FUNDAMENTAL SOLUTION OF CAUCHY PROBLEM FOR HYPERBOLIC SYSTEMS AND GEVREY CLASS

By Kunihiko Kajitani

§ 1. Introduction

We consider a first order partial differential operator $L_{t,x} = \frac{\partial}{\partial t} + \sum_{j=1}^{n} A_j(t,x) \frac{\partial}{\partial x_j} + B(t,x)$ in $\Omega = [0,T] \times R^n$, whose coefficients are $m \times m$ -matrices. We call a fundamental solution corresponding to the operator $L_{t,x}$, a distribution satisfying the following, $\tau \in [0,T)$, fixed,

(1.1)
$$\begin{cases} L_{t,x}K(t,x,\tau,y) = 0, & t \in (0,T) \\ K(\tau,x,\tau,y) = \tilde{o}(x-y)I, \end{cases}$$

here $\delta(x)$ denotes the *n*-dimentional Dirac distribution and I the indentity matrix. We require that the multiplicity of each characteristic remains constant in a region $\Omega = [0, T] \times R^n$ and that the characteristic matrix $A(t, x, \xi) = \sum A_f(t, x) \xi_f$ is diagonalizable for (t, x) in Ω and ξ in $R^n \setminus 0$. Moreover we suppose that the coefficients $A_f(t, x)$ and B(t, x) are in Gevrey class $\gamma_s(\Omega)(s \ge 1)$.

Our aim is to construct globally in Ω a fundamental solution for the operator $L_{t,x}$ of this type. When T is small, Lax [12] treated this problem. In the case of analytic coefficients, Leray [13] and Mizohata [19] analyzed locally a fundamental solution of hyperbolic systems. When T is large, Ludwig [15] extended the interval of existence for a fundamental solution by use of it's semi-group property. We shall give a more precise expression of a fundamental solution than these of Ludwig. It should be remarked that Duistermaat [3] has recently constructed globally a fundamental solution of the Cauchy problem, applying the theory of Fourier integral operators of Hörmander and Duistermaat [4], [9].

In the first step we shall construct asymptotically a fundamental solution and in the second step we shall obtain successive estimates of it's expansion by use of the method of Mizohata [18], [19] and Hamada [7], [8]. We shall determine the wave front set in Gevrey class of a fundamental solution following the definition of Hörmander [10].

The work presented here leans heavily Mizohata's results in [18], and I thank him sincerely.

I announce that we shall construct in the ultra distribution a fundamental solution for non diagonalizable hyperbolic systems in the forthcoming paper.

2. Results

We consider a operator $L_{t,x} = \partial/\partial t + \sum A_i(t,x)\partial/\partial x_j + B(t,x)$ under the following assumptions;

- (A.I) each eigen value of $A(t, x, \xi) = \sum A_j(t, x)\xi_j$ is real for $(t, x, \xi) \in \Omega \times \mathbb{R}^n \setminus 0$ and it's multiplicity is constant, that is, $\det(\lambda + A(t, x, \xi)) = \prod_{p=1}^{\ell} (\lambda + \lambda^{(p)}(t, x, \xi))^{\nu_p}, (\Sigma \nu_p = 1)$ m), here ν_p ($p=1\cdots l$) is constant.
 - (A, II) there exists a positive constant c_0 such that

$$\sup_{\substack{(t,x)\\|\xi|=1\\y\neq q}}|\lambda^{(p)}(t,x,\xi)-\lambda^{(q)}(t,x,\xi)|\!\geq\! c_0$$

(A.III) the characteristic matrix $A(t, x, \xi)$ is diagonalizable.

A function $f \in C^{\infty}(\Omega)$ is said to be of Gevrey class $\gamma_s(\Omega)$ ($s \ge 1$), if there exist constants C, A such that for any $(t, x) \in \Omega$ and for any multi-index $\alpha = (\alpha_0, \alpha_1, \dots, \alpha_n)$, the following inequality be true;

$$|D^{\alpha}f(t,x)| \leq CA^{|\alpha|}|\alpha|!^{s}$$

here we have set $D^{\alpha} = (\partial/\partial t)^{\alpha_0} (\partial/\partial x_1)^{\alpha_1} \cdots (\partial/\partial x_n)^{\alpha_n}$, $|\alpha| = \sum_{i=0}^n \alpha_i$. We suppose that the coefficients $A_j(t, x)$, B(t, x) of $L_{t, x}$ are in Gevrey class $\gamma_s(\Omega)$. Then all eigen values $\lambda^{(p)}(t, x, \xi)$ are in $\gamma_s(\Omega \times \mathbb{R}^n \setminus 0)$.

We denote by $l^{(p)}(t, x, \tau, y, \xi)$ the phase function associated to $\lambda^{(p)}(t, x, \xi)$, that is, a solution satisfying the following non-linear equation;

(2.1)
$$\begin{cases} l_{t}^{(p)} + \lambda^{(p)}(t, x, l_{x}^{(p)}) = 0 \\ l^{(p)}|_{t=r} = \langle x - y, \xi \rangle \end{cases},$$

here $\langle x, \xi \rangle = \sum_{i=1}^{n} x_i \xi_i$. To solve this equation, we consider the Hamiltonian system,

$$\begin{cases} \frac{d}{dt} \, \hat{x}^{(p)}(t) = \lambda^{(p)}(t, \, \hat{x}^{(p)}, \, \hat{\xi}^{(p)}), & \frac{d}{dt} \, \hat{\xi}^{(p)}(t) = -\lambda_x^{(p)}(t, \, \hat{x}^{(p)}, \, \hat{\xi}^{(p)}) \\ \hat{x}^{(p)}(\tau) = z, & \hat{\xi}^{(p)}(\tau) = \xi, \, (\xi \neq 0). \end{cases}$$

We write $(\hat{x}^{(p)}(t), \hat{\xi}^{(p)}(t)) = (\hat{x}^{(p)}(t, z, \tau, \hat{\xi}), \hat{\xi}^{(p)}(t, z, \tau, \hat{\xi}))$. We can solve globally this system, for $\lambda^{(p)}(t,x,\xi)$ is a homogeneous function in ξ . We note that $(\hat{x}^{(p)}(t),\hat{\xi}^{(p)}(t))$ is in Gevrey class $\gamma_s(\Omega \times \mathbb{R}^n \setminus 0)$ with respect to (t, z, ξ) . We put $\Delta^{(p)}(t) = D(\hat{x}^{(p)}(t))/D(z)$.

Then there exists a positive constant $\delta > 0$ such that $\Delta^{(p)}(t) \neq 0$ for $|t-\tau| \leq \delta$, because of $\Delta^{(p)}(\tau) = 1$. Hence we can solve the equation $\hat{x}^{(p)}(t, z, \tau, \xi) = x$ with respect to z for $|t-\tau| \leq \delta$. We denote this solution by $\tilde{z}^{(p)}(t, x, \tau, \xi)$. Then we can express the solution of (2.1) as follows,

$$(2.2) l^{(p)}(t, x, \tau, y, \xi) = \langle \tilde{z}^{(p)}(t, x, \tau, \xi) - y, \xi \rangle.$$

We note that $\tilde{z}^{(p)}(t, x, \tau, \hat{\xi})$ and therefore $l^{(p)}(t, x, \tau, y, \hat{\xi})$ are in $\gamma_s([\tau - \delta, \tau + \delta] \times R^n \times R^n \setminus 0)$ with respect to $(t, x, \hat{\xi})$. We denote

$$A^{(p)}(t,\tau\,;\,\,y) = \mathop{\cup}_{\xi \in R^n \diagdown 0} \{ (\hat{x}^{(p)}(t,y,\tau,\xi), \hat{\xi}^{(p)}(t,y,\tau,\xi)) \}$$

Now we analyze the fundamental solution of $L_{t,x}$. As well known (c.f. [12], [15] and [19]), if δ is small, for $|t-\tau| \leq \delta$ we can express the fundamental solution $K(t,x,\tau,y)$ as follows,

$$K(t, x, \tau, y) = \sum_{p=1}^{l} K^{(p)}(t, x, \tau, y) + K^{(0)}(t, x, \tau, y)$$
,

here

$$K^{(p)}(t,x,\tau,y) = \int \{\exp i l^{(p)}(t,x,\tau,y,\xi)\} w^{(p)}(t,x,\tau,\xi) d\xi, p = 1,\cdots,l \; .$$

Then we obtain

THEOREM 2.1. Let (τ, y) be fixed. For $|t-\tau| \leq \delta$, we can compute the wave front sets of $K^{(p)}(t, x, \tau, y)$ in Gevrey class as follows, $(s \geq 1)$,

$$WF_s(K^{(p)}(t,\cdot,\tau,y)) = \Lambda^{(p)}(t,\tau;y),$$

 $WF_{2s-1}(K^{(0)}(t,\cdot,\tau,y)) = \phi.$

Here the definition of the wave front sets in Gevrey class followed from Hörmander [10].

REMARK. In the case of analytic cofficients (i, e, s=1), the propagation of the analytic wave front sets is studied in [10] and [21]. When s>1, Friedman [23] showed that the fundamental solution is in γ_{3s-1} except the characteristic conoids.

We decompose the interval (0,T) such that $0=t_0< t_1< \cdots < t_{d+1}=T, t_j-t_{j-1}=\delta$. Then it follows from the semi-group property of a fundamental solution that we can write for $|t-t_j| \le \delta$,

$$K(t, x, t_0, y) = K(t, x, t_j, \cdot) K(t_j, \cdot, t_{j-1}, \cdot) \cdots K(t_1, \cdot, t_0, y)$$

$$= \sum_{p=1}^{l} K_j^{(p)}(t, x, t_0, y) + K_j^{(0)}(t, x, t_0, y),$$

where we put

$$K_i^{(p)}(t, x, t_0, y) = K^{(p)}(t, x, t_j, \cdot) K^{(p)}(t_j, \cdot, t_{j-1}, \cdot) \cdots K^{(p)}(t_1, \cdot, t_0, y)$$

for $j=1,\dots,d, |t-t_i| \leq \delta$ and $p=1,\dots,l$.

Theorem 2.2. For $|t-t_j| \leq \delta$, we have

$$WF_s(K_t^{(p)}(t,\cdot,t_0,y)) = A^{(p)}(t,t_0;y), p=1,\dots,l$$

and

$$WF_{2s-1}(K_j^{(0)}(t,\cdot,t_0,y))=\phi$$
,

for $j = 1, 2, \dots, d$.

REMARK. For example, when j=1, Theorem 2.2 implies that the singularity of the summation $\sum_{p\neq q} K^{(p)}(t,x,t_1,\cdot)K^{(q)}(t_1,\cdot,t_0,y)$ disappears in the Gevrey class γ_{2s-1} .

§ 3. Preliminaries

Let $\lambda(t, x, \xi)$ be a function in $\gamma_s(\Omega \times R^n \setminus 0)$ and homogeneous degree one in ξ . We consider the following equation;

(3.1)
$$\begin{aligned} l_t + \lambda(t, x, l_x) &= 0, \\ l_{t=r} &= \langle x - y, \xi \rangle, \xi \neq 0. \end{aligned}$$

To solve this nonlinear equation, we consider

$$\begin{cases} \frac{d\hat{x}(t)}{dt} = \lambda_{\xi}(t, \hat{x}, \hat{\xi}), & \frac{d\hat{\xi}(t)}{dt} = -\lambda_{x}(t, \hat{x}, \hat{\xi}) \\ \hat{x}(\tau) = z, & \hat{\xi}(t) = \xi. \end{cases}$$

We write the solution $(\hat{x}(t), \hat{\xi}(t)) = (\hat{x}(t, z, \tau, \xi), \hat{\xi}(t, z, \tau, \xi)).$

Then we have,

LEMMA 3.1. Let τ be fixed in [0, T]. For $z \in \mathbb{R}^n$ and $\xi \in \mathbb{R}^n \setminus 0$, (3.2) has a unique solution $(\hat{x}(t), \hat{\xi}(t))$ which is in $\gamma_s(\Omega \times \mathbb{R}^n \setminus 0)$ with respect to (t, z, ξ) .

