
Equity-efficiency bicriteria location

with squared Euclidean distances

Yoshiaki OHSAWA
Institute of Policy and Planning Sciences, University of Tsukuba

Tsukuba 305-8573, Japan
osawa@sk.tsukuba.ac.jp

Naoya OZAKI
Railway Tehnical Research Institute

Kokubunji 185-8540, Japan
ozaki@rtri.or.jp

Frank PLASTRIA
MOSI, Vrije Universiteit Brussel

Pleinlaan 2, B-1050 Brussel, Belgium
Frank.Plastria@vub.ac.be

April 16, 2008

Abstract

A facility has to be located within a given region taking two criteria of equity and effi-
ciency into account. Equity is sought by minimizing the inequality in the inhabitant-facility
distances, as measured by the sum of the absolute differences between all pairs of squared
Euclidean distances from inhabitants to the facility. This measure meets the Pigou-Dalton
condition of transfers, and can easily be minimized. Efficiency is measured through optimizing
the sum of squared inhabitant-facility distances, either to be minimized or maximized for an
attracting or repellent facility respectively. Geometric localization results are obtained for the
whole set of Pareto optimal solutions for each of the two resulting bicriteria problems within
a convex polygonal region. A polynomial procedure is developed to obtain the full bicriteria
plot, both trade-off curves and the corresponding efficient sets.

Subject classification: Facilities planning: equity continuous location. Programming: bi-
criteria

Area of review: Optimization

1 Introduction

Over the last decade, many studies in location science have been made concerning equity in a geo-
graphical setting. In order to quantify the inequalities based on facility-inhabitant distances, many
equity measures, for example, range, variance, mean absolute deviation, sum of absolute deviations,
Gini coefficient have been incorporated into location models as objective functions. Comprehen-
sive reviews of such equity studies can be found in Erkut(1993), Marsh and Schilling(1994), Eiselt
and Laporte(1995).

This study formulates equity location models using the sum of absolute deviations, one of
the simplest measures discussed, e.g. by Ogryczak(2000). That is, it seeks facility locations
where the sum of absolute differences between all pairs of facility-inhabitant squared distances is
minimized. This measure is strictly improved if a unit distance from a longer facility-inhabitant
squared distance is transferred to a shorter facility-inhabitant squared distance. This Pigou-
Dalton condition of transfers is regarded by economists as a mandatory requirement for adequate
measures of equity, see Sen(1973), Marshall and Olkin(1979), a point of view we follow here. This
equity measure is also the numerator of the well known Gini index, so it is intimately related to

1



the Lorenz curve which is frequently used to measure equity of income in economics: see, e.g.
Sen(1973), Stiglitz(1986) and Krugman(1993).

As efficiency measure we consider two cases, depending on the type of facility. For locating an
attractive facility we use a Weber problem, for an obnoxious facility an anti-Weber problem, i.e.
minimizing (resp. maximizing) the sum of some function of distances from the inhabitants to the
facility. For a survey of the popular Weber problem and its extensions, see Drezner et al.(2004).
Anti-Weber problems were initiated in Hansen et al.(1981a) and recently surveyed by Lozano and
Mesa (2000).

Combining the equity measure with each efficiency measure, two bicriteria models are ob-
tained and studied here. Thus, we consider two bicriteria formulations, respectively applicable to
attractive facilities and to obnoxious facilities.

This work differs from existing equity location studies in several respects.
First, most existing models, for example Mandell(1991), consider a discrete framework in which

a finite candidate set of potential facility sites is given. They are site-selection models, solvable by
standard combinatorial optimization methods, as pointed out by Love et al.(1988). This paper is
an exploratory site-generation model, intended to indicate where to look for the more interesting
sites. It therefore works in a continuous plane. Equity location models in such a setting are rather
rare. One such study is Drezner et al.(1986), who search for the location in the plane which
minimizes the range, i.e., the difference between the maximum and minimum facility-inhabitant
distances. But the range does not satisfy the Pigou-Dalton condition of transfers. Another one is
Carrizosa (1999), who minimizes the variance of all Euclidean facility-inhabitant distances. It is
not clear, however, how to handle a combination of this objective with an efficiency criterion as
we do.

