so we prove that r(x) is finitelysatisflablein N.

By way contradiction,assume that there are L(M)-Skolem functions Fu ･■･,Fn

such that

Nt=Vx>e*(Wb<Fk(x, eu ■･■, en)<d)).

Now define z*(u, v) by:

z*(u, v)={a<u<v<b: a^M}

W{―i(u<F(ei, ･･･,en)<v): F an L(M)-Skolem function}

U{3yVx>y(/A(u<Fk(x, elt - , en)<v)}

It is a routine to check that this z*(u, v) is an M-recursive type over N. Sup-

pose that a pair (bu d±yrealizes z*(u, v). Then the following hold:

a) M<b1<d1<b and Df(N, M＼J{elt ･■･,en})r＼[burfj=0,

b) N＼=3yVx>y{!Hbl<Fk(x, eu - , O<di)).

Continueing all these, finally we have a sequence {(hif rfi>}iea>such that for

each ze<y,

c) M<bi+l<di+1<bi,

d) An=3^Vx>3>(A＼(6i<F*(jc, ex,･･･,en)<di)).
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But this is impossible and so we conclude that t(x) is finitelysatisfiablein N. □

Proof of Theorem. Let JV―M={&t}i6a,. We construct partial elementary

embeddings fn <eP-Emb(N, N; M) so that for each ne<w,

a) fnQfn+1 and dom(/2B)2MW{6Ji<B,

b) Df(N, ran(/J)nC^ </]=0

c) There is an element eeran(/2n+]) such that e>bn.

The construction of fZn is the same one that is shown in Theorem 2.4. We

shallshow only the construction of f2n+1. Suppose that fZn is already constructed.

By the above lemma, there is an element e>bn such that Df(Af,ran(/2re)W{e})

r＼＼_b,d]=0. Then choose an element e* so that fivSJ{(e*, <?>}will become a

partial elementary embedding. Let /2n+i be this partial elementary embedding.

It is clear that /= ＼Jfn is the required one. □
nGco

Questions. We state some open questions:

i) In [7], C. Smorynski and J. Stavi proved that recursive saturation is

preserved under elementary cofinal extensions. Is M-recursive saturation alsc

preserved under elementary cofinalextensions ?

ii) Let N be an extension of M. N is said to be M-short legged if there

is an element b>M such that Df(N, MU{b})―M is downward cofinal with

N―M. Is there any model N which is M-recursively saturated and M-short

legged ?

iii) Let Nt and A^ be not M-short legged and suppose that ThM(Nx)=

ThM{N2). Is it always possible to find another model N and elementary embed-

dings /: Ni-^M (z=l, 2) so that ranC/J―M and ran(/2)―M are downward

rnfinni with earh nfher ?
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