Since the Jacobian $D(\hat{x})/D(z)=1$ at $t=\tau$, there exists a positive number δ such that $D(x)/D(z)\neq 0$ for $|t-\tau|\leqslant \delta$. Hence we can solve an equation $\hat{x}(t,z,\tau,\xi)=x$ with respect to z by an implicit function theorem. We denote this by $\tilde{z}(t,x,\tau,\xi)$. Then we obtain,

LEMMA 3.2. [2]. For $|t-\tau| \leq \delta$, we can express a solution of (3.1),

(3.3)
$$l(t, x, \tau, y, \xi) = \langle \tilde{z}(t, x, \tau, \xi) - y, \xi \rangle,$$

$$(3.4) l_x = \hat{\xi}(t, \tilde{z}(t, x, \tau, \hat{\xi}), \tau, \hat{\xi}).$$

We denote the Jacobian $D(\hat{x}(t))/D(z)$ by J(t). Then we have as well known, (c.f. [5]),

LEMMA 3.3. For $|t-\tau| \leq \delta$, we have

(3.5)
$$\frac{d}{dt} \, \exists (t) = \exists (t) \left\{ \sum_{i,j} \lambda_{\hat{\epsilon}_i \hat{\epsilon}_i}(t, x, l_x) l_{x_i x_j} + \sum_i \lambda_{\hat{\epsilon}_i x_i}(t, x, l_x) \right\}_{x = \hat{x}(t)}$$
$$= \exists (t) \left\{ \sum_i \frac{\partial}{\partial x_i} \left(\lambda_{\hat{\epsilon}_i}(t, x, l_x) \right) \right\}_{x = \hat{x}(t)}$$

here l is a solution of (3.1)

Let $A(t,x,\xi)=\Sigma A_j(t,x)\xi_j$ be a matrix and $\lambda(t,x,\xi)$ be an eigenvalue of $A(t,x,\xi)$. We denote the right eigenvectors and the left eigenvectors by h_1,\cdots,h_ν and g_1,\cdots,g_ν respectively. We write $H=(h_1,\cdots,h_\nu)$ and $G={}^{\prime}(g_1,\cdots,g_\nu)$. Then simple calculations imply

Lemma 3.4. For $j=1, \dots, n$, we have

(1)
$$GA_{\xi_i}H = \lambda_{\xi_i}GH, GA_{x_i}H = \lambda_{x_i}GH$$

(2)
$$\sum_{i,j} GA_{\ell j}H_{\ell j}z_{ij} = \sum_{i,j} \lambda_{\ell i}GH_{\ell i}z_{ij} + \frac{1}{2} \sum \lambda_{\ell i\ell j}z_{ij}GH \text{ for } z_{ij} = z_{ji}$$

$$(3) G_{\xi_i} A_{x_i} H - G_{x_i} A_{\xi_i} H = G A_{\xi_i} H_{x_i} - G A_{x_i} H_{\xi_i}$$

$$(4) GA_{x}H_{\varepsilon_{i}} - G_{x}A_{\varepsilon_{i}}H = GH_{\varepsilon_{i}}\lambda_{x} + GH_{x}\lambda_{\varepsilon_{i}}.$$

§ 4. Asymptotic construction of fundamental solution

We shall construct asymptotically a fundamental solution $K(t, x, \tau, y)$. We note that the distribution $\delta(x-y)$ is represented by

$$\delta(x-y) = \frac{1}{(2\pi)^n} \Big\{ \exp i\langle x-y, \xi \rangle d\xi \ .$$

Let $w(t, x, \tau, y, \xi)$ be a function satisfying following equation,

(4.1)
$$\begin{cases} L_{t,x}w(t,x,\tau,y,\xi) = 0 \\ w(t,x,\tau,y,\xi) = \frac{1}{(2\pi)^n} \left\{ exp \ i\langle x-y,\xi\rangle \right\} I. \end{cases}$$

Then we have a fundamental solution $K(t, x, \tau, y)$ as follows,

$$K(t,x,\tau,y)\!=\!\int_{\mathbb{R}^n}\!w(t,x,\tau,y,\xi)d\xi\,.$$

We can construct asymptotically $w(t, x, \tau, y, \hat{\xi})$ with respect to $\hat{\xi}$, provided that the system $L_{t,x}$ satisfies the algebraic conditions (A.I), (A.II) and (A.III) in § 2.

We seek w as the following form;

(4.2)
$$w(t, x, \tau, y, \xi) = \sum_{i=0}^{\infty} \sum_{k=1}^{l} \{ \exp i l^{(k)}(t, x, \tau, y, \omega) \rho \} \rho^{-j} w_j^{(k)}(t, x, \tau, \omega) ,$$

here

$$l^{(k)}(t, x, \tau, y, \omega) = \langle \tilde{z}^{(k)}(t, x, \tau, \omega) - y, \omega \rangle, \omega = \hat{\xi}/|\hat{\xi}| \text{ and } \rho = |\hat{\xi}|.$$

Applying $L_{t,x}$ to w, we obtain

$$L_{t,x}[w] = \sum_{j=0}^{\infty} \rho^{-j} \sum_{k=1}^{l} (\exp i l^{(k)} \rho) \{ i (l_t^{(k)} + A(t, x, l_x^{(k)}) w_j^{(k)} + L_{t,x} w_{j-1}^{(k)} \}$$

$$= 0.$$

Hence we have

$$(4,3)_{i} \qquad (\lambda^{(k)}(t,x,l_{x}^{(k)}) - A(t,x,l_{x}^{(k)})) w_{i}^{(k)} + iL_{t,x}(w_{i-1}^{(k)}) = 0 \quad j = 0,1,2,\cdots,(w_{-1}^{(k)} \equiv 0).$$

We put

$$H^{(k)}(t, x, \hat{\xi}) = (h_1^{(k)}(t, x, \hat{\xi}), \dots, h_{\nu_k}^{(k)}(t, x, \hat{\xi})),$$

$$G^{(k)}(t, x, \hat{\xi}) = t(g_1^{(k)}, \dots, g_{\nu_k}^{(k)}),$$

here $h_j^{(k)}(t, x, \xi)$ (resp. $g_j^{(k)}$) is a right (resp. left) eigenvector of $A(t, x, \xi)$ corresponding to $\lambda^{(k)}(t, x, \xi)$.

For j=0, we obtain

(4.4)
$$w_0^{(k)}(t, x, w) = H^{(k)}(t, x, l_x^{(k)}) \sigma_0^{(k,k)}(t, x, \omega) ,$$

where $\sigma_0^{(k,k)}(t,x,\omega)$ is a $\nu_k \times m$ matrix which is determined later on. In general, to solve $(4.3)_j$ $(j \ge 1)$, it is necessary that

$$(4.5)_{j-1} G^{(k)}(t, x, l_x^{(k)}) L_{t, x}(w_{j-1}^{(k)}) = 0.$$

Then we obtain as a solution of $(4.3)_i$

(4.6)
$$v_j^{(k)}(t, x, \omega) = \sum_{p=1}^l H^{(p)}(t, x, l_x^{(k)}) \sigma_j^{(p,k)}(t, x, \omega)$$

where $\sigma_i^{(p,k)}(t,x,\omega)$ is a $\nu_p \times m$ matrix, and for $p \neq k$,

(4.7)
$$\sigma_j^{(p,k)} = \{i(\lambda^{(k)} - \lambda^{(p)})^{-1}G^{(p)}|_{\xi = l_x^{(k)}}\}L_{t,x}(w_{j-1}^{(k)})$$

We can rewrite $(4.5)_j$ as an equation of $\sigma_j^{(k.k)}$, that is,

(4.8)
$$\left\{ \frac{\partial}{\partial t} + \sum_{j} \lambda_{\varepsilon_{j}}^{(k)} \frac{\partial}{\partial x_{j}} + \frac{1}{2} (\sum \lambda_{\varepsilon_{i}\varepsilon_{j}}^{(k)} l_{x_{i}x_{j}}^{(k)} + \sum \lambda_{x_{i}\varepsilon_{j}}^{(k)}) + j^{(k)} \right\}_{\xi = l_{x}^{(k)}} \sigma_{j}^{(k,k)} - iG^{(k)}(t, x, l_{x}^{(k)}) L_{t, x}(\tilde{w}_{j}^{(k)}) = 0,$$

here we used Lemma 3.4 and $G^{(k)}H^{(k)}=I_{\nu_k}, (\nu_k\times\nu_k\text{-identity matrix}),$

$$(4.9) \hspace{1cm} j^{(k)}(t,x,\hat{\varsigma}) \!=\! G^{(k)}L_{t,x}H^{(k)} - \sum_{j=1}^{n} \left(G^{(k)}H^{(k)}_{\hat{\varsigma}_{j}}\lambda^{(k)}_{x_{j}} - \frac{1}{2}\,\lambda^{(k)}_{x_{j}\hat{\varsigma}_{j}}G^{(k)}H^{(k)} \right),$$

$$\tilde{w}_{j}^{(k)} = \sum_{p \neq k} H^{(p)}(t, x, l_{x}^{(k)}) \sigma_{j}^{(p,k)}(t, x, \omega) .$$

We note that $j^{(k)}$ is invariant under the transformation of variables. For we can rewrite, by virtue of Lemma 3.4, (for simplicity, abbreviating an index k),

$$\begin{split} j &= \frac{1}{2} \left(G_{\xi i} A_{xj} H - G_{xj} A_{\xi j} H + G H_{xj} \lambda_{\xi j} - G H_{\xi j} \lambda_{xj} \right) \\ &+ 2G H_t - \Sigma \, \, \frac{1}{2} \, \, G A_{jxj} H + G B H \, , \end{split}$$

here we put $L=\xi_0I+A$, $f=\xi_0+\lambda^{(k)}$ and $t=x_0$. Then we have

$$\begin{split} j &= \frac{1}{2} \sum_{j=0}^{n} \left\{ G_{\xi_{j}} L_{x_{j}} - G_{x_{j}} L_{\xi_{j}} \right\} H + G(H_{x_{j}} f_{\xi_{j}} - H_{\xi_{j}} f_{x_{j}}) \right\} \\ &+ GBH - \frac{1}{2} \sum_{j=0}^{n} GL_{x_{j}\xi_{j}} H. \end{split}$$

which is evidently invariant under the transformation of variables.

Now we return to the equation (4.8). We transform the variables x into $\hat{x}^{(k)}$ (t, z, τ, ω) . Then by use of Lemma 3.3, we can rewrite (4.8) as following,

(4.11)
$$\left(\frac{\partial}{\partial t} + \frac{1}{2} \Delta^{(k)}(t) + j^{(k)}(t) \right) \sigma_j^{(k,k)}(t, \hat{x}^{(k)}(t), \omega) - i \{ G^{(k)} L_{t, x}(\tilde{w}_j^{(k)}) \}_{x = \hat{x}(k)(t)}$$

$$= 0$$

We denote by $J^{(k)}(t) = J^{(k)}(t, \tau)$ a solution of the following equation

$$\frac{d}{dt} J^{(k)}(t) = -j^{(k)}(t)J^{(k)}, J^{(k)}(\tau) = I_{\nu_k}.$$

We put

$$\sigma_i^{(k)}(t) = \sigma_i^{(k)}(t, z, \omega) = \Delta^{(k)}(t)^{1/2} J^{(k)}(t) \sigma_i^{(k,k)}(t, \hat{x}^{(k)}(t), \omega)$$
.

Then we obtain from (4.11)

$$(4.12) \qquad \frac{d}{dt} \sigma_j^{(k)}(t) = i(G^{(k)} L_{t,x} \tilde{w}_j^{(k)})_{x = \hat{x}(k)(t)} = M^{(k)} \{ (\tilde{w}_j^{(k)})_{x = \hat{x}(k)(t)} \}$$

here $M^{(k)}$ is a first order differential operator in (t, z) and $\tilde{w}_j^{(k)}$ is given by (4.10) and (4.7). As an initial condition of (4.12), we obtain from (4.1)

$$\sum_{k=1}^{l} H^{(k)} \sigma_0^{(k)} = \frac{1}{(2\pi)^n} I$$

170

and

$$\sum_{k=1}^{l} (\tilde{w}_{j}^{(k)} + H^{(k)} \sigma_{j}^{(k)}) = 0, \quad (j \ge 1)$$

for $t=\tau$, that is

$$\sigma_n^{(k)}(\tau) = G^{(k)}(\tau, z, \omega)$$

and

$$\sigma_j^{(k)}(\tau) = -\,G^{(k)}(\tau,z,\omega)\,\sum_{n=1}^l \tilde{w}_j^{(p)}(\tau,z,\omega),\quad (\,j\!\ge\!1)\;.$$

Summarizing, we have obtained,

(4.13)₀
$$\sigma_0^{(k)}(t, z, \omega) = \frac{1}{(2\pi)^n} G^{(k)}(\tau, z, \omega)$$

and for $j \ge 1$ and $k = 1, \dots, l$,

$$\begin{pmatrix} \frac{d}{dt} \ \sigma_{j}^{(k)}(t) = M^{(k)} \tilde{w}_{j}^{(k)} \\ \tilde{w}_{j}^{(k)} = N_{1}^{(k)} \sigma_{j-1}^{(k)} + N_{2}^{(k)} \tilde{w}_{j-1}^{(k)} \\ \sigma_{j}^{(k)}(\tau) = G^{(k)}(\tau, z, \omega) \sum_{p=1}^{l} \tilde{w}_{j}^{(p)}|_{t=\tau}$$

here $M^{(k)}$, $N_1^{(k)}$ and $N_2^{(k)}$ are first order differential operators in (t, z).

Then we have the following theorem which will be proved in the next section,

Theorem 4.1. Let τ be fixed in [0, T). For $|t-\tau| \le \hat{o}$ and for $x \in \mathbb{R}^n$, we have $|D_{t,z}^{\alpha}D_{\omega}^{\beta}\sigma_{i}^{(k)}|_{|\omega|=1} \leq C_{1}A_{1}^{|\alpha|+|\beta|+j}(|\alpha|+|\beta|)!^{s}j!^{2s-1}$

and

$$|D_{t,z}^{\alpha}D_{\omega}^{\beta}\tilde{w}_{j}^{(k)}|_{|\omega|=1} \leq C_{1}A_{1}^{|\alpha|+|\beta|+j}(|\alpha|+|\beta|)!^{s}j!^{2s-1}$$

here C_1 and A_1 are positive constants independent of α, β and j.

Therfore we obtain

Theorem 4.2. $w_i^{(k)}(t, x, \tau, \omega)$ the terms of the expantion (4.2) are homogeneous functions of degree zero with respect to w and are estimated by,

$$|D_{t,x}^{\alpha}D_{\omega}^{\beta}w_{j}^{(k)}|_{|\omega|=1} \leq C_{2}A_{2}^{|\alpha|+|\beta|+j}(|\beta|+|\beta|)!^{s}j!^{2s-1}, \ j=0,1,2,\cdots,$$

for $k=1,\dots,l$, and for $(t,x)\in[\tau-\delta,\tau+\delta]\times \mathbb{R}^n$.

§ 5. Successive estimate in Gevrey class

We start with a lemma which will be often used in our reasonning (c.f. [6], [18]).

