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TOPOLOGICAL RADON TRANSFORMS
AND DEGREE FORMULAS FOR DUAL VARIETIES

YUTAKA MATSUI AND KIYOSHI TAKEUCHI

(Communicated by Ted Chinburg)

Abstract. We give a simpler and purely topological proof of Ernström’s class
formula (1997) for the degree of dual varieties. Our new proof also allows us
to obtain a formula describing the degrees of the associated varieties studied
by Gelfand, Kapranov and Zelevinsky (1994).

1. Introduction

The study of projective duality is a very rich subject in algebraic geometry. Let
V ⊂ Pn be a projective variety over C. The dual V ∗ of V is usually a hypersurface
in the dual projective space P∗

n, and it is a natural problem to determine the
degree of the hypersurface V ∗. Many mathematicians have obtained formulas for
the degree of V ∗, which is called the class of V . For example, assuming that V is
smooth, Kleiman [10] proved a formula which expresses degV ∗ in terms of the Chern
classes of a vector bundle on V . In this situation, an algorithm, called Cayley’s
method, to compute the defining polynomial of V ∗ was also established by Gelfand-
Kapranov-Zelevinsky in [6]. For other useful class formulas, see the excellent survey
by Tevelev [18]. However to the best of our knowledge, if the projective variety V is
singular, only the class formula in Ernström [4] is applicable. In his formula, degV ∗

is described by the topological integrals of the Euler obstruction of V . Ernström
[4] proved this formula by combining some classical deep results in enumerative
algebraic geometry, which heavily depend on the specific situation. The aim of this
paper is to give a simpler and purely topological proof of Ernström’s important
result in [4]. We show that this class formula can be easily obtained from a result
in his other paper [3] (see also [13] for a new proof and its generalizations) just
by applying some elementary lemmas on constructible functions (Lemmas 2.4 and
2.6). Moreover this new proof allows us to extend Ernström’s class formula to
various situations. In particular, we apply our method to the study of the k-th
associated variety V 〈k〉 (0 ≤ k ≤ n − 1) studied by Gelfand-Kapranov-Zelevinsky
[6] and Ernström [3].

Recall that if V ⊂ Pn is smooth, V 〈k〉 is the subvariety of the Grassmann man-
ifold Gn,k consisting of k-dimensional (linear) projective subspaces L̂ of Pn such
that there exists a point x ∈ V ∩ L̂ at which L̂ does not intersect V transversally.
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According to Chapter 3 of [6], if V 〈k〉 is a hypersurface in the Grassmann manifold
Gn,k, we can define the degree of V 〈k〉 to be that of its defining polynomial in
the Plücker coordinates: V 〈k〉 ⊂ Gn,k ⊂ P(n+1

k+1)−1. In this setting, our formula in

Theorem 3.4 gives an expression of degV 〈k〉 using the topological integrals of the
Euler obstruction of V . Note that in a forthcoming paper [15], the condition on V
for the k-th associated variety V 〈k〉 to be a hypersurface will be precisely studied.
Finally, let us mention that results obtained in this paper were effectively used in
[14] to deduce various concrete class formulas.

2. Preliminary notions and results

In this section, we briefly recall the theory of constructible functions and dual
varieties. We also give some lemmas which are useful in studying topological Radon
transforms.

The main reference on constructible functions is [9, Chapter IX] by Kashiwara-
Schapira, and we follow the terminology in this reference throughout this paper.
For example, for a topological space X, we denote by Db

R−c(X) the derived cat-
egory of bounded complexes of sheaves of CX -modules whose cohomologies are
R-constructible.

2.1. Constructible functions. Let X be a real analytic manifold.

Definition 2.1. We say that a Z-valued function ϕ : X −→ Z is constructible if
there exists a locally finite family of compact subanalytic subsets {Kα}α∈A such
that

(2.1) ϕ =
∑
α∈A

mα1Kα
,

where mα ∈ Z and for a subset Z ⊂ X we denote by 1Z the characteristic function
of Z.

We set CF (X) = {ϕ : X −→ Z | ϕ is constructible}.

For F ∈ Db
R−c(X), the function χ(F ) : X −→ Z defined by taking the local

Euler-Poincaré index

(2.2) χ(F )(x) =
∑
j∈Z

(−1)jdimHj(Fx)

at each x ∈ X is constructible.
Let us define the Grothendieck group KR−c(X) of Db

R−c(X) to be the quotient
of the free abelian group generated by the objects in Db

R−c(X) by the relations

(2.3) F = F ′ + F ′′ (F ′ → F → F ′′ +1→ is a distinguished triangle).

