1	Stable isotopic and geochemical characteristics of groundwater in Kherlen River basin, a
2	semi-arid region in eastern Mongolia
3	
4	Maki Tsujimura ^{a)*} , Yutaka Abe ^{b)} , Tadashi Tanaka ^{a)} , Jun Shimada ^{c)} , Satoru Higuchi ^{d)} , Tsutomu
5	Yamanaka ^{a)} , Gombo Davaa ^{e)} , Dambaravjaa Oyunbaatar ^{e)}
6	
7	a) Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan
8	b) METOCEAN ENVIRONMENT INC, Japan.
9	c) Faculty of Natural Science, Kumamoto University, Japan
10	d) NISSAKU CO., LTD., Japan
11	e) Division of Hydrology, Institute of Meteorology and Hydrology, Mongolia
12	*: Corresponding author
13	Postal address: Laboratory of Advanced Research A, 1-1-1 Ten-nodai, Tsukuba, Ibaraki
14	305-8572, Japan
15	E-mail: mktsuji@atm.geo.tsukuba.ac.jp; Phone & Fax: +81-29-853-2568
16	
17	Abstract Inorganic solute ion concentrations and stable isotopes of oxygen and hydrogen in
18	groundwater, river water and precipitation were investigated to gain insight into the
19	groundwater recharge process in the Kherlen River basin, a semi-arid region in eastern
20	Mongolia. The solute constituents in the river water (main stream) were of Ca-HCO ₃ type,
21	spatially invariant and low in concentration. Groundwater in the upstream region was also
22	characterized by a Ca-HCO ₃ type, though all ion concentrations were higher than in the river
23	water. On the other hand, the chemical composition of the groundwater in the midstream
24	region (southern and eastern) was spatially variable and the Na^+ , Mg^{2+} , Cl^- and HCO_3^-
25	concentrations were considerably higher than in the river water and upstream groundwater.
26	The stable isotopic compositions showed an evaporation effect on the groundwater and river

water, as well as an altitude effect in the precipitation and river water. Preferential recharge by relatively large rainfall events is thought to have caused the depleted isotopic ratio in the groundwater in the dry regions. The stable isotope, chemical and hydrological data suggest that the main stream water of the Kherlen River is recharged by precipitation that falls in a headwater region at an altitude of more than 1650 m, and that the interaction between the groundwater and river water is not dominant in the midstream and downstream regions of the river basin.

8 Keywords: Groundwater; Stable isotope; Semi-arid; Recharge; Mongolia

9

10 1. Introduction

11 In arid and semi-arid regions, domestic noncommercial, industrial and agricultural 12 water uses depend largely on the amount of groundwater (Wang and Cheng, 1999). 13 However, due to unsuitable management of water resources, several problems related to 14 groundwater use have arisen such as extraordinary decline of the groundwater level in the 15 High Plains, United States, the North China Plain, and the Delhi area, India (Brown and 16 Halweil, 1998; Datta, et al., 1996; Kondo et al., 2001; Rodell and Famiglietti, 2002; Tase, 17 2000). Sustainable control of water resources with sufficient understanding of the groundwater situation is therefore essential. In Mongolia, a semi-arid region of northeast 18 19 Asia, more than 90 % of the total population use groundwater for daily necessities (Sugita, 20 2003). Moreover, no management of the water resources has been carried out since 21 destatization was established in 1990. Accordingly, it is highly probable that potential 22 problems with groundwater resources will occur. In order to develop an effective water use 23 system, it is first necessary to scientifically understand the behavior of groundwater. 24 However, very few studies have previously documented groundwater resources in northeast 25 Asia (Chelmicki, 1984).

The multi tracer approach using the isotopes and solute concentrations in water has

1 been used for elucidating the origin of groundwater and the interaction between groundwater and river water in semi-arid and arid regions. Onodera (1996) suggested that preferential 2 3 and partial infiltration under conditions of high rainfall intensity is a major mechanism of 4 groundwater recharge in a tropical semi-arid region in Tanzania. In addition, Taniguchi et 5 al. (1995), based on stable isotope and solute concentration data, clarified that in the Heife river basin, northwestern China, the groundwater originates from a mountain region. 6 7 Moreover, Kabeya et al. (2002) compared the stable isotopic compositions of the 8 groundwater between sand dunes and grassland in the Nu Us desert, China, and concluded 9 that the stable isotopes of the groundwater in the grassland were concentrated as a result of 10 evapotranspiration. Understanding the effect of evaporation on stable isotopes is an 11 important factor in discussing the relationship between precipitation and groundwater 12 (Boronina et al., 2005), and geochemical weathering is also known to affect the chemical 13 compositions of groundwater and river water (Sami, 1992). Previous studies suggest the 14 importance of temporal and spatial heterogeneity in infiltration, evaporation and 15 groundwater recharge processes in arid and semi-arid regions (De Vries and Simmers, 2002; 16 Gee and Hillel, 1988; Vogel and Van Urk, 1975). In other words, groundwater recharge is 17 affected by site-specific conditions in these regions.

18 In the Kherlen River basin, eastern Mongolia, the spatial distribution of vegetation 19 shows a clear change along the river. Mountain forest is distributed upstream in the basin 20 while grassland, known as steppe, without any tall trees can be seen downstream. In 21 addition, a discontinuous permafrost zone is also observed in the upstream region (Sharkhuu, 22 2001). Thus, there are many factors to be considered when discussing the hydrological processes in this basin. Hirabaru et al. (1999) described the geochemical composition of 23 the groundwater in a central area of Mongolia and warned against a worsening of 24 groundwater quality, while Davaa et al. (2002) investigated δ^{18} O and δ D in the Tuul River, 25 which flows into Ulaanbaatar, the capital city of Mongolia, and reported seasonal changes in 26

the groundwater recharge system. Few studies, however, have investigated the isotopic and chemical characteristics of groundwater and discussed the recharge and flow system of groundwater on a catchment scale including multiple vegetation cover. The purpose of this study is to clarify the groundwater recharge and flow system in the Kherlen River basin, eastern Mongolia, using a multi-tracer approach.