Second, like in Ohsawa(1999) and partly in Drezner and Wesolowsky(1991), the squared Eu-
clidean distances between inhabitants and the facility are used rather than the more popular
Euclidean distances. Such a quadratic formulation is appropriate in the location of fire stations,
particularly in environments where fire spreads easily in all directions, such as forests or urban
areas with wood-based infrastructure. Indeed, in case of a fire the affected area, and therefore the
amount of damage, will grow quadratically with the amount of time before the fire fighting starts,
while this time is approximately linearly related to the travel-distance to the site. Similarly, in
most other emergency services, conditions at a site where an emergency arises deteriorate rapidly
before the intervention, leading to dis-economies of scale in the damage as a function of interven-
tion time; in order to obtain a good approximation of this convex nonlinear effect one will have to
use at least a second-order Taylor expansion, i.e. one better uses a quadratic function of distance
rather than a linear one. We will demonstrate in this paper that this squared distance view has
the important advantage to allow exact analysis of all single criteria and both bicriteria problems,
leading to full solution by geometrical means.

Third, we consider a locational constraint, as defined by a bounded feasible region. In practice
such a constraint is always present. In the obnoxious facility case this is also necessary in theory to
ensure existence of optimal solutions for the efficiency measure. For technical reasons we restrict
ourselves to a convex polygonal region. Polygons are typical in GIS-based spatial data. Alleviating
the convexity assumption will be briefly discussed in the concluding section.

Finally, we examine the conflict between equity and efficiency through two bicriteria models,
one for attractive facilities, and one for obnoxious facilities. The set of Pareto-optimal solutions
associated with each of these problems are then the most interesting sites. To the best knowledge
of the authors, this is the first work on the equity-efficiency trade-off attempting such an approach.
We thereby obtain the full tradeoff curves between the two objectives, which give all necessary
value-information for the comparison of the Pareto-optimal solutions. In fact we obtain a full
picture of all pairs of values obtainable within the feasible region. This bicriteria plot may be
used further to evaluate visually for any feasible site how much improvement is obtainable in each
objective without loss, or with some allowance, on the other objective.

As pointed out by Carrizosa and Plastria(1999), determining the Pareto-set in a continuous
plane is usually a rather difficult problem because standard procedures of convex analysis are
not always directly helpful. However, Ohsawa(2000) gave a polynomial algorithm to compute the
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Pareto-set when maximin and minimax Euclidean distances are used as push and pull objectives.
Ohsawa and Tamura(2003) extended this work to bicriteria models combining on the one hand
maximin elliptic and minisum rectilinear distances, and maximin or minimax rectilinear distances
on the other hand. Ohsawa et al.(2006) introduced partial covering in the bicriteria model of
Ohsawa (2000). Melachrinoudis and Xanthopulos(2003) proposed a numerical approach for a
bicriteria problem with maximin and minisum Euclidean distances, based on Voronoi diagrams and
optimality conditions in nonlinear programming. Our general localization results are somewhat
comparable to this latter work, but from the algorithmic point of view, our solution method
based on computational geometry is rather similar to the one by Ohsawa(2000). We present a
polynomial algorithm using the line tessellation generated by the perpendicular bisectors of all
pairs of residence locations, and show that this allows the construction of the bicriteria plot. Its
envelope then determines the two types of Pareto-sets. This shows that the framework developed
by Ohsawa(2000) may be extended to other bicriteria location models.

The remainder of this paper is structured as follows. Section 2 explores the single-objective lo-
cation models, first the equity objective, then the efficiency ones. Section 3 discusses the bicriteria
models combining the equity model with either Weber or anti-Weber models, giving proofs of the
localization theorems for the Pareto-sets, then describing polynomial algorithms to construct the
bicriteria plot and the Pareto-sets. Section 4 contains a number of concluding remarks on possible
extensions and further research.

2 Single-Objective Problems

2.1 Equity model

We propose to use the sum of absolute differences of squared distances as an equity criterion to
be minimized. We start by showing, contrary to what was stated by Eiselt and Laporte (1995),
that this satisfies the Pigou-Dalton condition under the following form given by Erkut (1993):
when changing the distance distribution S : d1 ≤ d2 ≤ . . . ≤ dk ≤ . . . ≤ dl ≤ . . . ≤ dn into the
distribution S′ : d1 ≤ d2 ≤ . . . ≤ dk + ε ≤ . . . ≤ dl− ε ≤ . . . ≤ dn, in which a small enough amount
ε is transferred from the larger dl to the lower dk, so as not to change the order, the equity value
should have decreased.

Proposition 1 The sum of absolute differences

PD(S) ≡
n∑

i=1

n∑

j=1

|di − dj |

satisfies the Pigou-Dalton condition of transfers.

