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Abstract. Let BdH(�m) be the hyperspace of nonempty bounded
closed subsets of Euclidean space �m endowed with the Hausdorff met-
ric. It is well known that BdH(�m) is homeomorphic to the Hilbert cube
minus a point. We prove that natural dense subspaces of BdH(�m) of
all nowhere dense closed sets, of all perfect sets, of all Cantor sets and of
all Lebesgue measure zero sets are homeomorphic to the Hilbert space
�2. For each 0 � 1 < m, let

νm
k = {x = (xi)

m
i=1 ∈ �m : xi ∈ � \ � except for at most k many i},

where ν2k+1
k is the k-dimensional Nöbeling space and νm

0 = (� \�)m . It
is also proved that the spaces BdH(ν1

0) and BdH(νm
k ), 0 � k < m−1, are

homeomorphic to �2. Moreover, we investigate the hyperspace CldH(�)
of all nonempty closed subsets of the real line � with the Hausdorff
(infinite-valued) metric. It is shown that a nonseparable component H
of CldH(�) is homeomorphic to the Hilbert space �2(2ℵ0) of weight 2ℵ0

in case where H �� �, [0,∞), (−∞, 0].

Introduction

In this paper, we consider metric spaces and their hyperspaces endowed
with the Hausdorff metric. Specifically, given a metric space X = 〈X,d〉,
we shall denote by Cld(X) and Bd(X) the hyperspaces consisting of all
nonempty closed sets and of all nonempty bounded closed sets in X respec-
tively and by dH the Hausdorff metric, which is infinite-valued on Cld(X) if
X is unbounded. We shall sometimes write CldH(X) or BdH(X) to empha-
size the fact that we consider this space with the Hausdorff metric topology.

A theorem of Antosiewicz and Cellina [2] states that, given a convex set
X in a normed linear space, every continuous multivalued map ϕ : Y →
BdH(X) from a closed subset Y of a metric space Z, can be extended to
a continuous map f : Z → BdH(X). Using the language of topology, this
theorem says that, under the above assumptions, BdH(X) is an absolute
extensor or an absolute retract (in the class of metric spaces). In [8], it is
proved that the above result is still valid when X is replaced by a dense
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subset of a convex set in a normed linear space. More generally, BdH(X)
is an absolute retract, whenever the metric on X is almost convex (see §3
for the definition). This condition was further weakened in [17], which has
turned out to be actually a necessary and sufficient one by Banakh and
Voytsitskyy [4]. In the last paper, several equivalent conditions are given,
which are too technical to mention them here. We refer to [4] for the details.

It is a natural question whether BdH(X) and some of its natural subspaces
are homeomorphic to some standard spaces, like the Hilbert cube/space, etc.
Since the Hausdorff metric topology coincides with the Vietoris topology on
the hyperspace exp(X) of nonempty compact sets, the above question was
already answered, applying known results, in case where bounded closed sets
in X are compact. Among the known results, let us mention the theorem of
Curtis and Schori [10] (cf. [19, Chapter 8]), saying that exp(X) is homeomor-
phic to (≈) the Hilbert cube Q = [−1, 1]ω if and only if X is a Peano contin-
uum, that is, it is compact, connected and locally connected. Later, Curtis
[9] characterized non-compact metric spaces X for which exp(X) is homeo-
morphic to the Hilbert cube minus a point Q \0 (= Q \{0}) or the pseudo-
interior s = (−1, 1)ω of Q.1 In particular, BdH(Rm) = exp(Rm) ≈ Q \0. For
more information concerning Vietoris hyperspaces, we refer to the book [13].

The aim of this work is to study topological types of some of the natural
subspces of the Hausdorff hyperspace. We consider the following subspaces
of BdH(X):

• Nwd(X) — all nowhere dense closed sets;
• Perf(X) — all perfect sets;2

• Cantor(X) — all compact sets homeomorphic to the Cantor set.

In case X = Rm with the standard metric, we can also consider the following
subspace:

• N(Rm) — all closed sets of the Lebesgue measure zero.

We show that, in case X = Rm, the above spaces are homeomorphic to the
separable Hilbert space �2. Actually, we prove that if F is one of the above
spaces then the pair 〈BdH(Rm),F〉 is homeomorphic to 〈Q \0, s \0〉.

The completion of a metric space X = 〈X,d〉 is denoted by 〈X̃, d〉. Then
BdH(X,d) can be identified with the subspace of BdH(X̃, d), via the isomet-
ric embedding A �→ clX̃ A. Thus we shall often write Bd(X,d) ⊆ Bd(X̃, d),
having in mind this identification. In this case, Bd(X̃, d) is the completion
of Bd(X,d). By such a reason, we also consider a dense subspace D of a
metric space X = 〈X,d〉. For each 0 � k < m, let

νm
k = {x = (xi)mi=1 ∈ Rm : xi ∈ R \ Q except for at most k many i},

which is the universal space for completely metrizable subspaces in Rm of
dim � k. In case 2k + 1 < m, νm

k is homeomorphic to the k-dimensional

1It is well known that s is homeomorphic to the separable Hilbert space �2.
2I.e., completely metrizable closed sets which are dense in itself.
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Nöbeling space ν2k+1
k , which is the universal space for all separable com-

pletely metrizable spaces. Note that νm
0 = (R \ Q)m ≈ R \ Q. We show that

the pairs 〈Bd(R),Bd(R \ Q)〉 and 〈Bd(Rm),Bd(νm
k )〉, 0 � k < m − 1, are

homeomorphic to 〈Q \0, s \0〉, so we have BdH(νm
k ) ≈ �2 if 〈m,k〉 = 〈1, 0〉 or

0 � k < m− 1.
We also study the space CldH(R). It is very different from the hyperspace

exp(R). It is not hard to see that CldH(R) has 2ℵ0 many components, Bd(R)
is the only separable one and any other component has weight 2ℵ0 . We
show that a nonseparable component H of CldH(R) is homeomorphic to the
Hilbert space �2(2ℵ0) of weight 2ℵ0 in case where H 	
 R, [0,∞), (−∞, 0].
This is a partial answer (in case n = 1) of Problem 4 in [17].

1. Preliminaries

We use standard notation concerning sets and topology. For example, we
denote by ω the set of all natural numbers. Given a set X, we denote by
[X]<ω the family of all finite subsets of X.

Given a metric space X = 〈X,d〉 and a set A ⊆ X, we denote by B(A, r)
and B(A, r) the open and the closed r-balls centered at A, that is,

B(A, r) = {x ∈ X : dist(x,A) < r} and

B(A, r) = {x ∈ X : dist(x,A) � r}.
The Hausdorff metric dH on Cld(X) is defined as follows:

dH(A,C) = inf{r > 0: A ⊆ B(C, r) and C ⊆ B(A, r)},
where dH is actually a metric on Bd(X) but dH is infinite-valued for Cld(X)
if 〈X,d〉 is unbounded. The spaces CldH(X) and BdH(X) are sometimes
denoted by CldH(X,d) and BdH(X,d), to emphasize the fact that they are
determined by the metric on X. In fact, the metric �(x, y) = d(x, y)/(1 +
d(x, y)) induces the same topology on X as d but the Hausdorff metric
�H induces a different one on Cld(X). On the other hand, the Hausdorff
metric induced by the metric d̄(x, y) = min{d(x, y), 1} is finite-valued and
induces the same topology on CldH(X) as dH ; moreover Cld(X) is equal to
Bd(X) as sets. Note that the subspace Fin(X) = [X]<ω \ {∅} of BdH(X)
of all nonempty finite subsets of X is dense in BdH(X) if and only if every
bounded set in X = 〈X,d〉 is totally bounded.

