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The Subresultant and Clusters of Close Roots *

Tateaki Sasaki
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Abstract

This paper investigates the subresultant of univariate polynomials from the viewpoint
of close roots. First, we derive formulas which express the subresultant and its cofactors
in the root-differences, Then, we consider the case that the given polynomials contain
one or more clusters of mutuvally cluse roots of closeness §. We derive formulas showing
the dependences of the coeflicients of subresultant and its cofactors on € and the number
of clusters. The formulas are covsistent with the famous formula: resultant o« [product
-of all the root-differences]. Finally. we determine the magnitudes of cancellations which
occur when we apply the Euclidean algorithm to polynomials having close roots.

1 Introduction

The svoresultant is a very important concept in computer algebra, it not only provides us
practical methods for camputing polynomial GCD’s [Col67, BT71] and performing the quanti-
fier elimination [Col75, CJ96], and so on, but also helps us in various theoretical analyses.

Let Ax(A, B) be the kth subresultant of univariate polynomials 4, B € C{X]. Ri(A4, B) is,
except for a constant multiple, equal to an element of polynomial remainder sequence generated
by A and B. Rp(A, B) is the resultant of A and B, and guite many things are known on the
resultant; in particular, we have a very beautiful and useful formula whick expresses Ry{4, B)
in differences of the roots of A and those of B, or the root-differences, The subresultant has
been investigated intensively and into details since its discovery in the middle of 19th century;
see |{GGY9, Notes of Sec. 6] for the history of the subresultant. However, compared with rich
knowledge on the resultant, we have still many questions on the subresultant: Q1l: are there
simple and useful formulas expressing R(A, B) and its cofactors in the root-differences 7, Q2:
can we express Rip(A4, 4") and its cofactors, with A’ = dA/dX, in the differences of the roots
of A7, Q3: how Ri(A, B), Re(A, B), - behave when A and B have mutually close roots ?,
Q4: what amounts of cancellations occur in the computation of Ry(A, B) by the Euclidean
algorithm ?, and so on.

As for question QI, Sylvester [Syl1853] derived a formula, and recently Hoon [Hoo02,
Hoo01A, Hoo01B] also found another formula, see Sec. 3 for these formulas. Sylvester’s formula

*Work supported in part by Japanese Ministry of Education, Science and Culture under Grants 12480065,
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is very beautiful but contains so many terms to handle practically. Hoon’s formula is much
shorter but still rather complicated. In Sec. 3, we show that the subresultant and its cofactors
can be expressed in root-differences by a simple variable transformation. Our formulas are
useful for investigating questions 3 and Q4 when A and B have only one cluster of mutually
close roots. However, it is not enough for investigating the case that A and B have several
clusters of mutually close roots.

As for question 3, we remind of the fact: let A and B have n' mutually close roots and
(Ph=A,Py=B,.-+, P, ) be the polynomial remainder sequence, with deg( P) = n', then P,
is an approximate common divisor of 4 and B. Furthermore, some remainder Py,; with a larger
index is an approximate common divisor of a smaller tclerance. Why does such a phenomenon
occur ? As for P and Py, [SN89], [HS97] and [SS97] investigated the phenomenon by using
relations on the polynomial remainder sequence. In Secs. 4 and 5, we investigate ideal cases that
A and B have one or more clusters of close roots of closeness 4, and determine the dependences
of the coefficients of P, Pey1,- - on é§ and the number of clusters. By this, we can clarify the
phenomenon considerably. However, bounding || Pe||, || Pe+1 ||, - - reasonably is an open problem,

The Euclidean algorithm with floating-point numbers often causes large cancellation errors.
As for question Q4, [SS89] investigated the cancellation errors in typical cases, from the view-
point of polynomial division. In Sec. 6, we answer to the question by using the estimations of
the magnitudes of the subresultants and their cofactors.

2 Generalities

By deg{P), le(P), ||P||, with P a univariate polynomial, we denote the degree, the leading
coeflicient, and the norm (may be, the infinity norm), respectively. By quo( P, @) and rem (P, @),
with P and @ univariate polynomials, we denote the quotient and the remainder, respectively,
of P divided by Q.

Let A{X) and B{X) be univariate polynomials over C, being expressed as (a,, # 0,b, #0)

AX) = amX™ + Qo1 X™ oo - ag,

2.1
B(X)= b X™ + b X" 40+ by, (2.1)

Let cy,...,0n and f,..., By be the roots of A(X) and B{X), respectively:
AKX} = ap(X ~ o) - (X — o), (22)

B(X) = ba(X = fr) - (X — Bu).

Definition 1 (regular polynomial(s)) We call the polynomial A(X) regular if am =

max{|am-1l, -, |ao|} = 1. We call the pair of polynomials {A(X), B(X)) regular if am, = b, =
max{'am—lls ty |aﬂ|1 |bn—-li: Y ]bﬂl} =1.
Remark 1 The well-known formula max{|a|,- -+, |am|} € 1 + max{|am-1l,: -, |2o|}/|m|

tells us that |o;] € 2 (i = 1,...,m) if A(X) is regular and that |ou| € 2 (1 = 1,...,m) and
|Gl <2 (@ =1,...,n)if (A(X), B(X)) is regular. Furthermore, at least one root of a regular
polynomial is not much smaller than 1. 0



The kth subresultant of A(X) and B(X), Ry(A, B), is defined by the following determinant.

b Om—) tee Tt Ogkyfen Xak-14
A fpaa] trt v Q2k43_n _Xn—k—zA
= Im o0 Qg XA 3
Rf\:(A: B) h bn bﬂ—l v v s b2k-{-2—m Xm—k-—lB s (2. )
b bt v b XTEEB
bn - i1 X'B

where a; = b; = 0 for j < 0 and the blank denotes 0. Ry, is expressed as Ry = Rimin—p1 XmH0E-14
»+++ Ry g, where each Ry; is a numerical determinant. For i > k, the last column of Ryiisa
sum of other columns, hence deg(Ry) < & and Ry(A, B) = resultant(4, B).

For each Ry(4, B), there exist polynomials Si(A, B) and T.{A, B) satisfying

Ri(A, B) = Si(A, By A(X) + Tu(A, B) B(X),

2.4
deg(Sp) <n—k, deg(Ty) <m ~k. 24

Si and T, are called cofectors and expressed by determinants which are the same as that
in (2.3) except that the last column is replaced by Y{X™*-1, X»=*=2 ... 1, 0,0, - ,0) and
‘0,0,-+-,0, Xm-h=t xmek-2 ... 1), respectively. '

The next theorem is well known; we give a proof for later use. Put

CX)=aX' +ea X"+ + 0. - o (2.5)

Theorem 1 We have the following equalities.

R (AC,BC) = rti=2-1p, (A, B)C, (2.6)
Sk(AC, BC) = griti-2h-1g, (A B), (2.7)
Ti(AC,BC) = grinti=2-17 (A B). (2.8)

We can use these formulas for k <1, by defining R; = S;i=T;=0 forj <.
Proof Ri(AC, BC) is given by

Gty Ciltm—1VC—1ly  O10me2t ) Omo +C1—20m
C1@m Cilyp-1FC—18in

G Ctba-1+atbe abu_gteiibooiiogb,
where the rightmost column is {(X"*-*1AC,... X"AC, X™H=¥1BC ... XBC), Sub-

tracting e,.1/e;x (1st column) from the second, ci_a/ex(1st column) + ¢_; /¢y (resulting 2nd



column) from the third, and so on (the last column is unchanged), we can transform the above
determinant into the following one.

Cllm  C@mey Cllpm—g -+ X"H-E-l4c
Cill, Cllpm—1 ‘' X'n-H—k_QAC
by Gbpey Gby_g o XmH-E-lpo

This is nothing but ¢®™*+¥-%-1p, (4,B)C, and we obtain (2.6). Then, uniqueness of
Si(A, B) and Ti(A, B) leads ns to (2.7) and (2.8). o

We generalize Theorem 1. Let C(X} be monic for simplicity, hence ¢ = 1, and let D(X)
and E{X) be the following polynomials:

DX)=di1 X" - 4 dy,

E(X) = 8;_1Xr_1 + 00 g (2.9)

Expanding X'/C into the power series in X as X'/C =1~ ¢_ /X ~ (cqa—cb )/ X? = (ci-3—
261.00-1+€]_, )/ X% + -+, we define d; and & (i=1-1,1-2,...) as follows.

Dx) ¥ DIC=d X 4 dig X2+,

. et (2.10)

E(X)Z EJC=8_1 X" 4+8 X 1+...
For example, JJ—‘} =di_1, dicy = dica— ey die, diosy = dpy~cidiog — (g — ¢y )iy, Note
that we def}ne d; and & for negative 7. Although D and E are power series, we define
Ry(X'(A+ D), X'(B+E)) formally as in {2.3), We define By_;(P,Q}, a determinant of de-
gree m+n+ 20 —2k, by replacing the rightmost column of By_(X'(A+ D), X'(B + E)) by
HXHESIP, L, XOP, XmHEEIQ, L XOQ);

Ty v Op (Lﬁl Jg_g XH"H_L'_IP

Gp 0 Gy iy -ee X"HEEIP
5 _ o : u
e I A (210

b, - bO él—l Xm+t-vkr~2Q

Theorem 2 We have the following equalities.

R{AC+D,BC+E) = Riu(A,B)C+ Riy(D, E), (2.12)
S{AC+D,BC+E) = R._(1,0), (2.13)
T AC+D,BC+E) = R,_(0,1). (2.14)

Proof Applying the transformation given in the proof of Theorem 1, we can transform the
left m+n+2i—2k—1 columns of Ry {ACH+D, BC+E) into those of Re(AC+D, BC+E). (We may



apply Theorem 1 to Ry {AC+D, BC+E) by putting AC+D = (A+D)C and BCHE = (B+E)C.)
Separating the rightmost column into two columns containing A and B and containing D and
E, we obtain (2.12). Similarly, we obtain (2.13) and (2.14). o

Remark 2 If min{m,n} > m-+n+2l~2k—2 then neither di, nor &, appears in Re-{P.Q)
hence Ry_i(4, B) = Ry_1(4, B). If, however, min{m, n} < m+n+2/—2k—2 then dy... and/or
.1 appears in Rk AP, Q) and deg(ﬁk (A, BY) = max{m,n} +t—k > k~1. The terms of
degrees > k in Ry_ i(A, B) C are cancelled by the higher degree terms of Re_(D, E). a

3 Subresultant in root-differences

There is a very beautiful formula for Ro(4, B): Ro( A, B) = ab bl TIiz, 113, (s — £;). This
beautiful formula seems to make many researchers search for formulas of the subresulta.nts in
root-differences (o4 —3;)’s. The most beautiful formula is due to Sylvester [Sy)1853] (see also
[L.P01] for a modern proof of the formula):

Ro(Ar, By} Ro(Af, By) \
= AH{X)By(X),
BB = L Rk, dn Ro(Br. By) OB
1+ =k _ _ 31)
Te {2, my=Iul, Inl=4, (3.

JC{L?,"',R}:JUJ, Jnjﬂqb,
AfX) =Thier(X — @) and BAX) =T;es(X - 5;).

The formula contains so many terms to handle practically. Recently, Hoon jHoo02| derived a
much shorter but a rather complicated formula:

. Bt
Ri(4,B) = Y | Mis (X — )+ (X = 51),
=1
" al_ﬁj 1 .
¢ M= T] , (3.2)
=t am—ﬁj 1
. j-th & right m—%-1 columns,

L Me; <= { and lower m—k rows of M.

We derive simple formulas which express Ry, Sy and T} in the root-differences. Let v be a
number. By shifting the origin by v, we put A(X) def A(X +~) and B(X) def B(X+~) as
follows (& = @, b = by).

A(X) a‘m('X+7'_al)"'(X+’Y_am))
X ™ 4 Bt X™ 71 o o+ iy (33)
BX) = bu(X+y=p) (X +7~fh), '

BnX™ + Do X" 4 o by,

1

il

Lemma 1 The next equelity holds for any number -y,

Ri(4, B) = Ri(A, B)|x-x - (3.4)



Proof We express A and B as

A(X) = C:Em(X — 'Y)m +Aflm__1{X — ,-Y)m—l g :‘_ &0'
B(X) = bu(X ~ 9 +boca (X =)™ 4+ by

The subresultant Ry ( (A, B) is obtained by eliminating terms Xm{mn} ymax{ma}-1 b+l
from A and B successively. Similarly, we obtain Ry (A, B) by expressing A and B as above and
eliminating terms (X —y)mex{ma} (xX._qymax{ma}=1 (% )+ gyecessively. Both processes
of elimination are the same, which proves the lemma. 0O

By choosing v = ), we obtain the following theorem. Note that dm—ifa, (1 < i < Tit)
and b,_ l,/b {1 <4 <n) in this choice are the elementary symmetric polynomials of degree i in
(=), ..., (0 — o) and in (@ —Bi), .. ., (a1 — ), respectively.

Theorem 3 We can express Ry, Si and T}, in root-differences as follows (below, X =
X—-'Oq).

&m a’m—l oot EI23\!+'-Z—'u Xn—k—lA(X)
| By XPAX)
Ry(AB) = | . fm iy .
k( ) bn bm—l oo b2k+2mrn Xm-k IB( Y} ’ (3 5)
b b XOBUD)
Se(A,B) = replace the rightmost column by (3.8)
t((X—al)n—kqll Tt (X_Ckl)ua 01 Tt 0)1
Tw(A,B) = replace the rightmost column by (3.7

HO oy 0, (X =)™ 50 o (X —0y)).

Corollary 1 We can express Ri(A, A'), with A(X) = dA(X)/dX, in the dijferelnces of
the roots of A(X).

Proof The coefficients of A(X—q,) are expressed in the root-differences (aa—ai), ..., (Gm—
1), hence so are the coefficients of A(X). Thus, the corollary is a direct consequence of
Théorem 3. O

4 A cluster of close roots

We assume that {A(X), B(X)} is regular and A{X) and B(X) have no common root. If
A(X) and B(X) have mutually close roots, |Ra(A, B)| and also ||Rx(4, B)|| with small k£ are
very small. On the other hand, a; and by are not small usually, hence there must occur large
cancellations if we expand the subresultant determinant. How small is ||Re{A, B)|} 7 If A(X)
and B(X) have only one cluster of close roots, Lemma 1 allows us to estimate the magnitude
of || Rx(A, B)|; the idea is to choose -y so that the coefficients of Ry (A(X+v}, B(X +%)) become
small. Below, by & we denote a small positive number. By |a] = O(6*) and |a| € O(6*) we
denote limsg|al/8* # 0,00 and lims_g|al/6* # oo, respectively.