By the property
(2.4)
F ′ → F → F ′′ +1→ is a distinguished triangle =⇒ χ(F ) = χ(F ′) + χ(F ′′)

of the local Euler-Poincaré index χ, we obtain a group homomorphism

(2.5) χ : KR−c(X) −→ CF (X).

Theorem 2.2 ([9, Theorem 9.7.1]). χ is an isomorphism.
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We recall basic operations of constructible functions. These operations are in-
duced by those of constructible sheaves through this Euler-Poincaré index χ.

Definition 2.3. Let X and Y be real analytic manifolds and f : X −→ Y a real
analytic map.

(i) For a constructible function ϕ ∈ CF (X) with compact support, we define
the Euler (topological) integral of ϕ by

(2.6)
∫

X

ϕ = χ(X; F ) (= χ(RΓ (X; F ))) ∈ Z,

where F ∈ KR−c(X) is given by χ(F ) = ϕ. This Euler integral
∫

X
ϕ can

be calculated more easily as follows. If ϕ =
∑

α∈A mα1Kα
for a family of

finite compact subanalytic subsets {Kα}α∈A as in Definition 2.1, then we
have

(2.7)
∫

X

ϕ =
∑
α∈A

mαχ(Kα).

(ii) Let ϕ ∈ CF (X). Assume that f : supp(ϕ) −→ Y is proper. We define the
direct image

∫
f

ϕ ∈ CF (Y ) of ϕ by

(2.8)
(∫

f

ϕ

)
(y) =

∫
X

ϕ · 1f−1(y).

Note that if moreover X is compact, the following diagram is commutative:

(2.9) KR−c(X)
Rf∗ ��

χ �
��

KR−c(Y )

χ�
��

CF (X) ∫
f

�� CF (Y ).

(iii) Let ψ ∈ CF (Y ). We define the inverse image f∗ψ ∈ CF (X) of ψ by

(2.10) (f∗ψ)(x) = ψ(f(x)).

Clearly this operation is also compatible with the one f−1 : KR−c(Y ) −→
KR−c(X) for constructible sheaves.

Lemma 2.4. Let f : X −→ Y be a proper map of real analytic manifolds, ϕ ∈
CF (X) and ψ ∈ CF (Y ). Then we have

(2.11)
(∫

f

ϕ

)
· ψ =

∫
f

(ϕ · f∗ψ).

Proof. We take constructible sheaves F ∈ Db
R−c(X), G ∈ Db

R−c(Y ) satisfying
χ(F ) = ϕ and χ(G) = ψ. Then by the projection formula for sheaves

(2.12) Rf∗(F
L
⊗ f−1G) � (Rf∗F )

L
⊗ G,

we have(∫
f

ϕ

)
· ψ = χ(Rf∗F ) · χ(G) = χ((Rf∗F )

L
⊗ G) = χ(Rf∗(F

L
⊗ f−1G))

=
∫

f

χ(F ) · χ(f−1G) =
∫

f

ϕ · f∗ψ. �(2.13)
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2.2. Euler obstructions. Let X be an n-dimensional smooth algebraic variety
over C and V ⊂ X an algebraic subvariety in it. Following the definition of Kashi-
wara [8], let us introduce the Euler obstruction EuV ∈ CF (X) of V . This con-
structible function is zero outside V and takes the value 1 on the smooth part Vreg

of V . Let V =
⊔

α Vα be a Whitney stratification of V consisting of connected
strata. We define the values eα of the function EuV on the strata Vα by induction
on the codimensions of the Vα in V as follows:

(i) If codimV Vα = 0, then we set eα = 1.
(ii) Suppose that k = codimV Vα ≥ 1 and that the values eβ on the strata Vβ

satisfying codimV Vβ < k have already been defined. Then the value eα is
defined by the following procedure. First take a point x0 ∈ Vα and choose
a local coordinate system of X in which x0 = 0 and Vα = {(x′, x′′) ∈
Cd × Cn−d | x′ = 0} (x′ = (x1, . . . , xd), d = codimXVα). For a small
enough r > 0, consider the open ball

(2.14) Br = {x ∈ Cn | |x| < r}.
Also for a conormal vector p = (0; (ξ′0, 0)) ∈ T ∗

Vα
Cn \

⊔
β �=α T ∗

Vβ
Cn, set

(2.15) Gp = {(x′, x′′) ∈ Cd × Cn−d | Re〈x′, ξ′0〉 > 0}.
Then we have

(2.16) eα = EuV (x0) =
∑

β �=α, x0∈Vβ

eβ · χ(Br ∩ Gp ∩ Vβ).

