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Abstract―Structural phase transitions in relaxor ferro-

electric materials remain to be one of the most puzzling

issues in materials science. In the present work, we have

investigated relaxational and vibrational properties of a re-

laxor ferroelectric 0.71Pb(Ni1/3Nb2/3)O3-0.29PbTiO3 sin-

gle crystal by means of inelastic light scattering measure-

ments. Analysis based on the spectra has shown anomalous

behaviors at Burns' temperature Tj, freezing temperature

Tf, those are related to a development of polar nanoregions

(PNRs). The PNR must play a key role in the relaxor na-

ture, and obtained results provide new insights into the re-

laxational dynamics in the PNRs and into how they develop

below Tf.

I. Introduction

RESEARCH on structural phase transitions in relaxor

ferroelectrics has undergone in the fundamental un-

derstanding of the structural and physical properties.

The characteristic properties of them are believed to be

attributed to reorientational polar species composed of

clusters having several nanometers (polar nanoregion or

PNR). Therefore, on the nanometer scale, the relaxor fer-

roelectrics are inhomogeneous [1], [2].

At high temperatures, the relaxor ferroelectrics show a

nonpolar paraelectric phase, which is similar to a paraelec-

tric phase of normal ferroelectrics. Upon cooling, it trans-

forms into an ergodic relaxor state in which the PNRs

appear. This transformation at the temperature so-called

Burn's temperature Td is not considered as a structural-

phase transition because it is not accompanied by any

change of the crystal structure on the macro- and meso-

scopic scales [3]. Nevertheless, the PNRs affect the behav-

ior of the crystal drastically, giving rise to the unique phys-

ical properties. For this reason, the state at T < Td often

is considered as a new phase different from the paraelectric

phase. Close to Td, the PNRs appear, and their dynamics

of the dipole moments slow down enormously on cooling.

Then the PNRs freeze into a nonergodic (i.e.,ferroelectric
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state) and their volume becomes larger below, an enough

low temperature Tf [4].

Consequently, understanding of temperature develop-

ment of the PNRs is essential to manifest the mecha-

nism of the structural phase transitions in the relaxor fer-

roelectrics.In this paper, we used the methods of Bril-

louin spectroscopy and Raman spectroscopy to investi-

gate them in a relaxor ferroelectric0.71Pb(Ni1/3Nb2/3)O3-

0.29PbTiO3 (0.71PNN-0.29PT) single crystal through in-

teractions between the relaxation and the light, the vibra-

tion and the light. The composition of 0.71PNN-0.29PT is

near the morphotropic phase boundary (x ~ 0.33), which

is one of the most technologically important regions be-

cause of their rich applications such as medical imaging,

telecommunication, and ultrasonic devices using its huge

piezoelectric and dielectricconstants [5],[61.

II. Experimental

The single crystal of 0.71PNN-0.29PT with light green

color was grown by the flux method [7].The concrete com-

position of the sample was determined by the comparison

of maximum temperature Tm (~309 K: 1 kHz) in the real

part of the dielectric constant with data by several re-

searchers [5],[8].Each surface was perpendicular to [100]c

of the pseudo-cubic orientations that were confirmed by

x-ray diffraction.

Light scattering at low-frequency range (0.5 cm"1 ~15

cm"1) was measured by a high-contrast 3+3-pass tandem

Fabry-Perot interferometer (JRS Scientific Instruments,

Zwillikon, Switzerland) combined with an optical micro-

scope (BH-2, Olympus, Tokyo, Japan). A diode-pumped

solid-statelaser (DPSS, Coherent, Santa Clara, CA) with

a single frequency operation at 532 nm with 100 mW was

used together with a custom built micro-optical system

and photon counting system. A narrow interference filter

also was used to suppress higher orders of interferences [8].

Two frequency ranges were measured; free spectral range

of 2.5 cm"1 for scanning range of 2 cm"1 and 20 cm"1 for

16.7 cm"1, respectively, to discuss the central peak in the

broad frequency range.