We consider a simple case that some roots of A(X) and B(X) form a cluster of close roots,
of closeness 6 < 1, and other roots of A(X) and B(X) are distant each other and from the
cluster. We assume that the cluster is located at X = ~ and contains m’ roots of A(X) and
n' roots of B(X). Precisely, we assume that all the root-differences |a; — a5[’s, |8 — ;]'s and
|o; ~ B;|'s are of magnitude O(8%) except that

loi -] = 0(8) (1<i<m),
18—~ =0(6) (1gign)

Without loss of generality, we assume that m' > n'.

One may specify the cluster to be a disc of radius 6, which contains the close roots. This
specification is less precise than ours because some close roots may be much closer to each other
than 4, hence ||Rx(A, B)|] may be much smaller than those predicted below.

We express the close-root factors of A(X) and B(X) as

(4.1)

TX =) = (X =)™ + G (X =)™ 4 4 g,
WX =B) = (X =) byt (X =) 4+ by
We can determine the coefficient 4;, for example, as follows. Rewrite (X ~a;) (1 £ 5 < m') as

(X —9) + (y~e;) and expand the Lh.s. products in (4.2) w.r.t. (X —+). Then, d; is given by
the {m'—4)th symmetric polynomial in {(y—a),..., (v~ au). Hence, we have

(4.2)

6] < O™ (i =mi~1,...,1),
b < O™ (i=n'~1,...,1).

CIf B(X) = dA(X)/dX and v = () + +* + + e )/’ then dwr-y = 0. Note that ' = m’—11in
this case.

(4.3)

Lemma 2 We can ezpress A(X) and B{X) as follows.

A = (X =)™ e G (X = ) (K )T e
B(X) = BOX =)+ + B~ ) 4By (X =) e By, |
where |6{”[ < O(6%) and |B{”| < O(8%) for any i, and
&l < O(gm=ttm'=thy (i = m'~1,...,1,0), (45
bl < o@gmatm'=hy - (i=n'-1,...,1,0). #)
If B(X)=dA(X)/dX and v = (& + -« + cue}/m/ then
& zo: i <O 6ma){{2,m’—i} P = "“"2,-.4)0 )
(Y la| < O( ) (i=m ) (4.6)

lB: 1|=0= u';Hso(amax{Z.n'_i}) (ir—n’»—?.,.,.,(]),

n-

Proof In the case of B(X) # dA{X)/dX, put Q4 = am I, (X —) and Qp =
by [T (X — B;). Multiplying the r.h.s. expressions in (4.2) to Q4 and Qp, respectively,
and expanding Q4 and @ g in powers of (X —+), we obtain (4.4). Then, (4.3) leads us to (4.5).

If B(X) = dA(X)/dX, put Q4 as above and set Qp 35 @p = M'@a + (X — 7} [dQ4/dX].
Then, we obtain (4.4). Setting v = (&g + -+ - e )/m', we have d,—y = 0 and b, _, = 0, hence
(4.3) leads us to (4.6). ]



Proposition 1 Under the assumptions in (4.1), we have
| £, BY = O(°) (k2 2,
[ R:(A, B)f| < O Rk (n! > k > 0).
Let Re(A, B), with k& < #', be expressed as

(4.7)

RilA,B) = #(X ~ ) + (X =) V4 o+ 7y (4.8)

Then, we have (note that n' =m'~1 if B=dA/dX)
|Pisi| = OQBUW=RNW=RI+ 8y (k< 0/, 4 < k),
|Frre1] < O(8%) if k=n' and B = dA/dX.

Proof We separate each row of the subresultant determinant Ry(A(X +7), B(X +%)) as
follows (below, we show only rows for A(X+y), but we define B®-row and B'-row for B{X+v),
too):

(4.9)

ooy @D, ey @, iy e e, XPA)
= A.pow + A'-row, where
Aoy = (-, afg), . asgf)‘ 0, -, X*AWQ),
with A0 = &,ﬁg)X"‘ et @E}Xm')
Alvow = (o0, & 1y, e, b, e, XPAN,

with A/ =&, X™~' ... + 4,

By R;;n) we denote the kth subresultant composed of the A®-rows and the B)-rows. The
coefficients {a,,_;| and |b,,_;| decrease by magnitude O(6) as i increases by 1. If we replace p
A©-_rows of Rg’) by the corresponding A'-rows, the largest magnitude determinant is obtained
when we replace the lower y rows. Hence, we consider only replacing lower A®-rows or lower
BO.rows. By R¥™(4") and R{™(B') we denote determinants obtained by replacing the lower
u A®-rows and the lower v BO-rows of Rg’) by the corresponding i A'-rows and v B'-rows,
respectively. ‘

For k > n’, RE:)) contains no O-column. Hence, ||Bi|l = O(8%) becanse resultant(Q4, Q@p) =
O(6% by assumption. Note that, for k =/, Rﬁf) contribute to only le{Ry).

For k < n', Rf) does not contribute to Ry, because Rio) contains only m+n—¥k--n' nonzero
columns and m+n—k—n' < m4n-—2k In order to obtain nonzero determinant, we must
replace at least ' —k lower A(®-rows by the corresponding A'-rows or m'—k lower B(-rows
by the corresponding B’-rows. Hence, we estimate the coefficients of R} by either R{."’_k'“)(fl’)
or Rio'mf—k)(B'). Let L be either an (n'—k) x (n'—k) submatrix constructed by the (n'—k) A’
rows and the right n'—k columns of Rfc“’_k‘u)(A’ ) or an (m'—k) x (m/~k) submatrix constructed
by the {m’—k} B' rows and the right m'—k columns of REC‘""‘"“’(B' ), respectively. 'We show
the matrix L for RO™¥}(B) :

51 ﬂ;c—l . Xm*—k—LB.'
“.v‘ Tt o Xm'—i:—EBr
L= ’~:+1 k ' (4.10)
b X"'B'



Since 4 = O(6%) and i = O(8%), we can order estimate ||Rxll by the determinant ||,

We can express |L| as |L| = |Ly|X* 4 |Lx-1|X*71 + -+, where each L; is a numerical matrix.
Let I be I = n'—k for R{ ~*9(A") and | = m'—k for Rin‘ml—k}(B’). Putting Ly = (ei;), we have
ei; = 0 or e;; oc O(6'~*}if B # dA/dX. We can order estimate l¢{R;) by the determinant |Ly|.
Expanding the determinant, we obtain terms e, «+- ei5,'s, where {iy,-+ 4t} = {41, -, 41} =
{1,:++,1}. Since e;;, -+~ ey, o O ~tatt)+Oi+-+i)) = O(6"), each term is of the same
order. Hence, we estimate le(R;) by the product of diagonal elements of L. Thus, both
R0 41y and RO™ 9B give the same estimation :

e(Ry)| < O((E’;‘—(n'—k))m’_k) = O(§('=RIlm'=k)y

le(R)| < O((&;ﬂ‘(m,_“)m-k) = QS ~)n' -k,
In the case of B = dA/dX, we have |&',_,} < O(6%) and |B,_,| < O(6%). If &, _, or b,_,
appears as the diagonal elements of Ly, we consider non-diagonal elements, obtaining (4.7).

Finally, we consider the non-leading coefficients #;_; (¢ < k). Note that, for & > n', we must

consider R{"¥(A") and R{® ™M™ DB The #,_; (i < k) is estimated by |Le_il, and we
obtain the upper estimation in (4.9) in most cases. Only one case we must be careful is that of
k=n'and B =dA/dX, in which we have

Bo_y By
Ly = either (&, _,) or Mol
0 b,
Although [§,_,B, o] < O(8%), we have |a,_,| < O(6%) hence |fu| = |8_| < O(8%),
obtaming the lower estimation in (4.9). ' 0

Proposition 2 Under the assumptions in (4.1), we have

WSell I3l = O(8) (k2 n! —1),

. ) ‘ 4,11
1Sl IT3]l < O(8tm k-1t =k=DY (k < n! — 1). (411)

Proof The determinanis expressing Sy and Ty are different from Ry only at the rightmost
columns which give O(6°) contribution to Sy and Ty. Hence, ||Sell, ||T%|| = O(8°) for k 2 n'—1.
For k <. n'—1, the dominant terms of Sy and Ty, or le(Sk) and le(Ty), are estimated by the left
lower (I—1) x ({1} submatrix of L defined above, and we obtain (4.11), m]

Remark 3 What happens if the cluster contains close roots of different closenesses 7 Let
0 < 6y < 8 < 1, and suppose that the cluster contains m{ and mj close roots of A(X) and nf
and n) close roots of B(X), of closenesses §; and &,, respectively, such that

los =y =0() (i=1,...,m1), l|omy—=0) (G=1,...,m)),
|ﬁf "“7' = O(él) ("" = 11 )n'l)) ‘ﬁn'1+j - ’Yl = 0(62) (J = 11' e ‘an)

We also assume that m| > n] and m} > n). Expanding the close-root factors of A(X), for
example, as

m,j mfl ! U ! 1
[H(X - C\!,')] ' [H(X - am§+j)] = (X - ,.Y)m.2+m1 + dma+m‘r‘l(X - ,Y)sz;-ml-al + oo+ dg,
j==1

i=1 i=



we ha«\"e |é,’n!2+mi__1-l S 0(621) ('i = 11 v 1mt2))
(i=1,.

ldms -] < O(6328{) (i com).
Then, we find that ||[Ry|]] = O(f]) for k > n{ +n) and, as k decreases from n{ +nj to x},
the close-root factors of closeness d; are “stripped off” from the subresultant, and we have
Ry o (X - )™ + lower-order terms. ]

5 Clusters of close roots

If there are several clusters of close roots then we cannot apply Lemma 1 but a much more
complicated analysis is necessary than that in the previous section.

We assume again that (A(X), B(X)) is regular and A(X) and B(X) have no common root,
We consider a simple case that some roots of A(X) and B(X) form ) clusters of close roots,
of closeness § < 1, such that the clusters are distant each other and the other roots of A(X)
and B(X) are distant each other and from the clusters. Let the clusters be located at X = 7,

.y X = 7, and assume that each cluster contains m' roots of A(X) and %’ roots of B(X).
Precisely, we assume that all the root-differences |o; — ay's, |8 — G;'s and |es — 8;]'s are of
magnitude O(6%) except that

au_pmiyi =N =000) (1<I<Ah 1<i<mw),
(1—1)

Be-sysi =1l = O8) (LTSN 1< i < ). -
Without loss of generality, we assume that m' > n'. We redefine C{X) to be
CX) & (X =) (X =~ m). (5.2)
We express the close-root factors of A(X) and B(X) as
I e = )] = O 4 ey (X)),

e T e (X = B8] = €%+ Buy(X) OV o By(X),

where deg(4;) < A and deg(B;) < A (i = 0,1,2,...). We can determine A; as follows.
Rewrite the close-root factor of A(X) as H}’;’,[Hf: VX — "+ 7 — oo pymess M, expand it wart,
(X—m) (1€1< ), collect terms (X~ )t o (X — 4\ )%, with )4+ 47y > A, fori = m'
= i=m'—1= .. successively, and convert them as A;(X)C(X) + (terms of degrees < i)
by rewriting (X —vp) = (X —y) + (v —v) if necessary. For example, for A = 3, the term

(X-m)* (X—12)*(Xa) is converted as C'(X)? (X-y=yrtya)+C(X WX ) (X=w)(v3-m ) (va-7).
By this, we find

”Al” < O(ém‘_i) (7’ =m'- Lo 0)!
" 1Bl < O(F")  (i=n'~1,...,0)
IfB(X) = dA(X)/dX and M= (a(f—l)m"+1+' ' "|'C"‘5h'rl‘)/Tn'I ([ = 19 R A) then deg(-“im'—l) < A2
and | Am_1 [l < O(6). Note that #' = m/—1 in this case.

(5.4)



Lemma 3 We can express A(X) and B(X) as follows.

A(X) = Ap(X)C™ + A1 (X)C™ 1o+ Ag(X),
deg(Am') =m—m/, deg(Am‘»—i) <A (iz2 1)1

= P = . _ 5.5
B(X) = Bu(X) O + Byoa(X) G 4o+ Ba(X), 54)
deg(By)=n—n', deg(Bu_i) <) (21},
where } .
JAdl < O™, (i =nf=1,...,0), (5.)
1B < O™, (i=n'-1,...,0). '
If B(X) = dA(X)/dX and v = (@p-1ymrga + - Fame}fm' (1 =1,...,A) then
A. max{2,m' —i} R I .

[1Bill < O(gmexiar'=ih), (i =n'-1,...,0).

Proof In the case of B(X) # dA(X)/dX, put Qa = am [Ty (X —ci) and @p =
bn T apr g (X — i) We compute Aq as Ay = rem(Q 4 Aq, C), and set Q as Q := quo{Q 44, C).
Then, we compute A; (j = 1,2,...} successively as A; = rem(Q.4; + Q,C) and reset @ =
. quo(@,‘/lj +Q,C). We compute By, By, ... similarly, obtaining (5.5). Then, (5.4) leads us to
(5.6).

If B(X) =dA(X)/dX, put Q4 as above and set Qp as Qp = m'[dC/dX]| Q.+ C [dQ4/dX].
Then, we obtain (5.5) again. Setting % = (Gu_1ym1 -+ -+ + oum ) /m/ for each [ € {1,...,2},
we have || Amr_y|| < O(8%). Differentiating A(X) in (5.5), we obtain (5.7). 0

- We want to show that the coeflicients of Rk({i,B) can be order estimated by the deter-
minants the elements of which are coefficients of 4;(X) and Bi(X) (i=0,1,...), as Lemma 4
claims. We explain this by an example.