LEMMA 5.1. Let p_1 and p_2 be non negative integers and $\alpha = (\alpha_1, \dots, \alpha_m)$ a multi integer. For any k > 1 and $s \ge 1$, we have

(5.1)
$$\sum_{\alpha'+\alpha'=\alpha} {\alpha \choose \alpha'} k^{-|\alpha|} (|\alpha'|+p_1)!^{s} (|\alpha''|+p_2)!^{s} \\ \leq \frac{k}{k-1} (|\alpha|+p_1+p_2)!^{s} \left(\frac{p_1+p_2}{p_1}\right)^{-1}$$

Proof. Noting that $\prod_{i=1}^{m} (t+1)^{a_i} = (t+1)^{|a|}$, we have

$$\sum_{|\alpha'|=j} {\alpha \choose \alpha'} = {|\alpha| \choose j}, \quad j=0,1,\dots,|\alpha|.$$

In paticular for m=2,

$$\begin{pmatrix} \alpha_1 \\ \beta_1 \end{pmatrix} \begin{pmatrix} \alpha_2 \\ \beta_2 \end{pmatrix} \leq \begin{pmatrix} \alpha_1 + \alpha_2 \\ \beta_1 + \beta_2 \end{pmatrix}.$$

Hence

$$\sum_{\alpha'+\alpha'=\alpha} {\alpha \choose \alpha'} k^{-|\alpha'|} (|\alpha'|+p_1)!^{s} (|\alpha'|+p_2)!^{s}$$

$$\leq \sum_{j=0}^{|\alpha|} \sum_{|\alpha'|=j} {\alpha \choose \alpha'} k^{-j} (j+p_1)!^{s} (|\alpha|-j+p_2)!^{s}$$

$$\leq \sum_{j=0}^{|\alpha|} k^{-j} {|\alpha| \choose j} {|\alpha|+p_1+p_2 \choose j+p_1}^{-1} (|\alpha|+p_1+p_2)!^{s}$$

$$\leq \sum_{j=0}^{\infty} k^{-j} (|\alpha|+p_1+p_2)!^{s} {p_1+p_2 \choose j}^{-1}$$

which implies (5.1).

Let G be an open set in \mathbb{R}^m and \overline{G} a closure of G.

Lemma 5.2. Let $P(x, D) = \sum_{|\beta| \le a} a_{\beta}(x)D^{\beta}$ be a differential operator, p_1, p_2 non negative integers and k a positive number>1. Assume

$$|D^{\alpha}a_{\beta}(x)| \leq C_0(k^{-1}A)^{|\alpha|}(|\alpha|+p_1)!^s, |\beta| \leq d,$$

$$|D^{\alpha}u(x)| \leq CA^{|\alpha|}(|\alpha|+p_2)!^s$$

for any multi integer α and for $x \in \overline{G}$. Then

$$(5.2) |D^{\alpha}P(x,D)u(x)| \leq C_0 C \, \bar{m}_d A^{d+|\alpha|} (|\alpha| + p_1 + p_2 + d)!^s$$

for $x \in \bar{G}$, where $\bar{m}_d = (m^{d+1} - 1)(m-1)^{-1}(k-1)^{-1}k$.

PROOF. Leibniz formula implies

$$\begin{split} |D^{\alpha}Pu| &\leq \sum_{|\beta| \leq d} \sum_{\alpha' + \alpha'' = \alpha} {\alpha \choose \alpha'} |D^{\alpha'}\alpha| |D^{\alpha'' + \beta}u| \\ &\leq C_0 C A^{|\alpha| + d} \sum_{|\beta| \leq d} \sum_{\alpha'} {\alpha \choose \alpha'} k^{-|\alpha'|} (|\alpha'| + p_1)!^s (|\alpha''| + p_2 + d)!^s \end{split}$$

which implies (5.2) with (5.1), where we used that

$$\sum_{|\beta| \leqslant d} 1 \leqslant \sum_{j=0}^{d} m^{j} = (m^{d-1} - 1)(m-1)^{-1}.$$

Lemma 5.3. Let $X_j(x, D) = \sum_{i=1}^m a_{ji}(x) \frac{\partial}{\partial x_i} + a_{j0}(x)$, $(j=1, \dots, N)$ be first order differential operators. Assume

$$|D^{\alpha}a_{ji}(x)| \leq C_0(k^{-1}A)^{|\alpha|}|\alpha|!^s, j=1, \dots, N, i=0, \dots, m,$$

 $|D^{\alpha}u(x)| \leq CA^{|\alpha|}(|\alpha|+p)!^s,$

for $x \in G$. Then

$$(5,3) |D^{\alpha}X_{j_1}X_{j_2}\cdots X_{j_l}u| \leq C(C_0\bar{m}_1)^l A^{|\alpha|+l}(|\alpha|+l+p)!^s,$$

for $x \in G$ and for $(j_1, \dots, j_l) \subset (1, \dots, N)$, where $m_1 = (m+1)(k-1)^{-1}k, k > 1$.

PROOF. We shall prove our statement by induction with respect to l. For l=1 it follows from lemma 5.2. In general

$$\begin{split} |D^{\alpha}X_{j_{1}}(X_{j_{2}}\cdots X_{j_{l}}u)| &\leqslant \sum_{i=1}^{m} \sum_{\alpha'} \binom{\alpha}{\alpha'} |D^{\alpha'}a_{j_{1}i}|D^{\alpha''}\frac{\partial}{\partial x_{i}} (X_{j_{2}}\cdots X_{j_{l}}u)| \\ &+ \sum_{\alpha'} \binom{\alpha}{\alpha'} |D^{\alpha'}a_{j_{1}0}| |D^{\alpha''}X_{j_{2}}\cdots X_{j_{l}}u| \\ &\leqslant C_{0}A^{|\alpha|+l}C(C_{0}m_{1})^{l-1}(m+1)\sum_{\alpha'} \binom{\alpha}{\alpha'} k^{-|\alpha'|}(|\alpha'|)!^{s}(|\alpha'|+l+p)!^{s} \end{split}$$

which implies (5.3) with (5.1).

LEMMA 5.4. Let G_1 and G_2 be an open set in R^{m_1} and in R^{m_2} respectively and φ be a mapping from G_2 to G_1 satisfying

$$|D_y^{\alpha}\varphi(y)| \leqslant C_0 A_0^{|\alpha|} |\alpha|!^{s}$$

for $y \in \bar{G}_2$. Then for any u(x) satisfying for $x \in \bar{G}_1$,

$$|D_x^{\alpha}u(x)| \leq CA^{|\alpha|}(|\alpha|+p)!^s,$$

if $A > A_0$, we have

$$|D_y^{\alpha}(u \circ \varphi)(y)| \leq C(2^s C_0 \overline{m}_1 A_0)^{|\alpha|} A^{|\alpha|} (|\alpha| + p)!^s$$

for $y \in \bar{G}_2$, here $\bar{m}_1 = (m_1 + 1)(k-1)^{-1}k$, $k = A/A_0 > 1$.

PROOF. Denote $\varphi(y) = (\varphi_1(y), \dots, \varphi_{m_1}(y))$. Then we have

$$\begin{split} D_{y_j}(u \circ \varphi)(y) &= \sum_{l=1}^{m_1} \frac{\partial \varphi_l}{\partial y_j} \left(\frac{\partial}{\partial x_l} u \right) (\varphi(y)) \\ &= \left(\sum_{l=1}^{m_1} \frac{\partial \varphi_l(y)}{\partial y_j} \frac{\partial}{\partial x_l} + \frac{\partial}{\partial y_j} \right) u(x) \bigg|_{x = \varphi(y)}. \end{split}$$

We put

$$X_{j} = \sum_{k=1}^{m_{1}} a_{jk}(y) \frac{\partial}{\partial x_{k}} + \frac{\partial}{\partial y_{j}}, \ a_{jk} = \frac{\partial}{\partial y_{j}} \varphi_{k}(y).$$

Nothing that

$$\begin{split} |D^{n}a_{jk}(y)| &\leqslant (2^{s}C_{0}A_{0})(k^{-1}A)^{|a|}|\alpha|!^{s}, k = A/A_{0} > 1 \;, \\ D_{y}^{a}(u \circ \varphi)(y) &= (X_{1}^{a_{1}}X_{2}^{a_{2}} \cdots X_{m_{2}}^{am_{2}}u(x))|_{x = \varphi(y)} \;, \end{split}$$

we obtain (5.4) by virtue of Lemma 5.3.

Corollary 5.5. Let φ be given by Lemma 5.4. Then if $u \in \gamma_s(G_1)$, $u \circ \varphi \in \gamma_s(G_2)$.

PROOF. It is obious from (5.4).

Let $G = (\tau - \delta, \tau + \delta) \times R^{m-1}$ be a band in R^m , $P(x, D) = \sum_{|\beta| \le d} a_{\beta}(x) D^{\beta}$ and $Q(x, D) = \sum_{|\beta| \le d-1} b_{\beta}(x) D^{\beta}$, of which coefficients are $m_1 \times m_2$ matrices and satisfy

(5.5)
$$|D^{\alpha}a_{\beta}(x)| \leq C_{0}(k^{-1}A)^{|\alpha|}|\alpha|!^{s}, |\beta| \leq d,$$
$$|D^{\alpha}b_{\beta}(x)| \leq C_{0}(k^{-1}A)^{|\alpha|!^{s}}, |\beta| \leq d-1,$$

for $x \in \bar{G}$, where k > 1.

We consider the following equations

(5.6)_j
$$\begin{cases} D_1 F_j = P(x, D) F_{j-1} & \text{in } G \\ F_j|_{x_1 = \tau} = Q(x, D) F_{j-1}|_{x_1 = \tau}, \end{cases}$$

for $j=0,1,2,\cdots$, where $F_j(x)$ are $m_2 \times m_3$ matrices.

Proposition 5.6. Let P(x, D) and Q(x, D) be differential operators of order d and d-1 respectively, of which coefficients satisfy (5.5). Assume that $F_0(x)$ is estimated by

$$(5.7)_0 |D^{\alpha} F_0(x)| \leq C A^{|\alpha|} |\alpha|!^s, x \in \bar{G}.$$

Then for every j, $F_j(x)$ satisfying (5.6)_j, can be estimated by

$$(5.7)_{j} |D^{\alpha}F_{j}(x)| \leq C (C_{0}\bar{m}_{d})^{j} A^{|\alpha|+(d-1)j} \sum_{l=0}^{j} \frac{(|x_{1}-\tau|A)^{l}}{l!} (|\alpha|+j(d-1)+l)!^{s}$$

for $x \in \overline{G}$, where $\overline{m}_d = (m^{d-1} - 1)(m-1)^{-1}(k-1)^{-1}k$, k > 1.

PROOF. We shall prove $(5.7)_j$ by induction. For j=0 it is trivial. Assume that $(5.7)_{j-1}$ is valid. For $\alpha = (\alpha_1, \dots, \alpha_m) = (\alpha_1, \tilde{\alpha}), \alpha_1 \neq 0$, we have from $(5.6)_j$,

$$D^{\alpha}F_{j} = D_{1}^{\alpha_{1}-1}D^{\bar{\alpha}}PF_{j-1} = D^{\gamma}PF_{j-1}, \gamma = (\alpha_{1}-1, \bar{\alpha}).$$

Hence

$$\begin{split} |D^{\alpha}F_{j}| & \leq \sum_{|\beta| \leq d} \sum_{\alpha' + \alpha' = j} \binom{\gamma}{\alpha'} |D^{\alpha'}a_{\beta}| |D^{\beta + \alpha''}F_{j-1}| \\ & \leq C_{0} \sum_{|\beta| \leq d} \sum_{\alpha'} \binom{\gamma}{\alpha'} k^{-|\alpha'|} A^{|\alpha'|} |\alpha'| |^{s} C(C_{0}\overline{m}_{d})^{j-1} \\ & \times A^{|\alpha''| + |\beta| + (d-1)(j-1)} \sum_{l=0}^{j-1} \frac{(|x_{1} - \tau|A)^{l}}{l!} (|\alpha''| + (j-1)(d-1) + l + |\beta|)!^{s} \\ & \leq (C_{0}\overline{m}_{d})^{j} \binom{k-1}{k} A^{|\alpha| + (d-1)j} \sum_{l=0}^{j-1} \frac{(|x - \tau|A)^{l}}{l!} \sum_{\alpha'} \binom{\gamma}{\alpha'} k^{-|\alpha'|} |\alpha'|!^{s} (|\alpha''| + j(d-1) - 1 + l)!^{s} \end{split}$$

which implies $(5.7)_j$ with (5.1).

For $\alpha = (0, \tilde{\alpha})$, we have

$$D^{\alpha}F_{j} = D^{\alpha}F_{j}(\tau, x') + \int_{\tau}^{x_{1}} (D^{\alpha}PF_{j})(t, x')dt$$

here $x' = (x_2, \dots, x_m)$. Hence

$$|D^{\alpha}F_{j}(x)| \leq |D^{\alpha}QF_{j-1}(\tau, x')| + \int_{0}^{|x_{1}-\tau|} |D^{\alpha}PF_{j-1}(t+\tau, x')| dt$$
.

Since it follows from $(5.7)_{j-1}$ that

$$|D^{\alpha}F_{j-1}(\tau, x')| \leq C(C_0 \overline{m}_d)^{j-1} A^{|\alpha|-(j-1)(d-1)} (|\alpha|+(j-1)(d-1))!^s,$$

we obtain by use of Lemma 5.2.

$$(5.8) |D^{\alpha}QF_{j-1}(\tau, x')| \leq CC_0 \overline{m}_{d-1}(C_0 \overline{m}_d)^{j+1} A^{|\alpha|+j(d+1)}(|\alpha|+j(d-1))!^{s}$$

On the other hand, we have by Leibniz' formula

$$\begin{split} |D^{\alpha}PF_{j-1}(t+\tau,x')| &\leq \sum_{|\beta| \leq d} \binom{\alpha}{\alpha'} |D^{\alpha'}a(t+\tau,x')| |D^{\beta+\alpha''}F_{j-1}(t+\tau,x')| \\ &\leq C \left(\frac{k-1}{k}\right) (C_{0}m_{d})^{j} A^{|\alpha|+(d-1)j-1} \sum_{l=0}^{j-1} \frac{(tA)^{l}}{l!} \sum_{\alpha'} \binom{\alpha}{\alpha'} k^{-|\alpha'|} |\alpha'|!^{s} (|\alpha''| + j(d-1) + l + 1)!^{s} \\ &\leq C (C_{0}\bar{m}_{d})^{j} A^{|\alpha|+(d-1)j} \sum_{l=1}^{i} \frac{t^{l-1}A^{l}}{(l-1)!} (|\alpha| + j(d-1) + l)!^{s} \end{split}$$

of which integration with respect to t implies $(5.7)_j$ with (5.8).