Fact 1.1. For a metric space X = 〈X,d〉, the following hold:
(i) If d is complete then 〈Bd(X,d), dH 〉 is a complete metric space and

the space CldH(X) is completely metrizable.
(ii) The space BdH(X,d) is separable if and only if every bounded set in

X is totally bounded.

We use the standard notation exp(X) for the Vietoris hyperspace of
nonempty compact sets in X. Note that exp(X) ⊆ Bd(X) for every metric
space X = 〈X,d〉 and it is well known that the Hausdorff metric induces the
Vietoris topology on exp(X). However, if closed bounded sets of X are not
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compact, then the space BdH(X) is very different from BdV (X) endowed
with the Vietoris topology. We use the following notation:

A− = {C ∈ Cld(X) : C ∩A 	= ∅} and A+ = {C ∈ Cld(X) : C ⊆ A},
where A ⊆ X. When dealing with Bd(X) (or other subspace of Cld(X)), we
still write A− and A+ instead of A− ∩Bd(X) and A+ ∩Bd(X) respectively.

In the rest of this section, we shall give preliminary results of infinite-
dimensional topology. For the details, we refer to the book [3]. We abbreviate
“absolute neighborhood retract” to “ANR”.

Let X = 〈X,d〉 be a metric space. It is said that a map f : Y → X can
be approximated by maps in a class F of maps if for every map α : X →
(0, 1) there exists a map g : Y → X which belongs to F and such that
d(f(y), g(y)) < α(f(y)) for every y ∈ Y . A closed subset A ⊆ X is a
Z-set in X if the identity map idX of X can be approximated by maps
f : X → X such that f [X] ∩ A = ∅. Strengthening the last condition to
clX(f [X]) ∩ A = ∅, we define the notion of a strong Z-set. In case X is
locally compact, every Z-set in X is a strong Z-set. Moreover, it is well
known that every Z-set in an �2-manifold is a strong Z-set. A countable
union of (strong) Z-sets is called a (strong) Zσ-set. We call X a (strong) Zσ-
space if it is a (strong) Zσ-set in itself. An embedding f : X → Y is called a
Z-embedding if f [X] is a Z-set in Y .

It is said that D ⊆ X is homotopy dense in X if there exists a homotopy
h : X × [0, 1] → X such that h0 = id and ht[X] ⊆ D for every t > 0, where
ht(x) = h(x, t). The complement of a homotopy dense subset of X is said to
be homotopy negligible. If A ⊆ X is a homotopy negligible closed set then
A is a Z-set in X.

Fact 1.2. For a closed set A in an ANR X, the following are equivalent:
(a) A is a Z-set in X;
(b) each map f : [0, 1]n → X, n ∈ ω, can be approximated by maps into

X \A;
(c) A is homotopy negligible in X.

Fact 1.3. Let D be a homotopy dense subset of an ANR X. Then the fol-
lowing hold:

(i) D is also an ANR.
(ii) A closed set A ⊆ X is a Z-set in X if and only if A∩D is a Z-set in

D.
(iii) If A ⊆ X is a strong Z-set in X then A ∩D is a strong Z-set in D.

Proposition 1.4. Assume that X is a homotopy dense subset of a Q-
manifold M . Then X is an ANR and every Z-set in X is a strong Z-set.
Furthermore, X is a strong Zσ-space if and only if X is contained in a Zσ-set
in M .

Proof. We verify only the “furthermore” statement. Assume X ⊆ ⋃n∈ω Zn,
where each Zn is a Z-set in M . Then each Zn is a strong Z-set in M , because
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M is locally compact, and therefore by Fact 1.3 (iii), each Zn∩X is a strong
Z-set in X. Conversely, if X =

⋃
n∈ω Xn, where each Xn is a (strong) Z-

set in X, then by Fact 1.3 (ii), Zn = clM Xn is a Z-set in M . Clearly,
X ⊆ ⋃n∈ω Zn.

Let C be a topological class of spaces, that is, if X is homeomorphic to
some Y ∈ C then X also belongs to C. It is said that C is open (resp. closed)
hereditary if X ∈ C whenever X is an open (resp. closed) subspace of some
Y ∈ C. A space X is called strongly C-universal if for every Y ∈ C and every
closed subset A ⊆ Y , every map f : Y → X such that f � A is a Z-embedding
can be approximated by Z-embeddings g : X → Y such that g � A = f � A.
Similarly, one defines C-universality, relaxing the above condition to the case
A = ∅, that is, X is C-universal if every map f : Y → X of Y ∈ C can be
approximated by Z-embeddings.

Fact 1.5. Let X be an ANR such that every Z-set in X is strong and let
C be an open and closed hereditary topological class of spaces. If every open
subspace U ⊆ X is C-universal then X is strongly C-universal.

Given a topological class C of spaces, we denote by σC the class of all
spaces of the form X =

⋃
n∈ω Xn, where each Xn is closed in X and Xn ∈ C.

Recall that X is a C-absorbing space if X ∈ σC is a strongly C-universal
ANR which is a strong Zσ-space. In case C is closed hereditary, we can write
X =

⋃
n∈ω Xn, where each Xn is a strong Z-set in X and Xn ∈ C.

We shall denote by M0 and M1 the classes of all compact metrizable
spaces and all Polish spaces3 respectively. Let Σ = Q \ s denote the pseudo-
boundary4 of Q.

Fact 1.6. If X is an M0-absorbing homotopy dense subspace of Q, then
〈Q,X〉 ≈ 〈Q,Σ〉. In case X ⊆ Q \0, 〈Q \0,X〉 ≈ 〈Q \0,Σ〉.
Fact 1.7. Assume that X is a both homotopy dense and homotopy negligible
subset of a Hilbert cube manifold M . If X is σ-compact then it is a strong
Zσ-space.

Proof. Assume X =
⋃

n∈ω Kn, where each Kn is compact. Then each Kn is
closed in M and therefore it is a strong Z-set by Fact 1.3 (iii).

2. Borel classes of several Hausdorff hyperspaces

Let 〈X̃, d〉 denote the completion of 〈X,d〉. We identify Bd(X,d) with
the subspace of Bd(X̃, d), via the isometric embedding A �→ clX̃ A. Then,
〈Bd(X̃), dH〉 is a completion of 〈Bd(X), dH 〉. Moreover, it should be noticed
that A ∈ Bd(X̃) \ Bd(X) if and only if A 	= clX̃(A ∩ X). Saint Raymond
proved in [20, Théorème 1] that if X is the union of a Polish subset and a

3I.e., separable completely metrizable spaces.
4In some articles (e.g. [3]), Σ denotes the radial interior of Q, i.e., Σ = {x ∈

Q: supn∈ω |x(n)| < 1}. However, there is an auto-homeomorphism of Q which maps the

pseudoboundary onto the radial interior.
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σ-compact subset then BdH(X) is Fσδ (hence Borel) in BdH(X̃).5 In par-
ticular, we have the following:

Proposition 2.1. If X = 〈X,d〉 is σ-compact then the space 〈Bd(X), dH 〉
is Fσδ in its completion 〈Bd(X̃), dH〉.