Proof It is easy to check that for d1 ≤ d2 ≤ . . . ≤ di ≤ . . . ≤ dj ≤ . . . ≤ dn

PD(S) = 2
n∑

i=1

n∑

j>i

(dj − di)

= 2{(1− n)d1 + (3− n)d2 + . . . + (n− 3)dn−1 + (n− 1)dn}

= 2
n∑

i=1

(2i− 1− n)di. (1)

Since k < l, one then obtains

PD(S′)− PD(S) = 2{(2k − 1− n)ε− (2l − 1− n)ε} = 4(k − l)ε < 0,

as required.
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In our location context a number of residences are given on an Euclidean plane. Let I and
{p1,p2, · · · ,p|I|} be their index and location sets. Let {ω1, ω2, · · · , ω|I|} be their number of in-
habitants, expressed here as positive weights, i.e., ωi > 0. To simplify notations, and without loss
of generality, we assume that

∑
i∈I ωi = 1. Suppose that a facility can be built within the convex

polygon Ω. Let ∂Ω and |∂Ω| be the boundary and the number of sides of Ω, respectively. We may
allow that some pi /∈ Ω, i.e., some residence points may be situated outside the feasible region.
To avoid unnecessary complications we assume that |I| ≥ 3, and that all pi and the vertices of
∂Ω are distinct.

Our equity problem seeks a site x in Ω minimizing the sum of absolute differences between
all pairs of facility-inhabitant squared Euclidean distances. Its formulation is therefore (up to a
positive factor)

min
x∈Ω

F (x) ≡
∑

i∈I

∑

j∈I

ωiωj

∣∣‖x− pi‖2 − ‖x− pj‖2
∣∣ . (2)

Let i1, · · · , i|I| be an ordering of the residence set I. Define Vi1,i2,···,i|I| to be the ordered
order-|I| Voronoi polygon associated with pi1 ,pi2 , · · · ,pi|I| : see Okabe et al.(1999), as

Vi1,i2,···,i|I| ≡ {x ∈ R2 | ‖x− pi1‖ ≤ ‖x− pi2‖ ≤ · · · ≤ ‖x− pi|I|‖}.

This set will be empty for many orderings i1, i2, · · · , i|I| of I. The collection of all Vi1,i2,···,i|I| ’s
with non-empty interior (the faces) is called the ordered order-|I| Voronoi diagram. Observe that
the boundary of the cells of this diagram coincides with the arrangement of the perpendicular
bisectors lij ’s of all pairs pi,pj ’s. Arrangements of lines occur in many different applications such
as computer graphics and robotics, as pointed out by Boissonnat and Yvinec(1998). The number
of bisectors is at most |I|(|I|−1)

2 , i.e., O(|I|2). Since each bisector intersects each of the others at
most once, or coincides with it, the number of edges of the Voronoi diagram is O(|I|4). Hence, this
diagram is a planar graph and has O(|I|4) vertices, edges and faces. Let ∂V be the collection of
the boundaries of Vi1,i2,···,i|I| ’s within Ω. The line tessellation ∂V and ∂Ω is illustrated in Figure 1,
where five inhabitants p1, · · · ,p5 are indicated by filled circles, and ∂V and ∂Ω are shown as thin
and thick lines, respectively. The nearest point of any position within V3,2,4,1,5 is p3, its second
one is p2, its third one is p4 and so on.

Similarly as the derivation of (1), and using
∑

i∈I wi = 1, within each face x ∈ Vi1,i2,···,i|I| ,
F (x) in (2) can be rewritten as

F (x) = 2
(
ui1‖x− pi1‖2 + ui2‖x− pi2‖2 + · · ·+ uis‖x− pis‖2 + · · ·+ ui|I|‖x− pi|I|‖2

)
, (3)

where ui1 ≡ ωi1(ωi1 − 1), ui2 ≡ ωi2(2ωi1 + ωi2 − 1), uis ≡ ωis(
∑s

k=1 ωik
−∑|I|

k=s ωik
) and ui|I| ≡

ωi|I|(1− ωi|I|).

Proposition 2 The function F (x) is convex on Ω, and piecewise linear with pieces the Voronoi
polygons Vi1,i2,···,i|I| .

Proof For two points pi and pj (i 6= j), and writing scalar product as 〈 · ; · 〉, we have

‖x− pi‖2 − ‖x− pj‖2 = 〈 x− pi ; x− pi 〉 − 〈 x− pj ; x− pj 〉
= 2〈 pi + pj

2
− x ; pi − pj 〉. (4)

This shows that this difference of squared distances is an affine function taking, of course, value
zero along the bisector of pi and pj , i.e. the line lij of equation 〈 pi+pj

2 − x ; pi − pj 〉 = 0. Its
absolute value is therefore convex and piecewise linear, with pieces the two halfplanes bounded by
lij .