Now we can prove Theorem 4.1 and 4.2. Let $G = (\tau - \hat{o}, \tau + \hat{o}) \times R^n \times V$, where V is a neighbourhood of a sphere S^{n-1} . We put in $(4.13)_i$,

$$\begin{split} F_{j} &= \begin{bmatrix} \sigma_{j}^{(1)}, \, \cdots, \, \sigma_{j}^{(l)} \\ W_{j}^{(1)}, \, \cdots, \, W_{j}^{(l)} \end{bmatrix}, \\ P &= \begin{bmatrix} M^{(1)}N_{1}^{(1)}, \, M^{(1)}N_{2}^{(1)}, \, \cdots, \, M^{(l)}N_{1}^{(l)}, \, M^{(l)}N_{2}^{(l)} \\ D_{l}N_{1}^{(1)}, \, D_{l}N_{2}^{(1)}, \, \cdots, \, D_{l}N_{1}^{(l)}, \, D_{l}N_{2}^{(l)} \end{bmatrix} \\ Q &= \begin{bmatrix} G^{(1)}N_{1}^{(1)}, \, G^{(1)}N_{2}^{(1)}, \, \cdots, \, G^{(l)}N_{1}^{(l)}, \, G^{(l)}N_{2}^{(l)} \\ N_{1}^{(1)}, \, N_{2}^{(1)}, \, \cdots, \, N_{1}^{(l)}, \, N_{2}^{(l)} \end{bmatrix} \end{split}$$

Then we obtain by virtue of Proposition 5.6 with d=2,

$$|D_{t,z}^{\alpha}D_{\omega}^{\beta}F_{j}| \leq C(C_{0}\bar{m}_{2})^{i}A^{|\alpha|+|\beta|+j}\sum_{l=0}^{j}\frac{(A\delta)^{l}}{l!}(|\alpha|+|\beta|+j+l)!^{s}$$

Noting that

$$(|\alpha|+|\beta|+j+l)! \leq 2^{|\alpha|+|\beta|+j+l} (|\alpha|+|\beta|)! (j+l)!,$$

we have

$$\begin{split} |D_{t,z}^{\sigma}D_{\omega}{}^{\beta}F_{j}| &\leqslant C(4^{s}C_{0}\overline{m}_{2}\tilde{o}A^{2})^{j}(2^{s}A)^{|\alpha|+|\beta|}(|\alpha|+|\beta|)!^{s}\sum_{l=0}^{j}\frac{(j+l)!^{s}}{l!^{s}j!^{s}}\;l\;!^{s-1}j!^{s}\\ &\leqslant CA_{1}^{|\alpha|+|\beta|+j}(|\alpha|+|\beta|)!^{s}j!^{2s-1} \end{split}$$

where

$$A_1 = \max\{8^s C_0 \bar{m}_2 \delta A^2, 2^s A\}$$
.

Theorem 4.2 is an immediate result of Theorem 4.1 and Lemma 5.4. For, it follows from Lemma 3.1 that the mapping $(t, x, \omega) \rightarrow (t, \tilde{z}^{(p)}(t, x, \tau, \omega), \omega)$ is in the class

 $\gamma_s(G)$.

Remark. Friadman [23] showed that when s>1, the fundamental solution belongs to γ_{3s-1} except the characteristic conoids. Our theorem implies that it belongs to γ_{2s-1} except the characteristic conoids.

§ 6. Wave front sets of fundamental solution in Gevrey class

In the term of (4.2), we denote $|\xi|^{-j}w_j^{(p)}(t, x, \tau, \omega)$ by $w_j^{(p)}(t, x, \tau, \xi)$. Theorem 4.2 implies

$$(6.1) |D_{t,x}^{\alpha}D_{\varepsilon}^{\beta}w_{j}^{(p)}(t,x,\tau,\xi)| \leq CA^{|\alpha|+|\beta|+j}(|\alpha|+|\beta|)!^{s}j!^{2s-1}|\xi|^{-j-|\beta|},$$

for $(t,x)\in[\tau-\delta,\tau+\delta]\times R^n$, $\xi\in R^n\setminus 0$, $j=0,1,\cdots$. Then it follows from the article of Boutet de Monvel and Kree [1] that there exist $w^{(p)}(t,x,\tau,\xi)\in C^\infty([\tau-\delta,\tau+\delta]\times R^n\times (R^n\cap|\xi|\geq 1))$ such that

(6.2)
$$\left| D_{t,x}^{\alpha} D_{\xi^{\beta}} \left(w^{(p)}(t,x,\tau,\xi) - \sum_{j=0}^{N-1} w_{j}^{(p)}(t,x,\tau,\xi) \right) \right|$$

$$\leq C_{1} A_{1}^{|\alpha|+|\beta|+N} (|\alpha|+|\beta|)!^{s} N^{\lfloor 2s-1 \rfloor} |\xi|^{-N-|\beta|}$$

for any positive integer N, $(t, x) \in [\tau - \delta, \tau + \delta] \times R^n$, and $\xi \in R^n$, $|\xi| \ge 1, p = 1, \dots, l$. We define distributions $W^{(p)}(t, x, \tau, y)$ by

(6.3)
$$W^{(p)}(t, x, \tau, y) = \int (exp \ i l^{(p)}(t, x, \tau, y, \xi)) \theta(\xi) w^{(p)}(t, x, \tau, \xi) d\xi,$$

where $\theta(\xi)$ is a C^{∞} function in \mathbb{R}^n , which is equal to zero for $|\xi| \leq 1$ and 1 for $|\xi| \geq 2$. In this section our aim is to examine the wave front sets of $W^{(p)}(t, x, \tau, y)$ as a distribution in x or (x, y).

We shall describe the definition of the wave frount sets in Gevrey class, given by Hörmander [10]. We start with

Lemma 6.1, [10]. Let K be a compact set in \mathbb{R}^n , $\varepsilon > 0$ and N a positive integer. Then there exists a function $\chi_N^{K_{\varepsilon}}(x) \in C_0^{\infty}(\mathbb{R}^n)$ equal to 1 on K such that supp $\chi_N^{K_{\varepsilon}}$ is contained in K_{ε} , an ε -neighborhood of K, and satisfies

$$(6.4) |D^{\alpha+\beta}\chi_N^{K_{\epsilon}}(x)| \leq C_{\alpha}\varepsilon^{-|\alpha|}(CN\varepsilon^{-1})^{|\beta|}, |\beta| \leq N,$$

where C depends only on n and C_{α} depends only on n and α .

REMARK. It follows from Stirling's formula that we have

(6.5)
$$C_0^{j}(j+1)^{j} \leq j! \leq C_1^{j}(j+1)^{j}.$$

Hence, noting that $N^{|\beta|}|\beta|!^{-1} \leq N^N N!^{-1}, |\beta| \leq N$, we have

$$(6.6) |D^{\beta}\chi_{N}^{K_{\bullet}}(x)| \leq CA_{0}^{N}A^{|\beta|}|\beta|!, |\beta| \leq N.$$

It follows from Lemma 5.3 that we obtain

LEMMA 6.2. Let
$$X_j = \sum_{i=1}^n a_{ji}(x) \frac{\partial}{\partial x_i} + a_{j0}, j=1, \dots, n$$
 and $a_{ji}(x)$ satisfy

$$|D^{\alpha}a_{ji}(x)| \leq C_0(k^{-1}A)^{|\alpha|}|\alpha|!^{s}$$

for $x \in K_{\epsilon}$, k > 1. Then we have

$$(6.7) |D^{\alpha}X_{i_1}\cdots X_{i_n}\gamma_{N}^{\kappa}(x)| \leq C(C_0n_1)^p A^{|\alpha|+p} A_0^{N}(|\alpha|+p)!^s$$

for $|\alpha| + p \le N$, where $n_1 = (n+1)(k-1)^{-1}k$.

DEFINITION 6.3, [10]. Let $x_0 \in R^n$, $\xi_0 \in R^n \setminus 0$ and $u \in \mathcal{D}'(R^n)$. Then we say that (x_0, ξ_0) is in the complement of the wave front sets $WF_s(u)$ of u in the class γ_s , if there exist a neighborhood U of x_0 and a conic neighborhood F of ξ_0 such that for $\xi \in F$

$$(6.8) \qquad |\mathcal{F}(\gamma_N^U u)(\xi)| \leqslant CA^N N!^s |\xi|^{-N}, N=1, 2, \cdots,$$

are valid for some constants ε , C and A independent of N. Here \bar{U}_{ε} is an ε -neighborhood of the closure of U and $\mathfrak F$ stands for the Fourier transform.

We note that we can replace $\chi_{N+P}^{\overline{U}_t}(x)$ instead of $\chi_N^{\overline{U}_t}(x)$. Then the constant A must be replaced A' dependent of p.

We denote by $A^{(p)}(t,\tau;y)$ the sets of Hamiltonian flows corresponding to $\lambda^{(p)}(t,x,\xi)$, that is,

$$\Lambda^{(p)}(t,\tau;\,y) = \bigcup_{\xi \in P(0),\,0} \{ (\hat{x}^{(p)}(t,y,\tau,\xi),\,\hat{\xi}^{(p)}(t,y,\tau,\xi)) \}$$

here $(\hat{x}^{(p)}, \hat{\xi}^{(p)})$ is a solution of (3.2) with $\lambda = \lambda^{(p)}(t, x, \xi), p = 1, \dots, l$.

THEOREM 6.4. Let (t, τ, y) be fixed, δ a small coxstant>0, and regard $W^{(p)}(t, x, \tau, y)$ defined in (6.3) as a distribution in R_x^n . Then we have

$$WF_s(W^{(p)}(t,\cdot,\tau,y)) = \Lambda^{(p)}(t,\tau;y)$$

for $|t-\tau| \leq \delta, p=1, \dots, l$.

Proof. We show at first that

$$WF_s(W^{(p)}(t, \cdot, \tau, y)) \subset \Lambda^{(p)}(t, \tau; y)$$
.

Let $(\hat{x}, \hat{\xi})$ be not in $\Lambda^{(p)}(t, \tau; y)$. Then there exist a neighborhood U of \hat{x} and a conic neighborhood F of $\hat{\xi}$ such that

$$(6.9) \qquad (\bar{U}_{\varepsilon} \times F) \cap \Lambda^{(p)}(t, \tau; y) = \phi$$

for some $\varepsilon > 0$. It is sufficient to prove that

$$I_N^{(p)}(\zeta) = \iint \{ \exp\left(il^{(p)}(t, x, \tau, y, \xi) - i\langle x, \zeta\rangle\right) \} \theta(\xi) \chi_{N+2n+1}^{\vec{U}_{\epsilon}}(x) w^{(p)}(t, x, \tau, \xi) dx d\xi$$

satisfies (6.8) for sufficiently large $|\zeta|, \zeta \in F$. We can write

$$I_N^{(p)}(\zeta) = \rho^n \iint \exp i\rho \varphi^{(p)} \chi_N(x) \theta(\rho \xi) w^{(p)}(t, x, \tau, \rho \xi) dx d\xi,$$

here, for simplicity we put $\chi_N = \chi_{N+n}^{\overline{U}_{r+n}}$ and $\varphi^{(p)} = l^{(p)}(t, x, \tau, y, \hat{\xi}) - \langle x, \tilde{\zeta} \rangle$, $\tilde{\zeta} = \tilde{\zeta}|\zeta|^{-1}$, $\rho = |\zeta|$. In order to anihilate the singularity of $w^{(p)}(t, x, \tau, \rho \hat{\xi}) \theta(\rho \hat{\xi})$ with respect to $\hat{\xi}$, we decompose

$$\begin{split} I_N^{(p)}(\zeta) &= \rho^n \iint_{\rho(\xi) \geq 1} (\exp i\rho \varphi^{(p)}) \{ \chi_N \theta_N(w^{(p)}\theta) + \chi_N (1 - \theta_N) w^{(p)}\theta \} d\xi dx \\ &= I_{N1}^{(p)}(\zeta) + I_{N2}^{(p)}(\zeta) \end{split} .$$

where $\theta_N = \chi_{N+n}^{B_\epsilon}(\xi)$, $B = \{\xi \in R^n : |\xi| \le \varepsilon_1\}$. If ε and ε_1 are sufficiently small, $\operatorname{grad}_x \varphi^{(P)} = l_x^{(p)} - \overline{\zeta}$ does not vanish for $\xi \in B_\epsilon$. For, $l_x^{(p)}$ is homogeneous degree one in ξ from Lemma 3.2 and $\overline{\zeta} = \zeta |\zeta|^{-1} \neq 0$. Hence we may assume that $\varphi_{x_1}^{(p)} \neq 0$ for $x \in \overline{U}_\epsilon$ and $\xi \in B_\epsilon$. Then we obtain from an integration by part, for $\rho \ge \varepsilon_1^{-1}$,

$$I_{N1}^{(p)}(\zeta) = \rho^n \int \!\! \int (\exp i\varphi^{(p)}\rho) \! \left(\frac{\partial}{\partial x_1} \frac{1}{\rho \varphi_{x_1}^{(p)}} \right)^{N+n} (\chi_N w^{(p)}) \theta_N(\xi) \theta(\rho\xi) d\xi dx \; . \label{eq:interpolation}$$