Moreover, the following can be easily obtained by adjusting the proof of
[20, Théorème 1]:6

Proposition 2.2. If X = 〈X,d〉 is Polish (d is not necessarily complete)
then the space 〈Bd(X), dH 〉 is Gδ in its completion 〈Bd(X̃), dH 〉.

For the readers’ convenience, direct short proofs of the above two propo-
sitions are given in the Appendix. Combining Fact 1.1 and Proposition 2.2,
we have the following:

Corollary 2.3. If X = 〈X,d〉 is Polish in which every bounded set is totally
bounded, then the space BdH(X) is also Polish.

Concerning the spaces Nwd(X) and Perf(X), we prove here the following:

Proposition 2.4. For every separable metric space X, the space Nwd(X)
is Gδ in BdH(X).

Proof. Let {Un : n ∈ ω} be a countable open base for X. For each n ∈ ω, let

Fn = {A ∈ Bd(X) : Un ⊆ A}.
Then each Fn is closed in BdH(X) and

⋃
n∈ω Fn = Bd(X) \ Nwd(X).

Proposition 2.5. If X is locally compact then Perf(X) is Gδ in BdH(X).

Proof. Let {Un : n ∈ ω} enumerate an open base of X such that clUn is
compact for every n ∈ ω. Note that, by compactness, (clUn)− is closed in
BdH(X,d). For each n,m ∈ ω define

Φ(n,m) = {〈k, l〉 ∈ ω2 : Uk ∩ Ul = ∅, Uk ∪ Ul ⊆ B(Un, 1/m)}.
We claim that

Bd(X,d) \ Perf(X) =
⋃

n,m∈ω

⋂
〈k,l〉∈Φ(n,m)

(
(clUn)− \ (U−

k ∩ U−
l )
)
.

The set on the right-hand side is Fσ , so this will finish the proof.
Note that a closed set in a Polish space is perfect if and only if it has

no isolated points. If A ∈ Bd(X,d) \ Perf(X) then there is y ∈ A which is
isolated in A. We can find n,m ∈ ω such that y ∈ Un and B(Un, 1/m)∩A =
{y}. Then A ∈ (clUn)− and A /∈ U−

k ∩ U−
l whenever 〈k, l〉 ∈ Φ(n,m).

5In [20], X is assumed to be a subspace of a compact metric space, but the proof is valid
without this assumption. Moreover, it is also proved in [20, Théorème 6] that if BdH(X)
is absolutely Borel (i.e., Borel in its completion) then X is the union of a Polish subset
and a σ-compact subset.

6A similar result was proved by Costantini [7] for the Wijsman topology.
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Conversely, assume that there are n,m ∈ ω such that A ∈ (clUn)− and
A /∈ U−

k ∩ U−
l for every 〈k, l〉 ∈ Φ(n,m). Then A ∩ B(Un, 1/m) 	= ∅ and the

second condition says that A ∩ B(Un, 1/m) does not contain two points, so
it is a singleton. Thus A /∈ Perf(X).

Replacing (clUn)− by B(Un, 1/m)− in the formula from the proof above,
we obtain the following:

Corollary 2.6. The space Perf(X) is Fσδ in BdH(X) if X is Polish.

Since Cantor(Rm) = Perf(Rm)∩Nwd(Rm), the following is a combination
of Propositions 2.4 and 2.5:

Corollary 2.7. The space Cantor(Rm) is Gδ in BdH(Rm).

Now, we shall prove the following:

Proposition 2.8. The space N(Rm) is Polish.

Proof. Let {In : n ∈ ω} enumerate all open rational cubes (i.e. products of
rational intervals) in Rm. Given k ∈ ω, we define

Sk =
{
s ∈ [ω]<ω :

∑
n∈s

|In| < 1/k
}
,

where |I| denotes the volume of the cube I ⊆ Rm. We claim that

N(Rm) =
⋂
k∈ω

⋃
s∈Sk

(⋃
n∈s

In

)+
.

Clearly, if A belongs to the right-hand side then for each k ∈ ω there is
s ⊆ ω such that A ⊆ ⋃n∈s In and

∑
n∈s |In| < 1/k; therefore A has Lebesgue

measure zero.
Assume now A has Lebesgue measure zero and fix k < ω. Then A ⊆⋃

n∈ω Jn, where each Jn is an open rational cube and
∑

n∈ω |Jn| < 1/k. By
compactness, A ⊆ J0∪· · ·∪Jl−1 for somem and {J0, . . . , Jl−1} = {In : n ∈ s}
for some s ∈ Sk. Thus A ∈ ⋃s∈Sk

(
⋃

n∈s In)+.

3. Almost convex metric spaces

Recall that a metric d on X is almost convex if for every α > 0, β > 0
and for every x, y ∈ X such that d(x, y) < α + β, there exists z ∈ X with
d(x, z) < α and d(z, y) < β.

Fix a dense set X in a separable Banach space E. Let d denote the metric
on X induced by the norm of E. Then 〈X,d〉 is an almost convex metric
space and therefore by a result of [8] the space Bd(X,d) is an absolute
retract. In case where X is Gδ , the space Bd(X,d) is completely metrizable
by Proposition 2.2. If additionally E is finite-dimensional then Bd(X,d) is
Polish by Corollary 2.3. In case where X is σ-compact, by Proposition 2.1,
Bd(X,d) is absolutely Fσδ. It is natural to ask whether these spaces or their
subspaces, discussed in §2, are homeomorphic to some standard spaces. Such
standard spaces appear as homotopy dense subspaces of the Hilbert cube Q.
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Let UNb(X,d) denote the family of all sets of the form B(C, t), the closed
t-neighborhood of C ∈ Bd(X,d), where t > 0.

Proposition 3.1. If 〈X,d〉 is an almost convex metric space then the sub-
space UNb(X,d) is homotopy dense in Bd(X,d).

Proof. Define a homotopy h : Bd(X,d) × [0, 1] → Bd(X,d) by the formula:

h(A, t) = B(A, t).

It suffices to verify the continuity of h with respect to Hausdorff metric
topology. It has been checked in [8] that dH(B(A, t),B(A, s)) � |t− s|. Thus
we have

dH(h(A, t), h(B, s)) � dH(h(A, t), h(A, s)) + dH(h(A, s), h(B, s))

� |t− s| + dH(h(A, s), h(B, s)).

It remains to check that dH(B(A, s),B(B, s)) � dH(A,B).
To complete the proof, we show the following:

r > dH(A,B), ε > 0 =⇒ r + ε � dH(B(A, s),B(B, s)),

For this aim, it suffices to check that B(A, s) ⊆ B(B(B, s), r + ε); then by
symmetry we shall also get B(B, s) ⊆ B(B(A,s), r + ε).

For each x ∈ B(A, s), choose a ∈ A such that d(x, a) < s + ε. There is
b ∈ B such that d(a, b) < r. Then we have d(x, b) < s + r + ε. Using the
almost convexity of d, we can find y such that d(b, y) < s and d(y, x) < r+ε.
Then y ∈ B(B, s) and hence x ∈ B(y, r + ε) ⊆ B(B(B, s), r + ε).

Denote by Reg(X,d) the hyperspace of all nonempty bounded regularly
closed subsets of a metric space 〈X,d〉. Clearly, UNb(X,d) ⊆ Reg(X,d).

Corollary 3.2. Let 〈X,d〉 be an almost convex metric space and D ⊆ X a
dense set. Then the spaces Reg(X,d) and Bd(D,d) are homotopy dense in
Bd(X,d).