F (x) is the sum of such functions over all i, j ∈ I, and therefore also convex and piecewise
linear, with pieces the intersections of halfplanes bounded by the lij ’s, which are exactly the
Voronoi faces Vi1,i2,···,i|I| .
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The piecewise linearity of F (x) leads to the important fact that the level curves of F (x) within
a Voronoi polygon consist of parallel lines. Some resulting level curves of F (x) for our problem
are shown in Figure 2. In addition, the minimum of F (x) within each Voronoi polygon restricted
to Ω is reached at some vertex. Thus, we obtain

Proposition 3 An optimal solution d∗ of (2) exists at some vertex of the planar graph ∂V ∪ ∂Ω.

Although d∗ may not be unique, the whole solution set is given by the convex hull of all the
nodes of the graph ∂V ∪ ∂Ω which minimize F (x) because the set must be convex by convexity
of F (x). Because of the piecewise linearity this set will also be a union of faces. Thus, we have
the following algorithm to identify the whole set of optimal solutions:

Algorithm 1

Step 1. Define the planar graph ∂V ∪ ∂Ω.

Step 2. Find the minimum solution of F (x) from the nodes of the graph ∂V ∪ ∂Ω.

Step 3. Detect the whole set of minimum solutions of F (x), unless a unique solution exists.

Using this algorithm we obtain

Proposition 4 A solution d∗ can be found in O(|I|5 + |I||∂Ω|) time.

Proof Since the number of the bisectors lij is O(|I|2), we can compute the arrangement of these
bisectors in O(|I|4) time using an incremental algorithm, as shown in Edelsbrunner et al.(1986).
Since ∂Ω is a closed polygonal line and the arrangement consists of convex regions, the graph
∂V ∪ ∂Ω can be constructed in O(|I|4 + |∂Ω|) via the method by O’Rourke et al.(1982). Hence,
Step 1 takes O(|I|4 + |∂Ω|) time. Note that the graph ∂V ∪ ∂Ω has O(|I|4 + |∂Ω|) vertices. To
compute F (x) according to (3), which is a less demanding expression than (2), the pi’s are arranged
according to the facility-inhabitant distances. Once the facility-inhabitant distances within one
Voronoi polygon have been sorted in O(|I| log |I|), we can compute F (x) not only at any vertex of
the polygon but also at any vertex of its surrounding polygons in O(|I|) using (3). This is because
moving from one polygon to an adjacent polygon across some Voronoi edge interchanges only the
order of two residence points: see, e.g. V2,3,4,1,5 and V3,2,4,1,5 in Figure 1. Since the graph ∂V ∪∂Ω
has O(|I|4 + |∂Ω|) edges, Step 2 runs in O(|I|5 + |I||∂Ω|) time by traversing at most twice each
edge of the graph ∂V ∪ ∂Ω. Step 3 can be performed in O(|I|4 + |∂Ω|) time by comparing F (x)
evaluated at all vertices within each edge and each face of ∂V ∪ ∂Ω.

Alternatively, Step 2 may also be done by grouping the calculations along each bisector as
follows. Consider a bisector li0j0 with parametric equation x = c + tq where c = (pi0 + pj0)/2
and q is orthogonal to pi0 − pj0 . li0j0 either contains no points of ∂Ω, or just 1, or exactly 2, or,
exceptionally a full line segment, side of Ω, which may in this first stage be reduced to its two
endpoints. In the two last cases we have to search further along li0j0 . Using expression (4) one
easily obtains the following new expression for F (x) along li0j0

F (x) = F (c+tq) =
∑

i 6=j∈I\{i0,j0}
ωiωjαij |tij−t|+

∑

i∈I\{i0}
ωi0ωjαi0j |ti0j−t|+

∑

j∈I\{j0}
ωiωj0αij0 |tij0−t|,

(5)
where

αij ≡ |〈 2q ; pi − pj 〉|, tij ≡ 2〈 pi + pj

2
− c ; pi − pj 〉/αij .

Note that there are two types of tij corresponding to two different types of Voronoi vertices on li0j0 :
the points of form c+tijq of order 4, which are intersections of type li0j0∩lij with |{i0, j0, i, j}| = 4,
and those of form c + ti0jq or c + tij0q of order 6, which are those of type li0j0 ∩ li0i ∩ lij0 with
|{i0, j0, i}| = 3.

