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FUNDAMENTAL SOLUTION OF CAUCHY PROBLEM
FOR HYPERBOLIC SYSTEMS AND GEVREY CLASS

By
Kunihiko KajrTANI

§1. Introduction

We consider a first order partial differential operator LL_,=-§? +i‘ Aj(t, x) ?)—i—f
+B(t,z) in 2=[0, T1x R", whose coefficients are m Xm-matrices. Wé_éall a funda-
mental solution corresponding to the operator L, . a distribution satisfying the
following, z€[0, T'), fixed,

L K(t,x.7,y)=0, te0,T)
(1.1 {

Kz, @, 0, y)=d(x—y)I,

here #(x) denotes the n-dimentional Dirac distribution and I the indentity matrix.
We require that the multiplicity of each characteristic remains constant in a region
N=[0,TI1x R" and that the characteristic matrix A{¢, z, &)=IA¢, z)§; is diagona-
lizable for (¢,z) in 2 and & in R™\0. Moreover we suppose that the coefficients
Ayt, x) and B(Z, z) are in Gevrey class y(2)(s=1).

Qur aim is to construct globally in £ a fundamental solution for the operator
L » of this type. When 7 is small, Lax [12] treated this problem. In the case of
analytic coefficients, Leray [13] and Mizohata [19] analyzed locally a fundamental
solution of hyperbolic systems. When T is large, Ludwig [15] extended the interval
of existence for a fundamental solution by use of it’s semi-group property. We
shall give a more precise expression of a fundamental solution than these of Lud-
wig. It should be remarked that Duistermaat [3] has recently constructed globally
a fundamental solution of the Cauchy problem, applying the theory of Fourier
integral operators of Hormander and Duistermaat [4], [9]. -

In the first step we shall construct asymptotically a fundamental solution and
in the second step we shall obtain successive estimates of it’s expansion by use of
the method of Mizohata [18], [19] and Hamada [7], [8]. We shall determine the
wave front set in Gevrey class of a fundamental solution following the definition
of Hormander [101.
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The work presented here leans heavily Mizohata's results in [18], and I thank
him sincerely.

1 announce that we shall construct in the ultra distribution a fundamental solu-
tion for non diagonalizable hyperbolic systems in the forthcoming paper.

2. Results

We consider a operator L, ,=0/6t+3 A (¢, x)d/ox;+B(t, ) under the following
assumptions;

(A.I) each eigen value of A(t, z,&)=YA,¢, ), is real for (¢, x,&eR2XR"™N0
and it’s multiplicity is constant, that is, det(1+ A(Z, x, &)= Il'[ (G+2P(t, x,8) P, (Fvp=
m), here v, (p=1---1) is constant. !

(A,II) there exists a positive constant ¢, such that

sup [AP(¢t, x,§)— 2P, x, )| =
(1,

1§]=1
p#*q

(A.IIl) the characteristic matrix A(Z, z,&) is diagonalizable.

A function feC=(f) is said to be of Gevrey class 74(2) (s=1), if there exist
constants C, A such that for any (¢, z)e®? and for any multi-index a=(ao, a1, -**, @n),
the following inequality be true;

| D f (2, 2)| KCA|alt®,

here we have set D*=(3/at)"s(a/0z:)" 1+ (3f0xn)"n, |a| = T, as.

We suppose that the coefficients A (t, z), B(Z, ) olfzoLL,Jc are in Gevrey class 7,(2).
Then all eigen values AP(¢, z, £) are in 742X R"\0).

‘We denote by [‘®(¢,z,7,y,£) the phase function associated to 1™(#, z, &), that

is, a solution satisfying the following non-linear equation;
L 4 22, g, [P =0
2.1)

l(p)ltm':(x_y, E) )
here <z,&)=2 x:&. To solve this equation, we consider the Hamiltonian system,
1=1

d - d . -
L a1t 5@ Fmy LRy — g o A E®
P P =2D(t, 2P, £, 7 ED(E) AP, 2P, £

EP(r)=z, EP(r)=¢, (6+0).

We write (2P(2), ED@)=(2P(t, 2, 7,£),EP(4,2,7,8). We can solve globally this
system, for 2P(¢, z,£) is a homogeneous function in & We note that (2®(2), £® (1))
is in Gevrey class 7,(2 < R™\0) with respect to (¢, z,£). We put 4P () =D(2P(£))/D(z).
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Then there exists a positive constant >0 such that 4®(#)=0 for |{—r| <5, because
of 4P(z)=1. Hence we can solve the equation #®{f,z,1,&)=2 with respect to z
for |t—z|<d. We denote this solution by (¢, z,7,£). Then we can express the
solution of (2.1) as follows,

(22> Z(p)(t$ Ly Ty Y, E)=<§(p)(tl Ty Ty E)_yr s:> .
We note that (¢, z, 7, &) and therefore [‘(¢, 2,7, ¥, &) are in y{[r—4, c+0]X R"

X R"™\0) with respect to (¢, z,&). We denote

AP )= U (@D y,7,8), 8P, v, 7, 8))

$ERNN\ 0
Now we analyze the fundamental solution of L., As well known (c.f. [12],
(15] and [19]), if 6 is small, for |f—c|{<J we can express the fundamental solution
K(t, z,z,y) as follows,
i
K, 7, y)=2 KO, x, 7, )+ K", z,7,9),
p=1
here
K®( z,r,y) =5{exj1 Pt 2, o, y, O P, , T, E)dE, p=1, -, .
Then we obtain
THEOREM 2.1. Let (z,y) be fixed. For |t —z|<5, we can compute the wave front
sets of KP(t,x,7,y) in Gevrey class as follows, (s=>1),
WF(K P, -, o, ) =40, 7 ),
WFES—I(K (0)([) T, y)):¢ .
Heve the definition of the wave front sets in Gevvey class followed jfrom Hiormander

[101.

REMARK. In the case of analytic cofficients (i,e,s=1), the propagation of the
analytic wave front sets is studied in [10] and [21). When s>1, Friedman [23]
showed that the fundamental solution is in 1. except the charvacteristic conoids.

We decompose the interval (0,7) such that O0=t<tH < <tgu=T,¢;—t;-1=0.
Then it follows from the semi-group property of a fundamental solution that we
can write for |f—#;]<5,

K(t: Z, tu: Z/)—':K(t, x, t.’h )K(tjy “y tf—h * )K(tl’ ty tﬂ: 'y)

l
= ZKJ-(p)(t) x, tOv y)+K_i(0)(t7 x, tﬂ) '.Z/) bl
p=1
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where we put
K;PJ(t’ €, t()’ ’!/)=K(m([: z, t]'y ')K—(m(lﬁ AR ] 1".7"'1’ ')“'K(m([l’ o to, ?/)

for j=1,--,d, |t—t;|<é and p=1,---, L

THEOREM 2.2. For |[t—t;|<é, we have
WELK P, -, by, )= AP, b y), p=1, -, [,
and
Wk (K@, - t, 9)) =6,
Sfor j=1,2,- d.

