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A generalization of magnetic monopoles is given over an odd dimensional contact 
manifold and we discuss whether the Yang-Mills-Higgs functional attains at gen- 
eralized monopoles the absolute minimal value, the topological invariant. 0 1995 
American Institute of Physics. 

I. REVIEW OF 3-DIM MAGNETIC MONOPOLES 

First we recall basic facts on 3-dim Yang-Mills-Higgs fields and magnetic monopoles. Let 
P-+M be a G-principal bundle over a complete open oriented 3-dim Riemannian manifold M (G 
is a compact semisimple group ). Let (A,@) be a smooth connection on P and a smooth section 
of the adjoint bundle g P = P X Adg, called a Higgs field. In what follows we call a pair (A,@) a 
configuration. 

The Yang-Mills-Higgs functional &(A,@) is defined as 

-&VW=; M{IF~12+lD~@i2}dug I 
We call a configuration Yang-Mills-Higgs field when the functional ,A is stationary at this 
configuration. 

The Euler-Lagrange equations for the first variation of .A are 

dA(*FA)+*[@,D‘4@]=0, dA(*DAa)=O. (2) 

Here FA= dA+ $[AAA] is the curvature form of A, and DA, d, are the covariant derivative 
and the covariant exterior derivative in the adjoint bundle g P, respectively. Further * denotes the 
Hodge star operator. 

A configuration (A ,a) satisfying the Bogomolny equation 

*FA= +DA@ (3) 

is called a (magnetic) monopole. It is easily verified by using the Bianchi identity and the Ricci 
identity that a monopole satisfies the Euler-Lagrange equations and hence is Yang-Mills-Higgs. 

We take the special 3-manifold M = R 3, the Euclidean 3-space and for simplicity the gauge 
group G =SU(2). 

We consider configurations satisfying the asymptotical decay conditions at infinity of R3; 

I@l(x)=mSG(llr), (4) 

IF,&), lR.@l(-4=O(l~r2). (5) 

(m is a constant, ~=IxI,xER~ and 1.1 is the norm of the adjoint invariant inner product (X,Y) 
=-tr(XY) in the Lie algebra su(2)). 

From the asymptotical conditions one gets a Co map QZ from the boundary of R3 at infinity, 
identified with a 2-sphere S2 of radius 1, into a 2-sphere of radius m in su(2) by 

Q-(i) = limQ(d), 2 ES*. (6) 
t-m 
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The map Cp, has the mapping degree k EN, called a monopole charge of (A,@). The following 
shows that the Yang-Mills-Higgs functional attains under the asymptotical decay conditions the 
minimum represented by the topological invariant. 

Proposition I (Refs. 1,2,3): For any configuration (A,@) of monopole charge k 

..B(A,@)=47#+; 
I 

MIFAT*DAQ12d~ga4~lkl (7) 

and the equality holds if and only if (A,@) is a monopole. 

II. GENERALIZATION OF MAGNETIC MONOPOLES 

Yang-Mills-Higgs fields can be defined over a complete open manifold of an arbitrary 
dimension. Indeed a Yang-Mills-Higgs field is defined, same as in the 3-dimensional case, as a 
stationary point of the Yang-Mills-Higgs functional (1). So the equations (2) are valid also as the 
Euler- Lagrange equations for arbitrary dimensional Yang-Mills-Higgs fields. 

We consider a generalization of 3-dim monopole over a manifold of an arbitrary odd dimen- 
sion admitting a special geometrical structure. Here a generalization should be canonically given 
in the sense that (i) the equation for generalized monopoles is a first order equation, like the 
Bogomolny equation (3) and (ii) the generalized monopoles reduce to the original 3-dim mono- 
poles, when the manifold dimension is 3. 

Let M be a complete open oriented Riemannian manifold of dimension 2n + 1. We call M a 
contact manifold if M has a 1 -form 7 such that 2n + 1 - form $/(d 7)” is nonzero over M. v is 
called a contact form. 

Set w=dq. w is a closed 2-form. 
De$nition: Let P-+M be a G-principal bundle over a complete open contact manifold M. A 

configuration (A,@) on P is called a generalized monopole if (A,@) satisfies the generalized 
Bogomolny equations 

*FA=cDA@‘/\o”-l, *DA@=cFAhn-? (8) 

(c is a constant). It is clear that when dim M = 3 (8) reduces to the single equation (3) which 
is free from any contact form on M. 

Proposition 2: A generalized monopole is Yang-Mills-Higgs. 
Proof It suffices to check (2). Set fi = OJ~- ‘. Then 

=cdADA~/\‘R-cDA~r\d~+c[~.,FA~~] 

=c[F,,@]AR+c[@,FA]/‘W 

= 0. 