Higher frequency range (10 cm"1 ~1000 cm"1) was

measured by a triple-gratingspectrometer of additive dis-

persion (T64000, Jobin Yvon, Edison, NJ) with a resolu-

tion of 3 cm"1. A diode-pumped, solid-statelaser (Torus,

0885-3010/825.00 c 2007 IEEE
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of central peak that corresponds to anisotropic reorienta-

tion motion of dipole moments.

A. Raman Scattering

Figs. l(c) and (d) show Raman spectra at two temper-

atures on a [100]c-plate with VV and VH scattering ge-

ometries. Our Raman spectra are very similar to those in

previous study on other relaxor ferroelectrics [9]―[11].Even

above T/(~280 K), two strong lines at 50 and 760 cm"1

exist, that reflect the positional disorder of Pb and the

PNRs, respectively. On cooling from a high temperature,

each line becomes intense but still broad compared with

normal ferroelectrics because of the characteristic disor-

der of the relaxor ferroelectrics. A central peak also is

seen in Figs. l(c) and (d). The Raman spectra obtained in

Figs. l(c) and (d) were fitted by a narrow Lorentzian-type

central peak and damped harmonic oscillation for all the

phonons without any coupling [9].

Group theoretical analysis of the Raman peaks based on

its point group symmetry is difficult because of the lower-

ing of the local symmetry induced by Pb and the PNRs [9],

[11]. The intensity of Raman spectra at high temperatures

could be explained based on the consideration of the tem-

perature variation of averaged size of the PNRs. Below Td

(620 K), the PNRs can exist [3], [12]. The energy for the

switching of dipole moments in the PNRs is approximately

proportional to its volume. Between Td and Ty, the PNRs

are so small that their energy is compatible to or smaller

than ksT. Thus, its direction of dipole moments is easily

changed by thermal agitation.

A dominant feature is the band at 760 cm"1, which has

been assigned to Nb-O-Ni, Nb-O-Nb, and Ni-O-Ni stretch-

ing modes, i.e.,it indicates the existence of the PNRs [9],

[10]. It shows marked temperature and polarization de-

pendences as shown in Fig. 2. Above Tf, the peak is seen

in the W spectra [Fig. 2(a)]; no peak is in the VH spec-

tra [Fig. 2(b)]. Below Tf, then, the peak also appears in

the VH spectra and becomes intense. To understand the

temperature behavior of this peak, the depolarization ra-

tio of this peak is shown in Fig. 3. It increases gradually

on cooling from Tf. It must indicate the gradual growing

of the correlation length on cooling below T/, because the

interaction among the PNRs becomes strong below Tf. It

is consistent with the behavior of the quasielastic scatter-

ing in the neutron scattering spectra, in which size of the

PNRs were investigated [4]. So we have considered this

behavior is originated from the evolution of ferroelectric

Figs.l(a) and (b) show Brillouinspectra at two tem-

peratures on a [100]c-platewith VV and VH scattering

geometries.No transverseacousticmode was found at the

VV scatteringgeometry as shown in Fig.l(a).The small

Brillouincomponent in VH spectra at 173 K must be at-
tributed to the leakage of the W scattering.Not only

Brillouincomponent but also centralpeak was observed
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Fig. 1. Light scattering spectra at two temperatures. The spectra

of (a) and (b) were observed by a Fabry-Perot interferometer, (c)

and (d) were observed by a grating spectrometer. VV and VH de-

note polarized and depolarized scattering, respectively. Two peaks at

1~2 cm""1 frequency shift in (a) are Brillouin scattering, which is at-

tributed to the longitudinal acoustic phonon. Peaks at non-0 cm"1 in

(c) and (d) are Raman scattering, which is attributed to the optical

phonons. Broad central peaks are seen in several spectra at 0 cm""1

freauencv shift.

Laser Quantum, Cheshire, UK) with a single-frequency op-

eration at 532 nm with < 100 mW was used. The scattered

light was detected by the photon-counting technique with

a photo multiplier tube.