5



Expression (5) shows that F (c+ tq) as a function of t along li0j0 is a weighted sum of distances
to the points tij , and its minimization is a one-dimensional Weber problem, well known to be solved
at a (weighted) median point: see, e.g. Francis et al.(1992). The minimizer can be obtained in time
linear in the number of points by the procedure of Balas and Zemel (1980). Thus we can obtain
the unconstrained minimum point of F (x) along each bisector in O(|I|2), and then in constant
time its constrained minimum by simple comparison with the boundary vertices.

In fact a descent procedure, which first finds the median along one bisector, then iteratively
moves to another bisector which passes at this point and along which there is a decrease direction,
until no such direction exists, will work much quicker in practice. (Note that the median finding
technique applies along any line, so may also be used, if necessary, along Ω’s boundary.) It is not
clear, however, if a better worst case complexity may be shown for this method.

The solution d∗ for our sample problem with ω1 = ω2 = . . . = ω5 lies on a vertex of ∂V , as
shown in Figure 2.

2.2 Efficiency models

As efficiency criterion, we consider the following typical single-objective function:

G(x) ≡
∑

i∈I

ωi‖x− pi‖2. (6)

The problems to either minimize or maximize G(x) are called (quadratic distance) Weber or anti-
Weber problems, respectively, as in Hansen et al.(1981a). The minimization of G(x) may be used
for locating a purely attractive facility, whereas the maximization of G(x) may be applicable to a
purely repellent facility in the sense that the total distance to inhabitants is maximized.

As shown in Francis et al.(1992), it is straightforward to check that

G(x) = ‖x− p‖2 +
∑

i∈I

ωi‖pi‖2 − ‖p‖2 (7)

where p ≡ ∑
i∈I ωipi is the center of gravity (centroid) of the points pi. This shows that G(x) is

a strictly convex function of x.
It also immediately leads to the well-known result that the unconstrained minimum of G(x) is

given by p and that the level sets of G(x) consist of circular disks with center p. The constrained
minimum m∗ of G(x) on Ω is unique, due to strict convexity, and is evidently the projection of p
on Ω, i.e. the point of Ω closest to p.

The strict convexity of G(x) also implies that G(x) can be maximum on Ω only at a vertex of
Ω which we will denote by a∗, as discussed in Hansen et al.(1981a).

The solutions m∗ and a∗ for the sample problem are also shown in Figure 2. Note that in this
example m∗ = p, because p ∈ Ω.

3 Biobjective Problems

3.1 Formulation

In order to examine the tradeoff between equity and efficiency, we formulate the following two
bicriteria problems combining the equity model (2) with either minimizing or maximizing G(x) in
(6):

min
x∈Ω

{F (x), G(x)} , (8)

min
x∈Ω

{F (x),−G(x)} . (9)

As usual, the weakly Pareto-optimal solutions are feasible locations simultaneously at least
as good for both objectives than any other feasible location, and they are Pareto-optimal when
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always strictly better for at least one objective. Let E∗
+ and E∗

− be the Pareto-set associated
with the problems (8) and (9), respectively. We call bicriteria plot the set of pairs (F (x), G(x))
in the objective space for all x in the feasible region, and tradeoff curve that for the Pareto-set
only. Writing for any subset S of the plane, (F, G)(S) ≡ {(F (x), G(x))|x ∈ S}, the bicriteria plot
is given by (F,G)(Ω), and the tradeoff curves associated with the problems (8) and (9) are the
sets (F,G)(E∗

+) and (F,G)(E∗
−), respectively. In what follows we always consider the objective

space with the horizontal (vertical) axis measuring the values of F (x) (G(x)). For the attractive
facility location (8), since the left and lower directions on the objective space are better in terms of
F (x) and G(x), respectively, a Pareto-optimal solution has no alternative in any southwesternly
quadrant direction. Graphically, therefore, the Pareto-set E∗

+ is given by the set of locations
corresponding to the lower-left envelope of the bicriteria plot (F, G)(Ω). In the same way, the
Pareto-set E∗

− is given by the set of locations corresponding to the upper-left envelope of the
bicriteria plot (F,G)(Ω).

3.2 Localization results

3.2.1 Obnoxious facility

Within each constrained ordered Voronoi cell C = Vi1,i2,···,i|I| ∩ Ω, −F (x) is a linear function,
and G(x) is a strictly convex function. Thus problem (9) is a bicriteria convex maximization
problem on a convex polygonal region. It was shown in general by Carrizosa and Plastria (2000)
(proposition 19 p53) that when maximizing k quasiconvex criteria on a polytope P any point of
P is dominated by some point on a (k − 1)-dimensional face of P . In our situation k = 2, so any
point of C is dominated by some point of C’s boundary. This result may be slightly strengthened
in our case. Compare also with a similar result in Ohsawa(2000).