6

7

2. Study area

8 The study area was located approximately 120 km east of Ulaanbaatar, the capital city 9 of Mongolia (Fig. 1). The altitude of the main study area ranges from 1484 m at 10 Mongenmorit (MNG) to 985 m at Underhaan (UDH), and the total length of the main stream 11 of the Kherlen River is approximately 300 km from MNG to UDH. Mesozoic and 12 Paleozoic granite and Carboniferous granite are dominant from the mountainous upstream 13 area to Kherlenbayan-Ulaan (KBU) (Mineral Resources Authority of Mongolia, 1999). From KBU to UDH, the right bank of the Kherlen River mainly consists of Mesozoic 14 15 sandstone, while Cenozoic sandstone or siltstone is distributed around the Darhan (DH) 16 region and along the river. Sharkhuu (2001) showed that the southern boundary between 17 the discontinuous permafrost region and no-permafrost region is found around Baganuur 18 (BGN). Conifer trees such as larch are dominant in the mountainous region, upstream of 19 MNG, whereas the flat plain downstream of BGN is dominantly covered by grass with a 20 height of 5 to 10 cm during the growing season.

As summarized by Sugita et al. (2006) (Table 1) based on data obtained by the Institute of Meteorology and Hydrology (IMH), Mongolia, from 1993 to 2003 and aridity index data (AI; Budyko, 1974), it is relatively humid in the upstream regions of the Forest Site (FOR), MNG, BGN, and KBU, but relatively dry in the midstream region of DH and UDH. The discharge rate of the Kherlen River observed by the IMH at BGN, UDH and CHB from 1990 to 2000 is shown in Fig. 2. All gauging stations observe a high flow in the

summer, with a slight decrease in the discharge rate as the river flows down from BGN to
 CHB, though the rate of decrease is small.

3

4

3. Methods

5 The field surveys and sampling of river water, groundwater and spring water were performed in the area from MNG to UDH in June 2002, and July and October 2003 as a part 6 7 of the intensive field observation campaign of the RAISE project (Sugita et al., 2006). In 8 total, 30 river water samples, 7 spring water samples and 80 groundwater samples were collected to analyze the major ions and stable isotopes of deuterium (D) and oxygen 18 (¹⁸O). 9 10 In addition, monthly and daily precipitation were sampled separately for stable isotope 11 analysis at MNG, KBU, and UDH from October 2002 to September 2003. Most of the 12 groundwater samples were taken from wells with a depth of less than 10 m and set in an 13 unconfined aquifer. Electrical conductivity (EC; HORIBA Ltd., Twin Cond B173), pH 14 (HORIBA Ltd., Twin PH Meter B121), water temperature (Nikkyo Technos Co., Ltd., Petten 15 Kocher), and groundwater level were measured on site. The locations of the wells were 16 determined using a portable GPS meter (GARMIN Ltd., GPSMAP 76S). Each water 17 sample was sealed in a polyethylene bottle with a volume of 100 mL then brought back to the laboratory in Japan where the anions, cations, and stable isotopic ratios of D and ¹⁸O 18 were analyzed. Major anions (F⁻, Cl⁻, NO₂⁻, Br⁻, NO₃⁻, PO₄³⁻ and SO₄²⁻) were analyzed 19 20 using an ion chromatograph analyzer (Shimadzu, Co. Ltd., HIC-SP/VP Super). Bicarbonate (HCO₃⁻) concentration was determined by the titration method with sulfuric acid. 21 Major cations (K^+ , Na^+ , Ca^{2+} and Mg^{2+}) were analyzed using an inductively coupled plasma 22 atomic emission spectrometer (Nippon Jarrell-Ash Co., Ltd. Model ICAP-757). The stable 23 isotopes of D and ¹⁸O were measured with a mass spectrometer (Finnigan Inc., MAT 252). 24 As pretreatment for stable isotopes analysis, water samples were equilibrated with CO₂ gas 25 for ^{18}O and H_2 gas with a platinum catalyst for D. The isotopic ratios of D and ^{18}O are 26

1 expressed by δD and $\delta^{18}O$, respectively, as follows:

3
$$\delta_{sample} = \frac{R_{sample} - R_{SMOW}}{R_{SMOW}} \times 1000 \quad (\%) \tag{1}$$

4

5 where *R* is the ratio of D/H or ${}^{18}\text{O}/{}^{16}\text{O}$ in the sampled water (R_{sample}) or in Standard Mean 6 Ocean Water, SMOW (R_{SMOW}). The analytical errors were 0.1 ‰ for $\delta^{18}\text{O}$ and 1 ‰ for δD , 7 respectively.

8

9 4. Results and Discussion

10 4-1. Stable isotopes

Fig. 3 presents the relationship between δD and $\delta^{18}O$ in precipitation sampled monthly from October 2002 to September 2003 at MNG, KBU and UDH. The slope of the Local Meteoric Water Line (LMWL) was similar to that of the Global Meteoric Water Line (GMWL: $\delta D=8\delta^{18}O+10$):

15

16
$$\delta D = 7.5\delta^{18}O + 2.1$$
 (2)

17

This shows that no evaporation occurred during precipitation. The monthly stable isotopic ratio of the precipitation at the three locations ranged from -33.3 ‰ to -7.1 ‰ for δ^{18} O and from -248.8 ‰ to -52.6 ‰ for δ D during the observation period, and showed seasonal variation with lower values in winter and higher values in summer (Yamanaka et al., 2006). The variation range of δ D and δ^{18} O in the groundwater was smaller than that of precipitation (Fig. 4). The slope and interception (d-excess) of the regression line of the groundwater data were lower than those of the LMWL:

$$\delta D = 6.7 \delta^{18} O - 11.2 \tag{3}$$

2

3 This shows that the groundwater is affected by evaporation. The stable isotopic 4 compositions of the groundwater and precipitation show that the shallow groundwater 5 mainly originates from precipitation that falls in the Kherlen River basin. The isotopic ratio of the groundwater tended to be higher than that of the river water, and among the 6 7 groundwater samples, the δ values were the highest in the MNG and BGN (upstream) 8 regions. The δ values in the UDH region were lower than those in the MNG and BGN 9 regions, whereas the δ values in the DH and western region of DH (DH-W) showed wide variation ranging from -14.3 % to -10.7 % for δ^{18} O. The stable isotopes of the 10 11 groundwater in the MNG, BGN and UDH regions tended to be affected by evaporation more 12 than those in the other regions. However, this was thought to have been caused by 13 differences in the recharge process among regions; this will be discussed in more detail in 14 the following section.

15

16 4-2. Chemical composition

Fig. 5 shows the spatial distribution of the geochemical characteristics of the river water and groundwater measured in July and October. No temporal change was found between July and October in most of the sampling locations, although two wells at MNG and KBU (W-MNG and W-KBU in Fig. 5) showed clear temporal changes. Because both wells were newly bored in June and July 2003, the solute concentrations of the water in the boreholes could have been affected by construction. Thus, the ion concentration data in these bore holes were excluded from the following discussion.