Proof. Regarding Bd(D,d) ⊆ Bd(X,d) via the embedding A �→ clX A, we
have Reg(X,d) ⊆ Bd(D,d). This follows from the fact that cl(D∩U) = clU
for every open set U ⊆ X. Since UNb(X,d) is homotopy dense in Bd(X,d)
by Proposition 3.1 and UNb(X,d) ⊆ Reg(X,d), we have the result.

4. Strict deformations

Assume we are looking at certain homotopy dense subspaces of the Hilbert
cube Q. Let X ⊇ X0 be such spaces. If X0 ≈ Σ then, in order to conclude
that 〈Q,X〉 ≈ 〈Q,Σ〉, it suffices to check that X is a Zσ-set in Q, by applying
[6, Theorem 6.6]. However, to see that X0 ≈ Σ, we have to check that
X0 is strongly M0-universal. Below is a tool which simplifies this step. To
formulate it, we need some extra notions concerning homotopies.

A homotopy ϕ : X × [0, 1] → X is called a strict deformation if ϕ0 = id
and

ϕ(x, t) = ϕ(x′, t′) ∧ t > 0 ∧ t′ > 0 =⇒ x = x′.
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It is said that ϕ omits A ⊆ X if ϕ[X × (0, 1]]∩A = ∅. Finally, we say that a
space X is strictly homotopy dense in Y if X ⊆ Y and there exists a strict
deformation which omits Y \ X (so in particular X is homotopy dense in
Y ).

Lemma 4.1. For every Z-set A in a Q-manifold M , there exists a strict
deformation of M which omits A.

Proof. Find a Z-embedding f0 : M → M which is properly 2−2-homotopic
to the identity and so that f0[M ] ∩ A = ∅. Further, find a Z-embedding
f1 : M → M which is properly 2−3-homotopic to the identity and f1[M ] ∩
(f0[M ] ∪ A) = ∅. Continuing this way, we find Z-embeddings fn : M → M ,
n ∈ ω, such that fn is properly 2−n−2-homotopic to the identity and

fn[M ] ∩ (fn−1[M ] ∪ · · · ∪ f0[M ] ∪A) = ∅.
Then, we have proper 2−(n+1)-homotopies gn : M × [0, 1] →M , n ∈ ω, such
that gn

0 = fn and gn
1 = fn+1. We can define a homotopy g : M × [0, 1] →M

by g(x, 0) = x and

g(x, t) = gn(x, 2 − 2n+1t) for 2−(n+1) � t � 2−n, n ∈ ω.

Note that g2−n = fn for each n ∈ ω, each g � M × [2−n−1, 2−n] is proper and
2−n−1-close to the projection prM : M × (0, 2−n] →M . The continuity of g
at (x, 0) is guaranteed by the last fact. Using the strong M0-universality of
M (see [3, Theorem 1.1.26]), we can inductively obtain hn : M × [0, 1] →M ,
n ∈ ω, such that

(1) hn � M × [2−n−1, 1] is a Z-embedding,
(2) hn � M × [2−n, 1] = hn−1 � M × [2−n, 1],
(3) hn � M × [0, 2−n−1] = g � M × [0, 2−n−1],
(4) hn � M × [2−n−1, 2−n] is 2−n−1-close to g � M × [2−n−1, 2−n], hence

it is 2−n-close to prM : M × [2−n−1, 2−n] →M ,
(5) hn[M × [2−n−1, 1]] is disjoint from A.

Finally, the limit h = limn→∞ hn is the desired one.

Theorem 4.2. Assume that X is a Zσ-subset of a Q-manifold M which
is strictly homotopy dense in M . Then X is an M0-absorbing space. In
particular, if M ≈ Q then 〈M,X〉 ≈ 〈Q,Σ〉 and if M ≈ Q \0 then 〈M,X〉 ≈
〈Q \0,Σ〉.
Proof. The assumption says in particular thatX is homotopy dense inM , so
it follows from Proposition 1.4 that X is an ANR being a strong Zσ-space.
It remains to check that X is strongly M0-universal. For the additional
statement, we can just apply Fact 1.6.

Fix a map f : A → X of a compact metric space such that f � B is a
Z-embedding, where B ⊆ A is closed. Note that every compact subset of X
is a Z-set in M , hence it is a Z-set in X by Fact 1.3 (ii), so we just have to
preserve f � B, not worrying about Z-sets. We assume that A is endowed
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with the metric such that diam(A) � 1. Fix ε > 0. Using the strong M0-
universality of M (see [3, Theorem 1.1.26]), we can find a Z-embedding
g : A→M which is ε/2-close to f and such that g[A \B] ∩X = ∅ (here we
use the fact that X is a Zσ-set in M and also that f [B] is a Z-set in M).

By Lemma 4.1, we have a strict deformation ϕ : M × [0, 1] → M which
omits f [B]. Fix a metric d for M and choose a map γ : A → [0, 1] so that
γ−1(0) = B and

d(g(a), ϕ(g(a), γ(a))) < ε/4 for every a ∈ A.

On the other hand, by the assumption, there is a strict deformation ψ : M ×
[0, 1] →M which omits M \X. Define h : A→ X by setting

h(a) = ψ(ϕ(g(a), γ(a)), δ(a)),

where δ : A→ [0, 1] is a map chosen so that B = δ−1(0) and

d(h(a), ϕ(g(a), γ(a))) < min{ε/4, dist(ϕ(g(a), γ(a)), f [B])}.
This ensures us that h is ε/2-close to g and that h(a) /∈ f [B] whenever
a ∈ A\B. Then h is a map which is ε-close to f and h[A] ⊆ X. Furthermore,
h � B = g � B = f � B. It remains to check that h is one-to-one (then it is
a Z-embedding, since every compact set in X is a Z-set).

Suppose h(a) = h(a′). If a, a′ ∈ B then g(a) = g(a′) and consequently a =
a′. When a, a′ ∈ A\B, since ψ and ϕ are strict deformations, g(a) = g(a′) and
hence a = a′. In case a ∈ B and a′ /∈ B, we have h(a) = g(a) = f(a) ∈ f [B]
but h(a′) /∈ f [B] because ϕ omits f [B]. Thus, this case does not occur.

5. Pseudo-interiors of BdH(Rm)

Throughout this section, m > 0 is a fixed natural number. A particular
case of a well known theorem of Curtis [9] says that BdH(Rm) = exp(Rm) is
homeomorphic to Q \0. We shall consider the standard (convex) Euclidean
metric d on Rm. In this section, we investigate various Gδ subspaces of
BdH(Rm). The main result of this section is the following:

Theorem 5.1. Let F ⊆ BdH(Rm) be one of the subspaces below:

Nwd(Rm), Perf(Rm), Cantor(Rm), N(Rm), Bd(D),

where D is a dense Gδ set in Rm such that Rm \D is also dense in Rm and
in case m > 1 it is assumed that D = p[D] × R, where p : Rm → Rm−1 is
the projection onto the first m− 1 coordinates. Then the pair 〈Bd(Rm),F〉
is homeomorphic to 〈Q \0, s \0〉.

Applying Theorem 5.1 above, we have

Corollary 5.2. Suppose 〈m,k〉 = 〈1, 0〉 or 0 � k < m− 1. Then,

〈Bd(Rm),Bd(νm
k )〉 ≈ 〈Q \0, s \0〉.