REMARK. For example, when j=1, Theorem 2.2 implies that the singularity of

the summation 3, K¢, z, by, - )K Oty -, to,y) disappears in the Gevrey class yas-1.
PFq

§ 3. Preliminaries

Let 2(¢, 2, &) be a function in 7 {2x R*\0) and homogeneous degree one in &.

We consider the following equation;
L+At, x, i)=0,
(3.1)
ljo.=Lx—y, &,&+0.

To solve this nonlinear equation, we consider

di(t) . i) .
[ dl. "}‘S(t’ &£, E) ) T - ’21‘(5(1 &z, E)
Lﬁ(f):‘ar é(t)=f.

We write the solution (2(2), £@®)=(2(t, z, 7, &), £, 2, =, £)).
Then we have,

Lemma 3.1. Let = be fixed in |0, T']. For ze R* and £e R™\0, (3.2) kas a unique
solution (2(t), &(8)) which is in 7{2x R™\0) with respect to (,z, ).

Since the Jacobian D(#)/D(z)=1 at f=r, there exists a positive number § such
that D(x)/D(z)#0 for |¢—7|<d. Hence we can solve an equation Z(f, z,r, §)=x with
respect to z by an implicit function theorem. We denote this by 2(,z,z,£). Then
we obtain,

LemMma 3.2. [2]. For |t—r7|<8, we can express a solution of (3.1),

8.3) [t z,c,y,&)=C(2¢ 2,5, 8)—y, &,
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(3.4) L=E(t, (¢, 2,7,8),5,9).

We denote the Jacobian D(2(£))/D(z) by J(#). Then we have as well known,
(c.Lf. [5]),

LemMa 3.3, For [t—<|<é, we have

=il

(3.5) (‘f[ =4 { DIPTSR S N T
i ) i e

=J<z>{ S et 1)

IR =i
here [ is a solution of (3.1)

Let A(t, 2, &)=Y A\, x)¢; be a matrix and (¢, «, £) be an eigenvalue of A, z, &).
We denote the right eigenvectors and the left eigenvectors by /7, -+, /2, and gy, -, g,
respectively. We write H=(h,, ---, 4,) and G=%¢,, -+, ¢.). Then simple calculations
imply

LemMa 34. For j=1, - n, we have

( 1 ) Gflej}:{‘—"/{ngfI, GAIJ[{:ZxJG[I

( 2 ) Z GAng;-jZij= Z ZgiGH:c ;Zij+*-;—" S).;iijngH for Z2i;=2j;
2 Ly

(3) Gs;AaH—Ga)As H=G A Hy . — G A, H:,

(4) GAn;Hy—Ga Ae H=GH; Joy+GH, 2 -

§4. Asymptotic construction of fundamental solution
We shall construct asymptotically a fundamental solution K(¢, x, z, v). We note
that the distribution #(x—v) is represented by

o —3)= g\ exb ia—y, £5d

Let w(t, z,z,v,&) be a function satisfying following equation,

[Lt,zw(t, z,7,9,6)=0

et 3,5, v, &)= fesp o =1, DI

4.1)

Then we have a fundamental solution K(¢, =, 7, ) as follows,

K(t, z, z,v) =Smw(t, z, 7, y, E)dE.
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We can construct asymptotically (¢, 2, 7, v, &) with respect to & provided that
the system L. . satisfies the algebraic conditions (A.I), (A.Il) and (AIII) in §2.
We seek z as the following form;

on
(4.2) w(t, x,c,y, &)=, 3, lexp il®(t, x, <, y, @)l IwP(t, x, <, w),

J=0 k=1
here
IO o 0, y, 0)=EM (¢, &, 7, 0)—y, oy, 0=E[|f] and o=|E].

Applying L, » to w, we obtain

Losfwl= 5 o7/ 3 (exp 00 + AL, 2, B0+ Ly s
=0.
Hence we have
4.3); QW z, 1) — A(t, z, [9)wP +ils, Jw®)=0 j=0,1,2, -, (wH=0).
We put
H®(¢ 2, &)=hF(, x,8), -, k¢, ©,5),
GOt 2, 8)=(g®, -, ¢%) ,

here AP(t, x, &) (resp. ¢¥) is a right (resp. left) eigenvector of A(¢,z,£) correspond-
ing to A®(¢, z, &).
For j=0, we obtain

4.4) wi(t, z, w)=H®(t, z, [$ 6P, z, @),

where o®®(¢, 2, w) is a vxXsm matrix which is determined later on. In general, to
solve (4.3); (§=1), it is necessary that

(4.5)-1 GOt z, )Ly, {w§2,)=0.

Then we obtain as a solution of (4.3);

(4.6) w(t, z, w)= Z H®(t 2, 1$)eP (L, 2, 0)
where oP®(¢, x, w) is a vp,Xm matrix, and for p#k&,

(4.7) (2’ k) o z(l"" )(p)) IG(P)ls z(k)}Lz I(w(lu)

We can rewrite (4.5); as an equation of ¢¥*®, that is,

__12,__( X’z(k) l(k} + S’Z(k)e )+_7 k> }

(4.8) =+ Z 2"" APz,

(T_(,k'k)

£=IP
—iGW(¢, z, [PV, HP)=0,
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here we used Lemma 3.4 and G®H ® =], (v Xvx-identity matrix),

(4 . 9) ](k)(t, J’}, §> =G(E)LL, JH(L) _]Z:l (G(k)Hg(f))\%} —_ ,_2_. l&k}ng"“H(“) ,
(4.10) = 5 HO(, 2, ()09, 7, 0) -

We note that j* is invariant under the transformation of variables. For we can
rewrite, by virtue of Lemma 3.4, (for simplicity, abbreviating an index £),

.1
-1:‘2_ (GEiijH*ijAfjH+Gsz25j—GE[gj/:zj)

OGH, 3 % G Ay H+GBH,
here we put L=&l+A, f=5&+i"® and ¢{=x, Then we have

. 1 n
]=*2"JZ=:0 {GéjLa:j_'Ga:ijf)H‘|‘G(Ha:jfsj—Héjij)}

L GBH—-L3" GL. . 1T
o

which is evidently invariant under the transformation of variables.
Now we return to the equation (4.8). We transform the variables z into Z®
(¢,2,7,w). Then by use of Lemma 3.3, we can rewrite (4.8) as following,

@A) (St 400 +90) o P1E, 29, 0)—iI6D Lo ooz
=0

We denote by J®(#)=J®(¢, 7) a solution of the following equation

L )= iR, JOR =L,

We put
Uf,h)(f) =0§k)(t’ Z, w):d(k)(i)lr"_’j(k)(t)o.(][:.k)(t’ i‘.(k)(t-)’ (l)) .