The concentrations of major ions in the groundwater were notably higher than those in the river water. The chemical composition of the main stream water was characterized as Ca-HCO₃ type, as was the groundwater in the BGN and KBU regions, though the

1 concentrations of all ions in the groundwater were higher than in the river water. On the 2 other hand, the groundwater in the surrounding region of DH (shown as well(W)36, W34, W70, W66 and W67 in Fig. 5) was characterized by a higher concentration of Na⁺ and 3 HCO_3^- , with some exceptions (W32 and W73). Stiff diagrams for the river and spring 4 5 water are also shown in Fig. 6. The chemical patterns in the main stream water were uniform from MNG to UDH, though concentrations of the major ions increased slightly. 6 7 The solute concentrations of the tributaries and springs were higher than those of the main 8 stream water, though the chemical patterns were almost the same. A trilinear diagram is 9 shown in Fig. 7 for the river water and in Fig. 8 for the groundwater. The solute 10 constituents in the river (main and tributaries) and spring water were chemically unique and 11 almost all the data fell into the category of Ca-HCO₃ type, whereas the chemical composition of the groundwater changed from place to place. The groundwater sampled in the BGN 12 13 and the KBU regions was chemically similar to the river water from the main stream, whereas the chemical compositions of the groundwater in the region of DH, DH-W, 14 15 Jargalthaan (JGH), and UDH are very different from those of the river water. Thus, the 16 interaction between the groundwater and river water is possibly not dominant in the 17 midstream and downstream regions of the Kherlen River basin.

The Na⁺ and Cl⁻ concentrations of the groundwater were considerably high in the DH-W region (W32, W36) as shown in Figs. 5 and 8. Fig. 9 shows the relationship between the Na⁺ and Cl⁻ concentrations of the groundwater. All plots distributed far from the sea water line and the line of 1:1 (Fig. 9), thus meteoric NaCl is not the source of Na⁺. Dissolution of sodium feldspars would increase Na⁺ relative to Cl⁻ by way of the following reaction (Wischusen, et al., 2004):

24

25 $2NaAlSi_{3}O_{8} + 9H_{2}O + 2H^{+} \Rightarrow Al_{2}Si_{2}O_{5}(OH)_{4} + 2Na^{+} + 4H_{4}SiO_{4}$ (4)

1 The ratio of Cl/Br varied throughout the Cl⁻ concentrations (Fig. 10), suggesting that 2 evaporation alone does not cause the high Cl⁻ concentration of the groundwater in the DH-W 3 region. In addition, Ca²⁺ was the dominant cation in the groundwater in the upstream region 4 and the river water. The weathering of calcite, dolomite and amphibole generally accounts 5 for the Ca²⁺ concentration in the river and groundwater and can be expressed by the 6 following reactions:

7

8 Calcite: $CaCO_3 + H_2O + CO_2 \leq Ca^{2+} + 2HCO_3^{-}$ (5) 9 Dolomite: $CaMg(CO_3)_2 + 2H_2O + 2CO_2 \leq Ca^{2+} + Mg^{2+} + 4HCO_3^{-}$ (6) 10 Amphibole: $Ca_2Mg_5Si_8O_{22}(OH)_2 + 14CO_2 + 22H_2O \leq 2Ca^{2+} + 5Mg^{2+} + 14HCO_3^{-} + 8Si(OH)_4$ 11 (7)

12 The relationship between Ca^{2+} and HCO_3^{-} concentrations is shown in Fig. 11. The majority 13 of plots distributed around the line of calcite, dolomite and amphibole weathering, thus 14 suggesting that these weathering reactions mainly account for the Ca^{2+} concentration of the 15 groundwater in the study area.

16

17 4-3. Origin of the Kherlen River water

Fig. 12 presents the relationship between δ^{18} O and altitude in the river water, groundwater, 18 19 spring water and volume weighted mean (annual and summer season) precipitation at MNG, KBU and UDH. The δ^{18} O value of the river water and precipitation decreased with altitude 20 21 based on the altitude effect (Siegenthaler and Oeschger, 1980; Ingraham, 1998; Pouge and 22 Chamberlain, 2001), whereas the d-excess value increased with altitude (Fig. 13). Thus, the δ^{18} O of the river water is determined by both the effect of distillation through evaporation 23 from the river water surface and the altitude effect of precipitation. The majority of δ^{18} O in 24 25 the groundwater in the upstream and midstream regions was notably higher than that of the river water, though the quantity of groundwater samples was not sufficient in the upstream 26

1 region (Fig. 12). The chemistry of the river water was very different from that of the 2 groundwater especially in the midstream and lower stream regions (Fig. 5). Additionally, 3 the increase in discharge rate along the river (from BGN to CHB via UDH) was very small 4 as shown in Fig. 2. Thus the stable isotope, chemical and hydrological evidence all indicate 5 that groundwater inflow into the river is not dominant in the Kherlen River, and that the 6 main stream water originates from precipitation that falls in the headwater region, an area 7 with a higher altitude than MNG. The recharge altitude of the river water was evaluated by 8 extrapolating the regression line of the precipitation as shown in Fig. 12. The altitude effect of the precipitation at MNG, KBU and UDH was estimated as 0.63 %/100m for δ^{18} O, which 9 10 is a little higher than that reported previously (Siegenthaler and Oeschger, 1980; Pouge and Chamberlain, 2001). Suppose the δ^{18} O value of -15.2 % observed at the R14 site (Fig. 4) 11 12 represents the value of the river water in the headwater region, the recharge altitude of the 13 stream can be estimated as approximately 1650 m by extrapolating the regression line of the 14 precipitation. The highest altitude of the Kherlen River basin is approximately 2500 m. 15 Therefore, the origin of the main stream water is precipitation that falls in the headwater 16 region at an altitude of more than 1650 m, after which it flows downstream without major interaction with the groundwater. The δ^{18} O of the groundwater, however, in MNG and the 17 18 spring water at an altitude of 1400 m was higher than that of the river water at the same 19 altitude. This does not support the estimated recharge altitude of the Kherlen River water. There was no correlation between altitude and the δ^{18} O of the groundwater, and therefore we 20 could not estimate the δ^{18} O of the groundwater at an altitude higher than 1650 m. Thus, 21 22 how precipitation in regions higher than 1650 m recharges the river water cannot be 23 explained at present. Nevertheless, the presented data suggest that precipitation in the 24 headwater region is the origin of the Kherlen River water.