Consequently, BdH(νm
k ) ≈ �2.
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Proof. As a direct consequence of Theorem 5.1, we have

〈Bd(R),Bd(ν1
0 )〉 = 〈Bd(R),Bd(R \ Q)〉 ≈ 〈Q \0, s \0〉.

For each 0 � k < m−1, observe that Rm\(νm−1
k ×R) = (Rm−1\νm−1

k )×R ⊆
Rm \ νm

k . Thus, it follows that

Bd(Rm) \ Bd(νm−1
k × R) ⊆ Bd(Rm) \ Bd(νm

k ).

By Proposition 2.2 and Corollary 3.2, Bd(νm
k ) is a homotopy dense Gδ set

in BdH(Rm), which implies that Bd(Rm) \ Bd(νm
k ) is a Zσ-set in Bd(Rm).

On the other hand, we can apply Theorem 5.1 to obtain

〈Bd(Rm),Bd(Rm) \ Bd(νm−1
k × R)〉 ≈ 〈Q \0,Σ〉.

Then, it follows from Theorem 6.6 in [6] that

〈Bd(Rm),Bd(Rm) \ Bd(νm
k )〉 ≈ 〈Q \0,Σ〉.

Thus, we have the result.

The conclusion of Theorem 5.1 is equivalent to

〈BdH(Rm),BdH(Rm) \ F〉 ≈ 〈Q \0,Σ〉.
We saw in §2 that the subspace F ⊆ Bd(Rm) in Theorem 5.1 is Gδ, that is,
BdH(Rm) \ F is Fσ in BdH(Rm). If F contains a homotopy dense subset of
BdH(Rm) then the complement BdH(Rm) \ F is a Zσ-set. Thus, in order to
apply Theorem 4.2 to obtain the result, it suffices to show that F contains
a homotopy dense subset of BdH(Rm) and the complement BdH(Rm) \ F
contains a strictly homotopy dense subset of BdH(Rm). Observe that

Fin(Rm) ⊆ N(Rm) ⊆ Nwd(Rm) and Cantor(Rm) ⊆ Perf(Rm).

As a special case of a well known result due to Curtis and Nguyen To
Nhu [11], we have

〈BdH(Rm),Fin(Rm)〉 = 〈exp(Rm),Fin(Rm)〉 ≈ 〈Q \0,Qf \0〉,
where Qf denotes the subspace of Q consisting of all eventually zero se-
quences, which is homotopy dense in Q. This fact implies the following:

Lemma 5.3. The subspace Fin(Rm) is homotopy dense in BdH(Rm).

Using Lemma 5.3 above, we can easily show the following:

Lemma 5.4. The space Cantor(Rm) is homotopy dense in BdH(Rm).

Proof. Let h be a homotopy of BdH(Rm) which witnesses that Fin(Rm) is
homotopy dense, i.e., h(A, t) is a finite set for every t > 0. Choose a Cantor
set C ⊆ [0, 1]m with 0 ∈ C and define a homotopy ϕ : BdH(Rm) × [0, 1] →
BdH(Rm) by

ϕ(A, t) = h(A, t) + tC.

Then ϕ0 = id and ϕ(A, t) ∈ Cantor(Rm) for every t > 0 because a finite
union of Cantor sets is a Cantor set.



12 W. KUBIŚ AND K. SAKAI

Concerning the space Bd(D) in Theorem 5.1, we have shown in Corollary
3.2 that it is homotopy dense in BdH(Rm). Thus, to complete the proof of
Theorem 5.1, it remains to show the following:

Lemma 5.5. Under the same assumption as Theorem 5.1, each of the fol-
lowing spaces are strictly homotopy dense in BdH(Rm):

Bd(Rm) \ Nwd(Rm), Bd(Rm) \ Perf(Rm), Bd(Rm) \ Bd(D).

First, we show the following lemma, which also gives a direct proof of
Lemma 5.3:

Lemma 5.6. For D ⊆ Rm, if Rm\D is dense in Rm then Fin(Rm)\Bd(D)
is homotopy dense in BdH(Rm).

Proof. Let H = Fin(Rm) \ Bd(D), that is, H consists of all nonempty finite
sets A ⊆ Rm such that A\D 	= ∅. Then H is dense in BdH(Rm). Moreover, H
is closed under finite unions, i.e., A∪B ∈ H whenever A,B ∈ H. Recall that
〈BdH(Rm),∪〉 is a Lawson semilattice (see [18]), that is, the union operator
〈A,B〉 �→ A ∪ B is continuous and BdH(Rm) has an open base consisting
of subsemilattices; namely, every open ball with respect to the Hausdorff
metric is a subsemilattice of 〈BdH(Rm),∪〉. By virtue of [16, Theorem 5.1],
it suffices to show that H is relatively LC0 in BdH(Rm). Recall that a
subspace Y of a space X is relatively LC0 in X if every neighborhood U of
each x ∈ X contains a neighborhood V of x inX such that every a, b ∈ V ∩Y
can be joined by a path in U ∩ Y .

Fix A ∈ BdH(Rm) and ε > 0. For each A0, A1 ∈ BdH
(A, ε/2) ∩ H, we

describe how to construct a path in BdH
(A, ε)∩H which joins A0 to A0∪A1.

Let A1 = {p0, . . . , pn−1}. For each i < n, find qi ∈ A0 such that ‖pi − qi‖ <
ε/2, and define

h(t) = A0 ∪ {(1 − t)qi + tpi : i < n} for each t ∈ [0, 1].

Then h(t) ∈ H because A0 ⊆ h(t) ∈ Fin(Rm). Further, dH(A0, h(t)) < ε/2,
that is, h(t) ∈ BdH

(A, ε). Finally, h(0) = A0 and h(1) = A0 ∪ A1. By the
same argument, we can construct a path in BdH

(A, ε)∩H which joins A0∪A1

to A1.

Proof of Lemma 5.5. First, we show the case m = 1. It suffices to con-
struct a strict deformation ϕ : BdH(R) × [0, 1] → BdH(R) which omits
Nwd(R)∪Perf(R)∪Bd(D). Let h be a homotopy of Bd(R) which witnesses
that Fin(R)\Bd(D) is homotopy dense (Lemma 5.6). Since BdH([1, 2]) ≈ Q,
we have an embedding g : BdH(R) → BdH([1, 2]). The desired ϕ can be de-
fined as follows:

ϕ(A, t) = h(A, t) ∪ {maxh(A, t) + [t, 2t], minh(A, t) − tg(A)}.

For each t > 0, it is clear that ϕ(A, t) /∈ Nwd(R) ∪ Perf(R). Since h(A, t)
contains an isolated point from R\D which remains to be isolated in ϕ(A, t),
we see that ϕ(A, t) /∈ Bd(D). Given ϕ(A, t) for t > 0, we can reconstruct t
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∗∗∗ ∗
h(A, t)

∗∗

maxh(A, t)minh(A, t)

maxh(A, t) + [t, 2t]minh(A, t) − tg(A)

minh(A, t) − [t, 2t]

as the length of the interval J ⊆ ϕ(A, t) with max J = maxϕ(A, t). Conse-
quently, g(A) can be reconstructed from ϕ(A, t). Thus, ϕ is a strict defor-
mation.

Next, we show the case m > 1. To see that Bd(Rm) \ Perf(Rm) and
Bd(Rm) \ Bd(D) are strictly homotopy dense in BdH(Rm), we shall con-
struct a strict deformation ϕ : BdH(Rm) × [0, 1] → BdH(Rm) which omits
Perf(Rm) ∪ Bd(D). Recall p : Rm → Rm−1 is the projection onto the first
m−1 coordinates. Note that p[D] is a dense Gδ set in Rm−1 and Rm−1\p[D]
is also dense in Rm−1. Let em = 〈0, 0, . . . , 0, 1〉 ∈ Rm.