Similarly 

So any generalized monopole is Yang-Mills-Higgs. 
The possible values the constant c of (8) takes depend only on the dimension of M, as will be 

shown in 3. 
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We consider next the question whether the thus defined generalized monopoles take the 
absolute minimal value for the functional A. 

Same as before, we assume that the structure group G is SU(2). 
It is easy to show the following identity: 

(9) 

The 2n + 1 -form in the last term is an exact form, namely, 

(-tr(F,AD,~))Asz=dO, (10) 
where 0 is a 2n-form given by O= -tr(F,=@)Afi. 

The integral SM( -tr(F,AD,~))A~=~,dO is shown to be a topological invariant deter- 
mined by the Higgs field Qm at infinity, provided certain asymptotical conditions, one on M and 
another on configurations, are fulfilled. Suppose (al) there is a,>0 such that the distance func- 
tion from a point o EM x E M*d(x,o) has non zero gradient vector for all x of d(x,o)aa, and 
hence for all sufficiently large a aM,={x;d(x,o) =a} is a smooth hypersurface in M smoothly 
parametrized by a, (ft2) (A,@) is of finite ,&(A,@) and satisfies with respect to their restriction 
to JM, 

(a =d(x,o)). 
Integrating (9) over M, we get 

I {IF,~2+IDA<p~2+C2~F,~~~2+c2~D~~~~~2} 
M 

= M{I~~-~*(D,~AR)~2+IL)A~-~*(~~r\~)~2}+4~ 
I I 

de. 
M 

(11) 

Here JMdO = lim,,,S,,,,,,,,dO and the integral J-dCx,ojsa d@ reduces by Stoke’s theorem to the 
hypersurface integral J” dM, 0 to which we are able to use the conditions (al),(a2) and apply the 
argument given in Horvithy and Rawnsley4 and 11.5, Jaffe and Taubes.’ Therefore JMdO turns out 
to be a topological invariant of the Higgs field <D, at infinity, which we denote by p(Q&. 

Proposition 3: Let M be a complete open oriented Riemannian 2n + 1 -dim manifold having a 
contact form 7. Then the following inequality holds for any configuration (A,@) under the 
conditions (*1),(82). 

and the equality holds if and only if (A,@) is a generalized monopole. 
Proof The inequality clearly follows from (11). 
Suppose that the equality in (12) holds. Then 
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Since dim M is odd, the star operator * for I- and 2-forms satisfies * 0 * = id so that the above 
equations are just (8). 

III. CONTACT MANIFOLDS AND ASSOCIATED CONTACT METRICS 

A contact manifold M with a contact form 7 is endowed with a metric g associated to the 
contact form (see Proposition in Sec. 3, Ref. 5). 

In fact, the contact form 17 yields on M a contravariant vector field 5 and a tensor field cp of 
type (1,l) satisfying 

v(5)= 1, cp(dX))= -x+ TGQif (13) 

(X is an arbitrary tangent vector). 
Then M has a metric g which is compatible with the 7, namely, 

g(dacpty))=g(x9y)- 77W)dY) (14) 

and further satisfies 

(15) 

We call such a metric g an associated contact metric. 
Example: R2” ’ ’ is a contact manifold with a contact form v= dz - ‘c jyidx’ in terms of the 

Cartesian coordinates {x’,y’,z}. w=dv=Cdx’Ady’. The metric g= ~@~+C{(dx’)‘+(dy’)“} 
is an associated complete contact metric on R2n+1. 

We remark that the Euclidean metric for 2n + 1 > 3 cannot be associated to any contact form 
(see Theorem, Chap VI, Ref. 5). This fact may be consistent with that any Yang-Mills-Higgs field 
of , +%<m on the Euclidean space R ‘, C>3, turns out trivial, namely, a flat connection with a 
covariant constant Higgs field( see the argument of the stress tensor in Chap. II, Ref. 1). 

Suppose that an open contact manifold M with a contact form 77 admits a complete associated 
contact metric g. 

To investigate the absolute minimal value of the functional ~6 on M we define the operator 
over p-forms on M 

*oL:A~(M)+A~-~(M), (16) 

where L:Ap(M)+A 2n+p-2 M) t is the exterior multiplication by the 2n-2-form Sz. So one 
defines an endomorphism of (A’ @A2)(M) 

(*oL)(~,P)=((*oL)(P),(*oL)(~~)), (a,P)4A’@A2)(M). (17) 

As is easily shown, this endomorphism is self adjoint with respect to the naturally defined 
metric on (AleA*)( 

Lemma: Let (M, v,g) be a contact manifold of dimension 2n + 1>3 with an associated 
contact metric. 