Proposition 5 The Pareto-set E∗
− is a subset of ∂V ∪ ∂Ω.

Proof Consider any face C = Vi1,i2,···,i|I| ∩Ω and any point c in the interior of C. Since F (x)
is linear on C, the set of points within C with same F -value as c is either a line segment, or the
whole cell C, so in any case it is a polytope with relative extreme points on C’s boundary, while
c lies in its relative interior. By strict convexity of G(x), any maximum of G(x) on this set will
be found at such an extreme point, so cannot be c itself. Therefore interior points of cells cannot
belong to E∗

−.

3.2.2 Attractive facility

Both F (x) and G(x) are convex functions all over the plane, and thus problem (8) is a bicriteria
convex minimization problem constrained to a convex polygonal region. For this type of problems
Plastria and Carrizosa (1996) derived the following weakly Pareto-optimality condition at a point
x: the convex hull of the subdifferentials of both objectives at x must intersect the opposite of
the normal cone of the constraint region at x. When x is an interior point of some constrained
ordered Voronoi cell Vi1,i2,···,i|I| ∩ Ω, this condition is very easily checked since both objectives
are differentiable, so their subdifferentials consist of their gradient only, and in the interior of
the constraint set the normal cone is reduced to the zero vector. The gradient of F (x) at x is
orthogonal to F (x)’s level curves, while the gradient of G(x) at x is given by x − p. Thus such
an interior point x can only be (weakly) Pareto-optimal if these two gradients are parallel and of
opposite sign, i.e. x− p is orthogonal to F (x)’s level curves in the direction of decrease of F (x),
and, by (3), x − p must be of the form −∑|I|

k=1 uik
pik

when x is in Vi1,i2,···,i|I| . Define therefore
Li1,i2,···,i|I| as the intersection of Vi1,i2,···,i|I| ∩Ω with the halfline issued from p in the direction of

−∑|I|
k=1 uik

pik
. Note that many of these intersections will be empty, and let L be the collection

of nonempty Li1,i2,···,i|I| ’s. This set is illustrated in Figure 3, where L consists of eleven broken
line-segments (recall that here m∗ = p).

It now follows immediately:
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Proposition 6 The Pareto-set E∗
+ is a subset of ∂V ∪ ∂Ω ∪ L.

The effects of Propositions 5 and 6 are that we may restrict our search for Pareto solutions to
edges of the graphs ∂V ∪ ∂Ω and ∂V ∪ ∂Ω ∪ L, respectively.

3.3 Constructing the bicriteria plot

Consider now any region W of the line tessellation defined by ∂V ∪ ∂Ω∪L. Any such region W is
simply-connected. By continuity of F (x) and G(x), this means that the set of the plots (F, G)(W )
in the objective space is also simply-connected. Along any line, F (x) is a linear function and G(x)
is a quadratic function, so we can express G(x) as a quadratic function of F (x), the exact form of
which is easily obtained from (7), suitably adapted to the line under consideration. Furthermore,
this relationship between F (x) and G(x) is monotonic because within W the scalar product of the
gradients of both functions has constant sign. This implies that the set (F, G)(W ) is the bounded
domain surrounded by the plots of the line-segments of the boundary of W , and each of these
latter is a piece of an upright parabola.

Therefore we have:

Proposition 7 The bicriteria plot (F, G)(Ω) is given by the union of the domains bounded by the
plots of ∂V , ∂Ω and L.

This bicriteria plot is therefore obtained by following algorithm, whose validity follows from
Proposition 7.

Algorithm 2.

Step 1. Construct the planar graph ∂V ∪ ∂Ω ∪ L.

Step 2. For each face C of the graph, hatch the region bounded by the loci (F,G)((∂V ∪L)∩C)
in the objective space.

Using this algorithm we obtain

Proposition 8 The bicriteria plot (F, G)(Ω) can be drawn in O(|I|5 + |I||∂Ω|) time.

Proof The planar graph ∂V ∪ ∂Ω can be constructed in O(|I|4 + |∂Ω|) time, as we have
seen in Step 1 of Algorithm 1. Analogous to Step 2 of Algorithm 1, once the facility-inhabitant
distances within one Voronoi polygon Vi1,i2,···,i|I| are sorted in O(|I| log |I|), not only L within the
Voronoi polygon but also L within any of its surrounding polygons can be identified in O(|I|) time,
respectively. Since the graph ∂V ∪∂Ω has O(|I|4 + |∂Ω|) edges, the planar graph ∂V ∪∂Ω∪L can
be constructed in O(|I|5 + |I||∂Ω|) time. Thus, the complexity of Step 1 is O(|I|5 + |I||∂Ω|). Note
that the graph ∂V ∪ ∂Ω ∪ L has O(|I|4 + |∂Ω|) edges. Similarly as for Step 1, by traversing at
most twice each edge of the graph, plots corresponding to the boundaries of all cells of the graph
can be constructed in O(|I|5 + |I||∂Ω|) time. This leads to an O(|I|5 + |I||∂Ω|) time for Step 2.