Then we obtain from (4.11)

(4.12) 731? 0P () =GP Lo, sz - 20300 =M PUDF) 2 a0ty 0}

here M® is a first order differential operator in (f,2) and @¥ is given by (4.10)
and (4.7). As an initial condition of (4.12), we obtain from (4.1)

i
3 H®g® =

=] 2r)"
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and
I

P+ PP y=0, (j=1)
k=1
for t=r, that is

o) =GP(z, 2, w)

and

!
aF() = =GBz, 2 w) 3 WPe, 2, @), (F=1).

n=1

Summarizing, we have obtained,

(4.13), aP(t, z, w)= —(-_9—;—)7; G¥(z, 2, w)

and for j>1 and k=1, -/

d .

—_— ) —_ K tk)

P aPty=M PP
(4.13); WP =N, PP, + Ny,

I3
oPE)=GP, 2,0) T P

here M N, and N,® are first order differential operators in (¢, 2).
Then we have the following theorem which will be proved in the next section,

<o and for xeR", we have

TueoreM 4.1. Let « be fixed in [0, T). For |i—=
| D2 Diof) o SCLAMHH(Jar] + D171
and
| D2 DB SCL A5 ] + | 815
here C, and A, are positive constants independent of «,p and j.
Therfore we obtain
THEOREM 4.2. wP(t, z,c,0) the terms of the expantion (4.2) are homogeneous
functions of degree zero with respect to v and are estimated by,
| D5, e Ditw P - S Co A 131 8] | A, 7=0,1, 2, -

for k=1, --- I, and for (t,x)e[t—0,z+3]XR".
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§5. Successive estimate in Gevrey class

We start with a lemma which will be often used in our reasonning (c.f. [6],

[18)).

LeMMA 5.1. Let p and p. be non negative integers and a=(a, *+, am) @ multi
integer. For any k>1 and s=1, we have

5.1 I (8) i eprtai+e
o (Do)
< Gl oo (25522)

Proor. Noting that iﬁ -+ =0+,
=1

we have
a_ itt‘l) =01 e lal
méi(ﬂ') (j P TR LT

(35 )<lai)
1 o A1t 3

In paticular for m=2,

Hence

5 (& )t pia+ o

afda’=a

!

5

N

= (8 Vet pial —i+pa

0 la’j=j

() o

i

la

A

i

It

0

b +Pz) -t
b

<5 ket +pi 400 (
i=0
which implies (5.1).
Let G be an open set in R™ and G a closure of G.
LemMA 5.2. Let P(x, D)= \s& l(lﬁ(-’L’)D‘a be a differential operator, pi, p» non nega-
tive integers and k a positive number>1. Assume

|D*as(x)| < Colk A)(lal +p0), 181<d,
| D ()| SCA™'(Ja| +pa)l?
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Sfor any multi integer « and for zeG. Then

(5.2) | D*P(z, D)u(x)| K CoC g A (lee| +p1 +p2+d )1°
for xeG, where mg=(mt—1)m—1)""(k—1)"'.

Proor. Leibniz formula implies

P 5 = (8 )iDvel D

15| <d a’ +a"=a

<Geant 2 B & Ve +pa D)

15l<d o

which implies (5.2) with (5.1), where we used that

PMRES i mi=(mt =1 (m—1)"1.

il <a Jj=0

Lemma 5.3. Let Xz, D)=3 aji(x)%+ajo(ar), (j=1, -, N) be first order dif-
i=1 Ly

Sferential operators. Assume

[D'ap(x)| KCk*A)Yalls, j=1, - N,i=0, -, m,
[D ()| SCA(Jae] +p)1*

for xeG. Then

(5:3) | D" X5, Xy Xt SO Y A * Y | 40+ )

Jor xeG and for (ji, -, i<, -, N), where m,=(m+1)k—1)"k k>1.

Proor. We shall prove our statement by induction with respect to /. For /=1
it follows from lemma 5.2. In general

iDanl(ij...X_'jlu)[ < ZE Z < ;; )]D""(zjli]D“”aU_ (‘ij...z jlu)‘

a’ XL
+3 ( ;‘ >|D"'aj10[ | D™ X5, X gyl
<A IC(Com)~m+ )3 ( ;", >k"""([a’ﬁ)!’([¢r'| +l+p)ls
which implies (5.3) with (5.1).

LeMMA 5.4. Let G, and G, be an oper set in R™ and in R™: respectively and
v be a mapping from Gz to G, satisfying
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|Dy ()| S G A ot
for yeGs. Then for any w(x) satisfying for xeG,
| Da"u(z)| SCA™ (| +5) 1,
if A> A, we have
(5.4) | Dy (sew)(y)| SC(2:Commy Ag) ! AV (la| + )Y
For yeGy, here my=(m+1)k—1)"k k=A/As>1.

Proor. Denote ¢(y)=(¢i(y), -, ¢m,(y). Then we have

Dy fatoel)= 3, 5 2w Yt

™ G 0 b
(R0 5 DY)
& oy dx o dy; e =g
We put
my a a
a — aix=—=—0x(y).
Z J’h(y) ayly ik ayj ‘rk(J)

Nothing that
1D ai(y)| <@ Co o)k A) )l k= A1 A>T,
Dy"(u"‘,ﬁ)(?/) =(X;"1X," 'X#QEH(-E)) lz=ccm »

we obtain (5.4) by virtue of Lemma 5.3.

COROLLARY 5.5. Let ¢ be given by Lemma 54. Then if uey(G), topeyGs).

Proor. It is obious from (5.4).
Let G=(r—4,c+8)XR™* be a band in R™, P(zx,D)= HZ, da,;(x)Dﬁ and Q(x, D)=
<

‘ Y. b(x)D#, of which coefficients are s, X, matrices and satisfy
pl€d—1

|D*ag(x)| <Colk'A)all, |5l <d,
ID*by(@)| <Colk~ A)1, |3l <d -1,

(5.5)

for zeG, where £>1.

We consider the following equations
D\F;=P(z, D)F;_, in G

(5.6);
Fl-’ﬁv (‘1‘ D)Ff lll‘lry

for 7=0,1,2, -+, where Fy(x) are ;X ms matrices.
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ProprosiTION 5.6. Let P(x, D) and Q(z, D) be differential operators of order d
and d—1 respectively, of which coefficients satisfy (5.5). Assume that Fy(x) is es-

timated by
(5.7)% [D*Fy(z)]| KCA“|al®, zeG .

Then for everv j, Fjx) satisfying (5.6);, can be estimated by

— =1 AN
6.7 iD"Fj<x>|<C<comd>f~4‘“‘*“‘"”’,i3 - /i A (i id— 1)+

for xeG, where Ma=(mé¢ =) (m—1)""(k—1)"'%k, k>1.
Proor. We shall prove (5.7); by induction. For j=0 it is trivial. Assume that
(6.7);-, is valid. For a=(a, -, an)=(a, &), ay %0, we have from (5.6);,
D'Fi=Dp'D'PF; =D PF; ,, y=(a,—1,&).