Erample Let m'=n'=2 and let A and B be expressed as

A= AC+D, A =A'C+D", ||AY =06,
B = BJC- __I__Ei‘ B = B”O'l‘ E"‘ “BH“ — 0(50),

where D', B, D", E" are polynomials of degrees < deg(C'), and of magnitudes || D"||, || E*|| =
O(8'Y and ||D'|],||E']] = O(6%). We note that A and B are expressed in a nested form; we
say that A and B are of nesting level 0, A', B', I, E' are of nesting level 1, and A", B", D¥ E"
are of nesting level 2. TFurthermore, we consider polynomials of definite degrees such that
Ce= X214 X+, D =d\X +dy, B' = e\ X +e), A" = a{X +aff, B = (5X* + W[ X -+ bf,
D'=diX +dff, B" = e{X + ¢. By ai, b;, a}, b we denote the coefficients of terms of degree i
of A, B, A, B', respectively.

The lc(Ry(4, B)) in our case is a determinant with elements ag,..., a0 and bg,...,by. We
apply the transformation given in the proof of Theorem 2 to the left 8 columns of the deter-
minant, then to the left 4 columns of the resulting determinant, By these, the determinant



becomes (we use the symbols %, with * = d;, &;, etc., as defined in {2.10))

o o df dy dy d
al ay df ap d) g
I I 0-11 a’[] a’l aD
le{Re(A, BY)) = {5.8}
by by by & by & b
by B by b by, by b

= afRD - iR + HRY - GRY + &R ~ R,

where the last expression is obtained by expanding the determinant w.r.t. the first row. The
determinant in (5.8) has the following three properties.

Property P1 FEach element of the top row has been reduced maximally {i.e., reduced to a
number of the same magnitude as the corresponding coefficient of A;(X)).

Property P2 The coluinns are ordered so as to preserve the order of the corresponding columns
of le(Ry(A, B)).

Property P3 All the elements of left-hand-side columns, middle columns and other right-hand-
side columns are coefficients (or linear combinations of them) of polynomials of nesting
level 2, 1 and 0, respectively.

We show that Rfcl),...,R,(f) can he transformed into determinants having the properties P1,
P2 and P3.

We transform R,(cl), as follows. Replacing the 6th column *(ap,ay,---,bg, b1, ) of RE.'}
by Yeomp+dy, coal +ecrag+dy, o, cobytep, cobiterbh-tel, --), and using the 4th and
5th columns, we can transform the 6th column into (dy, dj, -+, 8, &, - ), becanse d] = dj,
e, = # and dy—¢;d) = dby. Similarly, we can transform the 4th column (a}, a}, -, b}, )

into Ydl, d¥, .. 8,8 ...). By these, RE) is transformed as follows.

o w wu
at ey 4 d 4 d
h N o
e ey df of d) ag
1
R = | ... . (5.9)
b? bg E" it et o
i i f i f of
2 1 o & by & b

This determinant has the properties P1, P2 and P3, We can transform Rf) similarly.
In order to transform RS), i 2 3, we need another technique. Consider, for example, Rﬁa).



Removing the top B-row, we have

no ] b
o df ay 4 a
ﬂu a.l au [#5] ap

(5.10)
by o b b b b
by by, b b b b

Transforming the 5th column as above, we express the 3rd column by the sum of columns as
t(ﬂ%:@'l:;"»b'n lﬂ ' ) - C‘O[(aﬂlall bl’lflbgi ) + €1, t(dllaﬂs :bg»blli#"')

+ H(d8.dY, - el by, ), becanse df = d” and "'vcld” . Then, the determinant becomes the
sum of three determinants, among whlch the second one is 0 because it has two same columns.
Hence, B{¥ /(b)) is transformed into the sum of two determinants:

i ¥ qr g ¥r W Jgr 5 3
of & df dy 4y of dy @ & dy
af af ey df ao af di af d ag
—Cp .. + e
These determinants have the properties P1, P2 and P3, ]

Leimma 4 The magnitude of lc{Ry(A, B)) w.r.l. § con be estimated by lc(Rix(A, B)), where
A(X) and B(X) are the following polynomials.

A(X) = A XM 4 A XOV-D2 4 A,
(X) iy + t +e+ Ag (5.11)

B(X) = BuX™ + By X®-0A 4 ... & By,

Proof We will prove the lemma by generalizing property I3 accordingly, by transforming
the subresultant into such a determinant as in (5.8), and expanding it successively to minors
having properties P1, P2 and P3. We call a column to be reduced, such as the 5th or the 3rd
one in (5.10), a reducend. We call A successive columns to be used to reduce a reducend, such
as the 3rd and the 4th ones in (5.10), reducers. We call a column which is obtained by reducing
a reducend, such as the 6th or 4th one in (5.9}, reductant. Then, the nested structure tells us
that

reducend = ¢g [Ist reducer] + - - + ¢y_1 [Ath reducer] + reductant. (5.12)

We assume, as an induction assumption, that if the reducend is of nesting level £ then the
reducers and the reductant are of nesting level £+1. We consider a determinant which has the
properties P1, P2 and P3. We expand it w.r.t. the first row, obtaining minors. These minors
do not have the property P1, because of the existence of reducends. We transform the minors
into determinants having properties P1, P2 and P3, as in the above example.

Let R be a. minor obta.lned by the determinant as above. If R contains all the necessary
reducers, as R{1} and R{2) in the above example, we can replace each reducend in R by the
corresponding reductant and the resulting minor has the properties P1, P2 and P3. However,
many minors lack necessary reducers. If B lacks some reducers, we replace the reducend



by the right-hand-side expression in (5.12) and express R by the sum of A 41 determinants
RO RP+D a5 we have done for Ria) in the avove example. If the jth reducer is contained
in R then R = 0, otherwise R\ is a determinant obtained from R by replacing the reducend
by the jth reducer. In the latter case, we exchange columns of RU} if necessary, so as to
satisfy property P2. The R is a determinant obtained from R by replacing the reducend
by the reductant. Repeating this process for all the reducends, we obtain minors which have
the properties P1 and P2. The recursive structure of R tells us that this reduction can be

continued to prove the lemma, 0O
Proposition 3 Let k = gA+r with A > r 2 0. Under the assumptions in (5.1), we haeve
|Bx(4, B)|| = O(8°) (k= M),
A oY n! ) frmd mf 2 — (5.13)

| Re(A, B)| = O (M- =) ={mian'=20=0)r) - (o < An),
Let Ry(A, B), with k < ', be expressed as

Ri{A, B) = Ry(X) CT+ Ryoa(X) O+ -+ + Ro{X), (5.14)

deg(R,) =7, deg(R:) <A (i=g-1,.:.,0). '
Then, we have {note that n' =m'-1 f B=dA/dX)
Rl < Mm' = q)(r' —g)—{m'+n' —2q—1)r +i P <
| Ry-all < O(8 ) {(0<izyg), (5.15)

|Roarll € O(8%) if k= An' and B = dA/dX.

Proof Formula (2.12) in Theorem 2 can be rewritten as

Ri(AC+D,BC+E) = R"C + Rf"’
HY = Ri(A, B) + quo(Re (D, E), O,
R{P’ = rem(Bx(D, E), C), deg(R}j’)) < deg(C).

Applying Theorem 2 to A(X) and B(X) in (5.5) repeatedly, we see that Ri(A, B} can be
expressed as in (5.14). For k € An', the coefficients of Ry(A, B) decrease as those of terms of
degrees < An'/, of B(X)}. Hence, we have only to estimate the magnltude of le{ Ry.(A, B)).

For convenience, we decompose A{X) and B(X) as

A(X) mlcm + AAI AA - Am"-lcm -1 R fi01
B(X)= BuC" + Ap, Ap= By C™ '+ +§0,

For k > An/, we have Ry(A, B} = RL(Aer” BuC¥) = C" Ry_sn (A C™ ", Bw),
Hence, ||R;L (A, B)|| = O(6") because Am-C‘"‘ - and B,y have no mutually close root.

For k < An', we have Rp_an(AnC™ =" B} = 0 because the corresponding determi-
nant contains 0—column(s). We estimate lc(Rk) by replacing rows of the determinant for
le(Ry(Am C™, Ban’”J)) by the corresponding 4 4-rows and/or Ag-rows. Replacing lower rows
gives lower order terms w.r.t. § (i.e., larger magnitude terms), hence we replace either lower
A C™ -rows or lower By C™ -rows.

We first con51der the case of m’ = n' (hence B # dA/dX). The determinant for
le(Ry_anr{ AmeC™ =n' Bn)) contains m-+n—2k columns AmONg which the right An'—k ones are
0-columns. Therefore we replace the lower (An'—k) By C"'-rows by the corresponding Ap-rows,



We construct the kth subresultant for A and B, and let L be the right lower (An'—k) x (An'—k)
submatrix of the determinant. Lemma 4 tells us that |lc(Ri(4, B))| = O({L|). We show the
magnitudes of elements of I for A = 2:

08" o) | 085 0" | 0(6%)

L=1 oY o) | o o060 ,
oYy o) | 08 08 | 06
o@') o@hy | o(s%) 0 | o)

where an upper right triangular part may be null. By dividing L into cells of size X x A, as
illustrated above, we see that the matrix is of a similar form as those in the previous section. If
k = gA then L contains (n'—q)* cells and we can estimate |L| by any combination of the cells.
Since upper right cells may be null, we estimate |L| by the product of diagonal cells, obtaining
|L{ = O(#M'-aw'-0)}, [f k = gh4r, 0<r <) hence An/—k = A(n'—q) — r, we remove upper 7
rows and right r columns from L and estimate, |L| by using the leftmost lowest cell, as illustrated
in Figure 1 for the case of A = 3 and n/—g = 2. Hence, we obtain |L| = Q(§**' -9~ (' ~29-1)r),
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Figure 1. Order estimation of |Lj by the boxed elements.
Case of n'—g = 2, and r=0 (left), r=1 (middle), r=2 (right).
The element £ denotes a number of O(§¢).
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Figure 2. Order estimation of |L| by the boxed elements.
Case of m'—n' = 1, m'—¢ = 3, and r=0 (left), r=1 (right).

We next consider the case of m’ > n'. In this case, we replace the lower (An'—k) A, C™-
rows by the corresponding A 4-rows. Then, the matrix L is now of the form {we show the case



of A = 2; the form is valid even if B = d4/dX).

O(am’—n'+1) O(é‘m'»—n‘-&-z) O(ém'—n'+2)
O(ém’—n’+1) O(ém'-—-n'+i) O(5m’—n'+‘2)

L=

If £ = g then the diagonal elements of the diagonal cells are of magnitude 5™2. Hence,
estimating |L| as for the case of m' = n', we obtain (5.15). ( If we replace B, C™-rows, we
must replace Am’—k rows. Thus, we obtain a matrix L of size (Am/~k) x (Am'~k), with a left
lower triangular part null (see, Figure 2). We can estimate |L) similarly as above, with some
complication illustrated by Figure 2, and we obtain (5.15) again. ) a

Proposition 4 Under the assumption in (5.1), we have

ISl Tl = 0% (k = An'—1),

ISkl (1 Txll = O Reall) (k< dn'—1). (5.16)

Remark 4 Propositions 1 and 3 tell us that (X —v)" or C(X)* is an approximate common
divisor of A(X) and B(X), of tolerance O(6). In particular, if B = dA/dX then it is an approx-
imate common divisor of tolerance O(6%). Therefore, among various algorithms for univariate
square-free decomposition, the naive algorithm which computes approximate commen divisors
successively by the Fuclidean algorithm, is quite stable, O

6 On cancellation in Euclidean algorithm

If polynomials A, B, /£ are such that ||A| ~ ||B|| > || F]| and A — B = E then we say that
the cancellation of amount of | AJl/E|| occurred in the computation of E. With the results in
the previous sections, we are able to estimate the magnitudes of cancellations which oceur in
the Euclidean algorithm. For examples of cancellations, see [$S389).

The remainder sequence (Pl=A, ,=B, -+, P, -} and its cofactor sequences (U, =1,U, =
0, - Uy, ), (V1=0,Va=1, .- | V4, ) are computed by the formulas

Py = ceFPey — Orb

U1 = el — Qi (k=2,3...), . (6.1)
Virr = eV — @iV
where ¢, € C and @k € C[X]. We normalize the cofactors as
max{[[Ulh, [Vall} =1 (k=3,4,...). (6.2)

In order to satisfy (6.2), we set ¢, and @ as

max{ex|, |Qell} = O(1). (6.3)

Then, the cancellation in the division of Py, by Pp occurs when |leyPr il = ||QrPy|| and
§Petill € ||Pi-1]l, and the amount of the cancellation is about {[cxPii}|/|| Pit1]l. Thus, the
total amount of the cancellation in the computation of Py from A and B is given by 1/[|Fy|, or

total-cancellation = max{{| Sk ||, | 7%l } /17 |I- (6.4)



Table I shows the magnitudes of cancellations when A(X) and B(X) have only one cluster of
close roots of closeness 8, where v = m'—n/,

k| I8 [Sell —— [ISell/112]

' 0(5°) o@% o1/
=1 0(51(u+1)) 0(50) O((l/ﬁ)"'“)
) O(ﬁz(u-pz)) O(5l(u+1)) O((1/6)0+3)
n =3 0(53Fw+3)) O(éZFuH)) O((l/.ﬁ)”%)

Table I. Magnitude of the total cancellation {||Sk||/liRxll).
Case of single cluster of close roots (v =m'/—n').
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Abstract

This paper investigates the analytic continuation of algebraic functions being defined
as roots of a bivariate polynomial, focusing the attention on certification of the continu-
ation. The analytic continuation in this case is nething but to determine the one-to-one
correspondence among the toots expanded into power series at different points. We pro-
pose three methods for the continuation of Taylor-series roots. The first one is based
on Smith's theorem, and the second one is based on an upper bound for the “smallest
root” of a univariate polynomial, derived in this paper. These methods determine the
correspondence among the canstant terms of the Taylor series. The third method utilizes
leading several terms of the Taylor series. We also propose a method for the continuation
of Puiseux-series roots which may appear at singular points. We analyze these methods
hoth theoretically and experimentally.

Key-words: algebraic function, analytic continuation, certification, power series root,
Puisenx series root, Taylor series root.