Since Rm \ (p[D] × R) is dense in Rm, it follows from Lemma 5.6 that
Fin(Rm) \ Bd(p[D] × R) is homotopy dense in BdH(Rm). Let h be a ho-
motopy of Bd(Rm) which witnesses this, i.e., for t > 0, h(A, t) is finite
and p[h(A, t)] 	⊆ p[D]. Since BdH([3/5,2/3]) ≈ Q, we have an embedding
g : BdH(Rm) → BdH([3/5,2/3]). The desired ϕ can be defined as follows:

ϕ(A, t) = h(A, t) + t

(⋃
i∈ω

2−i(g(A) ∪ [3/4,1])em ∪ {2em}
)
.

a

a+ tg(A) a+ [3/4, 1]tem

a+ 2tem

a+ t(g(A) ∪ [3/4, 1]em)

· · ·∗
∗∗

∗ ∗
h(A, t)

a+ 2−1t(g(A) ∪ [3/4, 1]em)

∗∗

For each t > 0, ϕ(A, t) has an isolated point because maxprm[ϕ(A, t)] is
attained by an isolated point of ϕ(A, t), where prm denotes the projection
onto the m-th coordinate. Hence, ϕ(A, t) 	∈ Perf(Rm). Since p[ϕ(A, t)] =
p[h(A, t)] is finite and contains a point of Rm−1 \ p[D], it follows that
cl(ϕ(A, t) ∩ (p[D] × R)) 	= ϕ(A, t), which means ϕ(A, t) 	∈ Bd(p[D] × R).

Given ϕ(A, t) for t > 0, we can find t as the distance from max prm[ϕ(A, t)]
to the interior of prm[ϕ(A, t)]. Let a0 ∈ ϕ(A, t) be such that

prm(a0) = min prm[ϕ(A, t)] = minprm[h(A, t)].

Then, for sufficiently large i,

(a0 + 2−it(g(A) ∪ [3/4,1])em) ∩ h(A, t) = ∅.



14 W. KUBIŚ AND K. SAKAI

Thus, we can reconstruct 2−itg(A) and consequently also g(A) from ϕ(A, t).
This shows that ϕ is a strict deformation.

For Bd(Rm) \ Nwd(Rm), we define a homotopy ψ : BdH(Rm) × [0, 1] →
BdH(Rm) as follows:

ψ(A, t) = h(A, t) + t

(⋃
i∈ω

2−i(g(A) ∪ [3/4,1])em ∪ B(2em, 1/2)

)
.

In other wards, replacing the points a+ 2tem ∈ ϕ(A, t), a ∈ h(A, t), by the
closed balls

a+ tB(2em, 1/2) = B(a+ 2tem, t/2), a ∈ h(A, t),

we can obtain ψ(A, t) from ϕ(A, t). Evidently ψ omits Nwd(Rm). Given
ψ(A, t) for t > 0, let a0 ∈ ψ(A, t) be such that

prm(a0) = min prm[ψ(A, t)] = min prm[h(A, t)].

Then we can get t as the diameter of the ball B(a0 + 2tem, t/2) (which
is equal to 2/3 of the distance from a0 to this ball). Now, by the same
arguments as for ϕ, we can reconstruct g(A) from ψ(A, t). Thus, ψ is a
strict deformation.

Let us note that the subspace UNb(R) ∪ Fin(R) is actually equal to the
space Pol(R) consisting of all compact polyhedra in R. It follows from the
result of [21] that the pair 〈exp(R),Pol(R)〉 is homeomorphic to 〈Q,Qf 〉.

6. Nonseparable components of CldH(R)

In this section, we consider the space CldH(R) of all nonempty closed
subsets of R. We shall also consider its natural subspaces, using the same
notation as before, but having in mind the new setting. For example, Perf(R)
and Nwd(R) will denote the subspace of Cld(R) consisting of all perfect
closed subsets of R and all closed sets with no interior points, respectively.
Now Perf(R)∩Nwd(R) consists of all nonempty closed (possibly unbounded)
subsets of R which have neither isolated points nor interior points. In the
new setting, we have

Cantor(R) = Perf(R) ∩ Nwd(R) ∩ Bd(R).

As shown in [17, Proposition 7.2], CldH(R) has 2ℵ0 many components,
Bd(R) is the only separable one and any other component has weight 2ℵ0 .
The following is the main theorem in this section:

Theorem 6.1. Let H be a nonseparable component of CldH(R) which does
not contain R, [0,+∞), (−∞, 0]. Then H ≈ �2(2ℵ0).

We shall say that a set A ⊆ R has infinite uniform gaps if there are
δ > 0 and pairwise disjoint open intervals I0, I1, . . . such that diam In � δ,
A ∩ In = ∅ and bd In ⊆ A for every n ∈ ω. Define

V = {A ∈ Cld(R) : A has infinite uniform gaps }.
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Clearly, V is open in CldH(R) and V ∩ Bd(R) = ∅. For each A ∈ Cld(R) \
Bd(R) and ε > 0, let D ⊆ A be a maximal ε-discrete subset. Then D ∈ V
and dH(A,D) � ε because D ⊆ A ⊆ B(D,ε). Thus, V is dense in CldH(R)\
Bd(R).

If H is a nonseparable component of CldH(R) and R, [0,+∞), (−∞, 0] /∈
H then H ⊆ V. Indeed, each A ∈ H is unbounded and every component of
R \ A is an open interval. Let J be the set of all bounded component of
R \A. Assume that {diam I : I ∈ J } is bounded. When A is bounded below
(or bounded above), dH(A, [0,∞)) < ∞ (or dH(A, (−∞, 0]) < ∞), which
implies [0,+∞) ∈ H (or (−∞, 0] ∈ H). When A is not bounded below nor
above, dH(A,R) < ∞, which implies R ∈ H. Therefore, {diam I : I ∈ J } is
unbounded. In particular, A has infinite uniform gaps.

Due to Theorem A in [17], every component of CldH(R) is an AR, hence
it is contractible. Since a contractible �2(2ℵ0)-manifold is homeomorphic to
�2(2ℵ0), Theorem 6.1 above follows from the following theorem:

Theorem 6.2. The open dense subset V of CldH(R) is an �2(2ℵ0)-manifold.

Proof. It suffices to show that each A0 ∈ V has an open neighborhood U ⊆ V
which is an �2(2ℵ0)-manifold. In this case, U is a completely metrizable ANR
because it is an open set in a completely metrizable ANR CldH(R). Due to
Toruńczyk characterization of �2(2ℵ0)-manifold [22] (cf. [23]), we have to
show that U has the following two properties:

(i) For each maps f : [0, 1]n × 2ω → U and α : U → (0, 1), there exists a
map g : [0, 1]n × 2ω → U such that dH(g(z), f(z)) < α(f(z)) for each
z ∈ [0, 1]n × 2ω and {g[[0, 1]n × {x}] : x ∈ 2ω} is discrete in U ;

(ii) For any finite-dimensional simplicial complexes Kn, n ∈ ω, with
cardKn � 2ℵ0 , for every maps f :

⊕
n∈ω |Kn| → U and α : U → (0, 1),

there exists a map g :
⊕

n∈ω |Kn| → U such that dH(g(z), f(z))
< α(f(z)) for each z ∈ ⊕n∈ω |Kn| and {g[|Kn|] : n ∈ ω} is discrete
in U .