25

26 4-4. The recharge process of the groundwater

1 As shown in Fig. 4, the majority of stable isotopes in the groundwater in the upstream region 2 (MNG and BGN) were higher than those midstream (DH, DH-W), though the variation range of the plots was large in the DH and DH-W regions. Fig. 14 shows the relationship 3 between δ^{18} O and the d-excess in the groundwater; δ^{18} O was negatively correlated with the 4 5 d-excess on a whole. The d-excess value is an index showing the evaporation effect on the physicochemical characteristics of water: that is, if the water evaporates, the d-excess 6 7 The groundwater in BGN, MNG and UDH seemed to be affected by decreases. 8 evaporation more than that in DH and DH-W. The aridity index (AI) listed in Table 1 9 suggests that the groundwater in the DH and DH-W regions might be most affected by 10 evaporation. However, the question arises as to why the relatively dry DH region had a low 11 δ value and high d-excess. Onodera (1996) revealed that rainfall of less than 15 mm did not 12 contribute to groundwater recharge and that infiltrated soil water was evaporated soon after 13 the rainfall event in a semi-arid region in Tanzania, central Africa. Moreover, he also 14 showed that rainfall events with a volume of more than 20 mm and with a relatively lower 15 stable isotopic composition preferentially contributed to groundwater recharge. Thus, it is 16 probable that only large rainfall events with a lower stable isotope composition preferentially 17 recharge the groundwater in the dry DH and DH-W regions, but not in BGN, MNG and UDH. Accordingly, as a result, the groundwater in DH and DH-W has a lower δ^{18} O value 18 19 and higher d-excess. One more interpretation is that heavy stable isotopes tend not to be 20 conserved in the soil if the infiltrated water is completely evaporated soon after the rainfall 21 event in the DH and DH-W regions. When the infiltrated subsurface water is completely 22 evaporated after a rainfall event isotopic evaporation signals do not remain in the soil 23 because deuterium and oxygen-18 constitute the water molecules themselves. Thus, under 24 highly dry conditions, the stable isotopes in the groundwater are depleted. In addition, the 25 temporal heterogeneity of the recharge is thought to have caused the large variation in the stable isotopes in the groundwater in the DH and DH-W regions. On the other hand, in 26

1 MNG, BGN, and UDH, the subsurface water infiltrated during a rainfall event is partly 2 evaporated and condensed after the rainfall has ended, and therefore, the effect of 3 evaporation on the stable isotopic composition of the soil water remains. As a result, the 4 groundwater is probably recharged by soil water affected isotopically by evaporation, and 5 thus, the mean stable isotopic composition of the groundwater is higher than the annual 6 volume weighted mean precipitation seen in BGN. This process is also observed in warm 7 humid regions (Tsujimura and Tanaka, 1998). Consequently, because only relatively large 8 rainfall events can recharge the groundwater and the effect of the large amount of 9 evaporation does not remain in the subsurface water in the dry DH and DH-W regions, the 10 groundwater has a relatively low stable isotopic composition that varies largely and a high 11 d-excess value. In the relatively humid MNG and BGN regions, on the other hand, the 12 groundwater has a relatively higher isotopic value and lower d-excess.

13 Under warm humid conditions, the stable isotopic composition of the groundwater is 14 generally very constant both temporally and spatially compared to that of precipitation. 15 Moreover, the stable isotopic ratio of the groundwater corresponds to a value a little larger 16 than the annual volume weighted mean value of precipitation in that region (Tsujimura and 17 Tanaka, 1998). On the other hand, the heterogeneity of the groundwater recharge process 18 in arid and semi-arid regions was previously reported (Gee and Hillel, 1988). We adopted 19 stable isotopic and chemical tracers to investigate the groundwater behavior in a semi-arid 20 river basin in Mongolia where no such information was previously available, revealing 21 important isotopic and chemical characteristics of the groundwater recharge process. 22 Quantitative analysis is now necessary to determine the groundwater and river water 23 recharge rate in the study area.

- 24
- 25

26 5. Conclusions

1 The present study examined the stable isotopic composition and chemical characteristics of groundwater, river water and precipitation in the Kherlen River basin, a 2 3 semi-arid region in eastern Mongolia. The chemical composition of the groundwater was 4 shown to differ from that of the main stream water. In addition, the solute constituents in 5 the river water were of a Ca-HCO₃ type, spatially invariant and low in concentration. The groundwater in the upstream region was also characterized by a Ca-HCO₃ type, though all 6 7 ion concentrations were higher than in the river water. On the other hand, the chemical 8 composition of the groundwater in the southern and eastern regions was spatially variable and Na⁺, Mg²⁺, Cl⁻ and HCO₃⁻ concentrations were considerably higher than in the river 9 10 water and upstream groundwater. The effect of evaporation and geochemical weathering were thought to have caused the high concentration of these ions considering the ion ratios of 11 $Na^{+}/Cl^{-}, Ca^{2+}/HCO_{3}^{-}.$ 12

13 The stable isotopic compositions showed an evaporation effect on the groundwater and river water, as well as an altitude effect in the precipitation and river water. The δ^{18} O and 14 δD values of the groundwater were relatively high and invariant in the MNG and BGN 15 16 regions, whereas in the DH and DH-W regions they were spatially variable and relatively 17 low. In the relatively humid MNG and BGN regions, the evaporation effect during the 18 recharge process caused groundwater with a high stable isotopic ratio and low d-excess. In 19 contrast, preferential recharge by relatively large rainfall events with a relatively low stable 20 isotopic composition likely resulted in the depleted isotopic ratio in the groundwater in the 21 relatively dry DH and DH-W regions. The high d-excess and low δ values in the 22 groundwater seem to be explained by the fact that isotopic evaporation signals do not remain 23 in the soil when the infiltrated subsurface water is completely evaporated after a rainfall 24 event. The stable isotope, chemical and hydrological data suggest that the main stream 25 water of the Kherlen River is recharged by precipitation that falls in a headwater region located at an altitude of more than 1650 m, and that the interaction between the groundwater 26

and river water is not dominant in the midstream and downstream regions of the river basin.