Hence it follows from Lemma 6.2 that $I_{N_1}^{(p)}(\zeta)$ satisfies (6.8). Next we estimate $I_{N_2}^{(p)}(\zeta)$. It follows from (6.9) that $\operatorname{grad}_{x,\xi}\varphi^{(p)}\neq 0$ for $x\in \overline{U},\zeta\in F$ and $|\xi|=1$. Then we can find a first order differential operator M such that $\rho^{-1}M(\exp i\rho\varphi^{(p)})=\exp i\rho\varphi^{(p)}$, that is

$$M \!=\! \left\{ \textstyle\sum_{j=1}^n i ((\varphi_{x_j}^{(p)})^2 |\xi|^{-2} \!+\! (\varphi_{\xi_j}^{(p)})^2) \right\}^{-1} \sum_{j=1}^n \left(|\xi|^{-2} \varphi_{x_j}^{(p)} \cdot \frac{\partial}{\partial x_j} \!+\! \varphi_{\xi_j}^{(p)} \cdot \frac{\partial}{\partial \xi_j} \right),$$

of which coefficients are in Gevrey class γ_s for $x \in \bar{U}_\varepsilon$ and for $|\xi| \ge \varepsilon_1$. Hence we obtain

$$I_{N2}^{(p)}(\zeta) = \rho^n \int_{\|\xi\| > 2\pi^{-1}} (\exp i\rho \varphi^{(p)}) (\rho^{-1}M)^{N+n} (\chi_N(1-\theta_N)w^{(p)}) dx d\xi \; .$$

Applying Lemma 6.2, we have for some C and A,

$$|{}^{t}M^{N+n}(\chi_{N}(1-\theta_{N})w^{(p)}(t,x,\tau,\rho\xi))| \leq C(A|\xi|^{-1})^{N+n}(N+n)!^{s}$$

$$\leq CA_{1}^{N+n}(|\xi|+1)^{-n-1}N!^{s}$$

for $x \in \bar{U}_{\epsilon}$ and $|\xi| \ge \varepsilon_1 \ge 2\rho^{-1}$. This implies (6.8) for $I_{N_2}^{(p)}(\zeta)$. The fact that $A^{(p)}(t,\tau;y) \subset WF_s(W^{(p)}(t,\cdot,\tau,y))$ follows from the method of stationary phase. Let $(\hat{x},\hat{\zeta})$ be in $A^{(p)}(t,\tau;y)$, that is, there exists $\hat{\xi} \in R^n \setminus 0$, such that $\hat{x} = \hat{x}^{(p)}(t,y,\tau,\hat{\xi}), \hat{\zeta} = \hat{\xi}^{(p)}(t,y,\tau,\hat{\xi})$. Then it follows from Lemma 3.2 that $\operatorname{grad}_{x,\xi}\varphi^{(p)} = 0$ for $x = \hat{x}$ and $\hat{\xi} = \hat{\xi}$. On the other hand, the Hessian of $\varphi^{(p)}$ with respect to $(x,\hat{\xi})$ (denote by $Q^{(p)}$) is non singular,

for $|t-\tau| \leq \hat{a}$, because of $Q^{(p)}|_{t=\tau} = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$. Hence we can apply the method of stationary phase to $I_N^{(p)}(\zeta)$ (c.f. [3]). It follows,

$$I_N^{(p)}(\rho \xi) = (2\pi)^n (exp - i\rho\langle x, \xi \rangle) |detQ^{(p)}|^{-1/2} w_0^{(p)}(t, \hat{x}, \tau, \hat{\xi})$$

$$+ 0(\rho^{-1}), \rho \longrightarrow \infty.$$

By virtue of (4.4) and $(4.13)_o$ we have

$$w_0^{(p)}(t,\hat{x},\tau,\hat{\xi}) = (2\pi)^{-n}H^{(p)}(t,\hat{x},\hat{\xi})G^{(p)}(\tau,y,\hat{\xi})\Delta^{(p)}(t)^{1/2}J^{(p)}(t)^{-1}$$
,

which does not vanish, because of $G^{(p)}(\tau, y, \xi)H^{(p)}(\tau, y, \xi)=I$. This completes the proof of our theorem.

REMARK. We can regard the integral form (6.3) as the kernel of Fourier integral operator, (c.f. [9]). When s=1, K. Nishiwada [19] investigates the wave fromt sets of Fourier integral operators in terms of boundary values of holomorphic functions.

As a corollary of Theorem 6.4 we have

THEOREM 6.5. Let (t,τ) be fixed, a small constant $\delta > 0$, and regard $W^{(p)}(t,\tau) = W^{(p)}(t,x,\tau,y)$ as a distribution in $R_x^n \times R_y^n$. Then for $|t-\tau| \leq \delta$,

$$WF_{s}(W^{(p)}(t,\tau)) = \bigcup_{(y,\xi) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \setminus \{0\}} \{ (\hat{x}^{(p)}(t,y,\tau,\xi), y, \hat{\xi}^{(p)}(t,y,\tau,\xi), -\xi) \}$$

We next consider the remainder term $L_{t,x}W^{(p)}(t,x,\tau,y)=R^{(p)}(t,x,\tau,y)$ as a distrubution in R_x^n . It follows evident from Theorem 6.3 that $WF_s(R^{(p)}(t,\cdot,\tau,y))\subset A^{(p)}(t,\tau;y)$. Moreover we can see from the asymptotic expanssion that $WF_{2s-1}(R^{(p)}(t,\cdot,\tau,y))$ is empty. In fact, we can write

(6.10)
$$R^{(p)}(t, x, \tau, y) = \int \{exp \ il^{(p)}(t, x, \tau, y, \xi)\} r^{(p)}(t, x, \tau, \xi) d\xi$$

where

$$r^{(p)}(t, x, \tau, \xi) = \{i(l_t^{(p)} + A(t, x, l_x^{(p)}))w^{(p)} + L_{t,x}w^{(p)}\}\theta(\xi)$$

satisfies

$$(6.11) |D_{t,x}^{\alpha}D_{\xi}^{\beta}r^{(p)}(t,x,\tau,\xi)| \leq CA^{|\alpha|+|\beta|+N}(|\alpha|+|\beta|)!^{s}N!^{2s-1}|\xi|^{-N-|\beta|}$$

for $(t, x) \in [\tau - \delta, \tau + \delta] \times R^n$, $\xi \in R^n$, $|\xi| \ge 2$, and for any positive integer N. Thus we have proved

THEOREM 6.6. Let $R^{(p)}(t, x, \tau, y)$ be the remainder terms defined by (6.10). Then $WF_s(R^{(p)}(t, \cdot, \tau, y)) \subset \Lambda^{(p)}(t, \tau, y)$, and $WF_{2s-1}(R^{(p)}(t, \cdot, \tau, y)) = \phi$ for $|t-\tau| \leq \delta, p=1, \cdots l$.

Now we turn to prove Theorem 2.1. To anihilate the remainder terms $R^{(p)}(t, x, \tau, y)$, we reduce our problem to an integral equation of Voltera's type, following the method of Kumano-go [11] and Tsutsumi [22].

We denote

(6.12)
$$W(t, x, \tau, y) = \sum_{p=0}^{l} W^{(p)}(t, x, \tau, y),$$

where $W^{(p)}(t, x, \tau, t)$ is defined by (6.3), $p=1, \dots, l$, and

$$W^{\text{(0)}}(t,x,\tau,y)\!=\!\!\int\!\!\exp{i\!<\!x\!-\!z,\xi\!>}w^{\text{(0)}}(\tau,x,\tau,\xi)d\xi\,,$$

here

$$w^{(0)}(t,x,\tau,\xi) = (2\pi)^{-n}(1-\theta(\xi))I - \left\{ \sum_{v=1}^{l} w^{(v)}(\tau,x,\tau,\xi) - (2\pi)^{-n}I \right\} \theta(\xi)$$

It follows evidently from (6.2) that

$$(6.13) |D_x{}^a D_{\xi}{}^{\beta} w^{(0)}(t, x, \tau, \xi)| \leq C A^{|\alpha| + |\beta| + N} N!^{2\delta - 1} |\xi|^{-N - |\beta|} (|\alpha| + |\beta|)!^{\delta}$$

for $|\xi| \ge 2$, and therefore

$$WF_{2s-1}(W^{(0)}(t,\cdot,\tau,y)) = \phi$$

and that we have

$$(6.14) W(\tau, x, \tau, y) = \delta(x - y).$$

We shall seek a fundamental solution of $L_{t,x}$ as the following form

$$(6.15) \hspace{1cm} K(t,x,\tau,y) = W(t,x,\tau,y) + \int_{\tau}^{t} d\sigma \int W(t,x,\sigma,z) F(\sigma,z,y) dz \, .$$

Then noting (6.14), we have

$$L_{t,x}K(t,x,\tau,y) = L_{t,x}W + F(t,x,\tau,y) + \int_{\tau}^{t} d\sigma \int_{\tau} (L_{t,x}W)(t,x,\sigma,z)F(\sigma,z,\tau,y)dz$$

$$= 0.$$

Hence we obtain an integral equation

(6.16)
$$F(t, x, \tau, y) = R(t, x, \tau, y) + \int_{t}^{t} \int d\sigma R(t, x, \sigma, z) F(\sigma, z, \tau, y) dz$$

where we denote

$$\begin{split} &R(t,x,\tau,y) = -L_{t,x}W(t,x,\tau,y) \\ &= -\sum_{p=1}^{l} \int \{ \exp i l^{(p)}(t,x,\tau,y,\xi) \} r^{(p)}(t,x,\tau,\xi) d\xi - \int \{ \exp i \langle x-y,\xi \rangle \} r^{(0)}(t,x,\tau,\xi) d\xi \;, \\ &= \sum_{p=1}^{l} R^{(p)}(t,x,\tau,y) \end{split}$$

where from (6.11) and (6.13) we have

(6.18)
$$|D_x{}^{\alpha}D_{\xi}{}^{\beta}\gamma^{(p)}(t,x,\tau,\xi)| \leqslant C_0 A^{|\alpha|+|\beta|+N} N!^{2\beta-1} |\xi|^{-N-|\beta|}$$
 for $|\xi| \ge 2$, $p = 0, 1, \dots l$.

PROPOSITION 6.7. Let $R(t, x, \tau, y)$ be the remainder term given by (6.17). There exist positive constants C_0 and A_1 such that

$$(6.19) |D_x^{\alpha} D_y^{\beta} R(t, x, \tau, y)| \leq C_1 A_1^{|\alpha| + |\beta|} |\alpha|^{2s-1} |\beta|^{2s-1}$$

for $(x, y) \in \mathbb{R}^n \times \mathbb{R}^n$, $|t - \tau| \leq \delta$.

Proof. We have

$$D_x{}^a D_y{}^\beta R(t,x,\tau,y) = \sum_{p=0}^l \int_{\|\xi\| \ge 1} D_x{}^a D_y{}^\beta \{ (\exp i l^{(p)}) r^{(p)}(t,x,\tau,\xi) \} d\xi.$$

It follows from (6.17) that we have

$$\begin{split} &\left(\frac{1}{|\dot{\xi}|} \, D_x\right)^{\alpha} \left(\frac{1}{|\dot{\xi}|} \, D_y\right)^{\beta} \{ (\exp{il^{(p)}}) r^{(p)} |\dot{\xi}|^{|\alpha|+|\beta|} \} \\ &\leqslant C' A_1^{|\alpha|+|\beta|} |\alpha|!^{2s-1} |\beta|!^{2s-1} |\dot{\xi}|^{-n-1} \, , \end{split}$$

which implies (6.19).

We define

$$R(t,\tau)u(x) = \int R(t,x,\tau,y)u(y)dy.$$

Then we have

Proposition 6.8. Let $R(t, x, \tau, y)$ be the remainder term, $A_1 \ge 2A$, given in (6.18) and u(x) satisfy

$$|D_x^{\alpha} u(x)| \leq C_1 A_1^{|\alpha|} |\alpha|!^{2\delta-1},$$

for $x \in \mathbb{R}^n$. Then there exists a positive constant C such that

$$(6.21) |D_x^{\alpha} R(t,\tau) u(x)| \leq C_1 C A_1^{|\alpha|} |\alpha|!^{2s-1},$$

for $x \in \mathbb{R}^n$, $|t-\tau| \leq \delta$.

Proof. We note that

$$\begin{split} l^{(p)}(t,x,\tau,y,\xi) = & \langle \tilde{z}^{(p)}(t,x,\tau,\xi), \xi \rangle - \langle y, \xi \rangle \\ = & \langle x\!-\!y, \xi \rangle + \langle \varphi^{(p)}(t,x,\tau,\xi), \xi \rangle \end{split}$$

Then we have

$$(6.22) |D_x^{\alpha}D_{\xi}^{\beta}\varphi^{(p)}| \leq |t-\tau|C_0A^{|\alpha|+|\beta|}(|\alpha|+|\beta|)!^s, \beta \neq 0,$$

for $x \in \mathbb{R}^n$, $|\xi| \ge 1$. We write

$$\begin{split} R(t,\tau)u(x) &= -\sum_{p=0}^{l} \int\!\!\int (\exp{il^{(p)}}) r^{(p)}(t,\,x,\,\tau,\,\xi) u(y) dy d\xi \\ &= -\sum\!\int\!\!\int (\exp{i\langle x-y,\,\xi\rangle}) r^{(p)} u(\varphi^{(p)}+y) dy d\xi \;. \end{split}$$

Hence we have

$$\begin{split} D_x{}^aR(t,\tau)u(x) &= -\sum_p \int\!\!\int_{x'} \left(\frac{\alpha}{\alpha'}\right) D_x^{a'}(\exp{i\langle x-y,\xi\rangle}) D_x^{a''}(r^{(p)}u(\varphi^{(p)}+y)) dy d\xi \\ &= -\sum_p \int\!\!\int_{|\xi| \geq 1} (2\pi p\,i\langle x-y,\xi\rangle) \sum_{\alpha'} \left(\frac{\alpha}{\alpha'}\right) D_x^{a''}((i\xi)^{a'}r^{(p)}u(\varphi^{(p)}+y)) dy d\xi \\ &= -\sum_p \int\!\!\int_{|\xi| \geq 1} (1+|x-y|^2)^{-n} \left(\exp{i\langle x-y,\xi\rangle}\right) \\ &\qquad \times \sum_{\alpha'} \left(\frac{\alpha}{\alpha'}\right) (1-\varDelta_\xi)^n D_x^{a''}((i\xi)^{a'}r^{(p)}u(\varphi^{(p)}+y)) dy d\xi \,. \end{split}$$

It follows from Lemma 5.4, (6.20) and (6.22) that we have

$$D_x^{\alpha} D_{\varepsilon}^{\beta} u(\varphi^{(p)} + y) | \leq C_1 A_1^{|\alpha| + |\beta|} (2^s C_0 | t - \tau | \bar{n} A)^{|\alpha| + |\beta|} (|\alpha| + |\beta|)!^{2s - 1}$$

where we have put $k = A_1/A$, $\bar{n} = (n+1)(k-1)^{-1}k$.