Hence

pri< s 5 ([ )iDraipe R

131 <d @’ +a”=;

<G T ( 7 )k“‘""A“'"la’]!”C(Coma)f“‘

|figd a’

s I 4 =1 (-1 Z ("E‘"— |4)

I e+ = =D+ L+ |

< (Coma)’ (k;l) Al =1y Z (!»L—-“IA) ;([L’ >k"”"ia'|!°‘([a”[

+i(d—1y—1+D)

which implies (5.7); with (5.1).
For a=(0, @), we have

D"Fy=DF{z, ')+S (D"PE;)(¢, )t
here x'=(xs,--', zm). Hence

12y—<]

D FA@)| <ID"QFssls, e+, D" PFy-alt =, ot
Since it follows from (5.7);_, that
| D Fjos(z, @) KC(Cofig)i=1 Aol D=0 || 4 — 1) d— 1)),

we obtain by use of Lemma 5.2.
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(5.8) |D"QFjs(7, 2 )| SCCoty(Cofftg)i +1 AM1+5 (|| +5(d — 1))
On the other hand, we have by Leibniz’ formula
|D*PF;_\(t+7,2")|< 2 (;L, )[D“'a(t+r,w’)||Df""“"Fj_1(t+r,x’)|
14T=d

k—1
k

FAd=1) I+ 1)

(tA)L

<C ( ) (Cotng) A1+ @-1i-1 Z ( a; )k"“"la’|!"(|a“|
=0 af a

1

i L
LC(Comg)) Al - mZ A (le| +7(d—=1)+ 1)

of which integration with respect to ¢ implies (5.7); with (5.8).
Now we can prove Theorem 4.1 and 4.2. Let G=(c—4,t+d) X R"X V, where V
is a neigbourhood of a sphere S™!. We put in (4.13);,

roo.m o, )

7 g5’y v, 05
j=
_Wju)’ - iju)
» _ﬂ’I(l)Nl(”,]\{[(”NZ(”, '-~,1V.f“’N1(”, M(L)Nz(b]
D;Nﬁ”,D;Nz“’, "',DLNlm,Dr,sz
o 'G(I)Nl(l)’ G(I)Nz(l)’ o G(”N,(”, G(l)NZ(hjl
L Nl(l), 1\72(1)’ N N1<l), ]\12(1)

Then we obtain by virtue of Proposition 5.6 with d=2,

(Aﬁ)‘

\D ﬂFJI <C(Como)*A'"“ 181+ Z (l H’ le +] +[)Ix

Noting that
(laf + 18l +7+INL2118 T e +{BIN (74D
we have

| Dy, D Fj| S CACyms AZ(25A) 118 || 4| )t Z %Jif-)— L1118
(=0

SCAF-(|a| + | 8))15712*~"
where
A;=max{8Cym.6 A% 2°A} .

Theorem 4.2 is an immediate result of Theorem 4.1 and Lemma 5.4. For, it
follows from Lemma 3.1 that the mapping (¢, x, w)—(Z, #P(¢, %, 7, ), w) is in the class
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7:G).

REMARK. Friadman [23)] showed that when s>1, the fundamental solution be-
longs to yes-1 except the charvacteristic conoids. Quy theorem implies that it belongs

f0 72s-1 excepl the characteristic conoids.

§6. Wave front sets of fundamental solution in Gevrey class

In the term of (4.2), we denote |&|~7w;P(¢, x, 7, @) by w;P(¢, x,7,&). Theorem
4.2 implies
(6.1) [ Dz s DePrw; (¢, x, 7, )| SCA i || 4 | 1204 2|31,
for (¢, z)elr—0,c+6] X R", £e R"™\0,7=0,1,---. Then it follows from the article of
Boutet de Monvel and Kree [1] that there exist w®(¢, x,t, &)eC*([v—6,c+d] X R"X
(R*N€]=1)) such that

N-1
6.2) D;,zDef’(w“’)(t, z,7,8)— 2, w; Pz, T, E)) '
=0

SCLAI1P o] +| )N 125 -1
for any positive integer N, (¢, x)e[t—§,c+0]X R", and &eR", |&|=1,p=1, - L
We define distributions W (¢, x, r, v) by

6.3) WP, x, <, y)zS(exp iUP(t, z, T, y, ENIEWPNE, x, ¢, E)dE,

where 6(¢) is a C= function in R™, which is equal to zero for |£|<1 and 1 for |&]>2.
In this section our aim is to examine the wave front sets of WP (¢, z, 7, v) as
a distribution in z or (=, ).
We shall describe the definition of the wave frount sets in Gevrey class, given
by Hormander [10]. We start with

Lemma 6.1, [10]. Let K be a compact set in R* ¢>0 and N a positive integer.
Then theve exists a function y5(x)eCy(R™) equal to 1 on K such that supp y§: is
contained in K,, an e-neigbovhood of K, and satisfies

(6.4) | D" Exylie()| K Cae™(CNe)?, | BN,
where C depends only on n and C, depends only on n and a.
Remarkx. It follows from Stirling’s formula that we have

(6.5) Cl(7+1Y<I<CI(j+1) .
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Hence, noting that NI NYN!- |5|<N, we have
(6.6) | Dfye(2)| <CAN AP, |BISN .

It follows from Lemma 5.3 that we obtain
LEmMma 6.2. Let X;=3, aﬁ(w)%-i—ajo,j:l, o n and ap(x) satisfy
i=]1 13

| D%a ()| < Colk~A) ! |
Sfor zeK., k>1. Then we have
6.7) |D X, Xy paKe(2)| SCU(Coma )P AN P Ag Y (|| +p)°
for la| +p< N, where n,=(n+1) k—1)"k.
DerFINITION 6.3, [10]. Let zmoeR" e R™\0 and uc H'(R™. Then we say that

(@0, &0) is in the complement of the wave fromt sets WF{u) of w in the class s, if
there exist a neigborhood U of x, and a conic neigborhood F of & such that for &eF

(6.8) |F (hu)E)| <CAYNEIE|-Y, N=1,2, -,

are valid for some constants ¢,C and A independent of N. Here U, is an e-neigbor-
hood of the closure of U and F stands for the Fourier transform.

We note that we can replace % ,(x) instead of y¥(x). Then the constant A
must be replaced A’ dependent of 2.

We denote by A(f c; y) the sets of Hamiltonian flows corresponding to
APt z, &), that is,

APz 0= Y (@8P(,y,7,8), E70, 1,5, )
here (9, £®) is a solution of (3.2) with 1=1®(¢, z,£),p=1, -, L
THEOREM 6.4. Let ({,z,y) be fixed, 6 a small coxstant>0, and regard W P (¢,
x,t,y) defined in (6.3) as a distribution in R;". Then we have
WE(W ¢, - 7, y)=AP(L, 7; )
Sfor [t—z|<6, p=1, - L
Proor. We show at first that
WE(W DAL, -, ¢, y)TAP(E, o y) .