2

3 Acknowledgements

4 The authors would like to thank Dr. D. Azzaya, Director of the Institute of Meteorology and 5 Hydrology, the National Agency for Meteorology, Hydrology and Environment Monitoring of Mongolia for support in the field survey. Thanks are also due to Dr. N. Jadambaa, 6 7 Institute of Geoecology, Mongolian Academy of Sciences, and Dr. N. Sharkhuu, Institute of 8 Geography, Mongolian Academy of Sciences, for providing important information on the 9 groundwater in Mongolia. This work was supported by a CREST project (The Rangelands 10 Atmosphere- Hydrosphere-Biosphere Interaction Study Experiment in Northeastern Asia) of the Japan Science and Technology Agency. Partial support also came from the Global 11 12 Environment Research Fund of the Ministry of Environment, Japan, and the University of 13 Tsukuba Research Projects A.

- 14
- 15

- Boronina, A., Balderera, W., Renardb, P., Stichler, W., 2005. Study of stable isotopes in the
 Kouris catchment (Cyprus) for the description of the regional groundwater flow. J.
 Hydrol., 308, 214–226.
- Brown, L.R., Halweil, B., 1998. China's water shortage could shake world food security.
 World Watch, July/August, 10-18.
- Chelmicki, W., 1984. Water circulation in the steppe zone of Mongolia. Geographia
 Polonica, 50, 345-355
- 24 Budyko, M. I., 1974. Climate and life. Academic Press, Orland, FL., 508pp.
- Datta, P. S., Bhattacharya, S. K., Tyagi, S. K. 1996. ¹⁸O studies on recharge of phreatic
 aquifers and groundwater flow-paths of mixing in the Delhi area. J. Hydrol., 176, 25-36.

1	Davaa, G., Oyunbaatar, D., Froehlick, K., 2002. Interaction of ground and surface waters		
2	revealed by stable isotopes in the Tuul river basin, Mongolia. Proceedings of the 2002		
3	International Workshop on Terrestrial Change in Mongolia, 6-9.		
4	De Vries, J. J., Simmers, I., 2002. Groundwater recharge: an overview of processes and		
5	challenges. Hydrogeol. J., 10, 5-17.		
6	Gee, G. W., Hillel, D., 1988. Groundwater recharge in arid regions: review and critique of		
7	estimation methods. Hydrol. Process., 2, 255-266.		
8	Hirabaru, O., Shimotsu, Y., Lkhamnorov, E., Punsantsogvoo M., Bataagiin, B., 1999.		
9	Geochemistry and hydrological characteristics in the central and Gobi regions,		
10	Mongolia. Yousui to haisui, 41, 783-790. (in Japanese)		
11	Ingraham, N., 1998. Isotopic variations in precipitation. In: Kendall, C. and Mcdonell, J.		
12	(Ed), Isotope Tracers in Catchment Hydrology, Elsevier, 87-118.		
13	Kabeya, N., Ohte, N., Sugimoto, A., Yoshikawa, K. and Wang, L., 2002. Effects of the		
14	ground cover conditions on horizontal profiles of chloride concentration, oxygen and		
15	hydrogen stable isotope ratios of groundwater in Nu Us Desert, China. Jap. Soc. Hydrol.		
16	Wat. Resour., 15, 13-22. (in Japanese)		
17	Kondo, A., Tanaka, T., Thong, C., Sakura, Y., Shimada, J., Shibano, H., Liu, C., Zhang, W.,		
18	Hu, C., Liu, X., Li, J., Chen, J. and Shen, Y., 2001. Water problems in north China		
19	plain. Jap. Soc. Hydrol. Wat. Resour., 14, 376-387. (in Japanese)		
20	Mineral Resources Authority of Mongolia, 1999. Geological Map of Mongolia 1:1,000,000.		
21	Institute of Geology and Mineral Resources, Mongolian Academy of Science.		
22	Onodera, S., 1996. The mechanism of concentrated groundwater recharge in a tropical		
23	semiarid region. Jap. J. Hydrol. Sci., 26, 87-98. (in Japanese)		
24	Penman, H.L., 1948. Natural evaporation from open water, bare soil and grass. Proceedings,		
25	Roy, Soc. of London, Ser. A, 193, 120-145.		
26	Pouge, M.A., Chamberlain, C.P., 2001. Empirical relationships between elevation and the		

1	stable isotope composition of precipitation: considerations for studies of paleoelevation
2	change. Amer. J. Sci. 301, 1-15.
3	Rodell, M., Famiglietti, J. S., 2002. The potential for satellite-based monitoring of
4	groundwater storage change using GRACE: the High Plains aquifer, Central US. J.
5	Hydrol., 263, 245-256.
6	Sami, K., 1992. Recharge mechanisms and geochemical processes in a semi-arid
7	sedimentary basin, Eastern Cape, South Africa. J. Hydrol., 139, 27-48.
8	Siegenthaler, U., Oeschger, H., 1980. Correlation of 18O in precipitation with temperature
9	and altitude. Nature, 285, 314-317.
10	Sharkhuu, N., 2001. Dynamics of permafrost in Mongolia. Tohoku Geophys. J., 36, 91-99.
11	Sugita, M., 2003. Interactions of water cycle processes and ecology. Science Journal
12	KAGAKU, 15, 559-562. (in Japanese)
13	Sugita, M., Asanuma, J., Tsujimura, M., Mariko, S., Lu, M., Kimura, F., Azzaya, D.,
14	Adyasuren, Ts., 2006. An overview of the Rangelands Atmosphere- Hydrosphere-
15	Biosphere Interaction Study Experiment in Northeastern Asia (RAISE). J. Hydrol., this
16	issue.
17	Taniguchi, M., Kaihotsu, I., Kotoda, K., 1995. Isotope studies of precipitation, river water
18	and groundwater in the HEIFE area, northwestern China. J. Meteorol. Soc. Jap., 73,
19	1293-1299.
20	Tase, N., 2000. Groundwater development and its issues in the high plains of the United
21	States. Research Report of Water Resources Research Center, 20, 87-100. (in Japanese)
22	Tsujimura, M., Tanaka, T., 1998. Evaluation of evaporation rate from forested soil surface
23	using stable isotopic composition of soil water in a headwater basin. Hydrol. Process.,
24	12, 2093-2103.
25	Vogel, J. C., Van Urk, H., 1975. Isotopic composition of groundwater in semi-arid regions of
26	southern Africa. J. Hydrol. 25, 23-36.