Note that this definition of EuV ∈ CF (X) is independent of the choice of the
stratification V =

⊔
α Vα of V , the point x0 ∈ Vα and the covector p, etc. In

particular, the function EuV is constant on each stratum Vα.

2.3. Radon transforms of constructible functions. Let X, Y and S be real
analytic manifolds. We consider the diagram:

(2.17) Sf

�������� g

��������

X Y,

where f and g are proper morphisms.

Definition 2.5. We define the topological Radon transform of constructible func-
tions and its dual transform by

RS =
∫

g

◦f∗ : CF (X) −→ CF (Y ),(2.18)

R∨
S =

∫
f

◦g∗ : CF (Y ) −→ CF (X).(2.19)

In this general situation, we have the following lemma.

Lemma 2.6. Consider the diagram (2.17). If we assume moreover that X and Y
are compact, then we have

(2.20)
∫

Y

RS(ϕ) · ψ =
∫

X

ϕ · R∨
S(ψ)

for any ϕ ∈ CF (X) and ψ ∈ CF (Y ).
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Proof. Let aX : X −→ {pt} and aY : Y −→ {pt} be the maps to a point. Then by
Lemma 2.4 we have∫

Y

RS(ϕ) · ψ =
∫

aY

(∫
g

f∗ϕ

)
· ψ =

∫
aY

∫
g

(f∗ϕ · g∗ψ) =
∫

aY ◦g

f∗ϕ · g∗ψ

=
∫

aX◦f

f∗ϕ · g∗ψ =
∫

aX

ϕ ·
(∫

f

g∗ψ

)
=

∫
X

ϕ · R∨
S(ψ). �(2.21)

2.4. Dual varieties. We define the Grassmann manifold Gn,k (1 ≤ k ≤ n− 1) by

(2.22) Gn,k = {L ⊂ Cn+1 | L is a (k + 1)-dimensional linear subspace in Cn+1}.
For a (k + 1)-dimensional vector space L ∈ Gn,k, we denote its projectivization
by L̂. This L̂ is a k-dimensional linear projective subspace of Pn = Gn,0. In this
paper, we identify the set of k-dimensional linear subspaces of Pn with Gn,k.

Definition 2.7. Let V be a subvariety of the n-dimensional projective space Pn.
We define the k-dual variety V 〈k〉 ⊂ Gn,k of V to be the closure of the set of all
k-dimensional linear subspaces L̂ ∈ Gn,k such that there exists a point x ∈ Vreg ∩ L̂

at which L̂ does not intersect with V transversally.

In the case where k = n − 1, the k-dual V 〈k〉 ⊂ Gn,k � P∗
n is the classical dual

variety of V , which is usually denoted by V ∗. In [6], Gelfand-Kapranov-Zelevinsky
call V 〈k〉 the k-th associated variety of V .

We consider the diagram (2.17) for X = Pn, Y = Gn,k and

(2.23) S = {(l, L) ∈ X × Y | 0 ∈ l ⊂ L ⊂ Cn+1}
(the incidence submanifold). Let f and g be the natural projections from S to
X and Y respectively. In this situation, the topological Radon transform (2.18)
was studied by many mathematicians (see, for example, [2], [3], [12], [17] and [19],
etc.). In particular, the following beautiful relation between the topological Radon
transform RS and dual varieties was established by Ernström [3].

Theorem 2.8 ([3, Theorem 3.2]). Let V ⊂ X = Pn be a projective variety. Then
we have

(2.24) RS(EuV ) = (−1)k(n−k)+dimV +dimV 〈k〉
EuV 〈k〉 + e〈k〉1Gn,k

,

where e〈k〉 is the generic value of RS(EuV ) ∈ CF (Y ).

We remark that in the real case a similar result was obtained in [13].

3. Degrees of dual varieties

In this section, we apply the results in Section 2 to some classical subjects in
algebraic geometry. In particular, for a projective variety V ⊂ Pn over C, we give
a new proof of Ernström’s formula which expresses the degree of the dual V ∗ ⊂ P∗

n

in terms of the topology of V (see [4]). This new proof allows us to generalize
Ernström’s result.