1 Introduction

The analytic continuation is a very important operation in mathematics: it plays an impor-
tant role for the determination of Riemann surface of algebraic function, the monodromy group
of the sclutions of ordinary differential equation, and so on. Recently, the analytic continuation
of algebraic function becomes an important tool for the approximate factorization of multi-
variate polynomial. About ten years ago, Sasaki et al. proposed an algorithm for approximate
factorization {SSKS91, SSH92). The algorithm constructs approximate factors by combining
(truncated) power-series roots, but the algorithm often falls down due to explosion of numerical
errors, Recently, Sasaki presented an ctfective and simple method of combining power-series
roots, and proposed to utilize power-series roots expanded at several points [Sas01], requiring
to determine the correspondence between the roots expanded at different points. Corless et
al. proposed a numerical algorithm for the approximate factorization [CG..01]. The algorithm
evaluates an algebraic function being defined implicitly at many points, and it interpolates an
approximate factor by the values. Similarly, Galligo et al. proposed algorithms for absolute fac-
torization of multivariate polynomials (GW97, GRO1]. Their algorithms determine polynomial



factors by computing power-series roots at several points near a singular point. All of these
algorithms rely on the analytic continuation in some sense.

In this paper, we investigate the analytic continuation of algebraic functions being defined
as roots of a bivariate polynomial, focusing the attention on certification of the continuation.
Let F'(z,u) € Clz,u} be a given bivariate polynomial of degree n, and let @ (u) (i = 1,...,n)
be the roots of F{x,u) w.r.t. z:

il

F(z,u) Ffa(udz™ + foaz™ 1+ + folu)

fa(u) (z = @1{w)) - (2~ @nlu})-

We assume that F(z,u) is square-free (i.e., has no duplicated factor), hence @;(u) # @;(u)
(¥i % 4). We say that a point w = s, 5 € C, i a singular point if f,{s) = 0 andfor F(z, s}
is not square-free. (The singular points in the sense of algebraic geometry are included in the
singular points defined here). Let u = @, a € C, be a non-singular point, then the root @;(u) can
be expanded into Taylor series at u = a. At a singular point « = s, some roots may be expanded
into Puiseux series {fractional-power series) or may become infinite. We call the roots expanded
into Taylor series and Puiseux series Taylor-series roots and Puiseuz-series roots, respectively,
and call thern power-series roots in both cases. Below, for simplicity, we describe “point o == "
and “expanded at u = a" as “point ¢” and “expanded at a”, respectively.

Let a and & be non-singular points (we may have a = b, because the continuation is made
along a path connecting a and b), and let the root @;{x) be expanded into power series at a
and b and truncated at the &th power, as follows.

(1.1)

i=1,...,n). (12

(“)(u'!c} = f(“) (“)(u—a)-i-- (“)(u~a)‘“ (
Wiwk) = f7 +fw-b) +- +f“’)( B,

Since @i(u) = tpf )(u oo) = tplb)(u co), there is a. one-to -one correspondence between sach

element of {@{”,:- -, @™} and some element of {p{,-..,®}, and the analytic continuation
in our case is nothing but to determine the correspondence by using truncated power-series
raots,

The textbook method of analytic continuation, i.e., restructuring of an infinite power se-
ries, 18 not suited for computer. Because of the importance of analytic continuation, we should
search for better methods of computational analytic continuation. For the holonomic functions,
t.e., the solutions of some kind of ordinary differential equations, Chudnovsky and Chudnovsky
[CC90] and van der Hoeven [vdH99] discussed the analytic continuation. These authors com-
pute the power-series solutions to a high power, and estimate an upper bound of the Taylor
remainder by using the behavior of [fix|/|fip| at & — oo, As for the power-series roots of
polynomial in (1.1), Shithara and Sasaki [SS96] and Doconinck and van Hoeij [DH98] discussed
the analytic continuation so as to determine the Riemann surface of the algebraic function. In
[S596], the authors connect the Puiseux-series roots with the Taylor-series roots and certily the
continuation by using Smith’s theorem {Smi70]. Their method is quite simple but nat applicable
if both Puiseux-series and Taylor-series roots coexist at the expansion point, as we will explain
in Section 5. Furthermore, the certification of continuation is not complete, In [DH99), the
authors investigate the analytic continuation around singular points, but they do not consider
ghe certification. Furthermore, Corless et al. [CG..01) investigated tracing an algebraic function
along a path by using a technique of solving a partial differential equation.
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In Section 2, we present the first method of certified analytic continuation which utilizes
Smith's theorem. In Section 3, we derive a theorem for the upper bound for the “smallest” root
of a univariate pelynomial, and present the second method of certified analytic continuation
based on the theorem. These two methods treat only the constant terms of Taylor-series roots.
In Section 4, we describe the third method which treats leading several terms of Taylor-series
roots. In Section 5, we test the three methods proposed by polynomials of degrees 10, 20 and
50 generated randomly. In section 6, we consider to connect the Taylor-series roots and the
Puiseux-series roots expanded at singular points.

2 A method based on Smith’s theorem (method S)

First of all, we make an important restriction on the description of this paper. In most
cases of actual computation, the continuation is made along a path connecting given points
a and b, The path is usually not short, then we divide the path into short sub-paths and
repeat continuations so that, at each continuation, the roots at one edge of a sub-path are
connected with those at another edge directly. In this paper, for clarity, we describe only
the continuation along a sub-path. Thus, we consider ¢ and b to be the edge points of a
sub-path, and we assume that

O#la-bll, . (2.1
Let the roots of F(z,a) and F(z,b) be ay,...,a, and fy,.. ., Bn, respectively.

F(z,0) = fale)(z —on) - {2 —an), o #a; (Vi#]),
F(E1b) fn(b) (z_ﬂl (m"ﬁn)) ﬁ1 71::63 (Vzr,éj)

The power-series roots are uniquely determined by the leading terms (constant terms), if the
expansion point is non-singular. Hence, we can determine the correspondence between the
truncated power series (pE )(u k) and apJ (’LL k) by determining the correspondence between the
numbers o; and j3;.

We can determine the correspondence between ¢; and f; by using Smith’s theorem which
is famous in numerical analysis.

(22)

Theorem 1 (Smith 1970) Let G(z) be a monic univariate polynomial in Clz}, and let
Cl,. .. 50 be T distinet numbers in C. Let'n numbers rq, ..., 7, be defined as follows.

IG(01)|
|HJ =1, (e — i)

Let Dy,...,D, ben discs in the complex plane, such thal center(D;) = ¢; and radius(D;) = n;
(i=1,...,n). Then, the union Dy U - U D, contains all the roots of G(z). Furthermore, if
a union Dy U+ Dy, is simply connected and does not intersect with Dy,py, ..., Dy, then the
number of reots contained in this union is m.

(i=1,...,n). (2.3)

i

Corollary 1 Leta polynoﬁu’al Gz, X) be
Gz, N) = F(z, a+ A - a)), (2.4)



where A s a parameter such that 0 < |)\| < 1. Let Dy} (i = 1,...,n) be Smith's discs for

Gz, ) with ¢ = ;. If Di()),..., Du()) do not overlap one anather for any X on o path
connecting 0 and 1, then we have the correspondence o ¢+ f; (¢ = 1,...,n), where B; is the
root closest 1o o.

Proof. Since the roots of the univariate polynomial are continuous functions in its coeffi-
cients, the roots of G{z,0) change continuously to the roots of G{z,1) if we change A from
0 to 1 continuously. On the other hand, the assumption tells us that, for any value of A,
0 < A < 1, each disc D;()) contains only one root of Gz, A}). The roots of G(z, A) at A = (}
are o (1= l .,1) and those at A =1 are 3; (j = 1,...,n). Hence, there must be one-to-one
correspondence between each root of F'(z,a) and the c:losest one among the roots of F{xz,b). O

In order to use the above corollary in actual continuation, we have to devise a simple method
for checking the condition that Dy(A),..., D.{}) do not overlap for any value of A on the path.
First, we choose the path connecting 0 and 1 to be a line, hence A is a real parameter such that
0 < A < 1. Next, we replace the above condition by the folloewing sufficient condition, so that
we can treat each disc separately.

Condition 8 The discs D(A),. .- ,Engkn) are disconnected one another, where A; is &
number, 0 € A; <1, at which radius{D;())) becomes largest (1 <i < n).

We further make the following device. Usually, we have 8F /8ty a; uze 7 0, then radins(D;{A))
will increase monotonously as A increases from 0 to 1, so long as |b —a| is buﬂimently small.
Furthermore, the denominator factor in (2.3) is independent of A. Hence, before checking the
condition 8, we check a stronger and sufficient condition S'1 A 8’2, with S'l and 5'2 given
below, and we skip checking the condition 8 if the condition S'1 A 52 is satisfied.

Pre-condition 8*1 The discs f)l(l), . ,ﬁ,l(l) are disconnected one another.

Pre-condition 8'2 For each i€ {1,...,2a}, |F{ai, a + A(b— 2))| increases monotonously in
the interval [0, 1].

In an actual program, we check the condition §°2 simply as follows. Let P(A) be a polynomial
in A with real coefficients. We sum the coefficient successively from the lowest to higher terms,
and if the sum does not change the sign during the summation, we see that P()) increases or
decreases monotonously in the interval 0 < A € 1. Experiments show that this simple check
is quite effective and very quick. We compute the maximum of [P(A) in the interval [0,1] by
evaluating it at 11 points 0.0, 0.1, ---, 0.9, 1.0.

Example 1 Checking the condition 5’2 simply. Let

Fzu) = 2%+ (v - 2)2% + (2u? ~ 3u — )28 + (u° + 3u® — 3}
— (@ + 20 + 8u — 32’ + (v — 3?4+ 8)z + (¥ — 3u? -~ 7).

Let ¢ = 0.0 and b = 0.1, then F(z, a) has a root oy ~ 2.47054, and we have

F(ag, 0.13) =~ 0.000779A% + 0.000247A* — 0.0301A% + 30.4X% ~ 78.0A.



Successive summations ({((—78.0+30.4)~0.0301)+0.000247}--0.000779) do not change the sign,
hence we see that F'(cv;,0.1M) increases monotonously in the interval [0,1]. If F(ay, a+A(b—a))
is of complex coefficients, then we check the real and imaginary parts separately. a

Example 2 Smith’s discs for F(x, %) in Example 1,
We first set a = 0.0 and b = 0.1, In Table 1, a; and B are roots of F(z, 0.0) and F(z, 0.1),
respectively, and 7; is the radius of the ith Smith's disc for F(z, 0.1), with ¢; = a4 (1 <4 < n).
We see that the discs Dl(l) ., Do(1) are disconnected one another. We have checked that

the radius of each disc D; ()\) increases monotonously in the interval [0, 1], hence we have the
correspondence o ¢— f; (i =1,...,10).

Table 1: Smith's discs for (2, u) in Example 1.

i ;i | B ri/|8: — il
1 2.470 2,481 10.37
2| 0.9144+0.274i 0.907 + 0.287 10.46
3| 0.914-0.2741 | 0.907— 0.287i 10.46
4| 0.62341.0841 0.608 4-1.082 10.20
5| 0.623~1.094i 0.608 — 1.082 1 10.20
6 —0.2274+0.994] | —0.232 4+ 0,997 | 10.09
7| —0.227-0.994i § —0,232 — 0.997 i 10.09
8| —0.953 + 0.8231 | —0.975 + 0.8131 0.724
9] —0.953 - 0.8231 | —0.975 — 0.8131 9.724
10 -1.186 —1.197 9,430

For a = 0.0 and b = 0.15, the certification of continuation succeeds for all the roots, although
a simple check described in Example 1 fails for F'(a, 0.15X) and Smith’s discs Dy(1) and De(1)
nearly overlap, For a = 0.0 and b= 0.2, Da(1) overlaps with Dy(1), and Dy(1) with Do(1). O

The ratio r;/|f: — ;| in Table 1 shows clearly that radius(D;(1)) = n x |8; — a;|. The reason
is as follows, Let By,..., /2, be the roots of a univariate polynomial G(x}, and let a( ) ok
be their approximations, respectively. The Durand-Kerner fermula for computing the roots of
G(z) iteratively is

(ic+1)

(k) JL)

(2.5)

Note that 7; in (2.3) is nx(correction term in (2. 5)) The sequence (o, Q’Ez),
quadratically to 3;, i.e. |o;(’°+1) B = O(\aff”
as [ — o] € L.

The fact radius(D;(1)) = n x |f; — x| suggests that method S is not useful for polynomials
of large degrees. Thls fact also tells us that the disc radius does not depend on |o; — ul,
where oy is the root closest to oy, On the other hand, the value of |&; — ay| determines the
overlapping of discs crucially. Hence, we may set |b — a| small for some root but may have to

set large for another root. We will test method S on polynomials of large degrees in Section 5.

-} converges
8%}, hence we have 7; ~ n - |f; — a;| so long



Note that, we must compute and check all the discs in any case. Hence, the method S is quite
wasteful for the continuation of a single or several roats.

3 A method based on a bound for the smallest root
(method B)

Suppose a univariate polynomial G{z) has m small roots around the origin. There is a
theorem which allows us to separate these m small roots from others [TS00}, see also [ST02].
In this section, we derive a stronger theorem for the case of m = 1, and we give a method for
determining the correspondence ov; +— 5;, by using the theorem. Below, by the smallest rool
of G(z) we denote the root of the smallest magnitude.

Let a univariate polynomial G(z) € C[z] be

{ Glr) = guz" + -+ @z +z+e, g. #0,

3.1
max{|gal,- -+ gl = 1, el < L. (3.1)

Obviously, G(x) has a small root 4 of magnitude |¢|]. On the other hand, any root 7 of
polynomial G(z) = go2™' + -+ 4 gaz + g1, ¢ # 0, is bounded as (see Mignotte {Mig92])

ol L

v 2 - = .
M 2 s e o]~ T+1/]

(3.2)

If G{z) == (z — %)G(z), we may consider that |g | =~ 1. Hence, the roots of G(z), other than 4.
are approximately not smaller than 0.5, and we see that ¥ is the smallest root of G(x). The
following theorem separates 4 from the other roots rigorously.