Hence

$$(6.23) |D_x^{\alpha} D_{\xi}^{\beta} u(\varphi^{(p)} + y)| \leq C_1 A_1^{2n} (2n)!^{2s-1} A_1^{|\alpha|} |\alpha|!^{2s-1}, |\beta| \leq 2n$$

if $|t-\tau| \le \delta$ is sufficiently small, that is,

$$2^{3s-1}C_0\delta(n+1)k(k-1)^{-1}A \leq 2^{3s}C_0\delta(n+1) \leq 1$$
,

here we used $k \ge 2$. Moreover we have from (6.18),

$$(6.24) |D_x^{\alpha} D_{\xi}^{\beta}(i\xi)^{\alpha} \gamma^{(p)}| \leq C_0' (k^{-1} A_1)^{|\alpha| + |\beta|} |\alpha|!^{s} |\alpha'|!^{2s-1} |\xi|^{-n-1}$$

for $|\beta| \leq 2n$, $|\xi| \geq 1$, $k = A_1/A$. Hence we obtain from (6.23) and (6.24),

$$\begin{split} &\sum_{\alpha'} \binom{\alpha}{\alpha'} |(1 - \varDelta_{\xi})^{n} D_{x}^{\alpha'}((i\xi)^{\alpha'} r^{(p)} u(\varphi^{(p)} + y))| \\ &\leq \sum_{\alpha'} \binom{\alpha}{\alpha'} \sum_{|\beta + \beta'| \leq 2n} \sum_{r'} \binom{\alpha''}{r'} |D_{x}^{r} D_{\xi}^{\beta}(i\xi)^{\alpha'} r^{(p)} D_{x}^{r'} D^{\beta'} u(\varphi^{(p)} + y)| \\ &\leq C_{1} C_{2} |\xi|^{-n-1} \sum_{\alpha'} \binom{\alpha}{\alpha'} \binom{\alpha''}{r'} (k^{-1} A_{1})^{|\tau'| + |\alpha'|} |\gamma'|!^{s} |\alpha'|!^{2s-1} A_{1}^{|\alpha''|} |\gamma''|!^{2s-1} \\ &\leq C_{1} C_{3} |\xi|^{-n-1} A_{1}^{|\alpha|} \sum_{\alpha'} \binom{\alpha}{\alpha'} k^{-|\alpha''|} |\alpha'|!^{2s-1} \sum_{r'} \binom{\alpha''}{r'} k^{-|\tau'|} (|\gamma'|! |\gamma''|!)^{2s-1} \\ &\leq C_{1} C_{4} |\xi|^{-n-1} A_{1}^{|\alpha|} |\alpha|!^{2s-1}, \text{ (by } (5.1)), \end{split}$$

which implies (6.21).

Now we shall construct a solution F of the integral equation (6.16). We define inductively

$$\begin{split} F_0(t, x, \tau, y) &= R(t, x, \tau, y) \\ F_j(t, x, \tau, y) &= \int_{\tau}^t \int_{\tau} R(t, x, \sigma, z) F_{j-1}(\sigma, z, \tau, y) d\tau dz \\ &= \int_{\tau}^t R(t, \sigma) F_{j-1}(\sigma, \tau) d\sigma \,. \end{split}$$

Then we can estimate

$$(6.25)_{j} |D_{x}^{\alpha}D_{y}^{\beta}F_{j}(t, x, \tau, y)| \leq C_{1}C^{j} \frac{|t-\tau|^{j}}{j!} A_{1}^{|\alpha|-|\beta|} |\alpha|^{\lfloor 2s-1} |\beta|^{\lfloor 2s-1},$$

for $|t-\tau| \le \hat{o}$, $(x, y) \in \mathbb{R}^n \times \mathbb{R}^n$. $(6.25)_0$ follows from Proposition 6.7. Assume that $(6.25)_{j-1}$ is valid. Then we have from Proposition 6.8

$$|D_x {}^\sigma D_x {}^\beta R(t,\sigma) F_{j-1}(\sigma,\tau)| \leqslant C_1 C^j \frac{|\sigma-\tau|^{j-1}}{(j-1)!} A_1^{|\alpha|+|\beta|} |\alpha|!^{2s-1} |\beta|!^{2s-1}.$$

Integrating this with respect to σ , we obtain $(6.25)_i$. We difine

$$F(t, x, \tau, y) = \sum_{j=0}^{\infty} F_j(t, x, \tau, y)$$

which is a solution of (6.16) and satisfies

$$(6.26) |D_x^{\alpha} D_y^{\beta} F(t, x, \tau, y)| \leq C_1 (\exp|t - \tau|C) A_1^{|\alpha| + |\beta|} |\alpha|!^{2s - 1} |\beta|!^{2s - 1}.$$

PROPOSITION 6.9. Let $W(t, x, \tau, y)$ be given by (6.12), and u(x) satisfied with

$$(6.27) |D_x^{\alpha} u(x)| \leq C_1 A_1^{|\alpha|} |\alpha|!^{s_1}, x \in \mathbb{R}^n.$$

If $s_1 \ge s$, then there exist positive constants C_2 and A_2 such that

$$(6.28) |D_x^{\alpha} W(t, \tau) u(x)| \leq C_1 C_2 A_2^{|\alpha|} |\alpha|!^{s_1}$$

for $|t-\tau| \leq \delta$, $x \in \mathbb{R}^n$.

PROOF. We have

$$\begin{split} W(t,\tau)u(x) &= \sum_{p=0}^{l} \int \int (\exp{i\langle\tilde{z}^{(p)} - y, \hat{\xi}\rangle}) w^{(p)}(t,x,\tau,\xi) u(y) d\xi dy \\ &= \sum_{p} \int \int (\exp{-i\langle y, \xi\rangle}) w^{(p)} u(\tilde{z}^{(p)} + y) d\xi dy \end{split}$$

Hence we have

$$\begin{split} D_x{}^a W(t,\tau) u(x) &= \sum_p \int \int (\exp i \langle y, \xi \rangle) D_x{}^a (w^{(p)} u(\tilde{z}^{(p)} + y)) d\xi dy \\ &= \sum \int \int_{|\xi| \ge 1} (\exp -i \langle y, \xi \rangle) (1 + |y|^2)^{-n} (1 + |\xi|^2)^{-n} (1 - \mathcal{L}_y)^n \\ &\qquad \times (1 - \mathcal{L}_\xi)^n D_x{}^a (w^{(p)} u(\tilde{z}^{(p)} + y)) d\xi dy \end{split}$$

From (6.2), (6.13) and (6.27) we obtain

$$|(1-\Delta_y)^n(1-\Delta_{\varepsilon})^nD_x^{\alpha}(w^{(p)}u(\tilde{z}^{(p)}+y))| \leq C_1C_2A_2^{|\alpha|}|\alpha|!^{s_1}$$

which implies (6.28).

Thus it follows from Proposition 6.8 and 6.9 that we can obtain a fundamental solution such that, $|t-\tau| \le \hat{o}$,

$$K(t, x, \tau, y) = W(t, x, \tau, y) + \int_{\tau}^{t} \int W(t, x, \tau, z) F(\sigma, z, \tau, y) d\sigma dz,$$

of which second term belogs to $\gamma_{2s-1}(R_x^n \times R_y^n)$. Thus we have proved Theorem 2.1.

§ 7. Global construction of fundamental solution

In the previous section we have construct the fundamental solution $K(t, x, \tau, y)$ for $|t-\tau| \leq \delta$, if δ is sufficiently small. In the present section we shall give an expression of the fundamental solution for any interval [0, T], T>0.

We decompose the interval [0, T] such that $0 = t_0 < t_1 < \cdots < t_{d+1} = T, t_j - t_{j-1} = \delta$. Then it follows from semigroup property that we obtain

$$K(t, x, t_0, y) = K(t, x, t_i, \cdot) K(t_i, \cdot, t_{i-1}, \cdot) \cdots K(t_i, \cdot, t_0, y)$$

for $|t-t_i| \leq \delta$. We put

$$K_i^{(p)}(t, x, t_0, y) = W^{(p)}(t, x, t_j, \cdot) W^{(p)}(t, \cdot, t_{j-1}, \cdot) \cdots W^{(p)}(t_1, \cdot, t_0, y)$$

for $|t-t_j| \le \delta, j=0, 1, \dots, d$, and $p=1, \dots, l$, where $W^{(p)}(t, x, \tau, y)$ is given by (6.3) for $|t-\tau| \le \delta$. Then we can express

(7.1)
$$K(t, x, t_0, y) = \sum_{j=1}^{L} K_j^{(p)}(t, x, t_0, y) + K_j^{(o)}(t, x, t_0, y)$$

for $|t-t_i| \leq \delta$. Our purpose is to prove that

(7.2)
$$WF_{\mathfrak{s}}(K_{i}^{(p)}(t,\cdot,t_{0},y)) = \Lambda^{(p)}(t,t_{0};y), p=1,\cdots,l,$$

$$WF_{2s-1}(K_t^{(0)}(t,\cdot,t_0,y)) = \phi$$

for $|t-t_j| \leq \delta$. $j=0, \dots, d$.

We define $A^{(p)}(t,\tau)$ by

$$A^{(p)}(t,\tau)(y,\xi) = (\hat{x}^{(p)}(t,y,\tau,\xi),\hat{\xi}^{(p)}(t,y,\tau,\xi)).$$

Let F be a set in $\mathbb{R}^n \times \mathbb{R}^n \setminus 0$. We write

$$A^{(p)}(t,\tau)F = \{\hat{x}^{(p)}(t,y,\tau,\xi), \hat{\xi}^{(p)}(t,y,\tau,\xi)\}; (y,\xi) \in F\},$$

where $(\hat{x}^{(p)}, \hat{\xi}^{(p)})$ is a solution of (3.2) with $\lambda = \lambda^{(p)}, p = 1, \dots, l$. Then we have

$$\Lambda^{(p)}(t,\tau)\Lambda^{(p)}(\tau,\sigma)\!=\!\Lambda^{(p)}(t,\sigma)$$

$$A^{(p)}(t,\tau)A^{(p)}(\tau,t)=I$$

for any (t, τ, σ) .

THEOREM 7.1. Let u be in $S'(R^n)$ and $s' \ge s$. Then

$$WF_{s'}(W^{(p)}(t,\tau)u)\subset A^{(p)}(t,\tau)WF_{s'}(u)$$
.

for $|t-\tau| \leq \delta, \, b=1, \dots, l$.

Since $W^{(p)}(t, x, \tau, y)$ is in $S'(R^n)$ with respect to x for $|t-\tau| \le \delta$, we obtain

COROLLARY 7.2.

$$WF_s(K_i^{(p)}(t,\cdot,t_0,y)) \subset A^{(p)}(t,t_0;y)$$
,

for
$$|t-t_j| \leq \delta, j=0, 1, \dots, d, p=1, \dots, l$$
.

PROOF OF THEOREM 7.1. Let K be a neighborhood of x_0 and $\chi_N(x) = \chi_N^K(x)$. Put

$$I_N(\zeta,y) = \int (exp - i\langle x,\zeta\rangle) \chi_N(x) w^{(p)}(t,x,\tau,y) dx$$

$$= \! \int \! \{ \exp(-i \langle x,\zeta \rangle + i \langle \tilde{z}^{(p)}(t,x,\tau,\xi) - y,\xi \rangle) \} \chi_N(x) w^{(p)}(t,x,\tau,\xi) d\xi dx \; .$$

Then there exists a positive constant r such that for any positive integer m and for $|y| \ge r$

(7.4)
$$\sum_{|y| \le m} |D_y^{\alpha} I_N(\zeta, y)| \le c_m (1 + |y|)^{-m} A^N |\zeta|^{-N} N!, N = 1, 2, \dots,$$

where c_m depends only on m. For, $\operatorname{grad}_{\xi}\langle \tilde{z}^{(p)}(t,x,\tau,\xi)-y,\xi\rangle = \tilde{z}^{(p)}(t,x,\tau,\xi)-y\neq 0$ and $x\in\operatorname{supp}\chi_N(x)$, if r is sufficiently large. Let $\chi_N^p(y)=\chi_N^p(y)$, where $B_r=\{y,|y|\leq 2r\}$. Then we have

$$\mathcal{F}(\gamma_N(x)W^{(p)}(t,\tau)u)(\zeta) = \langle I_N(\zeta,\cdot), \chi_N^! u \rangle + \langle I_N(\zeta,\cdot), (1-\chi_N^!)u \rangle.$$

Then the second term can be estimated by $c_m|\zeta|^{-N}A^NN!^{s'}$ by use of (7.4), where m is the order of the distribution u. Let K_1 be the intersection of B_r and a neighbor-

hood of the projection of $WF_s(u)$ into R_x^n and $\chi_N^2(y) = \chi_N^{K_1}(y)$. Then we have

$$|\mathcal{F}((1-\gamma_N^2)\gamma_N^1 u)(\xi)| \leq C|\xi|^{-N} A^N N!^{s'} N = 1, 2, \dots,$$

for any $\xi \neq 0$. Hence we have

$$|\langle I_N(\zeta, \cdot), (1-\chi_N^2)\chi_N^1 u \rangle| \leq C|\zeta|^{-N}A^N N!^{s}$$

Moreover for $(y, \xi) \notin WF_{s'}(u)$, $y \in \text{supp } \chi_N^2$, we have

$$|\mathcal{F}(\chi_N^2 \chi_N^1 u)(\xi)| \leq C|\xi|^{-N} A^N N!^{s}$$

and for $(y, \xi) \in WF_s(u)$ and $(x, \zeta/|\zeta|) \notin A^{(p)}(t, \tau) WF_s(u)$,

$$d_{(x,\xi)}(\langle \tilde{z}^{(p)} - y, \xi \rangle - \langle x, \zeta/|\zeta| \rangle) \neq 0$$
.