The bicriteria plot (F, G)(Ω) corresponding to our sample problem is indicated by the gray
region in Figure 4, where the plots corresponding to ∂V , ∂Ω and L are also indicated by thin,
thick and broken lines, respectively. One recognizes the image of m∗ as the lowest point, and that
of d∗ as the left-most point. The corresponding solution points are quite central within Ω, as can
be seen in Figure 3. The two halves of Ω above and below these points are ‘folded’ on top of
each other by the mapping (F, G), yielding the two superposed ‘wings’ towards the right on the
bicriteria plot, with extreme points (F, G)(s3) and (F, G)(a∗) at the top.

Figure 4 shows that, roughly speaking, the relationship between the equity and efficiency crite-
ria slope upward to the right, and that the bicriteria plot has a quite complicated shape. Plotting
the image of any proposed location on this bicriteria plot provides an explicit representation of the
simultaneous gains and losses that may be obtained for both objectives within the feasible region.
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3.4 Determination of the Pareto-sets

3.4.1 Attractive facility

Consider the following single objective minimization problem for any given 0 ≤ θ ≤ 1:

min
x∈Ω

θF (x) + (1− θ)G(x). (10)

As we have shown, F (x) is convex and G(x) is strictly convex, so the convex minimization problem
(10) possesses a unique solution for any 0 ≤ θ < 1. The uniqueness implies that this solution is
Pareto optimal: see, e.g. Miettinen(1999) p79. For θ = 1, problem (10) may have a set of
minimizers for F (x), but only one of these will be a Pareto solution: the point, denoted by d̄∗, of
this set nearest to m∗.

Therefore, the Pareto set E∗
+ is given by a simple continuous curve connecting d̄∗ and m∗, as

discussed in Hansen et al.(1981b) and Ohsawa(1999). Combining this result with Proposition 6
leads to the following algorithm

Algorithm 3

Step 1. Construct the planar graph ∂V ∪ ∂Ω ∪ L.

Step 2. Identify m∗.

Step 3. Find all the nodes of the graph ∂V ∪ ∂Ω minimizing F (x).
Among these nodes determine d̄∗ as the one closest to m∗.

Step 4. Find the steepest descent path of F (x) from m∗ to d̄∗ on the planar graph.

It follows

Proposition 9 The Pareto-set E∗
+ can be found in O((|I|5 + |I||∂Ω|) time.

Proof As we have seen in Step 1 of Algorithm 2, Step 1 takes O(|I|5 + |I||∂Ω|) time. If the
center of gravity p, found in O(|I|) is outside Ω, then m∗ is the point of Ω closest to p, which
is found in O(|∂Ω|). Hence, Step 2 takes at most O(|I| + |∂Ω|) time. Since the graph ∂V ∪ ∂Ω
has O(|I|4 + |∂Ω|) vertices, Step 3 can be performed in O(|I|5 + |I||∂Ω|) time, as in Algorithm
1. Since the slope of F (x) on any edge of the graph can be determined in O(|I|) via (3), and the
graph ∂V ∪ ∂Ω∪L has O(|I|4 + |∂Ω|) edges, the complexity of Step 4 is at most O(|I|5 + |I||∂Ω|).

3.4.2 Obnoxious facility

It follows from Proposition 5 that the tradeoff curve of the obnoxious facility problem coincides
with the upper-left envelope of (F, G)(∂V ∪ ∂Ω). Hence, the Pareto-set E∗

− can be identified by
the following algorithm, which generalizes slightly the method by Ohsawa(2000).

Algorithm 4

Step 1. Build the planar graph ∂V ∪ ∂Ω.

Step 2. Plot the parabolic loci of (F, G)(∂V ∪ ∂Ω) in objective space.

Step 3. Find the upper-left envelope of the loci.

Step 4. Determine the subedges corresponding to the envelope in the geographical space.

Hence we have
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Proposition 10 The Pareto-set E∗
− can be determined in O((|I|4 + |∂Ω|)(|I|+ log |∂Ω|)) time.