In the above, 2ω is the discrete space of all functions of ω to 2 = {0, 1}. To
this end, it suffices to prove the following:

• For each map α : U → (0, 1), there exist maps fx : U → U , x ∈ 2ω,
such that dH(fx(A),A) < α(A) for every A ∈ U and {fx[U ] : x ∈ 2ω}
is discrete.

Fix A0 ∈ V and choose open intervals I0, I1, . . . such that diam In � δ,
A0∩In = ∅ and bd In ⊆ A0 (i.e., inf In, sup In ∈ A0) for every n ∈ ω. Taking
a subsequence if necessary, we may assume that either sup In < inf In+1 for
every n ∈ ω or inf In > sup In+1 for every n ∈ ω. Because of similarity, we
may assume that the first possibility occurs.

Choose intervals [an, bn] ⊆ In, n ∈ ω, so that bn − an > δ/4,

inf
n∈ω

dist(an,R \ In) = inf
n∈ω

(an − inf In) > δ/4 and

inf
n∈ω

dist(bn,R \ In) = inf
n∈ω

(sup In − bn) > δ/4.
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In−1 In

A0 A0
an bnbn−1an−1

◦ ◦◦◦

Observe that if A ∈ CldH(R) and dH(A,A0) < δ/4 then A ∩ (bn−1, an) 	= ∅
for every n ∈ ω, where b−1 = −∞. For each A ∈ CldH(R) with dH(A,A0) <
δ/4, we can define

rn(A) = max(A ∩ (bn−1, an)), n ∈ ω.
For each A,A′ ∈ CldH(R) with dH(A,A0), dH(A′, A0) < δ/4, we have

|rn(A) − rn(A′)| � dH(A,A′).

Indeed, without loss of generality, we may assume that rn(A) < rn(A′).
Then, the open interval (rn(A), bn) contains no points of A and rn(A′) ∈
(rn(A), bn). Since bn − rn(A′) > δ/2 and

rn(A′) − rn(A) � |rn(A′) − rn(A0)| + |rn(A) − rn(A0)| < δ/2,

we have |rn(A′) − rn(A)| � dH(A,A′). Then, it follows that

inf
n∈ω

(an − rn(A)) − dH(A,A′) � inf
n∈ω

(an − rn(A′))

� inf
n∈ω

(an − rn(A)) + dH(A,A′).

This means that A �→ infn∈ω(an − rn(A)) is continuous. Since rn(A0) =
inf In, we have infn∈ω(an − rn(A0)) > δ/4. Thus, A0 has the following open
neighborhood:

U = {A ∈ CldH(R) : dH(A,A0) < δ/4, inf
n∈ω

(an − rn(A)) > δ/4} ⊆ V.
Now, for each map α : U → (0, 1), we define a map β : U → (0, 1) as

follows:

β(A) = min
{

1
2α(A), 1

4δ − dH(A,A0), inf
n∈ω

(an − rn(A)) − 1
4δ
}
.

Given a sequence x = (x(n))n∈ω ∈ 2ω, let

fx(A) = A ∪
⋃
n∈ω

(
rn(A) +

(
[0, 1

2β(A)] ∪ {β(A) · x(n)})).

bn−1 an

A ∩ (bn−1, an)

rn(A)

rn(A) + β(A)

rn(A) + [0, 1
2β(A)]

∗◦ ◦



HAUSDORFF HYPERSPACES OF �
m AND THEIR DENSE SUBSPACES 17

This defines a map fx : U → U which is α-close to id. We claim that if
x 	= y ∈ 2ω then

dH(fx(A), fy(A′)) � min
{

1
4β(A), 1

4β(A′)
}

for every A,A′ ∈ U .

Indeed, assume that x(n) = 1, y(n) = 0 and let s = min{1
4β(A), 1

4β(A′)}.
Then

(1) max(fx(A) ∩ (bn−1, an)) = rn(A) + β(A);
(2) fx(A) has no points in the open interval (rn(A)+1

2β(A), rn(A)+β(A));
(3) max(fy(A′) ∩ (bn−1, an)) = rn(A′) + 1

2β(A′);
(4) [rn(A′), rn(A′) + β(A′)/2] ⊆ fy(A′).

In case rn(A′) + 1
2β(A′) � rn(A) + β(A) + s or rn(A′) + 1

2β(A′) � rn(A) +
β(A) − s, we have

dH(fx(A) ∩ (bn−1, an), fy(A′) ∩ (bn−1, an)) � s.

In case rn(A) + β(A)− s < rn(A′) + 1
2β(A′) � rn(A) + β(A) + s, since 2s �

1
2β(A′), we have rn(A′) < rn(A)+β(A)−s, hence rn(A)+β(A)−s ∈ fy(A′).
Thus, it follows that

dH(fx(A) ∩ (bn−1, an), fy(A′) ∩ (bn−1, an)) � s.

Finally, we show that {fx[U ] : x ∈ 2ω} is a discrete collection of U . If not,
we have A, Ai ∈ U and xi ∈ 2ω, i ∈ ω, such that xi 	= xj if i 	= j, and
fxi(Ai) → A (i → ∞). Then c = inf i∈ω β(Ai) = 0. Indeed, otherwise we
could find i < j such that

dH(fxi(Ai), A), dH(fxj(Aj), A) < c/10

and β(Ai), β(Aj) > 4c/5. It follows that dH(fxi(Ai), fxj(Aj)) < c/5, but

dH(fxi(Ai), fxj (Aj)) � min{β(A)/4, β(A′)/4} > c/5,

which is a contradiction. Thus, infi∈ω β(Ai) = 0. Taking a subsequence,
we may assume that limi→∞ β(Ai) = 0. Then Ai → A (i → ∞) because
dH(fxi(Ai), Ai) � β(Ai). It follows that β(A) = 0, which is a contradiction.
This completes the proof.

Let D(X) be the subspace of CldH(X) consisting of all discrete sets in X.
It follows from the result of [4] that D(X) is homotopy dense in CldH(X)
for every almost convex metric space X. By the same proof, Lemma 5.6 can
be extended to CldH(Rm).

Proposition 6.3. Assume D ⊆ Rm is such that Rm \ D is dense. Then
D(Rm) \ Cld(D) is homotopy dense in CldH(Rm).

Now, we consider the subspaces N(R), Nwd(R), Perf(R) and Cld(R \ Q)
of CldH(R). Similarly to BdH(R), the following can be shown:

Proposition 6.4. The sets Cld(R) \ N(R), Cld(R) \ Nwd(R), Cld(R) \
Perf(R) and Cld(R) \ Cld(R \ Q) are Zσ-sets in the space CldH(R).
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Due to Negligibility Theorem ([1], [12]) if M is an �2(2ℵ0)-manifold and
A is a Zσ-set in M then M \ A ≈M . Thus, combining Proposition 6.4 and
Theorem 6.1, we have the following:

Corollary 6.5. Let H be a nonseparable component of CldH(R) which does
not contain R, [0,+∞), (−∞, 0]. Then H∩N(R), H∩Nwd(R), H∩Perf(R)
and H∩ Cld(R \ Q) are homeomorphic to �2(2ℵ0).

7. Open problems

The following questions are left open.