Theorem 2 Let % be the smallest ront of G(z) and ¥ be a root of G(x), other than %. Then.
so long as

0 < || < 3 - 2v/2 ~0,1715, (3.3)
|49 and |%| are bounded as follows.

151 < (1 |el) = /(1 + Jel)* — 8¢ (1 + e} + (1 + |e])? - 8ie]

4 ' 4

shl (34

Proof. Since G(5) = 0, we have (g.4"71 + -+ + g% + 1) ¥ = —&. Assuming that |¥| < 1,
which is assured by (3.4), we obtain

~

1%

il

lel /11 + 927 + -+ + ga¥" |
lel / {1 — 11— = 131"}
le| / {1 = 131/1 ~ [31)}

= 2~ (1 +[el)}¥] + e > 0.

AN

The discriminant of the polynomial at the Lh.s. of the above last inequality is D = (1+|¢|)* —8le].
In order that we have an upper bound for |¥|, we must have D > 0, or (3.3). With the condition
(3.3), the above last inequality gives us the bound (3.4) for |4}.

-3



Similarty, dividing G{¥) = 0 by %, we obtain g, 9" "'+ +g¥+ ¢ = 0, where g, = L +¢&/%.
We see g1 > 1 because |§| 2 0.5. We regard this as an equation in %, of degree n ~ 1 with
the constant term g, and apply formula (3.2) to it. (We can state this situation as follows.
Congider a set of polynomials {g,z""' + -+ gaz + g1 { |g1] < §}, where 7 is so chosen that the
set contains a polynomial having the root %. Since g is a number, we can apply formula (3.2)
to every polynomial in the set.) Then, we obtain the following inequality for |%|.

1 1
>
L+1/[0+e/3 = 1+1/(1—[e/4])
= 2B = L+ D+ el 2 0

4

Remembering that ¥ is not the smallest root, we obtain the bound (3.4) for |¥]. 0O

If F(x,a) has no close root around = = ¢; then F(z + w;,b), with |b — a| < 1, will have a
small root 4, %] = |fi— | < 1, and other roots will not be so small as %;. By investigating the
separation between the smallest root %; and other roots, we can determine the correspondence
o +— i, as the following corollary asserts.

Corollary 2 Let o polynomial Gi{z, )) be
Gi(z, ) = F(z + ay, a+ b —a)), (3.5)

~where ) is o parameter such that 0 < [N < 1. Let %()) be a root of Gy(z, A) satzstzng 4(0) = 0.
Let Gi(z, ) and £i(A} be expressed and defined, respectively, as

Gilm, ) = guz"+ -+ g5t + T+ o, G170, (3.6)
g(A) = |go/au| X max{ "Vign/anls -+, lga/qls |g2/onl }- (3.7)

Then, so long as &;(}) < 3 — 2v2 for any A on a path connecting 0 and 1, we have the
correspondence oy +— (1) (= 0 — o)) +— G;, where B; is the root closest to o;.

Proof. Determining a positive number 7 to satisfy |[g1n] = max{|g.n"|, -+, |g20*| }, we

have 9 = 1/ max{ "|gn/m|, -, Ylgs/a1l, |g2/¢1]}. Making the transformation z — nz in
(3.5), we see that the condition &(A) < 3 — 2v/2 is equivalent to the condition for |¢| in (3.3).

Let D;(A) be a disc of radius [{1 +&:,{})) - \/(1 + &:i{A))* — 8ei(A\)] / 4, located at the origin.
At A =0, Dy ;(0) is of radius 0 and it contains a root %(0) = 0. At 0 < |A| < 1, the assumption
tells us that D;(\) contains only one root that is the smallest root of G ('r A). Hence, the

corollary is a direct consequence of the fact that the roots of the univariate polynomial are
continuous functions in its coefficients. m|

In order to use the above corollary in actual continuation, we have to devise a simple method
for checking the condition |e;(A)] < 0.1715 for any value of A on a path connecting 0 and 1.
First, we choose the path to be a line. Next, consider the polynomial

Pz +ai, a+ Al - a)) = fllN)z® + Fust (M2 4 - + fo(A). (3.8)

Since fo(A) = F(o, a+ A(b — ) and f,(0) = 0, if we increase X from 0 to 1, the value of
| /(2] will change (increase) rapidly while the Other coefficients will not change much, so long
as |b — a] « 1. Therefore, we replace the above condition by the following sufficient condltlon



Table 2: The smallest roots for F(x,u) in Example 1.

B i | £i B/
1 0.0382 0.0397 1.085
2 | —0.0203 + 0.0367 i 0.0421 1.052
3| —0.0203 — 0.0367 i - 0.0421 1.052
4 | —-0.0675 — 0.0477 i 0.0698 1.018
5| —0.0575 4+ 0.0477 i 0.0698 1.018
6 —0.0169 + 0.0092 ] 0.0195 1.033
7| --0.0160 — 0.0092i 0.0195 1.033
8 | —0.0940 ~ 0.0413 i 0.1073 1.2195
9| —0.0940 + 0.0413 0.1073 1.219

10 —0.0428 0.0447 1.098

Condition B The relation &;(A) < 3 — %V@ still holds if, in formula (3.7), we replace |gi
and |g;| (7 % 1) by the minimum of |f1(A)] and the maximum of |f;(A)], respectively, in
the interval (0, 1].

In an actual program, we check the following necessary condition B’ before the condition B,
and judge that |b — &] is too large if the condition B’ is not satisfied.

Pre-condition B’ (1) <3 — 2/2.

Example 3 The smallest roots for F{x, u) in Example 1.

We first set @ = 0.0 and b = 0.1. In Table 2, 4; is the smallest root of F(x + ey, 0.1), £; Is the
value of £;(1), and B, is the upper bound for the smallest root (i = 1,...,10).

We see that the upper bound for the smallest root is very sharp, so long as g(1) < 0.1.
On the other hand, the lower bound for the other roots is not so sharp. We have checked
that the condition B is satisfied by all the roots, hence we have the correspondence oy +— f;
(i=1,...,10).

For a = 0.0 and b = 0.15, the simple check described in Example 1 fails for F(x + a1, 0.15)
and 43 = 4y 2= 0.1742, hence the certification of continuation fails for gz and Jy although the
value of 4; is much smaller than 0.1715 for for ¢ 5 8,9. )

We see that the values of €,’s are distributed widely, which means that we may set [b — q|
rather large for some root but may have to set small for another root. Note that method
B requires no information on the other roots, hence the method does not make any wasteful
computation in the continuation of a single or several roots. This is a very advantageous point
over method S, as we will see below.

4 A method using the Taylor series (method T)

Let o{*(u - a), ..., (v — a) be the power-series roots expanded at o and truncated at
power k. (For convenience, we change the notation for truncated power-series roots slightly).



Note that (pE"’ =a; (¢=1,...,n). In previous two sections, we have utilized only o ¢ localize
the existence domain of the root 8; of F(z,b). If we utilize the Taylor series eMu—a), k> 1,
then we will be able to localize the existence domain much more sharply.

Let us consider generalizing method S to utilize the Taylor-series roots. Smith’s dises Dy(A)
{(i=1,...,n), with A a parameter such that 0 < || < 1, are now defined as

center(D;(A)) = 9" (A(® - a)), (4.1)
n[F(pP (b — a)), a+ Ab — a))]
Tl sl (A ~ @) = (A — )}

The above expressions are much more complicated than those in Section 2, and the check of
non-overlapping is not easy because the denominator factor in (4.2) depends on A. Therefore,
we do not consider this approach any maore,

On the other hand, generalizing method B to utilize the Taylor-series roots is straightfor-
ward. We generalize Corollary 2 as follows (the proof is the same as that for Corollary 2).

radius(D;(A)) = (4.2)

Corollary 3 Let the truncation power k be positive, and let a polynomial C;‘;(:r,,)\) be
iz, N = Pz + o (Mb - a)), a + Mb - a)), (4.3)

where A is a parameter such that 0 < [Al £ 1. Let %()A) be a rqot of Gi(z, M) satisfying

%(0) = 0. We express Gi(z, ) as in (3 6), and define e;()) by formula (3.7). Then, so long
as (A} < 3 — 24/2 for any ) on a path connecting O and 1, we have the correspondence
o; - (1) (= G - cpgk)(b ~ @)} +— f;, where B, is the root closest {o ;.

Checking the condition €;(A) < 3 - 2v/2 is the same as that in method B. Only one remark-
able difference is that deg,(Gi(z, A}} 15 much larger in method T than in method B, because

m+tp,,k)(/\( b—a)) is substituted for z in F'(z,u). As we w111 see in Section 5, this makes method
T quite time-consuming,

Example 4 Testing method T near a singular point.

We again consider F(z,u) in Example 1. F(z,u) has a singular point at u ~ 1.843774074. We
set o = 1.844 and ¢ = 1.8438, respectively, and set b = ¢ + w, with w > 0. We measured
the maximum width wy.,, where by the maximum width we mean that the certification of
continuation succeeds for w such that w < wy,, and fails for w > wWmayx.

Table 3 shows the results, where & is the truncation power, w¥), is the maximum width for
the Taylor-series root truncated at power k, and 7% i the computation time for the contin-
uation of all the roots. Note that the distance between the singular point and the expansion
point is 2.26 x 107 for a = 1.844 and 2.6 x 107° for a = 1.8438. Hence, the method T allows
us to choose w considerably large. 0

5 Experimental test of methods S, B and T

We have tested methods S, B and T on various polynomials of degrees 10, 20, and 50 w.r.t.
z and of degree 3 w.r.t u. For each degree, we generate 10 monic polynomials with coeflicients
chosen rather randomly from {—7,—6, .-+, 6,7}, so that the polynomial contains about 30 terms



Table 3: Testing method T near a singular point.

a=1.844 a=18438
wi T¢} (sec) w) T*) (sec)

154 x 1079 0.041 177 %1077 1 0.044
3.72x 1077 0.071 4.20x 1075 0.073
444 %1071 0.082 [ 5.12x10"°| 0.086
7.62%x 107 0.001 | 8.85x 107" | 0.096
866 x1077] 0106 [ 9.97x10°%[ 0.109

W] Qo s =l Ooff T

for deg,{F) = 10 or 20 and about 40 terms for deg, (F) = 50. For each polynomial, we set
a =0 and & as shown in the first row of each sub-table.

The program was written in Japanese algebra system GAL and executed on a machine
with CPU/celeron (733 MHz) and 64 M-byte memory. We comment that the computation
was performed as efficiently as possible. For example, in method T, we must handle F{z +
= 2)), e A(b —a)), However, substitution of = + wfk)()\(b— a)) for © in F{z,u) is very
time-consuming if deg, (F) is large. On the other hand, we need only three coeflicients of the
resulting polynomial (coefficients of z0-, 2!~ and z™-terms, m = 2 usually). Henece, we compute
only the necessary coefficients directly, Furthermore, we discard the terms s, { > 20 at largest.

Table 4 shows the results, where Ty, is the average CPU time and the integers in the third
to seventh columns in each sub-table show the number of samples for which the continuation
succeeds for all the n roots; for example, the number 8 at the sixth column in the table
for Method S denotes that the continnation sueceeds for 8 samples among 10 if we set b as
{b--a| = 0.03. We see that, in method S, we must choose the width |b — | smaller and smaller
as n increases. We need not choose the width so small in method B, but this method is more
time-consuming than method S We can choose the width much larger in method T, but this
method is even more time-consuming,

In an actual continuation, the expansion points ¢ and b are given and we must perform the
contintation by dividing the interval [a, 4] into sub-intervals [a,¢1], [ey, e, <+ -, [a-1,al, {a, bl
Then, the cost of the continuation is ({ + 1)xsub-cost, where the sub-cost is the cost for the
continuation-in the sub-interval, Therefore, usefulness of each method may be summarized as
follows.

Method 8 :
1. Method S is useful for polynomials of low and medium degrees.
2. It should be nsed only for the continuation of all the roots.

Method B :
1. Method B is equally useful, especially for polynomials of large degrees.
2. It should be used for the continuation of several roots,

Method T :
1. Method T is equally efficient as method B but complicated.
2. It may be useful for the continuation near singular points.



Table 4: Testing methods 8,B,T on random polynomials.

T.y is the computation time averaged over 10 samples.
First row : each number shows the value of b for ¢ = 0.

Right 5 columns : each integer shows the # of samples
for which the continuation succeeds (see the text).

Method S

degree | Tyy{(sec) | 0.001 | 0,003 | 0.010 | 0.033 | 0.100
10 0.021 10 10 10 8 2

20 0.056 10 10 7 3

50 0.260 10 7 2

Method B
degree Tav(sec) 0.001 { 0.003 { 0.010 | 0.033 | 0.100
10 0.031 10 10 10 G 3
20 0.121 10 14 9 5 3
50 0.974 10 10 7 3 1

Method T: k=1 .
degree | Tyy(sec) | 0.020 | 0.050 | 0.080 | 0.200 | 0.500
10 0.066 10 10 10 4
20 0.226 10 g 8 2
50 1.527 10 10 6 1.

Method T : k=3
degree | T,,(sec} | 0.020 [ 0.050 | 0.080 | 0.200 | 0.500
10 0.138 10 10 0 1 9 3
20 0.377 10 10 9 7
50 2.182 10 10 10 3

6 On determining the width |b— qf

So far, we have assumed that the width |b — a] is sufficiently small. In this section, we
consider how small the width should be.

On method S, As mentioned in Section 2, ry = n-|f —o|if oy =~ G (i=1,...,n), where
; is the root closest to ¢; among the roots of F(x,b). Therefore, b should be chosen to satisfy

n]ﬁ, _Qil < !C!!.' - a,-.[/2, i=1,...,n, (61)

where oy is the root closest to oy among the roots {ay, -+, an} \ {a:}. Once we have computed
the roots of F(z,a), we can compute the roots of F(z,b) guickly, so long as |b - o} < 1.
Therefore, in the actual computation, we temporarily set b close to a and check the condition
(6.1) by computing the roots of F(z,b). Furthermore, we had better choose the denominator
in the r.h.s. of (6.1) as 3 or 4.