Then (*oL>~ has the eigenvalues O,{(n- 1)!}2,n{(n-1)!}2 so that the endomorphism 
*oL has eigenvalues 0, 
(d) E tA’@A2)tM) 

*(n-l)! and *(n-l)!&. Furthermore for any 

ldml2+ Ip/wl2 Sn{(n- 1)!}2(Icr/2+lp/2). (18) 

Here the equality holds in (18) if and only if (cr,/?) is in the eigenspace belonging to eigenvalue 
n{(n- 1)!}2. 
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Proofi The first part of the lemma is an elementary exercise in Grassmannian algebra, pro- 
vided we use an associated local orthonormal basis {t,e2i-1 ,e2i=cp(e2i-t)} and its dual basis 
{7j.e2i-1,e2i}. 

To see (18) we write 

from which the desired inequality is available. 
Remark: The eigenspaces of *o L have the dimension (n - 1) (2n + 1) for eigenvalue 0,2n for 

eigenvalue 2 (n - 1) ! and 1 for + (n - 1) ! 6, respectively. 
In fact, ( ?,I, rf: 0) give the eigenvectors of eigenvalues t (n - 1) ! \/;; and { ( ~9’~~ ’ , + e2’A v), 

(e2’,k 77Ae2i-1)}i=1 ,..,, n f orm bases of the eigenspaces of eigenvalues -+ (n - 1) ! . 
Moreover the eigenspace of zero eigenvalue, identified with KerL in A2(M), has the follow- 

ing basis 

el/je2- fj2i-lr\e2i , 2GiCn, 

e2i-l/\e2j-l , @i-I/\@j,e2iA@j-l, @‘A@, lsi<j<n. 

Note for M of dimension 3 *o L has only eigenvalues + 1. ( v, t w = 2 8’A e2), 
( 0’) 5 e2A 7) and ( e2, t $/ 0’) form bases of the eigenspaces of eigenvalues t 1, respectively. 

Further the generalized Bogomolny equations (8) can be written as 

(DA~,FA)=c(*oL)(DA~,F~) (19) 

in terms of the endomorphism *o L. So, a generalized monopole (A,@) must belong to the 
eigenspace of *o L with eigenvalue c- ’ and hence the possible values of the constant c in (8) are 
t,ll(n - l)! and 5~ ll(n - l)!&. 

‘. 

The following is an immediate consequence of Proposition 3 and the above lemma. 
Proposition 4: Under the conditions same as in Proposition 3 

2c 
w&A,@)> 1+ u2c2 P(@m) 

n 

(a, = (n - 1) ! 6). Here the equality holds if and only if a configuration (A, @) is a generalized 
monopole of the constant c = + u, ’ . 

Proof: Although we have shown the proposition, we will give another inequality on -4 which 
is quite parallel to that for the generalized (anti-)self-dual connections on a quatemionic Kalrler 
manifold.6 

Decompose the adjoint bundle valued forms E = (DA@, FA) as the sum 

where 8 k t ,E L2 and =a are the components of z corresponding to eigenvalues + (n - 1) ! 6, 
k (n - 1) ! and 0, respectively. 

The topological invariant p(@,) is then represented as 

(b, = (n - 1) ! <u,) because by using the inner products we can write 

(-tr(F,/-lD,@))AQ=(F,,*~L(D,@))=(D,@,*~L(F,)). (22) 
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On the other hand the functional .& has the form 

(23) 

so that from (21) 

. d(A,@)= ;p(@&+f 
n 

1~2j2+2/~:_,/2+ (24) 

from which it follows that a c-generalized monopole, c = l/u,, minimizes the functional ~6. 
Similarly, a c-generalized monopole, c = - l/u,, , also minimizes. 

In spite of the above characterization of ?a,* -generalized monopole the following proposi- 
tion shows that when dim MB3 there do not exist any + (l/u,)-generalized monopoles with 
nonzero topological invariant satisfying (A2). 

Proposition 5: Let (A,@) be a k ( l/u,)-generalized monopole satisfying (a2). If 
dim M >3, then (A ,@) must be a trivial configuration, that is, FA = 0 and DA@ = 0, and hence 
the topological invariant p(Qw) = 0. 

Proof Since the eigenspaces of eigenvalues k( l/u,) are R(+l;l,,w), it holds 
(DA@,FA)=T@(k p,w) for some section q of gP. It follows from the Bianchi identity that 
DA* = 0. So the norm of D,@ = + Y! 8 77 is constant which must be zero from (A2). Therefore 
Q=O, i.e., the pair (D,@,F,)=O. The invariant p(@m)=~&-tr(FAADA@))/U2 now be- 
comes zero. 

IV. HERMITIAN GEOMETRY OF GENERALIZED MONOPOLE 

Let M be a contact manifold with the respective tensor fields v,c,q,g defined at 3. The 
product manifold M XR (or M XS’) then has the almost Hermitian structure, that is, admits an 
almost complex structure J, 

J ( i x+f -$ = 9(X) -fE+ 77(X) -$ 

and a Hermitian metric g, 

i? ( x+fl; 7Y+f2-$ i =sW,Y)+f,-j-2. 