Let (2, &) be not in 4AP(¢, 7; y). Then there exist a neighorhood U of # and a conic
neighorhood F of & such that

(6.9) (USXF)ﬂA(m(t, T, Y)=¢
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for some ¢>0. It is sufficient to prove that
100)=\{texp @P(t, 3,7, v, 8~ i, OWIERT .m0 ™(t, 2,7, s
satisfies (6.8) for sufficiently large ||, {eF. We can write
IO = ggexp 00 Py ()0 02 )W P (¢, x, 7, pf)dxds

here, for simplicity we put yy =3%.. and 0@ =[Pt xz, =, y, &)—<x, I, =L o=l
In order to anihilate the singularity of w®(¢, z, <, p£)0(ps) with respect to &, we
decompose

19@=p" (| (expiog™)ux0x(e®0) +15(1= 0P 0)did
elé

=IRQ+ 120

where Oy =35..(&), B={2e R"; |£|<e). If ¢ and ¢ are sufficiently small, grad,¢o =
P —Z does not vanish for &eB. For, /[ is homogeneous degree one in £ from
Lemma 3.2 and {=¢|{|-'+#0. Hence we may assume that ¢’ #0 for z¢ U. and seB..
Then we obtain from an integration by part, for p>¢r,

1 N+n . . . N
i py_(m) (™Y @2

2@ =0 {{expigmo)( 2

Hence it follows from Lemma 6.2 that /{B({) satisfies (6.8). Next we estimate I{3(&).
It follows from (6.9) that grad. .o® =0 for zeU,{eF and |¢/=1. Then we can find
a first order differential operator M such that p~'M(expipe™)=exp 1pp™, that is

w=| B ogrersenn| L (s o ven 7).

J=1

i=

of which coofficients are in Gevrey class 7, for ze U. and for |&] >¢,. Hence we obtain

IR@=e | ., _(expiop™)o~ M) (L= 0w P)dads .

1612201
Applying Lemma 6.2, we have for some C and A,
[SMY " (L= 0w P (¢, z, 7, 05)| S CLAIE[)Y (N +n)t?
KCAN™MJ&|+1) "N
for zeU, and |£[>e,>207. This implies (6.8) for 7% (¢). The fact that AP(¢, z; y)
C WE{(W™®(t, -, z,y)) follows from the method of stationary phase. Let (£, &) be
in A®(¢, ; y), that is, there exists £ R*\\0, such that 2=2"(¢, y, r, &), E =EP¢, y, =, &).

Then it follows from Lemma 3.2 that grad, . 0® =0 for x=2% and £=£. On the
other hand, the Hessian of ‘P with respect to (z, &) (denote by &) is non singular,
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for |t—<|<d, because of QWJ[‘:__:(? g

tionary phase to I{P(€) (cf. [3]). It follows,
D) =(2z)"(exp —ivda, ED)detQP |~ 2w P (¢t 3, 7, &)

). Hence we can apply the method of sta-

+0(p71), p——>c0.
By virtue of (4.4) and (4.13), we have
WL, 8,7, §)=(22)"HP(, 2, OGP (s, 4, AP} PR,

which does not vanish, because of GP(c,y, §)H™(c,y,&)=1. This completes the
proof of our theorem.

REMARK. We can regard the integral form (6.3) as the kernel of Fourier integral
operator, (c.f. [9). When s=1, K. Nishiwada [19] investigates the wave fromt sets
of Fourier integral operators in tevms of boundary values of holomorphic functions.

As a corollary of Theorem 6.4 we have

THEOREM 6.5. Let (¢,7) be fixed, a small constant >0, and regavd W P({, 1)
=Wt x, =, y) as a distribution in R:"XR,". Then for [{—7|<9,
WE(W (¢, )= U (2P, y,7,8), v, P, y,7,8), —8)

(9, ©)ERM X RENO

We next consider the remainder term L., . W (¢, z, ¢, y) =R®(¢, x, 7, y) as a dis-
trubution in R;* It follows evident from Theorem 6.3 that WF(R®(¢, -, =, ¥)C
APt = y). Moreover we can see from the asymptotic expanssion that Wy (R
(¢, -,7,y)) is empty. In fact, we can write

L R

(6.10) RO, 2,7, 9)={exp il P (e, 2, 7,0, <Pt , 7, )

where
¢, x, T, E)={i{IP + AL, 2, [P)w® + L, 2w P }0()
satisfies

(6.11) |Ds o D P2, 2, 7, £)| SCA 1A+ ¥( || | BN 1281 g =¥ =191

for (¢, z)e[z—4, t+8]X R £eR", || =2, and for any positive integer M.
Thus we have proved

THEOREM 6.6. Let R™(¢t, z,<,y) be the remainder terms defined by (6.10). Then
WE(R®(2, -z, ) CAP(t, 73 y), and W (R, -, 7,9))=¢ for |t—z|<d,p=L, L
Now we turn to prove Theorem 2.1. To anihilate the remainder terms R®(Z,
x,7,y), we reduce our problem to an integral equation of Voltera’s type, following

the method of Kumano-go [11] and Tsutsumi [22].
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We denote
(6.12) Wt 0, 9)= Y. W, 25,9,
p=0
where W®(t x, ¢, t) is defined by (6.3), p=1,--,/, and

WO 2,7, 9)= Sexp i<w—z, E>wO(, 2, 7, E)E,

here
L
w (¢, z,7,8)=2x)"(L—0(ENT —“{Z wP(z, z,7,§)—(2r) "L {O(E)
p=1
It follows evidently from (6.2) that
(6.13) [Ds"Defw (¢, z, 7, E)| SCA! HFN N 11| g| =V =1Fi( || +] 5] )1

for |£]>2, and therefore

VVF%'—!(W(O)(t, 5T y))=¢ 3

and that we have
(6.14) Wz, z,7,y)=6x—y).
We shall seek a fundamental solution of L, , as the following form
6.15) K, z,7,9)=W{, 2,,v) +§‘ do S W(t, 2,0, 2)F(0, z,v)dz.
Then noting (6.14), we have
L K, z, 7, y)=Le.W+F({, z,x, y)+gtr daS(LL,xW)(t, z,0,2)F (0,2,1,y)dz

=0.
Hence we obtain an integral equation
(6.16) F@,z,,y)=R(, z,7,v)+ S‘ SdaR(t, 2,0, F (0, 2,7, y)dz
where we denote

(6'17) R(tl Z, T, y):: _le IW(tg w’ 7, y)

_— S{exp 1P, 0y, WD, 3, 7, E)dE— S{exp Koy, OO, 3, 7, E)E,
p=1

l
= Z R(P)(t’ xl Tr y)
p=0

where from (6.11) and (6.13) we have
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(6.18) | D" Defr™ (¢, i, 7, £)| K CoAla1+ 121+ N N 1231 £~ N =151
for |£]>2,p=0,1, L '

ProrositiON 6.7. Let R({,xz,c,y) be the remainder term given by (6.17). There
exist positive constants Cy and A, such that

(6.19) (D" DfRAE, @, 7, )| SCLAL 8 | 121 g 1o

for (z,9)e R"X R", |t—|<é.
Proor. We have
{
D*DyfR{¢, 2, v, y)=2, S D Dyf{(exp il Py (L, x, ¢, E)}dE .
p=0 J1§121
It follows from (6.17) that we have
1 # .
<__:_. ) < y) {(expZl(P)”w(.’P)IEllﬂ!Hﬁl}
C

gchllnHIp]!allzs-lIﬁilzsq[E!—n—l ,

which implies (6.19).
We define

mewF&mewwwm
Then we have

ProrosiTiON 6.8. Let R(t, x,7,y) be the remainder term, A, >2A4, given in (6.18)
and w(x) satisfy
(6.20) |Ds"u(x)] SCL AL |12
for xeR". Then there exists a positive constant C such that
(6.21) IDs"R (¢, 7Yel)| SC:CAL ] 11
Sor xzeR", |t—z| <é.