First, let us consider the case where X = Pn and Y = P∗
n = Gn,n−1. For a

projective variety V ⊂ X of dimension d, we shall describe the degree of the dual
V ∗ ⊂ Y using the Euler obstruction EuV ∈ CF (X) of V . For this purpose, recall
that the degree of V ∗ ⊂ Y = P∗

n is equal to its intersection number �(L̂∩V ∗) with a
generic linear subspace L̂ ⊂ P∗

n of the complementary dimension n− dimV ∗. Since
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the dual variety V ∗ is usually a hypersurface in Y = P∗
n, we set r = (n−1)−dimV ∗

and call it the dual defect of V . Hence the dimension of the linear subspace L̂ ⊂
P∗

n that we take is r + 1: L̂ � Pr+1. The following theorem slightly generalizes
Ernström’s result in [4].

Theorem 3.1. Let L̂ ⊂ Y = P∗
n be a linear subspace of dimension r + 1 such that

L̂ ∩ V ∗
sing = ∅ (V ∗

sing = V ∗ \ V ∗
reg is the set of singular points in V ∗). Regarding L̂

as a linear system in X = Pn, consider its base locus BS(L̂) � Pn−r−2 ⊂ X = Pn

defined by

(3.1) BS(L̂) =
⋂

[y]∈L̂

̂{y = 0},

where [y] = [y0 : y1 : · · · : yn] is the homogeneous coordinate in the dual projective
space Y � P∗

n. Then for a generic hyperplane Ĥ ⊂ X = Pn we have

(3.2) χ(V ∗ ∩ L̂) = (−1)d+r

{
(r + 1)

∫
X

EuV − (r + 2)
∫

Ĥ

EuV +
∫

BS(L̂)

EuV

}
.

Proof. By Theorem 2.8, we have

(3.3) RS(EuV ) =
(∫

Ĥ

EuV

)
1Y + (−1)d+rEuV ∗ .

Then it follows from our assumption L̂ ∩ V ∗
sing = ∅ that we have

(3.4)
∫

Y

RS(EuV ) · 1L̂ = (r + 2)
∫

Ĥ

EuV + (−1)d+rχ(V ∗ ∩ L̂).

Since by Lemma 2.6 we have

(3.5)
∫

Y

RS(EuV ) · 1L̂ =
∫

X

EuV · R∨
S(1L̂) =

∫
X

EuV · {(r + 1)1X + 1BS(L̂)},

we finally obtain

(3.6) (−1)d+rχ(V ∗ ∩ L̂) = (r + 1)
∫

X

EuV − (r + 2)
∫

Ĥ

EuV +
∫

BS(L̂)

EuV .

This completes the proof. �

If we assume moreover that L̂ intersects with V ∗ transversally, we recover the
following important result proved first by Ernström [4] in a completely different
way.

Corollary 3.2 ([4]). Let Ĥ ⊂ X = Pn (resp. Ĥr+2 ⊂ X = Pn) be a generic
hyperplane (resp. a generic linear subspace of codimension r + 2). Then the degree
of the dual V ∗ ⊂ Y = P∗

n is given by

(3.7) (−1)d+r

{
(r + 1)

∫
X

EuV − (r + 2)
∫

Ĥ

EuV +
∫

Ĥr+2

EuV

}
.

Remark 3.3. By the proof of Corollary 3.2, we can also determine the dimension of
the dual variety V ∗ as follows. For each non-negative integer i ≥ 0, take a generic
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hyperplane Ĥ ⊂ X = Pn (resp. a generic linear subspace Ĥi+2 ⊂ X = Pn of
codimension i + 2) and set

(3.8) δi := (−1)d+i

{
(i + 1)

∫
X

EuV − (i + 2)
∫

Ĥ

EuV +
∫

Ĥi+2

EuV

}
.

Then for any i < r (r is the dual defect of V ), generic linear subspaces L̂ ⊂ Y = P∗
n

of dimension i + 1 in Y = P∗
n do not meet with V ∗ and δi = 0. Hence the

dual defect r of V is characterized as the non-negative integer k ≥ 0 such that
δ0 = δ1 = · · · = δk−1 = 0 and δk �= 0.

We can rewrite the δi by using more intrinsic notions as follows. Let cCM
∗ (V ) =∑d

j=0 cCM
j (V ) be the total Chern-Mather class of V . Recall that if V is smooth,

cCM
∗ (V ) coincides with the usual total Chern class of V . Then by (the proof of)

[14, Theorem 3.1], we have

(3.9) δi = (−1)d+i
i∑

j=0

(
i + 2

j

)
(i + 1 − j)

∫
V

hj

(1 + h)i+2
cCM
∗ (V ).