(25) 

Every configuration (A,@) on M is then regarded as a time-independent connection 
A=A+@dt on MXR. 

At each point of M X R the space of 2-forms A2(M X R) can be identified as 

A2(Mx R)=(A1@A2)(M) (27) 

by 
aAdt+@(a,P). (2% 

Then (cr,fl)~(A’@A~)(M) satisfies (a,/3)=c(*oL)(a,p), if and only if 

~(aAdt+~)=c(aAdt+~)/W, (2% 

where * is the Hodge star operator on M X R and the (2n - 2)-form R = I#- ’ is considered as a 
form over M X R. This is directly derived from the following 
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8:A2(MxR)+A2”(MxR); *(aAdt)=*a, AP=(*P)Adt 

Since the curvature form FA of A is 

(30) 

FA= D,@Adt+ F/, , 

by using (29) and (30) we have obviously 

(31) 

Proposition 6: Let (A,@) be a configuration on M. 
(i) (A,@) is a Yang-Mills-Higgs field on M if and only if A is a Yang-Mills connection on 

the almost Hermitian manifold M X R. 
(ii) (A,@) is a generalized monopole with constant c if and only if A satisfies the equation 

AFA=cFAh”-‘. (32) 

The equation (32) is quite similar to the Kahler manifold version of (anti-)self-dual equation,7’8 
whereas in our case w is a degenerate 2-form. When dim M =3 the proposition gives us the 
classical observation given in Manton’ that (A,@) is a Yang-Mills-Higgs field (a monopole) if 
and only if A is a Yang-Mills connection (an instanton ). 

Let &=d(e-‘7) be an exact 2-form on MXR. Then G=e-‘(vAdt+o) is the fundamental 
form of the Hermitian metric e-‘g. Note that ~‘-‘=e-(“-‘)‘(wn-‘+(n- l)onm2Av/\dt). 

Since for a g-orthonormal basis { 8’, q,dt} on M X R we have 

and 

so that (28) gives from the remark in 3 a characterization of 2 {(n - 1) !}- l-generalized monopole 
in terms of Hermitian geometry8*10 as 

Proposition 7: (i) (A,@) is a -t{(n- I)!}-‘-g eneralized monopole on M if and only if FA of 
A has only components of the form taken by the real or imaginary part of ( 02i-’ + me2’) 
A( v+ J--t). 

(ii) Therefore as a g p-valued 2-form the curvature form FA for a {(n - 1) !}- ‘-generalized 
monopole has no (l,l)- components. 

(iii) Further FA for - {(n - 1) !}- l-generalized monopole is a primitive (l,l)-form, i.e., a 
(l,l)-form orthogonal to the (3. 

Proof It suffices to check only the last part. Since from the first part FA is written by the 
linear combination of ( e2’-’ - &ie2’)A( v+ &fdt), FA is clearly orthogonal to 9. 

If the almost complex structure J on M X R is integrable, namely, the contact structure 77 on M 
is normal, then from (iii) of Proposition 7 the SU(2) connection A which associates with a 
-{(n- l)!}-‘-g eneralized monopole (A,@) induces a holomorphic vector bundle over M X R 
equipped with an Einstein Hermitian bundle metric. 

V. FINAL REMARKS. 

To conclude this note, we give several remarks. 
Pedersen and Poon, ” and Galicki and Poon6 gave another generalization of 3-dimensional 

magnetic monopole over R 3n= R3@ R” by multitimes independent instantons on R4”. However, 
our generalization is valid over any odd dimensional contact manifold, even though over the 
Eucliden space R’, &3, with the natural contact form 17 non-trivial solutions of our generalized 
Bogomolny equations are not yet obtained. An arbitrary compact semisimple Lie group can be 
taken as a gauge group G which in this note we specialized as SU(2). For an arbitrary compact 
semisimple Lie group G we impose the gauge invariant ansatz on Higgs fields. Actually we 
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consider for this general case configurations satisfying the asymptotical decay conditions (&2) and 
further require that the Higgs field at infinity BP, has the image sitting inside an adjoint action 
orbit in the Lie algebra so that @- is regarded as a map from dM, to a homogeneous space GIK 
(K is the isotropy subgroup for the orbit). See for this Itoh,12 Ho&thy, and Rawnsley! 

So in this most general situation we observe the following topological phenomenon entirely 
different from the 3-dim original monopoles. For M = R2”’ ’ ,n 32 the boundary at infinity dM, is 
diffeomorphic to S2” and the Higgs field at infinity a, defines a class in r2,(GIK) which 
happens to be trivial, e.g., n = 2 and G/K= CPk, k> 2 so that this homotopy triviality might give 
a strict restriction on the topological invariant p(@&. 
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