On methods B and T. Suppose £:(A) = {go/g1] ™V |gm/ 0| in (3.7}, then we have to deter-

mine b to satisfy [go/g1] ™ Vlgm/m| < 3 — 2¢/2. What we handle actually is the polynomial in
(3.8), and we have to determine b so as to satisfy

|fosmas] (lfmm[)”(m ) 3_9 6.2
‘fl,min‘ |fl mlni ) \/- ( . )

where |fmin] and |fimex| (G # 1) are the minimum of |fi ()\)| and the maximum of |f;(A)],
respectively, in the interval [0,1]. We comment that m = 2 in most practical cases.

Actually, we determine the width as follows, The most influential factor in (6.2} is | fu max )
Since fo(A) = Flos, a+ A(b—a)), we have fo()) = OF (e, 1)/0|ueq - Mo — a) + O(A2(b — a)?),
so long as |b ~ a| < 1. Therefore, | fﬂ()\ }| usually increases almost linearly as A increases from
0 to 1. Thus, we set b temporarily and compute the value of £;(1), and if the value is L times
larger (sma,ller) than 0.1715 then we narrow (widen) the width by about L times.

7 Continuation of roots at singular point

In this section, without loss of generality, we assume that the origin is a singular point of
Fz,u). If f,(0) = 0, we can put fr(u) = u"f,,(u), with £,(0) # 0, and we perform the transfor-
mation F(z,u) = Fz,u) = v D4R (z/vd, u) = fu(w)a™+ fuos(w)z* ™ 4wl fg(u) 2™ 24 -
Let a root of F(x,u) w.r.t. £ be @(u), then the corresponding root @(u) of F(z,u) is glven
as p(u) = @(u)/u®. Therefore, we further assume that f,(0) # 0. In this case, F(z,0) has
multiple roots and all the above three methods fall down for the multiple roots.

We will perform the continuation of roots expanded at different singular points via the roots
expanded at non-singular points. Therefore, in this section, we assume that b is 2 non-singular
point such that [b| < 1, and consider the continuation between the roots expanded at the origin
and those expanded at b. :

One may think that if we use Puiséux-series roots instead of Taylor-senea roots in method
T then we can perform the continnation. This is the appraoch of Shiihara and Sasaki [$896],
although they used Smith's theorem. This approach gives correct results in most cases, however,
we cannot certify the results because some roots of G(z, A) in (2.4) or Gy(z, A) in (4.3) coincide
as A — 0. In order to perform the certification, we “blow up” the u-coordinate at the origin so
that we can distinguish the multiple roots of F(z,0) at the origin.

Under the assumptions given above, there exists an integer m, 2 € m < n, satisfting
Fol0) = f1(0) =+ = fm-1(0) = 0, fin(0) # 0. By ord(f;), with f;{(x} a univarite polynomial
in u, we denote the order of f;(u), that is the minimum exponent among the terms of fj(u).
We determine a rational number v as follows.

v = min{ord(f)/(m~ )| i=0,1,..., m—1}. (7.1)
With this number, we perform the transformation
F{z,u) = Fly,u) = Flu'y, w) /'™, (7.2)

where ¥ is a new variable. F(y, u) is of the following form.

Flyu) = falwu™ ™y 4 o (w)urm=byn-l o
+ fa(Wy™ + (a0 /e Yy™ 7 ok (folu) fu™).



At u = 0, the coefficients of terms of degrees greater than m, of F(y, 1) disappear, which means
that n — m roots corresponding to nonzero roots of F(z,0) move to infinity as u — 0. F(y,0)
has m roots, some of them may be single and others may be multiple. The single roots of
F(y,0) generate Taylor-series roots of F(y, ), and we can apply method B or method T to
these roots. For the multiple roots of F(y,0), we must apply the blow up procedure recursively.

Note that method S is inapplicable to F(y, «) because F(y,u) has roots which go to infinity
as © — 0 hence we cannot define Smith's disc for them.

Example 5 Continuation of Puiseux-series roots. Let
Flz,uw) = 2+ (34 2u)2® + (2 - du 4 5u)z? — (3u + Tu?)z — (2u + 5u® — 8u?).

We see F(z,0) = ' + 3z + 22% = *(z + 1) (z + 2) and F(z,u) has at least two Taylor-series
roots. We also have m = 2 and » = min{ord(fo)/2, ord(f1)/1} = 1/2, hence F(:r: u) has two
Puiseux-series roots. The transformation (7.2) is now F(y,u) = F(\/uy, u

Fy,u) = uy® + Va8 + 2u)y® + (2 — du + 5u?)y? — Vu(3 + Tu)y — (2 + 5u — 827).

F(y,0) has two single roots &y = 1 and ay = —1. We put b = 0.04, then ﬁ‘gy, 0.04) has four
roots B; o 1.063, f; ~ —1.096, By == —4,194, 8, =~ —11,17. Investigating F(y+1, 0.04) and
F(y—1, 0.04), we find that £ (1) = 0.0524 and £,(1) =~ 0.0403. Furthermore, the condition
B holds for bath F(y+1, 0.043) and F(y—1, 0.04)). Therefore, we have the correspondence
o+ B; (i=1,2). ‘

The certification of continuation succeeds for b = 0.09 but fails for b = 0.16. ' |
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Abstract

Let P(z) be a univariate polynomial over C, such that
Plz) = eng™ + o+ + g™t + 3™+ gpmorz™ ! +
v + ep, where max{|cn|,"*,l6m41]} = 1 and e =
max{|em—1},[em—2]’2 - |ea)™} € 1. P(z) has m small
roots around the origin so long as e < 1. In 1989, we
derived a formula that il e < 1/% then P(x) has m roots
inside a disc Din of radius Ri; and other n — m roots out-
side a disc Dowe of radius R, located at the origin, where
Ringouny == [1 = (+)/1 —~ (16)/(1 + 3e)?} - {1+ 3e)/4. Note
that Rip = fow il e = 1/9, Our formula is essentially the
same as (hat derived independently by Yakoubsohn at al-
most the same time. In this short article, we introduce the
formula and check its shazpness on many polynomials gen-
erated randomly.

1 Introduction

Given a univariate polynomial, there are many formulas
which express upper-bounds or lowar-bounds of the roots of
the polynomial in terms of its coefficients; see [Mig01] for ex-
ample. A formula we introduce in this article separates the
roats into two groups, small and larger ones. We derived the
formula in 1999; see [T300]. Yakoubsohn [Yako0] derives es-
sentially the same formula with a different proof, and Smale
[Smasd6| and Sasaki-Inaba [S102] also derive similar formulas
for sepnrating a single root.

The formula will be uselul in at least three points. First,
the formula is uselul to verily the convergence of Newton’s
method for iteralively computing roots of the univariate
polynomial; see [BCSS308). In fact, Smale and Yakoubsohn
derived their formulas from this peint. Second, the formula
gives us existence domains of the roots of polynomials hav-
ing error ierms; let P{z) = Fo(z) + E(z), where Fo(z) isa
polynomial with exact coefficients and E{z)} is the sum of
error terms such that || B|| € {|Py|]. The roots of Fo(z) are
blurred by E{z), and we want to bound the existence do-
mains of the raots. In fact, in [TS00}, we derived our formula
{rom this point, Third, given a bivariate polynomial P(z,u)
and numbers a and § with |§) < 1, we want 1o determine
the existence domains of the roots of univariate polynornial
P(z, e+ 8) by the coefficients of P(z,a}. In fact, Sasaki and
Inaba derived and applied their formula to construct algo-
i‘ithms of analytic continuation of algebraic functions; see
S102),

*Work supported in part by Japanese Ministry of Educstion, Sci-
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In Section 2, following [TS00], we derive the formula. In
Section 3, we check the sharpness of our formula numerically
on many polynomials generated randomly, We compare our
formula with a bound which is derived by using Smith’s the-
orem {Smi70). We will see that our formula is snuch sharper
than the bound derived by Smith's theorem,

2 Derivation of the formula
Let P(z) be the following univariate palynomial over C:

Plz) =enz™ 4 g1 z™ M 4 2™ bz T - e,

(1

where the coefficients satisly the following two conditions

(2)

{ ‘ dér m&x{‘em_!]‘ |em"2|lf2' tthy leollf'"} 1,
max{lenl, -y lemil} = 1,
P{z} has m snall roots around the origin. In [TS00}, we

proved the following theorem so as to separate Lthe m small
roots from others.

Theorem 1 If e < 1/9 then P(x) has m small rools
instde & dise D of redius Rin and other n—m roets outside
a dise Doy of radius Row, localed at the origin, where

1+ 3e . 16e
el AU ET e -l A

The radii Ry, end Ry satisfy the following inequalities.

Rin(out) =

1 16e
%e e | ——— g e
An < 2 [1+33+(1+36)3]' )
— 2
Row > iwil Qe)“ 32 (%)

2 2{1+3e)  (1+3e)3

We can prove the theorem by using Rouche's theorem,
a3 Yakoubsohn did in [Yak0O), but we have proved it by
using the following well-known formulas (for the proof, see
[Miga1}).

Lemma 1 Let A(z) = anz™ +an—1" "'+ +ag, with
anto ¥ 0, be a polynomiel with complez coefficients. Let the
rools of A(x) be(1,...,Cn, then

lan| mnx{l[an-l-1|,- -+, laol} (6)

mi“{‘clla ) |Cn|} > |an| (7)

fao] + max{jal, - -, lanl}’

max{C| -, [¢al} <




Let &1, .. -, Cn be the roots of P(z), satisfying
iCI|SS]Crni<Km+l|SS|(ﬂ| (3)

We first investigate the magnitudes of the roots roughly.
Put P'(z) = 2™ + em-1Z™ ' 4 - + ey and PU(x) =
EnZ"™ ™ 4 -+ G + 1. Lemma L tells ws that the
roots of P'(z) are smaller than or equal to 2e and those
of P"(x) are larger than or equal to 1/2. Since e < L, we
have P(z) ~ P'(x)P"(z). Therefore, we sce |{,,| < 2e and
[¢mer] 2 172,

Proof of Theorem 1 (sune as Appendix of [TS00]}
We first consider a root ¢ such that |{| £ [({m] 5 2e. Putting

¢ =¢f in P(¢) = 0 and dividing P(e{) by ™, we obtain

[cndeg)™ ™ + - ema{e) + 1§ ©)
+ (em-L/e)im_l +ee teﬂlem)cu =0

If we consider (9) as an equation w.r.t. {, then the root
¢ satisfying |(| £ 2 is determined meostly by the terms of
degress € m and the terms cmy{ed) (j = 1,...,n —m)
in [---] contribute only as small corrections because e < 1.
Thus, we regard (9) as an equation in {, of degree m with
the numerical leading coeflicient am = 1+ ¢m1(ef) +--+ +
ca(ef)"~™. (We can state this situation as follows. Consider
a set of equations in z, of cegree m;

{ am2™ + {emo1 fe)e™ 1 4o 4 (eofe™)2 = g,
am € {]- +Cm+1(82) e +Cn(ei)"_m | IEI < Emax}'

where €pax i8 50 chosen that the set conlains a polynomial
having tie ro0t { = (m/e. Since a,, i8 & number, we can
apply Lemma 1 to each equation in the set. Note that, if we
put {max = Hin/e, then the following caleulation is valid for
every polynomial in the set.) Thus, regarding (5) as above
and applying Lemma 1, we obtaiii - B

€ 1 max{lemetfel -, leo/e™ [}am]

i
< 1
R B PR * I
. 1 : 2 - 3led]
1 = 3 = =1
DR P P TR R
or
2e — el

Kl < T A - -+ )¢ + 22 > 0. (10)

Let z_ and 2z be two solutions of 227 ~ {1 +3e)z +2e =0,
with {z_{ < 1z4|. We see that zy are real and positive if
and only if e € 1/9, and 2. ~ 2¢ and 24 =~ (1 ~ £)/2 for
e € 1. Therefore, we have the formula for Ry, in (3), Using
the identity vI—¢ > 1 — z/2 — o*/2, which is valid for
0 <z < 1, and putting = = 16e/{1 + 3e)¥, we obtain (4).

Next, we consider a root ¢ such that |€] 2 Imaa| 2 L/2.
Dividing P({) = 0 by (™, we obtain

enl" "™ 4 el (11)
+ |1 +em-1/{+ +efl™] = O

Since |¢t 2 1/2, the terms em~3/¢7 (§=1,...,m} in [-+]
contribute only as small corrections because |em—j| <€ 1.
Thus, with the same reasoning as for (8), we regard (11) ns

an equation in ¢, of degree n — m with the constant term
ap=1+em-1/C+ - -+enf¢™ = 1. Then, by Lemma I, we
obtain

1
Y2 Trmagienh o o) Flanl
1
N SV T Py e vy
N 1 1 - 2le/q|
V4 e 2= 3e/(]
or
20¢° — (1 + 3e)[¢] + 22 > 0. (12)

This equation is the same as that in (10}, and we find (| >
z4 80 long as e £ 179, or the formula for Raw in (3). Using
the identity 1 ~z > 1 —zf2 — 2?2, which is valid for
0 < z < 1, we obtain (§), a

Remark 1 The small roots and other rools (large roots}
are invertible in the following sense. Conséder the iransfor-
mation P(z) v+ P(z) = (z™fe™)P(e/z}, then we have

Plz) = (esfe™)z" 4+ +{em—1fe)a" ™!
+ ™ 4 (empre)z” "™ 4+ (Cre™ )
(13)
This polynomial satisfies the similor condilions as those in
(2}, and P{z) has n — m small roots ond m large roofs.
Thus, the small rools (large rools, resp.} of P(x) correspond
to Tavge rools (3moll roots, resp.) of P(x). Furthermore,
the inequality for [{]| 4n (10) or (12) 45 invariant under the
transformation |(| — e/|¢], hence the n'—m small rools and
the m large roots of P(z) are, respectively, upper-bounded by
fin and fower-bounded by fowt.

Remark 2 Jfm =1 then the formula in Theorem I can
be strengthened as-follows (note that e = |@o|}; for the proof,
see [8108] which shows numericolly that the formule bounds
the smallest roat very sharply. {Precisely, the bound for large
roote is not || > Aow” but ]2 Raue ™)

e < 3-2/T=0172 ‘ (14)

(E+e)— (+)+/() +e)? ~ Be (15)
4 .