Proof As we have shown in Algorithm 1, Step 1 has a time complexity of O(|I|4 + |∂Ω|). Step
2 takes O(|I|5 + |I||∂Ω|) time using (3). One parabolic locus corresponding to one edge within
the planar graph intersects any other parabolic locus in at most two points. Since the graph has
O(|I|4 + |∂Ω|) edges, the envelope can be defined in O((|I|4 + |∂Ω|) log(|I|4 + |∂Ω|)), as shown in
Boissonnat and Yvinec(1998). Thus, Step 3 requires O((|I|4 + |∂Ω|) log(|I|4 + |∂Ω|)). Step 4 can
be accomplished in O(|I|4 + |∂Ω|). Finally O(|I|5 + |I||∂Ω|) + O((|I|4 + |∂Ω|) log(|I|4 + |∂Ω|)) =
O((|I|4 + |∂Ω|)(|I|+ log |∂Ω|)).

In a similar way, but based on Proposition 6, the Pareto-set E∗
+ can also be identified by

tracing out the lower-left envelope of (F,G)(∂V ∪ ∂Ω∪L) in O((|I|4 + |∂Ω|)(|I|+ log |∂Ω|)) time,
which is larger than O((|I|5 + |I||∂Ω|) in Proposition 9.

The tradeoff curves (F, G)(E∗
+) and (F, G)(E∗

−) are visualized collectively in Figure 4 by thick
curves. The tradeoff curve (F,G)(E∗

+) consists of a continuous portion, but the other tradeoff
curve (F, G)(E∗

−) has three connected components.
Figure 4 enables us to perceive clearly and quickly to what extent the Pareto-solutions are really

better than other candidates within Ω by comparing the bicriteria plot (F,G)(Ω) corresponding
to all alternatives. Thus, our solution supports well-informed decision making.

The Pareto-sets E∗
+ and E∗

− are traced out in Figure 3 by using the corresponding lines in
Figure 4, respectively. The Pareto-set E∗

+ is a connected piecewise linear curve from m∗ to d̄∗,
as was to be expected. The other Pareto-set E∗

− is composed of a piecewise linear curve joining
d̄∗ with s1, a second connecting s2 with s3 and a third connecting s4 with a∗. Thus, the Pareto-
optimal solutions for a repellent facility E∗

−, are more spread out over the feasible region than
for an attractive facility E∗

+. This result is intuitively reasonable, because the Pareto-optimal
locations for a repellent facility directly depend on the shape of the feasible region Ω.

4 Concluding remarks

This paper has formulated a new location problem using an equity measure of facility-inhabitant
distances which satisfies the Pigou-Dalton condition of transfers. On the one hand, we have
characterized the optimal solutions for the single-objective equity problem, the Pareto-sets and
the bicriteria plot associated with the problem which combines this equity objective with Weber-
type objectives. On the other hand, we have presented polynomial-time graphical methods to
trace out the solutions, the Pareto-sets, and the bicriteria plot by using line tessellations.

Some further remarks on extensions of our formulation and results may be made.
Let us first address the shape of the feasible region Ω, and see if the assumption of being a

bounded convex polygonal region may be lifted. It is well known that any finite union of non-
convex polygons can be partitioned into convex subareas in polynomial time: see, e.g. Hertel and
Mehlhorn (1983). Therefore, the solution, the bicriteria plot, and the Pareto-sets can be obtained
in polynomial time by separate treatment of each convex subpolygon and merging of the results.
Lifting the polygonality assumption is not directly possible, since this assumption was extensively
used in our arguments, in particular when the precise shape of the bicriteria plot of line segments is
needed in the final construction. However, with the advent of GIS-based spatial data, polygonality
may often be considered as given.

Another point arises in our choice of equity and efficiency objectives. Evidently any of these
may be replaced by any increasing function of the same objectives, without affecting the Pareto-
sets we constructed here. It should be possible to adapt the efficiency objective in other ways
too. The arguments used in Propositions 5 and 6 are sufficiently general to remain applicable
for any other convex efficiency objective, like minimizing the sum of distances, or minimizing the
maximum distance, etc. Similar localization results will then still hold. But they will again be
harder to exploit algorithmically, since the nice parabolic shapes we have been using here will be
lost.
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Replacing the equity objective (sum of pairwise absolute deviations) used here by some other
one, like the variance or the Gini coefficient and/or replacing squared Euclidean distances by other
distance measures, will again invalidate many of our results, in which the linearity of the equity
objective was fundamental. How to handle such cases remains open for further research.
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Figure 4: Bicriteria plot and tradeoff curves
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