1	Wang, G., Cheng, G., 1999. Water resource development and its influence on the		
2	environment in arid areas of China-the case of the Hei River basin. J. Arid Environ.,		
3	43, 121-131.		
4	Wischusen, J. D. H., Fifield, L. K., Cresswell, R. G., 2004. Hydrogeologyof Palm Valley		
5	central Australia; a Pleistocene flora refuge? J. Hydrol., 293, 20-46.		
6	Yamanaka, T., Tsujimura, M., Oyunbaatar, D., Davaa, G., 2006. Isotopic variation of		
7	precipitation over eastern Mongolia and continental-scale atmospheric water cycle. J.		
8	Hydrol., this issue.		
9			

1 Figure legends

- Fig. 1 Location of the study area. FOR: Forest site, MNG: Mongenmorit, BGN: Baganuur,
 KBU: Kherlenbayan-Ulaan, DGH: Delgerhaan, JGH: Jargalthaan, DH: Darhan, UDH:
 Underhaan, CHB: Choibalsan.
- Fig. 2 The monthly discharge rate of the Kherlen River at BGN, UDH and CHB gauging
 stations from 1990 to 2000 according to the IMH.
- Fig. 3 The relationship between the δ¹⁸O and δD of monthly precipitation and the annual
 volume weighted mean precipitation (October 2002 to September 2003; the KBU data
 was missing for April. The summer season denotes May to October and the winter
 season November to April).
- 11 Fig. 4 δ^{18} O versus δ D in the groundwater and annual volume weighted mean precipitation.
- 12 DH-W denotes the western region of DH. GW-others denotes the groundwater at KBU,
- 13 DGH, and JGH. River water denotes the data of the main stream of the Kherlen River.

14 Fig. 5 Spatial distribution of the chemical composition of the river water and groundwater.

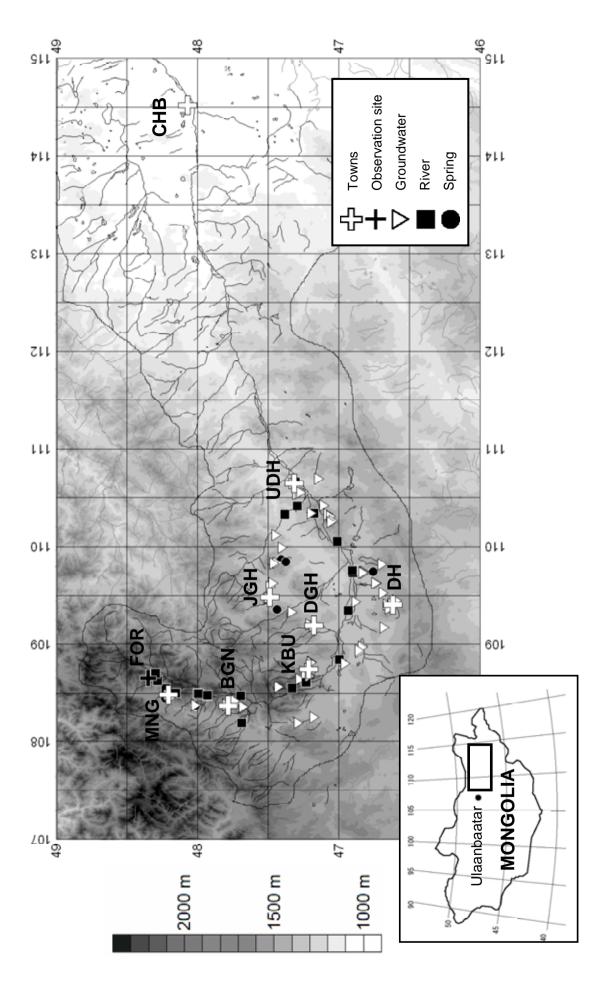
15 Fig. 6 Spatial distribution of the chemical composition of the river water.

16 Fig. 7 Trilinear diagram of the river water samples obtained in July.

- 17 Fig. 8 Trilinear diagram of the groundwater samples.
- Fig. 9 The Cl⁻ versus Na⁺ concentration of the groundwater. The dotted line shows the
 ocean water line. 'Others' denotes all data except for DH-W, DH and UDH.

20 Fig. 10 The Cl⁻ concentration versus Cl/Br ratio of the groundwater.

- Fig. 11 The Ca^{2+} versus HCO_3^- concentration of the groundwater. The dotted line and cothers' are as in Fig. 9.
- Fig. 12 The altitude versus δ¹⁸O of the river water, groundwater, spring water and annual /
 summer volume weighted mean precipitation. GW denotes the groundwater, and
 'GW-DH' denotes the DH and DH-W regions combined. RRW: regression line of the
 river water, RAP: regression line of the annual volume weighted mean precipitation,


1		RSP: regression line of the volume weighted mean precipitation in the summer season
2		(April – October).
3	Fig.	13 The spatial variation in $\delta^{18}O$ and the d-excess value along the Kherlen River starting
4		at the R14 site (see Fig. 6).
5	Fig.	14 The $\delta^{18}O$ versus d-excess value of the groundwater. 'Others' denotes the samples
6		obtained at KBU, DGH and JGH.
7		

Site ID	Annual precipitation (mm/y)	Aridity Index
MNG	282	0.52
BGN	213	0.47
KBU	181	0.41
JGH	187	0.39
UDH	226	0.35
DH	216	0.35

Table 1 Mean annual precipitation and aridity index (AI) (by Budyko, 197 in the Kherlen River basin. The abbreviations are listed in Fig. 1.

The mean annual precipitation was obtained from 1993-2003 by IMH. The potential evaporation used for estimation of AI was calculated with Penman method for 1988 (Sugita, 2003).

2

DGH: Delgerhaan, JGH: Jargalthaan, DH: Darhan, UDH: Underhaan, CHB: Choibalsan FOR: Forest site, MNG: Mongenmorit, BGN: Baganuur, KBU: Kherlenbayan-Ulaan Fig. 1 Location of the study area.

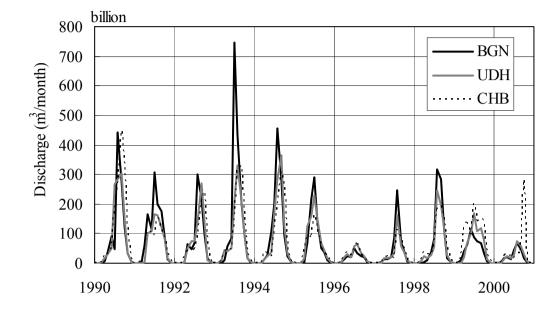


Fig. 2 The monthly discharge rate of the Kherlen River at BGN, UDH and CHB gauging stations from 1990 to 2000 according to the IMH.