R'in(um-)

1

The smallest rool f and the ather mofsf satfsfyjnequai’ities
WP -+ el +e>0and 2} — A+l +e 20,
respectively. .
The smallest root and other roots are alse invertible, nat
exaedly as in flemark I bul with a smali modification. The
irensformation P(z) — P(z) = (2" /e) - Ple/x) gives us

Blz) = {eafe)z” + 2"+ ()2 2 4+ (Cae” T

Se long as 9 < e € 1, B(z) has one normal root §, |{] == 1,
and n~1 small roots £,¢| % 2e. Similar caleulation as thot
1n the proof in (S108] shows that ¢ and ¢ satisfy inegualities
KI* — (1 + )] +2e > 0 and | — (1 + )| + 2 2 0,
respectively. Therefore, we have [¢| > 2Roux and |f| < 2RGn,
with Riy and Row given in (15). Nete that the condition for
e if unchanged.



Remark 8 If P(z) has m close roots around ¢ = a and
P(z) is nol normalized as n (2) but we have

Plz) = calz—a)" + -+ calz —a)™

_ 16
+emtlz~a)™ P+t oo, Em A0 (16)

then we shift z = a to the origin and make lthe scale trans-
formation such that P(z) — P(z) = P{y(z +a))/y™, where
¥ is a positive number. We set v 50 that

-k

10t lemat |7} = fem]

1/(G—~m)
A, Cjfe .
mfl‘si-‘gn! i m|

max{jealy
= Y=

Then, B(z) = &z + 1 -+ Emz™ + (Cmor/y)e™ " + et
(cof4™), where &m = cm and max{|Za, -, [Em+1|} = [Em]|.
Thus, we determine e os
e = max{lem-1/cm7],* s lcofemy™ |V ™} = Bf7,
A= mnx{lcﬂl-l./cn-L ey ‘Cf-‘/cmlum}-

A and v are ezpressed as follows { PYYz) is the j-th deriva-
tive of P(z) ).

Pl g/t [1F0mi)
p= OSTS%—I Pf""(a.)/m!l : (a7
PUW(a}/41 (1/-m)
T E A P ) fml . ()

These ars the expressions given in [Yakoo},

3 Numerical test of sharpness of the formula

In numerical analysis, the following theorem is very (a-
mous to bound the existence domains of the true roots by
approximate roots computed numerically.

"Theorem 2 (Smith 10Y0) Let Gfx) be a monic uni-
variaie polynomial in Clz], of degree n, and lef §y,... (o be
n distinet numbers in C. Let n numbersry,...,ry be defined
as follows, .

L nio)l
| H_:‘;[_#.'(C" =G

Let Dy,..., Dy be n discs in the compler plane, such that
center(D;) = ¢; and radius(Di} = r; (i=1,...,n). Then,
the unfon Dy U-+ U Dy, conteins all the roots of Glx). Fur-
thermare, if a union Dy \J-- U D, is simply connecled and
does nol interseet with Drmyy, ..., Dy, then the number of
roots contained in this union is m.

ri {(i=1,...,n). (19)

We cannot apply this theorem directly to separate the
close raots. However, il we interprete that P(z) = Py(z) +
B(z), Py(z) has roots {1,...,{n, and E(z) is an error poly-
nomial such that || El| = O{e™), then Smith's theorem aliows
us to bound the roots of P(z). Therefore, we suppose that
Smith's discs D; (i = 1,...,n) are of the lollowing radil.

ne™

9 = =
|H,‘=1,¢;(C" = CJ)'

(i=1,...,n). (20

We have tested sharpness of our fermula (3) and S
above, as follows. For each tuple (n,m,e), we construct

10 polynomials Py{z),..., Pro{z) with real coefficients gen-
erated randomly, satisfying the conditions in (2). For each
polynomial Fi(z), 1 £ i £ 10, we compute n roois, obtain-
ing (i and Cm+1. Then, we average [(m] and [(n41] over 10
samples.

In the next three pages, we show n-, e- and m-
dependences of Ria, Row, sverage({(m|), average(|m.1|),
and average(S) where § = max{|Si], -,|Sm|}. (In the
figures, ® shows average(S), » and o show average(}(m|)
and average{|Cm+1]), respectively, T and L show i, and
Rou, respectively.) We see that Ry, and Rgye bound,
respectively, m small roots and other roots fairly well;
average{|Cm|)/ fin 2 1/2 and average(i¢m+11)/ fowt S 2. On
the other hand, the bound S is considerably larger than
average{j(m|) and it becomes larger and larger as n in-
creases. This is because S; is proportional to n.
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Approximate Multivariate Polynomial Factorization
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Abstract

Conventional algorithms for approximate [(actorization
of maultivariate polynomial suffer from a dilemma: a
polynomial-time algorithm which is baged on zero-sum re-
lations among power-series roots is practically very time-
consuming and unstable, while practically stable algorithms
are of combinatorial nature. In this paper, we present two
ideas: one s a numeri¢ matrix manipulation method te find
zerg-sum relations efficiently and the other is a methad ta
utilize power-series roots expanded at different points. We
analyze the methods theoretically and investigate their prac-
ticality by applying to several examples. We also discuss
nuenerical stability of the matrix method.

Key words: algebraic-numeric computation, approxi-
mate algebra, approximate algebraic computation, approx-
imate factorization, multivariate factorization, zero-sum re-
lation. !

1 Introdiwtion
Let F(z,u) be a given multivariate polynomial in

Cl,u] = Clz, w1, ..., ue), with © the field of complex num-
bers, and let G{z, u}, H (x,u) and A(z, u) be unknown poly-

nomials. Let ||F|| denote the norm of polynomial F; in this -

paper, we use the infinity norm, i.e., |} denotes the maxi-
mum of absolute numerical coeflicients of . If " is decom-
posed as

F=GH+ 4, lal/iFl=c<1, (L1)

then we say that F is approcimately factored to G and H
at folerance . The approximate factorization is a natural
axtension of conventional polynomial factorization. For ex-
ample, if we use floating-point numbers in algebraic compu-
tation, the polynomial factorization becemes approximate

“Work supportied in pert by Japanese Miniatry of Eduention, Scl-
ence and Culture under Granta (9305008.
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one with numerical errors O{em), where £y is the machine
epsiton (em == 2 x 107'% in many commercial machines).
Note that the approximate factorization may be defined for
much larger tolerance, such as e = 107%.

Although the approximate factorization is nol popular
now, it will become an important operation in many appli-
cation areas. This is bacause people in application areas
often treat polynomials the coefficients of which are approx-
imate numbers. Furthermore, the approximate factorization
can be used in mathematics, such as for testing the absolute
trreducibility of multivariate polynomial, see [9] and [1].

Fo author's knowledge, the concept of approximate fac-
orization has appesred first in & paper on control theory
[4}. The algorithm proposed in the paper is as follows: first,
express G and H with unknown coefficients by fixing their
terms, then determine the numerical coefficients so as to
minimize ||4]. Huang et al. {2] pursuit this approach, but
the algorithm seems to be rarely successful, unless G (or
I} is a polynomial of several terms. Before [4], Kaltofen
presented a modern algorithm for performing the absolute
irreducible factorization (3], and he suggested to perform
his algorithm by floating-point numbers, then the factor ob-
tained is an approximate one.

In 1991, Sesaki et al. |9} proposed a modern algorithm:
first, celculate the power-series rools vy,..., ¢n (truncated
power serles in the actual computation) such that Fz,u) =
{z 1)+ {2 —n), then search for approximate factors by
multiplying some of the linear factors £ — o1, ..., & — @n.
This algorithm is successful for potynomials of small degrees,
such ag n 5 b ~ B, but it is quite time-consuming il n 2 10.
Subgequently, Sasaki et al. (8] presented another algorithm
which utilizes sums of powers of roots. For simplicity, con-
sider thecaseof A =0, UG =(z— ) {z—pm), m < n,
then we have the following relations (non-monic case will be
described in 2)

(p’l‘+...+¢pﬁ|=hk(u)EC[ul (k=1,...,m). (1.2)

These relations give the following zero-sum relations (we
have spprozimate zero-sum relations in the case of approx-
imate factorization), where, by |hl: we denote the sum af
terms of degrees > o, of polynomial h{u) € Cly :

Lot 4+ bl =0 _

di. = deg(hy) (e=1,...,m).  (13)
Conversely, by searching for the above kind of zero-sum rela-
tions, we can find {ii,,...,®:,, } such that {x - ) (z -
Wiy, ) i & polynomial factor of F'. The algorithm described



in {8) is incomplete in that the truncation degree of power
series was wrongly given, and Nagasaka and Sasaki [5} im-
proved the algorithm and showed that the time-complexity
of the algarithm is O(n®+9),

The zero-sum relations in (1.3} are quite effective for
determining approximate factors. In fact, Galligo and Watt
[1] showed that only zero-sum relations with & = 1 and 2
determine all the approximate factors in most cases. {In
[1}, authors did not mention on the zero-sum relations in
(1.3) but utilized the relation [prws + - + prom + - 4
th—lﬁDdeg-f-l = 0’)!

In spite of the advancements mentioned above, we have
still many practical problems. Two big problems are

Problem A: how to decreass the computation time ?
Problem B: how to centrol the numerieal errors 7

Az for Problem A, so lang as the zerc-sum relations in
(1.3) are used, the asymptotic complexity is polynomial-
time w.r.t. deg, (F"). However, computation baged on (1.3)
is practically very time-consuming. If we utilize only zero-
sum relations of small powers, such as k = 1 or 2, we can
determine the approximate factors rather quickly for poly-
nomials of degrees < 20 ~ 30, asg [1] demonstrates, Howaver,
we must check a eombinatorial number of possibilities, hence
we meet the knapsack problem. As for Problem B, power-
series roots computed numerically conlain sometimes very
large errors, as pointed out by [10] and [7]. Turthermore,
power-series roots often show pathological features, as an
example in 6 shows. If we treat such pathological roots, the
algorithmn often becomes very unstable.

In this paper, we present two methods to improve the
approximate factorization algorithm based on zero-sum re-
lations. The first one is to find as many zero-sum relations
as possible by O(n?) matrix operations. The second cne is
to utilize the power-series roots expanded at different points.
In 3, we explain zero-sum relations among power-series roots
and survey underlying theory. In 8, we present the matrix
manipulation method to find zero-sum relations. In 4, we
describe how to use the power-series roots expanded at dil-
ferent points. In 5, we investigate approximate zero-sum
relations which are caused by the “perturbation term® A.
In 8, we investigate our method empirically by applying to
bivariate polynomials of degrees 10 and 20.

2 Zero-sum relations among power-series roats

In this and the next section, we consider only exact zero-
sum relations, and approximate zero-sum relations corre-
sponding to approximate {actors will be considered in 4.

Let P(z,u1,...,u¢) be a given multivariate square-free
polynomial over C, the field of complex numbers, with
deg.(F) = n. Abbreviating (ty,...,1u) o (1), we express
F(z,u) as

Flz,u} = falw)e" + faoa(w)s™ ™+ + folu).  (2.1)

By tdeg{f), with f{u) € Clu], we denote the lolal-degres
warb uy,oot of fi 0T = eul'---ugf, ¢ € C, then
tdeg{T) = ay + +-+ ++ a¢, and tdeg(f) is the maximum of
the total-degrees of the terms of f{u). By |g). and [g]°%,
with g{v) a power-series in v;,...,v and & an integer, we
denote the sum of all the terms of total-degrees > e and
total-degrees < e, respectively, of g{v}.

Let () ' (s,...,50) € CY, and assume that F(z, s) is

square-free (since F(x,u) is square-free, F(x,s) is square-
free for almost all {s)). Let the roots of F(z,2) w.r.t.
the main variable & be @i(u), ..., ®n{u) which are algebraic
functions in general:

Flz,u) = fa(t) - (@ — B (w) - (= — Bn (w)-

Let ey, ..., @ be the roots of F{z, 1}, where o 7 oy (Vi #

§) by assumption. Let {#1,...,v¢) 4ot (1 —31,... 2 — 8¢}
be a set. of new subvariables, then the roots @8+ v) can be
expanded into (infinite) power series w;(v) in the variables
LT TR

Suppose that F(z,u) is factored in Clz,u] as Fiz,u) =
Gz, u)H (z,u), where

Gz u) = gm{)e™ + gm-r1(w)z™ " + - & golu),
H{z,u) = hnm (0)2™ ™™ + B ey (u)z> ™)
ook holu).
(2.2)
e; =1deg(f;) (i=n,n-1,...,0), (2.3)
we first consider the degree bounds for gm,...,go.

FPutting

Propositlon 1 (Nagasakn-Sasaki 08) Let D be the
smallesé bwo-dimensional conver hull containing n4-2 points
(0,0} (0,0}, (L,esdy --+, (n,ea) and {n,0). Let Fiz, u} =
Gz, u)H (z,u), where F and G, H ere given by (2.1) and
(2.2), respectively. For any non-negative integers i and j
satisfying 1 + j < n, point (i + j, ideg{gih;)} is not plotted
outside D.

Corollary 1 Lef the n + 1 peints (0,8), (1,8}, -
(1, &) be on the upper edges of D, hence & = eo and &, =
en (& is a rationsl pumber). Then, we have

deg({fn/gm)gm—i) = tdog{hn-mGm-i) S En—i)

Bpei S n + HEn-) —en} = 81 - (i~ 1)en.
-Throughout this paper, w.l.0.g., we assume that
Glr,u) = gmn(u) - (x — @)}~ (& — Bm(u)), m22

Then, we have . .

B (o1 +@2 4 Pm) = g1,
Gm (P12 F P1Pm o @me1¥Pm) = Gm—1,

gm - (@102 om) = (=1)"g0.
- (2.4)
Therefore, since tdeg,(f(u)} = tdeg,{f{s +v)), we have the
following zero-sum relations.

m-{p1+w2a+ -+ m)a 1 =0,
Lo - (g2 + -+ o19m + - F PP a1 = G,

Lom - (o1pa - ~pm Mz +1 = 0.

Here, grm denotes gm(s + v}.