Hence we obtain

$$|\langle I_N(\zeta,\cdot), \gamma_N^1 \gamma_N^2 u \rangle| \leq C|\zeta|^{-N} A^N N!^{s'}$$

Thus we have proved our theorem.

Denote by WF(u) the wave front sets with respect to C^{∞} functions. Then it holds that (c.f. [10]),

$$WF(u) \subset WF_s(u)$$
.

Hence to prove that

$$WF_s(K_i^{(p)}(t,\cdot,t_0,y)) \supset A^{(p)}(t,t_0;y)$$

it suffices to indicate

$$WF(K_j^{(p)}(t,\cdot,t_0,y)) \supset \Lambda^{(p)}(t,t_0;y)$$

for
$$|t-t_j| \le \delta, j=1, \dots, d, p=1, \dots, l$$
.

LEMMA 7.3. [3]. Let u be in $\mathfrak{D}'(R^n)$. Then $(x_0, \xi_0) \notin WF(u)$ if and only if for any real valued C^{∞} function $\phi(x)$ with $d_x\phi(x_0)=\xi_0$ there exists an open neighborhood U_0 of x_0 such that for any $\chi(x) \in C_0^{\infty}(U_0)$ we have

$$\langle (exp - i\rho\phi)\chi, u \rangle = 0(\rho^{-N})$$
 for $\rho \rightarrow \infty$

uniformly with respect to ϕ .

We can express

$$K_{j}^{(p)}(t, x, t_{0}, y) = \int (\exp i\varphi_{j}^{(p)}(t, x, y, t_{0}, \theta))a_{j}^{(p)}(t, x, t_{0}, \theta)d\theta ,$$

where

$$\theta = ((\xi^{(j)}, y^{(j)}, \xi^{(j-1)}, y^{(j-1)}, \dots, y^{(1)}, \xi^{(0)}) \in R^{(2j+1)^n},$$

$$\varphi^{(p)}(t, x, t_0, \theta, y) = \langle \tilde{z}^{(p)}(t, x, t_j, \xi^{(j)}) - y^{(j)}, \xi^{(j)} \rangle$$

$$+ \sum_{k=2}^{j} \langle \tilde{z}^{(p)}(t_k, y^{(k)}, t_{k-1}, \dot{\xi}^{(k-1)}) - y^{(k-1)}, \dot{\xi}^{(k-1)} \rangle$$

$$+ \langle \tilde{z}^{(p)}(t_1, y^{(1)}, t_0, \dot{\xi}^{(0)}) - y, \dot{\xi}^{(0)} \rangle$$

and $a_j^{(p)}(t,x,t_0,\theta) = w^{(p)}(t,x,t_j,\xi^{(j)})w^{(p)}(t_j,y^{(j)},t_{j-1},\xi^{(j-1)})\cdots w^{(p)}(t_1,y^{(1)},t_0,\xi^{(0)})$ It is obious that $(x,d_x\varphi_j^{(p)})\in A^{(p)}(t,t_0;y)$ if and only if $d_\theta\varphi_j^{(p)}=0$. Hence we have

(7.5)
$$A^{(p)}(t, t_0; y) = \{(x, d_x \varphi_i^{(p)}); d_\theta \varphi_i^{(p)} = 0\}.$$

We note that the rank of $d_{(x,\theta)}d_{\theta C_j}^{(p)} = (2j+1)n$. For,

$$d_{(x,\theta)}d_{\theta}\varphi_{j}^{(p)} = \begin{pmatrix} A_{j-1} & & & & \\ & -I & & & \\ & & A_{j} & & 0 \\ & & & -I \\ & & & & A_{1} \\ * & & & & & -I \\ & * & & & & & -I \end{pmatrix}$$

where $A_{j+1}=d_x\hat{z}^{(p)}(t,x,t_j,\hat{z}^{(j)}), A_k=d_yw\hat{z}^{(p)}(t_k,y^{(k)},t_{k-1},\hat{z}^{(k-1)})$ $(k=1,\cdots,j)$ and I the $n\times n$ identity matrix, all are non singular.

We shall prove (7.4) by use of the method of stationary phase. To do so, we need

LEMMA 7.4. [3]. Let $\phi(x)$ be a real valued function with $(\hat{x}, \hat{\xi}) \in A^{(p)}(t, t_0, y), \hat{\xi} = d_x \phi(\hat{x})$. Then the matrix $d^2_{(x, \theta)}(\varphi_j^{(p)} - \psi)$ is non singular at $(\hat{x}, \hat{\xi})$, if and only if

(i) the rank of
$$d_{(x,\theta)}d_{\theta}\varphi_{j}^{(p)} = (2j+1)n$$

(ii) the graph
$$(x, d_x \psi)$$
 and $\{(x, d_x \varphi_j^{(p)}), d_\theta \varphi_j^{(p)} = 0\}$

intersect transversally at $(\hat{x}, \hat{\xi})$.

Lemma 7.5. Let $(\hat{x}, \hat{\xi})$ be in $A^{(p)}(t, t_0; y)$. There exists a non symmetrix matrix R such that $\phi(x) = \langle x - \hat{x}, \hat{\xi} \rangle + 1/2 \langle R(x - \hat{x}), x - \hat{x} \rangle$ and $d^2_{(x,\theta)}(\varphi_j^{(p)} - \psi)$ is non singular when $d_{(x,\theta)}(\varphi_j^{(p)} - \psi) = 0$.

PROOF. It follows from Lemma 7.4 and (7.5) that $d^{2}_{(x,\theta)}(\varphi_{j}^{(p)}-\phi)$ is non singular if and only if the graph $(x,d_{x}\phi)$ and $A^{(p)}(t,t_{0},y)$ intersect transversally at $(\hat{x},\hat{\xi})$. The transversality means that

$$T_{(\widehat{x},\widehat{\xi})}(x,d_x\phi) \cap T_{(\widehat{x},\widehat{\xi})}(A^{(p)}(t,t_0;y)) = \{0\},$$

where

$$T_{(\hat{x},\hat{x})}(x,d_x\phi) = \{(\hat{o}_x,R\hat{o}_x); \hat{o}_x \in R^n\},$$

$$T_{(\widehat{x},\widehat{\xi})}(\Lambda^{(p)}(t,t_0;y)) = \{(d_{\xi}\widehat{x}^{(p)}(t,y,t_0,\widehat{\xi})\delta_{\xi},d_{\xi}\widehat{\xi}^{(p)}(t,y,t_0,\widehat{\xi})\delta_{\xi}), \hat{o}_{\xi} \in \mathbb{R}^n\}.$$

Hence the transversality implies that $Rd_{\xi}x^{(p)} - d_{\xi}\hat{\xi}^{(p)}$ is non singular. Since the rank of $(\hat{x}_{\xi}^{(p)}, \hat{\xi}_{\xi}^{(p)})$ is equal to n, we can find R such that $\det (Rd_{\xi}x^{(p)} - d_{\xi}\hat{\xi}^{(p)}) \neq 0$.

Now we prove (7.4). Denote by $Q_f^{(p)}$ the matrix $d^2_{(x,\theta)}(\varphi_f^{(p)}-\psi)$. Let $(\hat{x},\hat{\xi})=(\hat{x}^{(p)}(t,y,t_0,w),\hat{\xi}^{(p)}(t,y,t_0,w))$ and $\chi(x)\in C_0^\infty$, it's support contained in a neigborhood of \hat{x} . Then by virtue of the method of stationary phase, we obtain

For (x, θ) such that $d_{(x,\theta)}(\varphi_j^{(p)} - \psi) = 0$, that is, $(x, \psi_x) = A^{(p)}(t, t_0)(y, \omega), (y^{(k)}) = A^{(p)}(t_k, t_0)$ $(y, \omega)(k = 1, \dots, j)$ and $\xi^{(0)} = \omega$, we have from (4.4) and $(4.13)_0$,

$$\begin{split} \alpha_{j}^{(p)} = & \{ \exp i(\pi/4) \operatorname{sgn} Q_{j}^{(p)} \} \left| \det Q_{j}^{(p)} \Delta^{(p)}(t) \prod_{k=1}^{j} \Delta^{(p)}(t_{k}) \right|^{-1/2} \\ \times & H^{(p)}(t, \hat{x}, \hat{\xi}) J^{(p)}(t, t_{0}) G^{(p)}(t_{0}, y, \omega) \left(\frac{1}{2\pi} \right)^{(j+1)n} \\ \neq & 0. \end{split}$$

Hence $(\hat{x}, \hat{\xi}) \in WF(K_t^{(p)}(t, \cdot, t_0, y))$. Thus we have proved (7.2).

LEMMA 7.6. Let y be fixed in R^n and $\delta > 0$, small. Then for $p \neq q$ and $0 < |\sigma - \tau| \le \delta$, we have

(7.6)
$$\Lambda^{(p)}(\sigma, \tau; y) \cap \Lambda^{(q)}(\sigma, \tau; y) = \phi$$

and

(7.7)
$$\Lambda^{(p)}(\sigma,\tau)\Lambda^{(q)}(\tau,\sigma;y)\cap\{(y,R^n\setminus 0)\}=\phi.$$

PROOF. Let $(\hat{x}, \hat{\xi})$ be in $A^{(p)}(\sigma, \tau, y) \cap A^{(q)}(\sigma, \tau, y)$, that is, $\hat{x} = x^{(p)}(\sigma, y, \tau, \omega) = \hat{x}^{(q)}(\sigma, y, \tau, \eta)$ and $\hat{\xi} = \hat{\xi}^{(p)}(\sigma, y, \tau, \omega) = \hat{\xi}^{(q)}(\sigma, y, \tau, \eta)$. On the other hand we have

$$\frac{d}{dt}\hat{x}^{(p)} = \lambda_{\xi}^{(p)}(t, \hat{x}^{(p)}(t), \hat{\xi}^{(p)}(t))$$
$$= \lambda_{\xi}^{(p)}(\sigma, \hat{x}, \hat{\xi}) + 0(t - \sigma)$$

Hence $\hat{x}^{(p)}(\sigma) - y = \lambda_{\xi}^{(p)}(\sigma, \hat{x}, \hat{\xi})(\sigma - \tau) + 0(\sigma - \tau)^2$. Similarly we have

$$\hat{x}^{(q)}(\sigma) - y = \lambda_{\xi}^{(q)}(\sigma, \hat{x}, \hat{\xi})(\sigma - \tau) + 0(\sigma - \tau)^2$$

Since $\lambda_{\xi}^{(q)}(\sigma,\hat{x},\hat{\xi}) \neq \lambda_{\xi}^{(p)}(\sigma,\hat{x},\hat{\xi})$, we have $\hat{x}^{(p)}(\sigma,y,\tau,\omega) \neq \hat{x}^{(q)}(\sigma,y,\tau,\eta)$ for $0 < |\sigma-\tau| \le \delta$, if δ is small. This is contradition. Put $\hat{x}^{(q)}(\tau) = \hat{x}^{(q)}(\tau,y,\sigma,\omega)$ and $\hat{\xi}^{(q)}(\tau) = \hat{\xi}^{(q)}(\tau,y,\sigma,\omega)$. Then we have

$$\begin{split} \hat{x}^{(p)}(\sigma, \hat{x}^{(q)}(\tau), \tau, \hat{\xi}^{(q)}(\tau)) - y \\ &= \hat{x}^{(p)}(\sigma, \hat{x}^{(p)}(\tau), \tau, \hat{\xi}^{(q)}(\tau)) - \hat{x}^{(q)}(\tau) + \hat{x}^{(q)}(\tau) - y \\ &= (\sigma - \tau)\lambda_{\xi}^{(p)}(\tau, \hat{x}^{(q)}(\tau), \hat{\xi}^{(q)}(\tau)) + (\tau - \sigma)\lambda_{\xi}^{(q)}(\sigma, y, \omega) + 0(\tau - \sigma)^{2} \\ &= (\sigma - \tau)(\lambda_{\xi}^{(p)}(\sigma, y, \omega) - \lambda_{\xi}^{(q)}(\sigma, y, \omega)) + 0(\sigma - \tau)^{2} \\ &\neq 0 \end{split}$$

for $0 < |\sigma - \tau| \le \delta$, if δ is small. Thus we have proved (7.7).