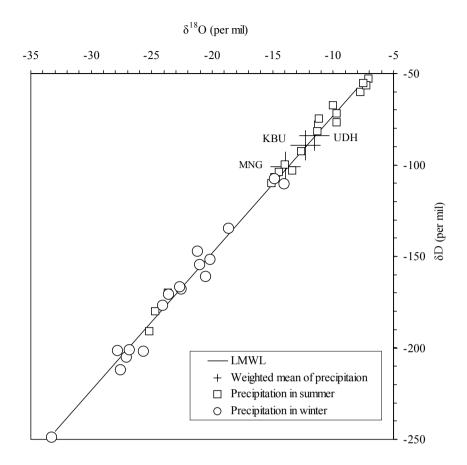


Fig. 3 The relationship between the δ ¹⁸O and δ D of monthly precipitation and the annual volume weighted mean precipitation (October 2002 to September 2003; the KBU data was missing for April. The summer season denotes May to October and the winter season November to April).

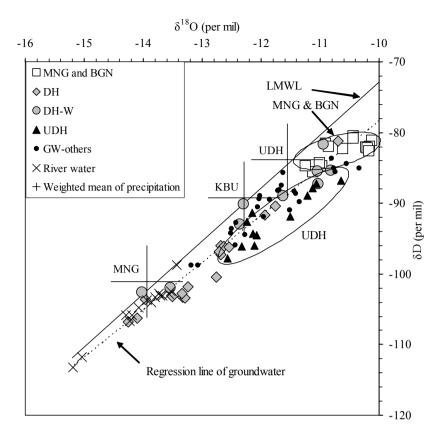


Fig. 4 δ^{18} O versus δ D in the groundwater and annual volume weighted mean precipitation. DH-W denotes the western region of DH. GW-others denotes the groundwater at KBU, DGH, and JGH. River water denotes the data of the main stream of the Kherlen River.

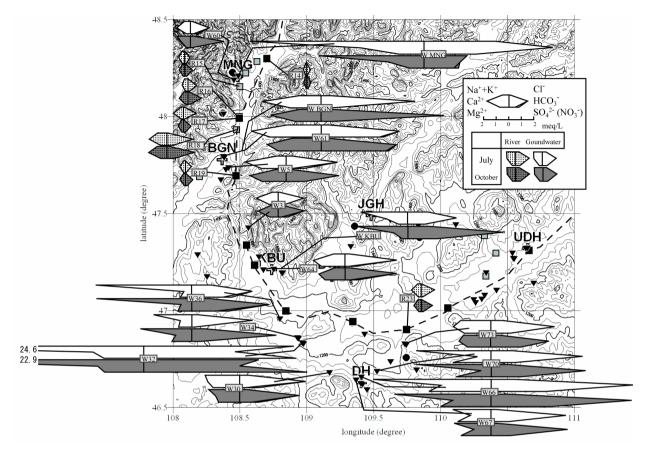


Fig. 5 Spatial distribution of the chemical composition of the river water and groundwater.

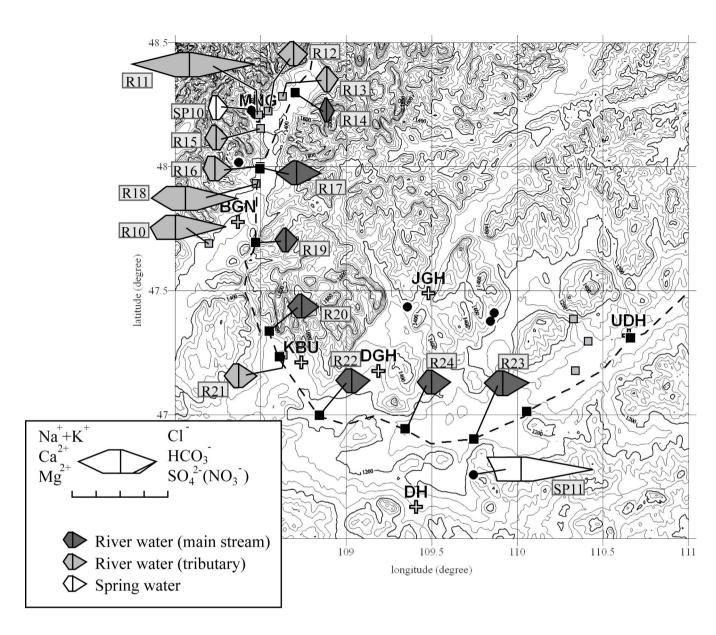


Fig. 6 Spatial distribution of the chemical composition of the river water.

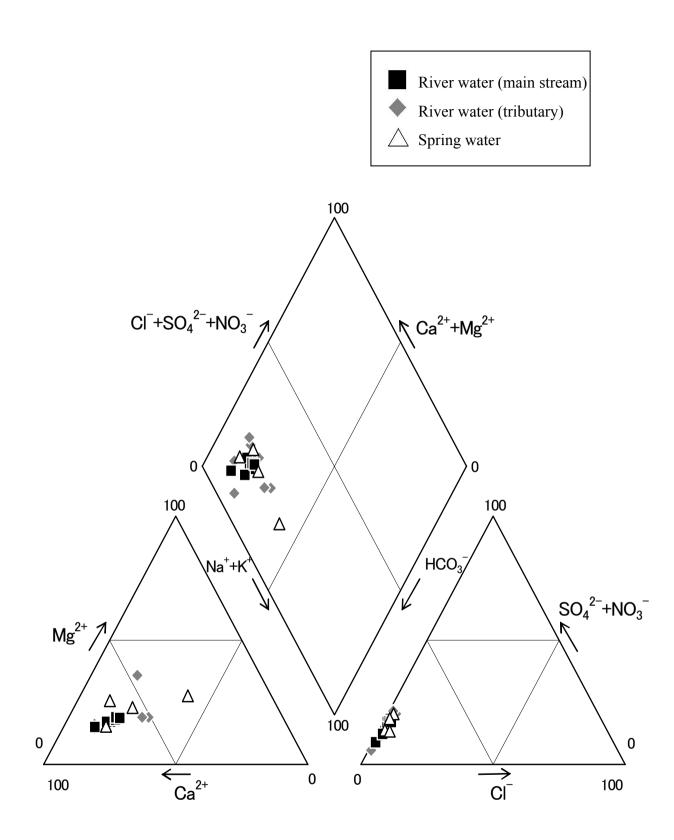


Fig. 7 Trilinear diagram of the river water samples obtained in July.