Proor. We note that

[Pt 3,7y, 8)={EP(E, @, 7, €), £ —(y, £
=(z—y, & +{pP(t, z, 7, ), &

Then we have
(6.22) | Ds*DeboP| < | —2|Co A || +1 A1, B0,

for zeR" |&|>1. We write



182 Kunihiko Kajrrant

/

RU, Syu(z)=— Sg(exp PP o 7 Suly)dyds

== g S(exp Ka—y, W Pu(e™ +y)dyds .
Hence we have

D2 R(¢, tyu(x)=— 3, ( >D" (exp i{z—y, E))D% (r™Pule® +y))dyds

2z

=2\ (e ico—0,0) 5( & ) orGerrouem +opaya:
SS e LBl ep K=y, )
%

X ( ;l, )(1 —de)* Dy ((6)" r P ul e +y))dyds .

It follows from Lemma 54, (6.20) and (6.22) that we have

D2 Defulep™® + )| SCL A 2Cot — | A #1(|ae] + |11
where we have put k=A,/A Z=n+1)(k—1)"k.
Hence
(6.23) |D2" Db +y)| S C AT (20 - Al ||, |81 < 20
if |t—c|<6 is sufficiently small, that is,

28-1C0(n+1k(E—1)TA<L2%Cd(n +1)< 1,

here we used 2>2. Moreover we have from (6.18),
(6.24) |Da"Def(i) 7P| < Co’ (k71 An)=* ¥ ||Vl |12 g =
for |p|<2n, |§|>1, k=A,/A. Hence we obtain from (6.23) and (6.24),

2 ( & )Ia= 20Dz Gy rPute® +0)
17
<z(5)..z. 5  )DLDaEy DY Dl )]
144
<cele B & )(% Jorar ey e e

[+4

<61Cslflhn—l-‘4ial Z,:( o )k"""llalllzs“l Z’: < c;/ )k—lr'l(lrlmr//“)zs-x

<G g Al ], (by (5.1)),
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which implies (6.21).
Now we shall construct a solution F' of the integral equation (6.16). We define
inductively
Fot,w, o, y)=Rt, =, =, y)
L

Ltz =, ?/)=S SR(I, a0, 2)F; (0, 2,7, y)dzdz

=S' R, 0)F (0, =)o .
Then we can estimate

<}
!

(6.25); IDSDfF{t, ¢, =, )| <C,CY if‘]f L A 13 st gp1as-n
for |t—7| <4, (x, y)e R* X R". (6.25), follows from Proposition 6.7. Assume that (6.25);-;
is valid. Then we have from Proposition 6.8

lo—<}/~!

[Ds*Dof (2, 0)F j-1(0, )| S C: oI Al gt

Integrating this with respect to ¢, we obtain (6.25);, We difine
F(t, 2,5, 0)=3 Ft,z,7,1)
J=0

which is a solution of (6.16) and satisfies

(6.26) |D2*DyfF (¢t , 7, y)| <Ci (exp [t —<|C) Al +18 || 121 g 1281

PrROPOSITION 6.9. Let W(t, z,t,y) be given by (6.12), and w(z) satisfied with
(6.27) |D2"uw(z)| <C A |1, ze R™ .

If s,=s, then theve exist positive constants C, and As such that
(6.28) | D W (t, oyu(z)| K CLC AN e |1

Sfor |t—z|<d, ze R"™.
Proor. We have

W(t, oyu(z)= lZ S S(exp KEP —y, E3w (L, x, v, E)uly)dédy
p=0

=7 SS(exp — iy, EYWPUID +y)dEdy

Hence we have
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D e, )= \(exp icy, )D. w2 +y)dsay
p J

=2 S S le(éxf) —iy, DL +1y) "L+ 1)1 —4,)"
X (1 =4 "D (wPu( P +y))dédy
From (6.2), (6.13) and (6.27) we obtain
(1 — 4 )™ = 4" D P eu( P + )N L CLC A |1

which implies (6.28).
Thus it follows from Proposition 6.8 and 6.9 that we can obtain a fundamental
solution such that, [f—t|<3,

L
T

K(t, 2, 9)=W(, 2, y)—l—S SW(t, 2,7, 2F(0, 2, ¢, y)dodz,

of which second term belogs to jyas-1(REXRy). Thus we have proved Theorem 2.1.

§7. Global construction of fundamental solution

In the previous section we have construct the fundamental solution K{(Z, z, 7, N
for |t—t|<6, if & is sufficiently small. In the present section we shall give an ex-
pression of the fundamental solution for any interval [0, T'J, T>0.

We decompose the interval [0, 7] such that 0=t <t < <fg:=T,¢;—¥;-1=0.
Then it follows from semigroup property that we obtain

K¢, z, to, v)=K(t, z, t;, ) K5,  tjo1, - ) K1, -, 0, ¥)
for |t—#;<8. We put
K, @, to, ) =W P, z, 5, YW DL, - b, ) WP, -, 10, 9)
for |t—1;<8,7=0,1,---,d, and p=1, -, [, where W®P(t, z,7,y) is given by (6.3) for
|t—z]<é. Then we can express

L
(7.1) Ktz b, y)= % KP(t, 2, t0, ) + K/, x,t0, )
p=1

for |#—#;1<é8. Our purpose is to prove that
(7.2) WF(KP(, «, to, y)=AP @, to; y), p=1, -, 1,
(7.3) WFZG—l(K;o)(ty *y t()l y))=¢

for |t—#;<d. 7=0, -, d.
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We define A®(¢, ) by
APt Ny, §)=(2P(t, ¥, 7, 8), EP, 9,7, ) -
Let F be a set in R*XR™0. We write
AP, )F={2D(, 4,7, 8), EP(t, v, 7, §)) (v, §)eF ),
where (2, ™) is a solution of (3.2) with 1=21®, p=1,-,/. Then we have
AP, AP (7, 6)=AP(2, 7)
AP, )AD (2 1)y =T
for any (¢, z, o).
THEOREM 7.1. Let u be in S'(R") and s'>s. Then
WEF(W P, 2y AP (L, o) WEy(u)
Jor |t—<|<8,p=1, .-, L
Since W®P(¢t, z,7,y) is in S/(R™) with respect to z for |t—<|<J, we obtain
COROLLARY 7.2.
WEF{ K2, -, to, yY))TAPE, to; 4)
Sfor |t—t;<6,7=0,1, -+, d,p=1, ---, L