This last formula is very useful for the exact computation of the δi. Indeed, in
[14] we explicitly calculated the degrees of duals of singular varieties in various
situations. We thus obtained an effective method to determine the dimensions of
the duals of singular varieties, which is similar to Holme’s theorem [7, Theorem
3.4 (i)] (see also Beltrametti-Fania-Sommese [1], Gelfand-Kapranov [5] and Tevelev
[18, Chapter 6] for related important results for smooth varieties).

Next consider the general case where X = Pn and Y = Gn,k (0 ≤ k ≤ n − 1).
Then the k-dual V 〈k〉 ⊂ Y = Gn,k that we consider here is the one studied by
Gelfand-Kapranov-Zelevinsky [6] and Ernström [3]. In [6, Chapter 3, Proposition
2.1], they showed that if V 〈k〉 is a hypersurface of Gn,k, then we can define the degree
of V 〈k〉 to be that of the defining polynomial of V 〈k〉 in the Plücker coordinates:
V 〈k〉 ⊂ Gn,k ⊂ P(n+1

k+1)−1. In [6, Chapter 3, Proposition 2.2], they also proved that

this degree of V 〈k〉 in Gn,k has a topological interpretation as follows. Let us take
linear subspaces L̂1, L̂2 ⊂ X = Pn of dimensions k − 1 and k + 1 respectively such
that L̂1 ⊂ L̂2 and the pencil

(3.10) P (L̂1, L̂2) = {L̂ ∈ Gn,k | L̂1 ⊂ L̂ ⊂ L̂2} � P1

satisfies the conditions
(i) P (L̂1, L̂2) ∩ V

〈k〉
sing = ∅,

(ii) P (L̂1, L̂2) intersects with V
〈k〉
reg transversally at finite points.

Then the degree of V 〈k〉 in Gn,k is also given by

(3.11) deg V 〈k〉 = �(P (L̂1, L̂2) ∩ V 〈k〉).

With this topological description of deg V 〈k〉 at hand, we can now prove the
following theorem.

Theorem 3.4. Let V ⊂ X = Pn be a projective variety of dimension d. Assume
that the k-dual V 〈k〉 ⊂ Y = Gn,k is a hypersurface. Then we have

(3.12) deg V 〈k〉 = (−1)(n−k)+d+1

{∫
M̂

EuV − 2
∫

L̂

EuV +
∫

N̂

EuV

}
,
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where M̂, L̂, N̂ ⊂ X = Pn are generic linear subspaces of dimensions k−1, k, k+1,
respectively.

Proof. By Theorem 2.8, for a generic linear subspace L̂ � Pk ⊂ X of dimension k
we have

(3.13) RS(EuV ) =
(∫

L̂

EuV

)
1Y + (−1)k(n−k)+dimV +dimV 〈k〉

EuV 〈k〉 .

Since we assumed that dimV = d and dimV 〈k〉 = dimY − 1 = (k + 1)(n − k) − 1,
we get

(3.14) RS(EuV ) =
(∫

L̂

EuV

)
1Y + (−1)(n−k)+d+1EuV 〈k〉 .

Also for linear subspaces L̂1, L̂2 ⊂ X = Pn satisfying the conditions as in (3.11),
we obtain

(3.15)
∫

Y

RS(EuV ) · 1
P (L̂1,L̂2)

= 2
∫

L̂

EuV + (−1)(n−k)+d+1 deg V 〈k〉.

On the other hand, it follows from R∨
S(1

P (L̂1,L̂2)
) = 1

L̂1
+ 1

L̂2
that we have

(3.16)
∫

X

(
EuV · R∨

S(1
P (L̂1,L̂2)

)
)

=
∫

L̂1

EuV +
∫

L̂2

EuV .

Therefore by Lemma 2.6, we obtain (3.12) after replacing L̂1, L̂2 with M̂ , N̂ ,
respectively. �

Corollary 3.5. Let L̂ � Pk+1 be a generic (k + 1)-dimensional linear subspace of
Pn and consider the usual dual variety (V ∩ L̂)∗ ⊂ P∗

k+1 of V ∩ L̂ ⊂ L̂ � Pk+1.
Then we have

(3.17) deg V 〈k〉 = deg(V ∩ L̂)∗.
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