For the temperature variation in the light-scattering

measurements, the sample was put inside a cryostat cell

(THMS600, LINKAM, Tadworth, UK) with a stabilityof

1 K. The sample also was annealed at more than 800 K

before measurements. The scattered light was collected on

[100]c-plate at a(cb)a (Vertical to Horizontal or VH) and

a(bb)a (Vertical to Vertical or W) scattering geometries

in which the elasticscattering at the former geometry is

relatively weak.

III. Results and Discussion

ordering.
Light-scattering spectra of low and high frequency

ranges are shown in Fig. 1. They indicate the features of b. Brillouin Scattering

the relaxor ferroelectricsin Raman scattering, Brillouin

scattering, Rayleigh scattering, and a central peak. Ra-

man scattering is known as the scattering due to long

wavelength optical phonons in condensed matter (10-

3000 cm"1). Brillouin scattering is the light scattering

by long wavelength acoustic phonons in condensed matter

(0.05-2 cm"1). Rayleigh scattering occurs by the nonprop-

agating fluctuationsin matter, and Rayleigh wing is a tail
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Fig. 2. Temperature dependence of Raman peaks around 760 cm l

at (a) VV and (b) VH scattering geometries. The spectra above Tf

were measured at 773 K, 673 K, 573 K, 473 K, 373 K, and 283 K.

The spectra below Tf were measured at 273 K, 243 K, 183 K, and

123 K.
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Fig. 3. Depolarization ratioversus temperature for the peaks around

760 cm"1, which was obtained by analyzing the spectra in Fig. 2.

The depolarization ratioincreases on cooling below Tt ~ 280 K.

in both scattering geometries. On cooling from 773 K,

the central component began to appear, the fullwidth at

half maximum (FWHM) and the intensity also depends

on temperature. In order to analyze the observed Brillouin

spectra in Fig. l(a), we decomposed them using a multi-

ple peak fittingprocedure. The Brillouin component was

fittedby a Lorentzian function convoluted by a Gaussian

function to subtract an instrumental broadening. Here the

width of Gaussian function was fixed as an instrumental

broadening.

Frequency shiftof a Brillouin peak, which is very sensi-

tive to the structure, shows two anomalies in the temper-

ature dependence as indicated in Fig. 4(a). The anomaly

at 620 K was attributed to the formation of the PNRs

(Td) and that at 280 K to the macroscopic structural

change (T/). Abrupt changes that are found in normal

ferroelectricswere smeared because of the fluctuation of
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Fig. 4. Temperature dependences of Brillouin shift(a) and FWHM

(b). T<2denotes Burn's temperature from which the linear tempera-

ture dependence of Brillouin shiftdeviates. 7/ denotes the freezing

temperature.

an order parameter induced by the PNRs. Fig. 4(b) shows

the temperature dependence of FWHM. Compared with

Brillouin shift,no anomaly was found around Td- Around

T/, FWHM have a broad peak.

C. Central Peak

It is attributed to the thermally activated fast relax-

ation in the PNRs [13]-[15]. We measured the central

peak in the broad frequency range combining a Fabry-

Perot interferometer and a grating spectrometer. It was

found that the central peak cannot be reproduced by a

single Lorentzian peak. In other words, non-Debye relax-

ation process exists in the dynamical properties of the

PNRs. To reproduce the obtained central peak, we used

two Lorentzian peaks, assuming two-step relaxation. Then,

it was well-fitted.We consider the different time scale of

each relaxation process and suggest that one relaxation

process corresponds to 180° switching of the dipole mo-

ments in the PNRs, and the other one corresponds non-

1800 (71° or 109°) switching in them. In these switching

processes of the dipole moment, the rate of 180° switch-

ing is faster than the rate of non-1800 switching, because

some strain should be induced with the non-1800 switch-

ing. Therefore, the slower relaxation process (the narrow

Lorentzian peak) can correspond to the non-1800 switching

process accompanied with the change of strain. The faster

relaxation process (the broader Lorentzian peak) can cor-

respond to the 180° switching free from any change of

strain. Detailed discussions on the relaxation time and its

intensity related to the PNRs were made in our previous

paper [16].
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