Proor oF TurOREM 7.1. Let K be a neighorhood of z, and ywx(z)=yE(z). Put

In(t, )= S(exp ik, Oy, 3, 7, 1)z

= S S{exp( i, D HIEPE, @, 7, &)y, N (@ E, @, 7, E)dEd .
Then there exists a positive constant # such that for any positive integer s and
for |y|j=>7r
(74) ‘GEMIDV“IN(C, NI en(l+]y)™AY |-V NI, N=1,2, -+,
where ¢, depends only on m. For, gradL#9(t, x, 7, &)—v, =8P, 2, 7,8)—y=+0

and xzesupp yn(x), if 7 is sufficiently large. Let yi(y)=y#(v), where B.={y, ly|<2s}.
Then we have

F(yxar(x) WP (2, 2)u)(Q) =LIn(E, ), avaey +<In(C, ), Q=)

Then the second term can be estimated by cu|{[~YAVY N by use of (7.4), where m
is the order of the distribution #. Let K; be the intersection of B, and a neigbor-
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hood of the projection of WF(») into R% and 3{y)=y%(y). Then we have
|F (A= 7hu) DI SCIEYAYNIN=L,2, .-,
for any £#0. Hence we have
KIN(E, ), (A=7phay | SCIZ Y AYNEY
Moreover for (y, &)W (), yesupp y%, we have
| Fane)( IS CIEYAYNLY

and for (y,&e WE(u) and (x, £/|£)g AP (¢, o) WF(u),

dea ey (KB —y, & — <o, {[IXD)#0.
Hence we obtain

KI5y ) ahahaey | SCIL -V AYNEY

Thus we have proved our theorem.
Denote by WF(«) the wave front sets with respect to C™ functions. Then it
holds that (c.f. [10]),

WF ()T WF(u) .
Hence to prove that
WELKP(L, -, to, ) D AP, y)
it suffices to indicate
(74 WEF(K (2, +, b0, 1) D AP, to; )
for |t—24<6,j=1, -, d,p=1,--,L
LemMma 7.3. [8) Let u be in @'(R™). Then (x, E)eWF(w) if and only if for

any real valued C* function ¢(x) with dz¢(x.)=8& there exists an open neigborhood
Ui of o such that for any y(z)eCy(U,) we have

exp —ipp)y, uy=0(0"") for p—co
uniformly with respect to ¢.
We can express
K, z, to, y)= S(exp 1P, z, v, t, O)aP(E, z, b, 0)d0

where
0=((E(j): '!I(j), E(j*nv y(j—’l)) Yy y(l)’ E(O))E R<2j+l)n -

o (L, &, bo, B, y) ={EP(L, m, 15, §P)—y P, £D)
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J 3 3 Ak 3 ~(k
- kgg <Z“”(tk, '!/(“, Zlﬂ—-ly ;(}.—1)>_y(k—l), ;(k—l)>

FEPU, Y0, 1, £9)—y, )
and a;P(t, 2, t,, 0) = WP, z, by, EPW P (L, y P by, ESD) e Pt y @D, £, EO) Tt s
obious that (z, dzo;®)e AP (¢, fy; y) if and only if dep;*=0. Hence we have
(7.5) APt y)={(, dz;P); dap;P =0} .

We note that the rank of diy ads; " =2j+1)n. For,

[Z(‘I;,g)dgg:/j(m—_—' 441', 1 [

~I

* ol K
)

where Aj.=d 27, x, 1, D), Ap=dywZP (g, y®, gy, 4 ) (k=1,-,7) and [ the
nXn identity matrix, all are non singular.

We shall prove (7.4) by use of the method of stationary phase. To do so, we
need

LEMMA 74. [3]. Let &x) be a real valued function with (2,&)e APt by, y), &=
dz)(®). Then the matrix d*..o(p; ™ —¢) is non singular at (£,€), if and only if

(i) the rank of dez oydoo; ™ =27 +1)n
(ii) the graph (z,dzp) and {(x, d0;®), dop; " =0}
intersect transversally at (%, €).
LemMMA 7.5. Let (&, &) be in APt te; y). There exists a non symmetrix matvix

R such that $(z)={x—2, Ey+1|AR(x— %), x—2) and d*.n(e; P —¢) is non singular
when de, oo™ —¢)=0.

Proor. It follows from Lemma 7.4 and (7.5) that d*c.s(p;"’ —¢) is non singular
if and only if the graph (x,d.¢) and .I‘P(¢, 4, y) intersect transversally at (&, &).
The transversality means that

T (e, drﬁb”) N T 6(AP(E, 8y 5 9))={0},
where

Tz, ex(w, dap) ={(0z, RO:); 626 R"},
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T(/‘f- ?)(A(]J)(t, tU H y))={(dff(p)(t) Yy, tﬂy E)aéj dfé(p)(ty Y, t()’ 5)65)) 66€R"} -

Hence the transversality implies that Rd.x® —d.£® is non singular. Since the rank
of (#:%,&,®) is equal to #, we can find R such that det (Rd:x® —d£®)=0.

Now we prove (7.4). Denote by @, the matrix d?u.o(p;® —¢). Let (%, &)=
(B¢, y, to, w), EP(¢, y, fo,w)) and y(x)eCy™, it’s support contained in a neigborhood
of #. Then by virtue of the method of stationary phase, we obtain

<<9xp _ip¢)x: Ki(p)(ty -, Lo, y))

=S S{exp 3Pt 2, by 0, ) — 0 (BN @)asPE, 2, b, O)dixd)
=purin Sg{exp i(0,® — )l @)a; P, @, by pED, YD, -, pEO)dadl

= plrvn { <§£>w+”"/2 |detQ ;P |~V exp i(n|4)sgnQ ;P )a; P
o T daale®—¢)=0

+0(e™) .
For (z, #) such that de, e(p;? —¢)=0, that is, (z, ¢z)=ADP(¢, L)y, 0), YF)=AP (¢, t)
(y, w)k=1, -, 7) and & =w, we have from (4.4) and (4.13),,

@™ =(exp ilzl4)sgn Q) "

det QP AP(g) ]]‘[ APt
E=1

(+1m
X HP(t, &, E)JP(L, )G P (Lo, v, "))(%:) J
+0.

Hence (, £)e WF(K;P(¢, -, 4, v)). Thus we have proved (7.2).

LEMMA 7.6. Let y be fixed in R* and 6>0, small. Then for p+q and 0<|o—z|
<4, we have

(7.6) - AP, 5; ) N AP(g, 73 y)=¢
and
(7.7) AP(g, YA (z, 05 ¥) N {(y, RN\O)} =6 .