Question 1. In case m > 1, under the only assumption that D ⊆ Rm is a
dense Gδ set and Rm \D is also dense in Rm, is the pair 〈Bd(Rm),Bd(D)〉
homeomorphic to 〈Q \0, s \0〉? In particular, is the pair 〈Bd(Rm),Bd(νm

m−1)〉
homeomorphic to 〈Q \0, s \0〉?
Question 2. Does Theorem 6.1 hold even if H contains R, [0,∞) or (−∞, 0]?

Question 3. For m > 1, is CldH(Rm) \ Bd(Rm) an �2(2ℵ0)-manifold?

8. Appendix

For the convenience of readers, we give short and straightforward proofs
of Propositions 2.1 and 2.2.

Proposition 8.1 (2.1). If 〈X,d〉 is σ-compact then the space 〈Bd(X), dH 〉
is Fσδ in its completion 〈Bd(X̃), dH〉.
Proof. Fix a countable open base {Un : n ∈ ω} for X̃. Since Un ∩X is Fσ,
we have Un ∩X =

⋃
k∈ω K

n
k , where each Kn

k is compact. Observe that, by
compactness, the sets (X̃ \Kn

k )+ are open in the Hausdorff metric topology.
We claim that

Bd(X̃) \ Bd(X) =
⋃
n∈ω

(
U−

n ∩
⋂
k∈ω

(X̃ \Kn
k )+

)
,

which shows that Bd(X̃) \ Bd(X) is a countable union of Gδ sets. This is
what we want to prove.

Assume A ∈ Bd(X̃)\Bd(X), that is, A 	= clX̃(A∩X). Then there is n ∈ ω
such that Un ∩ A 	= ∅ and Un ∩ A ∩X = ∅, which means that A ∈ U−

n and
A ∈ (X̃ \ Kn

k )+ for every k ∈ ω. Conversely, if A ∈ U−
n ∩ ⋂k∈ω(X̃ \Kn

k )+

then Un ∩A 	= ∅ and Un ∩A ∩X = ∅, so A 	= clX̃(A ∩X).

Proposition 8.2 (2.2). If 〈X,d〉 is Polish then the space 〈Bd(X), dH 〉 is
Gδ in its completion 〈Bd(X̃), dH 〉.
Proof. Let {Wn : n ∈ ω} be a family of open subsets of X̃ such that X =⋂

n∈ω Wn. Fix a countable open base {Vn : n ∈ ω} for X̃ . We claim that

Bd(X̃) \ Bd(X) =
⋃
n∈ω

⋃
k∈ω

(
V −

n \ (Vn ∩Wk)−
)
.(∗)
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As V − is open in the metric space 〈Bd(X̃, d), dH 〉 whenever V ⊆ X̃ is open,
it follows that V −

n is Fσ and therefore the set on the right-hand side of (∗)
is Fσ in BdH(X̃). It remains to prove (∗).

If A ∈ V −
n \ (Vn ∩Wk)− then we have x ∈ Vn ∩A. Since Vn ∩ (A∩X) = ∅,

it follows that x /∈ clX̃(A∩X). Thus A /∈ Bd(X). Now assume A ∈ Bd(X̃) \
Bd(X), that is, A 	= clX̃(A∩X). Then there exists an open set U ⊆ X̃ such
that U ∩A 	= ∅ and U ∩A∩X = ∅. Hence

⋂
k∈ω A∩U ∩Wk = ∅. Note that

A ∩ U is a Baire space because of the completeness of 〈X̃, d〉. Thus, by the
Baire Category Theorem, there exists k ∈ ω such that A ∩ U ∩Wk is not
dense in A ∩ U . Find a basic open set Vn ⊆ U such that Vn ∩ A 	= ∅ and
Vn ∩A ∩Wk = ∅. Then A ∈ V −

n \ (Vn ∩Wk)−.

Let B(X) denote the Borel field on a topological space X. Given H ⊆
Cld(X), the Effros σ-algebra E(H) is the σ-algebra generated by

{U− ∩ H : U is open in X}.
It is well known that E(exp(X)) = B(exp(X)) for every separable metric
space X (see [5, Theorem 6.5.15]).7 Whenever X is a separable metric space
in which every bounded set is totally bounded, we can regard BdH(X) ⊆
exp(X̃) by the identification as in §2, where X̃ is the completion of X.
Then, we have not only E(Bd(X)) = B(BdH(X)) but also E(H) = B(H) for
H ⊆ BdH(X). This implies that E(H) is standard if H is absolutely Borel
(cf. [15, 12.B]). The results in §2 provide such hyperspaces H.

In relation to the results above, we can prove the following:

Proposition 8.3. Let X = 〈X,d〉 be an analytic metric space in which
bounded sets are totally bounded. Then, the space BdH(X) is analytic.

Proof. The completion 〈X̃, d〉 of 〈X,d〉 is a Polish space in which closed
bounded sets are compact. Then BdH(X̃, d) = exp(X̃) is Polish. Fix a count-
able open base {Un : n ∈ ω} for X̃ . Since X is analytic, there exists a tree
{Xs : s ∈ ω<ω} of closed subsets of X̃ such that X =

⋃
f∈ωω

⋂
n∈ω Xf�n,

which is the result of the Suslin operation on the family {Xs : s ∈ ω<ω}
(e.g. see [14, Lemma 11.7]). We may assume that Xs ⊇ Xt whenever s ⊆ t.
Let Ws = B(Xs, 2−|s|), where |s| denotes the length of the sequence s. Then
clWs ⊇ clWt whenever s ⊆ t. Moreover,

⋂
n∈ω Xf�n =

⋂
n∈ω clWf�n for

each f ∈ ωω. We claim that

Bd(X,d) =
⋂
k∈ω

⋃
f∈ωω

⋂
n∈ω

(
(Bd(X̃, d) \ U−

k ) ∪ (Uk ∩Wf�n)−
)
,(�)

where, as usual, we regard Bd(X,d) ⊆ Bd(X̃, d), via the embedding A �→
clX̃ A. The above formula (�) shows that Bd(X,d) can be obtained from
Bd(X̃, d) by using the Suslin operation and countable intersection, which
shows that it is analytic. It remains to prove (�).

7
�(Cld(X)) = �(CldH(X)) for every totally bounded separable metric space X (cf. [5,

Hess’ Theorem 6.5.14 with Theorem 3.2.3]).
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Fix A ∈ Bd(X̃, d) \Bd(X,d). Then A 	= cl(A∩X) and hence there exists
k ∈ ω such that A ∈ U−

k and clUk ∩ A ∩X = ∅. Then A /∈ Bd(X̃, d) \ U−
k .

For each f ∈ ωω, we have

A ∩ clUk ∩
⋂
n∈ω

clWf�n = A ∩ clUk ∩
⋂
n∈ω

Xf�n = ∅.

By compactness, there is n ∈ ω such that A ∩ clUk ∩ clWf�n = ∅, hence
A /∈ (Uk ∩Wf�n)−.

Now assume that A ∈ Bd(X̃, d) does not belong to the right-hand side of
(�), that is, there exists k ∈ ω such that A ∈ U−

k and for every f ∈ ωω there is
n ∈ ω with A /∈ (Uk∩Wf�n)−. In particular, A∩Uk∩

⋂
n∈ω Xf�n = ∅ for every

f ∈ ωω and consequently Uk ∩ A ∩X = ∅. On the other hand, A ∩ Uk 	= ∅.
Thus it follows that A 	= clX̃(A ∩X), which means A /∈ Bd(X,d).
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