PROPOSITION 7.7, ([14], [17]). Let u_0 be is $\gamma_{2s-1}(R^n)$ and f(t,x) be is γ_{2s-1} with respect to x and contineous with respect to t. Then a solution of the following equation is in $\gamma_{2s-1}(R^n)$ with respect to x,

$$\begin{cases}
L_{t,x}u = f, \\
u|_{t=x} = u_0.
\end{cases}$$

Proof. A solution u can be written

$$u(t, x) = K(t, \tau)u_0(x) + \int_{\tau}^{t} K(t, \sigma)f(\sigma, x)d\sigma$$

which is in $\gamma_{2s-1}(R^n)$ with respect to x, from Proposition 6.8 and 6.9. For $|t-\tau| \leq \delta$ and $|\tau-\sigma| \leq \delta$, we can write

(7.8)
$$K(t, x, \tau, y) = K(t, x, \tau, \cdot) K(\tau, \cdot, \sigma, y) .$$

$$= \sum_{p=1}^{l} \sum_{q=1}^{l} K^{(p)}(t, x, \tau, \cdot) K^{(q)}(\tau, \cdot, \sigma, y)$$

$$+ K(t, x, \tau, \cdot) K^{(0)}(\tau, \cdot, \sigma, y) + K^{(0)}(t, x, \tau, \cdot) K(\tau, \cdot, \sigma, y)$$

here $K^{(p)}(t,\tau) = W^{(p)}(t,\tau)$, $p=1,\cdots,l$ and $K^{(0)}(t,\tau) = W^{(0)}(t,\tau) + \int_{\tau}^{t} W(t,\sigma)F(\sigma,\tau)d\sigma$. Since $K^{(0)}(t,x,\tau,y)$ is in γ_{2s-1} with respect to x and y, it follows from Proposition 6.8 and 6.9 that the wave front sets in γ_{2s-1} of $K^{(0)}(t,x,\tau,\cdot)K(\tau,\cdot,\sigma,y)$ and $K(t,x,\tau,\cdot)K^{(0)}(\tau,\cdot,\sigma,y)$ are empty. Hence we have

(7.9)
$$K(t, x, \sigma, y) \equiv \sum_{p=1}^{l} \sum_{q=1}^{l} K^{(p)}(t, x, \tau, \cdot) K^{(q)}(\tau, \cdot, \sigma, y), (mod \gamma_{2s-1})$$

for $|t-\tau| \leq \tilde{o}$ and $|\tau-\sigma| \leq \tilde{o}$.

THEOREM 7.8. For $|t-\tau| \le \delta$ and $|\tau-\sigma| \le \delta$, we have

(7.10)
$$\widetilde{K}_{1}^{(0)}(t, x, \sigma, y) = \sum_{n \neq q} K^{(p)}(t, x, \tau, \cdot) K^{(p)}(\tau, \cdot, \sigma, y) \equiv 0, (mod \gamma_{2s-1}).$$

PROOF. Since $L_{t,x}K^{(p)}(t,x,\tau,y)\equiv 0 \pmod{\gamma_{2s-1}}$, we have

$$L_{t,x}(\widetilde{K}_1^{(0)}(t, x, \sigma, y) \equiv 0 \pmod{\gamma_{2s-1}}$$

for $|t-\tau| \le \delta$. Since $|\tau-\sigma| \le \delta$, we can put $t=\sigma$. By virtue of Proposition 7.7 it suffices to prove

$$\widetilde{K}_1^{(0)}(\sigma, x, \sigma, y) \equiv 0 \pmod{\gamma_{2s-1}}$$
.

Then we have from (7.8)

$$\widetilde{K}_1^{(0)}(\sigma,x,\sigma,y)\!\equiv\!\widetilde{o}(x\!-\!y)\!-\!\sum_{p=1}^l\!K^{(p)}(\sigma,x,\tau,\cdot)K^{(p)}(\tau,\cdot,\sigma,y)\pmod{\gamma_{2s-1}}$$

Hence it follows from Corollary 7.2 that

$$WF_{2s-1}(\tilde{K}_1^{(0)}(\sigma,\cdot,\sigma,y))\subset\{(y,\xi);\ \xi\in\mathbb{R}^n\setminus 0\}.$$

On the other hand it follows from Theorem 7.1, that the wave front set in r_{2s-1} of $K^{(p)}(\sigma, x, \sigma, \cdot)K^{(q)}(\tau, \cdot, \sigma, y)$ is contained in $A^{(p)}(\sigma, \tau)A^{(q)}(\tau, \sigma; y)$. Hence we have

$$W\!F_{2s-1}(\widetilde{K}_1{}^{(0)}(\sigma,\,\cdot\,,\,\sigma,\,y))\!\subset\!\bigcup_{p\neq q}A^{(p)}(\sigma,\,\tau)A^{(q)}(\tau,\,\sigma;\,y)\,.$$

From Lemma 7.6 it follows that

$$\bigcup_{p\neq q} A^{(p)}(\sigma,\tau)A^{(q)}(\tau,\sigma;y)\cap\{(y,R^n\setminus 0)\}=\phi.$$

Hence we obtain (7.10).

COROLLARY 7.9. For $0 < \tau - \sigma \le \hat{o}$ and $\hat{o} \le t \le \tau$, we have, $p = 1, \dots, l$,

(7.11)
$$K^{(p)}(t, x, \tau, \cdot)K^{(p)}(\tau, \cdot, \sigma, y) \equiv K^{(p)}(t, x, \sigma, y) \pmod{\gamma_{2s-1}}.$$

PROOF. It suffices to prove (7.11) for $t=\tau$. Then from (7.9) and (7.10) we obtain

$${\textstyle\sum\limits_{q=1}^{l}} \left(K^{(q)}(\tau,x,\tau,\cdot)K^{(q)}(\tau,\cdot,\sigma,y) \equiv {\textstyle\sum\limits_{q=1}^{l}} K^{(q)}(\tau,x,\sigma,y) \; .$$

Hence

$$\begin{split} K^{(p)}(\tau,x,\tau,\cdot) K^{(p)}(\tau,\cdot,\sigma,y) - K^{(p)}(\tau,x,\sigma,y) \\ &\equiv \sum_{q\neq p} K^{(q)}(\tau,x,\tau,\cdot) K^{(q)}(\tau,\cdot,\sigma,y) - K^{(q)}(\tau,x,\sigma,y) \; . \end{split}$$

It follows from (7.6) that

$$\Lambda^{(p)}(\tau,\sigma;y) \cap \{\bigcup_{\alpha\neq y} \Lambda^{(q)}(\tau,\sigma;y)\} = \phi$$
,

which implies (7.11).

We put, $\sigma \leq t \leq \tau$,

$$\begin{split} S^{(p)}(t,x,\sigma,y) &= K^{(p)}(t,x,\tau,\cdot)K^{(p)}(\tau,\cdot,\sigma,y) - K^{(p)}(t,x,\sigma,y) \\ &= \iiint \{ \exp i \langle \tilde{z}^{(p)}(t,x,\tau,\xi) - z, \xi \rangle - z \rangle + i \langle \tilde{z}^{(p)}(\tau,z,\sigma,\eta) - y, \eta \rangle \} \\ &\quad \times w^{(p)}(t,x,\tau,\xi)w^{(p)}(\tau,z,\sigma,\eta)d\xi dz d\eta \\ &\quad - \int \{ \exp i \langle \tilde{z}^{(p)}(t,x,\sigma,\xi) - y, \xi \rangle \} w^{(p)}(t,x,\sigma,\xi) d\xi, \end{split}$$

Proposition 7.10. Let u be in $S'(\mathbb{R}^n)$. Then $WF_{2s-1}(S^{(p)}(t,\sigma)u)=\phi, p=1, \dots, l$. Proof. We put

$$I_N(y,\zeta) = \int (exp - i\langle x,\zeta\rangle)\chi_N(x)S^{(p)}(t,x,\sigma,y)dx$$
.

which satisfies

$$|D_y^{\alpha}I_N(y,\zeta)| \leq C_{\alpha m}|\zeta|^{-N} A^N N!^{2s-1} (1+|y|)^{-m}, |\alpha| \leq m,$$

for any positive integer m. For, it is true for $|y| \le r$, r is a positive constant. If r is suitably large, for $|y| \ge r$ and for $x \in \sup \chi_N$, we have

$$d_{(x,\xi,z,\eta)}(\langle \tilde{z}^{(p)}(t,x,\tau,\xi)-z,\xi\rangle+\langle \tilde{z}^{(p)}(\tau,z,\sigma,\eta)-y,\eta\rangle-\langle x,\tilde{\zeta}\rangle)\neq 0,$$

$$d_{(x,\xi)}(\langle \tilde{z}^{(p)}(t,x,\sigma,\xi)-y,\xi\rangle-\langle x,\tilde{\zeta}\rangle)\neq 0,$$

where $\zeta = \zeta/|\zeta|$. So we obtain (7.12) by part of integration. Hence

$$\begin{aligned} |\langle I_N(\cdot,\zeta),u\rangle| &\leq C_m \sup_y (1+|y|)^m \sum_{|\alpha|\leq m} |D_y{}^\alpha I_N(y,\zeta)| \\ &\leq C_m |\zeta|^{-N} A^N N^{2s-1} \,. \end{aligned}$$

when m is the order of the distribution u.

Now we turn to prove (7.3) by induction with respect to j. It is true for j=1 from Theorem 7.8. Assume that (7.3) is valid for j-1. By virtue of Proposition 7.7 it suffices to prove that (7.3) is valid for $t=t_j$. For, $L_{t,x}K_j^{(0)}(t,x,t_0,y)=0$, for $t_j \le t \le t_{j+1}$. We have from (7.1),

$$K_j^{(0)}(t_j, t_0) = K(t_j, t_0) - \sum_{p=1}^{l} K_j^{(p)}(t, t_0)$$

$$\begin{split} & \equiv \sum_{p=1}^{l} K_{j-1}^{(p)}(t_{j}, t_{0}) - K_{j}^{(p)}(t_{j}, t_{0}) \pmod{\gamma_{2s-1}} \\ & = -\sum_{p=1}^{l} \{K^{(p)}(t_{j}, t_{j})K^{(p)}(t_{j}, t_{j-1}) - K^{(p)}(t_{j}, t_{j-1})\}K_{j-2}^{(p)}(t_{j-1}, t_{0}) \\ & = -\sum_{p=1}^{l} S^{(p)}(t_{j}, t_{j-1})K_{j-2}^{(p)}(t_{j-1}, t_{0}) \end{split}$$

of which wave front set in γ_{2s-1} is empty from Proposition 7.10.

References

- [1] Bontet, L de Monvel and Kree, P.: Pseudo-differential operators and Gevrey class. Ann. Inst. Fourier, Grenoble vol. 17, 1967, 295–325.
- [2] Courant, R. and Hilbert, D.: Methoden der Mathematischen Physik. vol II, Springer, Berlin, 1937.
- [3] Duistermaat, J.J.: Fourior integral operators. Courant Inst. Math. Sciences, 1973.
- [4] Duistermaat, J.J. and Hörmander, L.: Fourier integral operators II. Acta Math. vol. 128, 1972, 184-269.
- [5] Gårding, L, Kotake, T. and Leray, J.: Uniformisation et dévélopement asymptotique de la solution du problème de Cauchy à données holomorphes. Bull. Soc. Math. France t. 92, 1964, 263–361.
- [6] Gevrey, M.: Nature analytique des solutions des équations aux derivées partielles. Analles Ecole norm. sup. t. 35 (1917), 129-189.
- [7] Hamada, Y.: The singularities of the solutions of the Cauchy problem. RIMS Kyoto Univ. vol. 5, 1969, 21-40.
- [8] Hamada, Y.: On the propagation of singularities of the solution of the Cauchy problem. RIMS Kyoto Univ. vol. 6, 1970, 357-384.
- [9] Hörmander, L.: Fourier integral operators I. Acta Math. vol. 127, 79-183.
- [10] Hörmander, L.: Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients. Comm. pure Appl. Math. vol. 26, 1971, 671-704.
- [11] Kumano-go, H.: A calculus of Fourier integral operator of hyperbolic type, Communications in Partial Differential Equation. vol. 1, 1976, 1-44.
- [12] Lax, P.: Asymptotic solutions of oscillatory initial value problems. Duke Math. J. vol. 24, 1957, 627-646.
- [13] Leray, J.: Un prolongement de la transformation de Laplace qui transforme la solution unitaire d'un opérateur hypérbolique en sa solution élémentaire (Problème de Cauchy IV). Bull. Soci. Math. t. 90, 39-156.
- [14] Leray, J. and Ohya, Y.: Systèmes lineaires, hypérboliques nonstricts; II. Colloq. Anal. Fonctionelle, Centre Belge Recherches Math. 1964, 105-144.
- [15] Ludwig, D.: Exact and asymptotic solutions of the Cauchy problem. Comm. Pure Appl. vol. 13, 1960, 473-508.
- [16] Maslov, V.P.: Théorie des pértubations et méthodes asymptotiques. tradition Dunod (Paris) 1972.
- [17] Mizohata, S.: Analyticity of solutions of hyperbolic systems with analytic coefficients. Comm. Pure Appl. Math. vol. 14, 1961, 547-559.
- [18] Mizohata, S.: Solutions nulles et solution non analytiques. J. Math. Kyoto Univ. vol. 1, 1962, 271-302.

- [19] Mizohata, S.: Analyticity of the fundamental solutions of hyperbolic systems. J. Math. Kyoto Univ. vol. 1, 1962, 327-355.
- [20] Nisiwada, K.: On local characterization of wave front sets in terms of boundary values of holomorphic function. to appear.
- [21] Sato, M., Kawai, T. and Kashiwara, M.: Microfunctions and pseudodifferential equation. Proceedings of a Conference at Katata, Springer-Verlag, 1971.
- [22] C. Tsutsumi: The fundamental solution for a degenerate parabolic pseudo-differential solution for a degenerate parabolic pseudodifferential operator. Proc. Japan Acad. vol. 49, 1974, 11-15.
- [23] A. Friedman.: Regularity of fundamental solutions of hyperpolic equations. Arch. Math. Mech. vol. 11, 1962, 62-96.