Proor. Let (2, &) be in A®(e,z,¥)NA9(0,1,¥), that is, 2=z (s, ¥, 7, 0)=F?
(0,y,7,7) and E=EP(g,y, 7, 0)=E@(g,y,7,7). On the other hand we have

Tjt—ﬁ(m = 2P, 3P(F), EP(2))

=2:P(g, %, §) +0(¢—0)
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Hence £®(g)—y=2:'"(g, %, o —7)+0(c—7)%. Similarly we have
595~y =20, 2, E)g —2)+0(g—c)

Since 2:@(o, &, &)# 2P0, &, &), we have (s, ¥y, 7, 0)#2P (s, v, 7,7) for 0<|o—7| <3,
if 5 is small. This is contradition. Put 29(z)=2%(c,y,0,0) and £@(c)=£@(c, y,
g,w). Then we have
2P(a, 2(2), 7, E0 ()~

=3P(g, 8P(2), 7, ED()— 2 V() +2D() —y

=0~ Pz, 3P, EP() + (=) (s, 3, @)+ 0z —0)*

== %P0, ¥, )= 2P0, 7, @) +0(e—0)*

=0,

for 0<jo—<| <4, if § is small. Thus we have proved (7.7).

ProrositioN 7.7, ((14], [170). Let wo be is yu-1(R") and f(t,z) be iS yss—y with
vespect to x and contineous with vespect to t. Then a solution of the following equa-
tion is in ya—(R™) with respect to x,

J L u=f,

lull;,zuo .
Proor. A solution # can be written
t
u(t, x) =K, 7)us(x) —I—S K(t,0)f (o, x)do

which is in ys-(R") with respect to z, from Proposition 6.8 and 6.9.
For |[t—7|<d and |r—0|<d, we can write

(78) K(t: &Z, Ty '.U)=K(t7 Xy Tyt )K(T: SO, Y) -
= i IZ K(p)(t) Ly Ty -)K(‘U(-;’ *y U, .7/)
p=1 q=1
+K(t: Ty Ty * )[{(0)(77 T 0, 'y) +K(0)(t1 &, 7, )K(Ty 0, .7/)

here K®(t, 2)= W®(2,2), p=1, -, and KO(¢, )= WOz, c)+§‘ Wiz, 0)F (, 7)do. Since
KO, z,7,y) is in yy-y With respect to x and », it follows frorm Proposition 6.8 and
6.9 that the wave front sets in yg-, of KO, x, 7, -)K(z, +,0,¥) and K¢, z, r, - JKO(z,
-,0,y) are empty. Hence we have

(7.9) K, o,0,0)= 5 %KD, 2,7, YKO, -0, ), (mod fasr)

p=1 q=1 .
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for |t—z|<0 and |r—¢| <0.

THEorREM 7.8. For |t—=<|<d and |c—ol|<d, we lave

(7.10) K. ©¢ z,0,9)= 5 KP(, 3,7, - )JKP(z, -, 0,9)=0, (mod y25-1) .

p=q
Proor. Since L, KP(¢, &, 7, y)=0 (mod js5-,), we have
L,,I(:Xx‘“’(l‘, 2,0,7)=0 (mod j2-1)

~

for |#—z|<é. Since |z—o|<4, we can put f=¢. By virtue of Proposition 7.7 it suf-
fices to prove

K’ﬁ“‘(u, z,0,y)=0 (mod ja5-1) -
Then we have from (7.8)

I

/
K, 2,0, y)=dc—y)— 5 KPP0, 2,7, JEP(z, -, 0,y) (mod juy)
=1

Hence it follows from Corollary 7.2 that
Wha( K0, -, 0,9))Cly, §); 3€RN0}.

On the other hand it follows from Theorem 7.1, that the wave front set in ;a4
of K®{(g, x,a, YK, - 0,y is contained in .[?(g, c).I(z,s; y). Hence we have

Whae 1R 10, -, 0,1))C U 1P(0, 0).49(, 03 ) .
Dn*Eq

From Lemma 7.6 it follows that

U AP(g, )10z, a; y) N {(y, RNO) =6

p#q

Hence we obtain (7.10).
CoROLLARY 7.9. For 0<r—a<d and 6<i<z, we have, p=1, -/,
(7‘11) K(P)(t’ Xy Tyt )K(p)(r,‘ *y 0, y)EI{(p)(t: Z, ad, ?j)(mOd ;'23—1) .
Proor. It suffices to prove (7.11) for #=z. Then from (7.9) and (7.10) we obtain
I3
Z (K(q)(f, £, T, .)K(Q)(T’ *y 0, ?/)E [Z I{M)(‘:v &, T, y) -
q=1 g=1
Hence
KP(z w,z, YKP(z, -, 0,y)—KP(r,z,0, )

= Z K(Q)(Tr Z, T, .)K(q)(f’ ' 0, y)_K(Q)(T: x, 0, y) .

q#p
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It follows from (7.6) that
APz, ;) N{ U AD(z, 03 )} =9,
qFD
which implies (7.11).
We put, o<i<r,
Scp)(ty xz,a, ’y):K(p)(t, X, 7Ty - )[{(p)(z.’ 0, y)_K(p)(ty z,0, '.ll)
=[(ftem icxntt, 2,00~ 2,8~ 2> +ic2®(e, 2,0, =1, )
XwP(t, x, 7, EHwP(c, z, g, n)dédzdy

~(temp iczrit, 2,0, —, 1P, 0,0,0)a6,

ProposiTiON 7.10. Let u be in S'(R"). Then WFao (SPE, o)u)=¢,p=1, -, L

Proor. We put
Iy, = (e =i, )r(@)SP(t, 2, 0,9)d
which satisfies

(7.12) 1Dy In(y, < Cam|C|"VAYN L+ [y )™, |al <,

for any positive integer m. For, it is true for |y|<r,  is a positive constant. If »
is suitablly large, for |y|=# and for xesupp y», we have

Az .2 (BP0, 7,8) =2, E)+L2P(z, 2,0, ) ~y, p— <, D)) #0,
dez, (8P 2, 0,8) =y, 6 —<x, 1)) #0,
where £={/|¢]. So we obtain (7.12) by part of integration. Hence
KIn(+, 0, ur| <Cn sup (14 Iy])mlaém | Dy I (y, O
LGl YAYN®,

when m is the order of the distribution z.

Now we turn to prove (7.3) by induction with respect to j. It is true for j=1
from Theorem 7.8. Assume that (7.3) is valid for j—1. By virtue of Proposition
7.7 it suffices to prove that (7.3) is valid for ¢=¢; For, L. .K; O, x, %, y)=0, for
t;<t<t;,;. We have from (7.1),

L
KO, t0) =Kt to)— 3 Ky P(2, 1)
p=1
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[
=3 Kty 1) — Kt t) (mod 7as-1)

p=1

!
== T AKD @, tED gy by-0)— KDt 5, 5 MKE (-1, 8)

p=1
{
- Z Sw)(til tj—l)K]s{);(tj—ly ZLO)
=1

of which wave front set in ys-; is empty from Proposition 7.10.
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