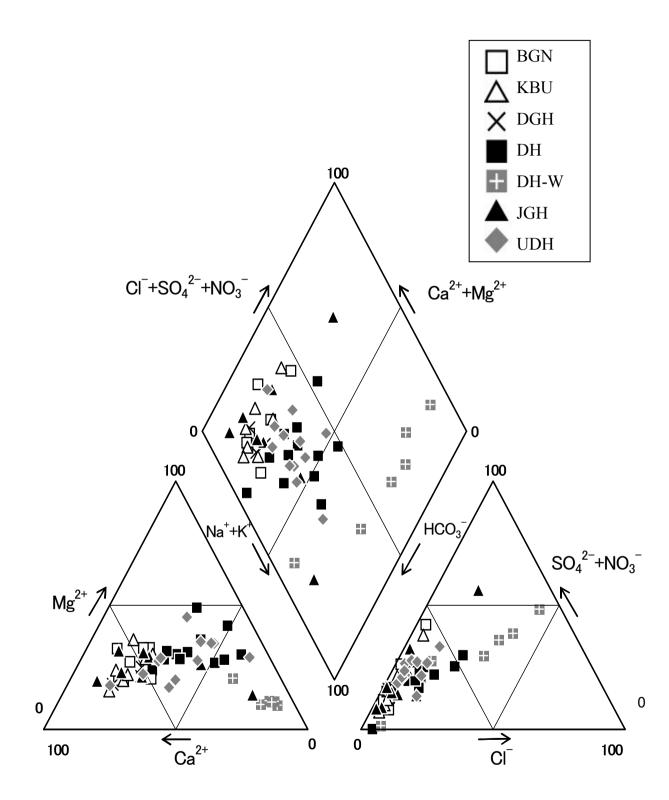


Fig. 8 Trilinear diagram of the groundwater samples.

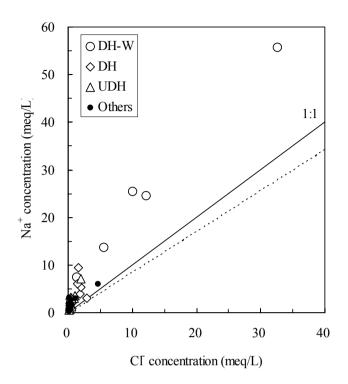


Fig. 9 The Cl⁻ versus Na⁺ concentration of the groundwater. The dotted line shows the ocean water line. 'Others' denotes all data except for DH-W, DH and UDH.

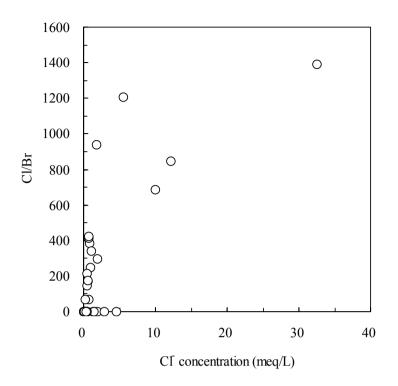


Fig. 10 Cl⁻ concentration versus Cl/Br ratio of the groundwater.

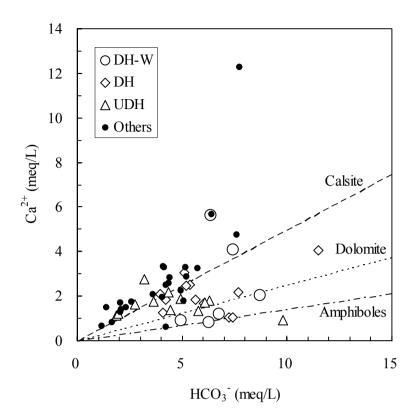


Fig. 11 Ca^{2+} versus HCO_3^{-} concentrations of the groundwater. The dotted line and 'others' are as in Fig. 9.

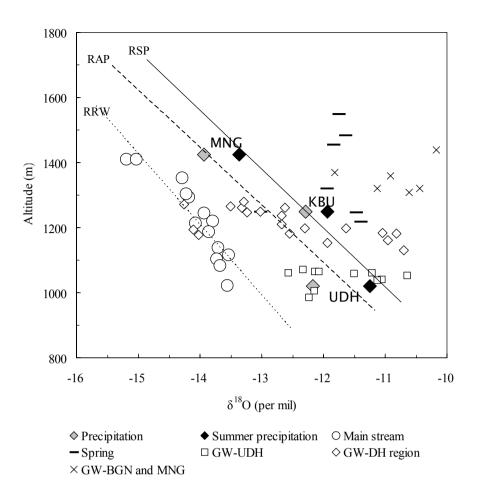


Fig. 12 The altitude versus δ^{18} O of the river water, groundwater, spring water and annual / summer volume weighted mean precipitation. GW denotes the groundwater, and 'GW-DH' denotes the DH and DH-W regions combined. RRW: regression line of the river water, RAP: regression line of the annual volume weighted mean precipitation, RSP: regression line of the volume weighted mean precipitation in the summer season (April – October).

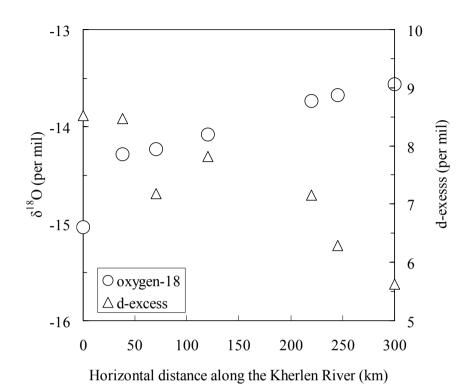


Fig. 13 The spatial variation in δ^{18} O and the d-excess value along the Kherlen River starting at the R14 site (see Fig. 6).

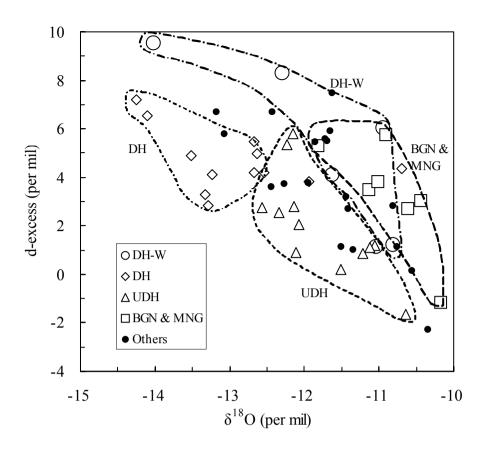


Fig. 14 The δ^{18} O versus d-excess value of the groundwater. 'Others' denotes the samples obtained at KBU, DGH and JGH.