The above zero-sum relations, excepl for the first, are
rather complicated to treat, so [8} proposed to convert
them to zero-sum relations which are easier to treat. Let
B X1, Xm) and Pe(Xy, ., Xn) (B = 1,2,...,1) be



the elementary symmetric polynomiats and the kth power
sum, respectively, of X1,..., Xn:
Se = Z(il.----ik) X.‘l A X;'k (k < m),
Sy =0 (k>m) {2.5)
Pe=Xt4- 4+ Xt (1<ksn).
For each 1, 1 <{ < n, we have (Newton's formula)
P Picr 81 4 PraSa o 4 (—1F T P8y + (148 = 0
(2.8}

This formula, with X; = gnepy (j =1,...,m), allows us to
convert system (2.4) Lo the following system.

B {1 4+ )
g (of 4+ ph)

—fm-1,
Gt — 2mfm -,

]

. . (2.7}
gm (@l o +wn) = (-0 {om-1 -

MG igme2 + -+ = (=1)"mgn " go}.
Newton's formule and Corollary 1 allow us to bound the
total-degrees of the above r.h.s, expressions as follows.

Proposition 2 (Nagasaka-Sasaki 98) Let

€= &nml. {2.8)
Then, we have the following lolal-degree bounds.
. tdeE[(fnlgm)(gm-l)l S 1(_3,
tdegl(fu/8m) (9%t ~ Wmpm-2)] £ 28,

tdegl{ fn/gm)™ (91 — MImOIn_ ] Om—2

+o = (~1)"men " g0)] € mE
Thus, we have the following zero-sum relations.
Lfn (v + 2+t pmlarn = 0
LR lpt b bt tphllan = 0 4
P P el 4 4 @) men = G

Here, we have multiplied fa,..., f7 instead of gm,...,9m,
respectively. The reason is that we do not know g until
the factorization finishes, therefore the zero-sum relations in
(2.7) cannot be used in the algorithm,

In [8] and [5], the authors proposed to utilize the follow-
ing zero-sum relations, where ¢y,...,c, € C

Lfa - Gl + -4 ol M 1a

0,
{2.10)
0.

L - (el + - + catol ) me

The method in this paper is based on the following theorem
which i simpler than the main theorem in {8].

Theorem 1 fet hi(u),... hn{n) € Clu], and suppose
that we have the relations

[ha - {oh 4 4+ @b 1™ = Mufu),  tdeg(hy) < 17,

(17 (oF 4+ @™ = hn(u), tdeg{hm) < ma.

) {2.11)
Then, G = fo (2 ~¢1) (2 ~1pm) 15 a polynomial factor
of fnl(z, ), and vice versa.

Proof. Consider the elementary symmetric polynomial
5y and the kth pawer sum Py in {2.5). By Newton's formula
(2.6) and Coraellary 1, we obtain

Pk(fn?’h- v fatom) = hafu) € C[u]
\deg(hs) < k& for k> m.
Put &' = [f(z - ) (z—tom)]" and H' = [f~™(z -
Prmt1} o (2—a)]"?, then Newton's formula and the degree
bounds for Py,..., Py lead us to
tdeg (G') € mg, tdeg,(H') < (n—m)&

Furthermore, Corollary 1 gives us tdeg,(f7 'F) < né.
Therefore, G' and H' must be polynomial factors of f2~'F.
The converse is easy. a

This theorem shows that we can find all the irreducible
factors by finding zero-sum relations among the coefficient
vactors of power-series roots. However, we must compute
the power-series roots up to quite a high power.

3 Finding vero-sum relations

The principle of our factorization is to find subsets of
{114, <+, fea}™}, that satisfy the Zero-sum relations in
(2.9). The zero-sum relations are for the (truncated) power
series, but they can be converted easily Lo zero-sum relations
for numerical veciors, where each vector is formed by taking
out numerical coefficients of each power series.

Let e; = (ﬂ,‘l,ﬂ.iﬂ. e Ia’iﬂ‘)l i = 1..n be n'-
dimensional vectors over C, where a; is formed by coeffi-
cients of y;(v), w¥(v), - Therefore, we have

aj+ard- g =10 (3.1)
We assume that n < n' < né.
Let M be an n X n' matrix, with rows a1, as,...,a, :
a1y g1z - Gyt — "
. az; a2 -+ Qap - P
M o= . [ . , , {3.2) .
dny Bnz v Qppe —  iPa

By applying the algorithm Elimi given below, we first con-
vert the matrix M to M which is of the following form,
where « denotes either 0 or a nanzero element,

g O - 0 0

0 aze
M=| : A () (3.3)
0 «+ 0 &mnm O
* * LR *
* * e * 0

Algorithm Blimi{M): % Eliminate rows of M %
E-0: i:=1 and go to E-3.

E-1: If all the ith, (£ 4 L)th, ..., n'th columns are zero
columns then stop.



B-2. If the ith row is such that (Riy,---,8ii-1,0,--,0}
then exchange the ¥th row for the jih row, § > 4, such
that d:; # 0.

E-3: Il the (i,i)} element is zero then exchange the ith
column for the jth column, j > i, such that &; # 0.

E-4: (Now, 4ii # 0.) Eliminate the ith row by the ith
column, so that the ith row becomes (--+,0,4d:,0,-+)
after the climination (only the ith to ath rows are
changed by this eliminalion);
set i:={+ 1 and go lo E-1. D

Naote that this elimination preserves the zero-sum relations:
if ay +---+a;, =0in M then we have &; +--. + &, =0
in M, where each &; is a row corresponding to a,.

Relation (3.1} tells us the following properties of M.

Property 1. Let the j-tk column of M, j < m, be
{50,855,0,- 0,0, 8mt15,- an;) R !flﬂﬂ

Bty F 0o F g = =5 (3.4}

Property 2. Iféi +  + i +&i, =0, with i) <+ <
e S m <y, hence the irth, ..., irth rows hove been
eliminated by algorithm Elimi, then the {,th row of M
15 such that

('"101”'&\'1i.11*|"'1*1_airir|01"')l (35)

where * denoles either O or —&j;, i1 € § <i..

The above i1th, ..., 4:th rows and i,th row form, if col-
lected together, the following matrix which we call zero-sum
cell {we have discarded zero columns}.

8,5, 0 0
0 figiy :
. : 3.6
S e (3.6)
0 e ¢ B,
gy ~figip o0 ~Bieir

Let us investigate the matrix M further,

Definition 1 {minimal zero-sum relation} A zero.
sum relation ey, ++ - -+ ay, = 0 is catled minimal if i cannol
be divided into lwo zerv-sum relations aiy +--- + @i, =0
andag, 44 aj, =0, wheret = r+ 8 and {ir, -+, i-}U
(jll”'lj"} = {kh"'lk*

Property 3. Fach zero-sum cell in M corresponds to a
minimal zero-sum relafion,

Proof. Let Ry : &gy ++ < @i, =0, Ro i djy by, =0,
and suppose that iyth, ..., irth rows form o zero-sum cell,
and that fith, ..., j,th tows form anather gzero-gum cell,
Here, some rows may be shared by these zero-sum cells, and
the i,th and j,th rows correspond to some of the bottom
tows in {3.6). Note that ¢, # j,, because these two zero-sum
cells are different. For convenience, we put I = {iy, i}
and J = {f1,-+,4:}.

Case : 1 C J. Since 1 € {1, - "1juv1}, the i1th col-
umn, for example, contains two --a‘m elements. On the
other hand, let {ki, -+ kn—o} = {1, 2, n}\ {51y~ da)s

then we have &k, +- - + 8, _, = 0. Therefore, adding the
elements of the iy th column, we have & ¢, —diq ~ 850, 0,
which contradicts (3.1).

Case2: INJ#¢, [ Jand] 2 J Let {ki, k)=
{ivy= = ée} 0 {j1,+-+ 1 s} Then, the above two zero-sum
relations give another zerc-sum relation Ra @ Gy, + -+ +
@, = 0 the vectors of which are included in both R; and
Ry. Therefore, the Case 1 shows that this case should not
oceur, too, m]

Remark 1 In the case of {11, --
let B 5 @y + + dx,., = 0, with {ky, k) =
{di - g N ffL, -+ ie ). IRy and Ry are minima! then twe
zero-suim cells correspondmg to Ry and % will be formed.

111‘} C {Jls "9jl]?

Remark 2 Dy virtue of Property 3, we can remove
the rows condnined in the zero-sum cell and continue fhe
eliminaiton recursively,

The second step of zera-sum relation finding is to find
zero-sum cells by exchanging rows and columns of M. The
algorithm is as follows.

Algarithm And Cell (M)
C-0: i:=m 1,

2 Find zero-sum cells %

C-1: 1f the $th row of M is not of the form )
(oo 0, —8ar k7o vk, —855, 0,0+ -], where % is gither 3 or
wfiyi, T < j <3, then go to C-3 by setling 4 :=={+ 1,

C-2: (Here, we have found a zero-sum cell.) Save the list

(r %, -+ %, 8 1) into Z8Cells, Remaove the rth, *th,

., xth, ath, and ith rows from M, and go to C-3 by
seuting ni=n—1.

C-3: 1f i > n then stop, slse go to C-1, D

Finally, if we found zero-sum cells then remove the rows
contained in the zero-sum cells and apply the algorithms
Elimi and findCell recursively to the remaining rows.

Example 1 Finding the zero-sum telations.

F o= [($ 2+u)3—(1+u+u -l-u“)]
* N +2—u)®+ (14wt +u?)).

Six power-series roois w.r.t. T are as follows:

(Pi=2‘_u+w|:_1\°(“)l i=12,3
i =u—2-w (), i=4,5,6

where w is a primitive cube oot of 1 (w? 4w + 1 = 0) and
o) = 1+ 130+ 2007 + 14/8107 — 46/2432u* + ..

We have many zero-sum relations among the roots: |1 +
ea)o =0, Lp2+pslo =0, Lws+pslo=0, 1ol +wilo= 0
[‘Pa"'%]o =0, lﬂPa‘*"pg o —0 Upn+¥’2+§ﬂ'3j2 =0,
lps+s+esls =0, Ll +a+pils =0, |} +wd+idls =
0, ete. Among these, only the last four Zero-gum relatians
correspond to the polynomial factors of F'(x, ).

Let M be the following 6 x 6 matrix, where the 1st to
6th columns represent the coefficients of u®-terme, #*-terms



ard y®-terms of p;(u), and »*-terms, u'-terms and u®-terms

of i(u)?, respectively,

i -3 el

B —Hw — 1,08

M = ~§tfw s +) g (:';+ 1) et ‘Pls‘P§
) 243 P4,

— g v SR B

P+l -fw+y) — 6, 94

Applying the algorithm Elimi, we obtain the following ma-
irix M (we give the result without showing the exchange of
rows and columns).

14

# 00 0 0 0
0 00 -Bw+1) 0 0
i = -2 00 Bw+) 0 0
0 o0 o o - |
~Bw 0o 0 ~Bw+i) -8B o0
Ho 00 Ble+ny #Mw+1y o

M contains one zero-sum cell, Removing the 1st to 3rd rows,
deleting the zero columns, reorder the columns, and apply-
ing the algorithm Elimi, we obtain the following result.

0 o
-3y —He B t)
a1
B+ Ho Fw+D

.

|

3 w
484
-23 0
= 0 —
84
243 Bl.

Thus, we have found two zero-sum relations @y +az+as =0
and a4 + a5 +as = 0. : [s]

0
w 0
0

.
I~
lr-
e ol

If wa form M Dby the coefficients of terms of total-degrees
up to ne, of @y ...,e™ {{ = 1,...,n), then we can find
the zero-sum relations corresponding to all the irreducible
factors of F, as Theorem | ‘assures. However, we usuafly
do not compute the power-series roots up to se high power,
then the above algorithm cannot always find all the neces-
sary zero-sum relations and we still suffer from the knapsack
problem. However, the above algorithm often find many
zero-sum relations, The following proposition clarifies how
many zero-sum relatlons the above algorithm finds.

Propoeition 3 Lel v be the number of irreducible fac-
tors of F(z,u), over C, and let n—~p be colrank{M), f.¢., col-
umn rank of M (the number of linearly independent columns
of M). The algorithm Elimi finds min{p, v} zera-sum cells
al most and ma.x[i:--[u/?!] 0} zero-sum cells at least, where
[| denotes Gauss’ symbol.

Proof. By assumption, M contains m = n - g top diag-
onal elements, Let us consider the bottom p raws of M. If
ull of these rows correspond to the bottom rows of zero-sum
cells, then M contains p zerc-sum cells. Henca, & can con-
tain mm{p. v} zero-sum cells, at most. On the other hand,
if two vectors of a zero-sum relation R:aiy + -+ aj, = 0
are contained in the bottom u rows of &7, then A does
not contain a zero-sum cell corresponding to . Hence, M
containg min{v—[1/2], 0} zero-sum cells at least, u]

4 Roots expanded at different points

As we will see in 8, some power-saries roots may have
very large numerical coefficients at high powers, causing the
computation very unstable. Hence, we want to avoid com-
puling the roots to a high power. We show in this section
that computing the power-series roats at several different
points is equivalent to computing the roots Lo a high power
ot a single expansion peint.

Suppose we expand the roots at P different points
("U))l CERY) (3[}"))! P

(@) E (P s e, p=1,...,P

where we assume that ench F(z,s) is square-free, Let

the toots of 'z, s} be af"),. o) and the power-series
roots expanded at (a?) bhe (p%”]('u) e ok
Flz, 8 40} = fo(a 40) (2 — P (1)) - (2 — fP (1))

We must consider the following two problems in this ap-
proach: 1) how can we find the correspondence belween the
power-series roots expanded at different points 7, and 2} how
effective is the usage of roots expanded at different points 7.
We solve the problem 1) by utilizing Smith's theorem [11].

Theorem 2 {Smith 70} Let A(z) be a monic unfyari-
ate polynomial in Clz), and let 1, ..., {n be n distinei num-
bers in C. Let n numnbers p1, ..., pn be defined as follows.

n A(¢:) .
SULLL,. ) S S )
TGl "

Let Dy,...,Dn ben discs in the comples plane, such that
center(Di) = (; and.radivs(Di) =g (= 1,...,n). Then,
the union D, U---U D, contains oll the roots of A(z), Fur
thermore, if ¢ union Dy U - U Dy 18 connected and does
not intersect witk Dy, .., Do, then this unian contains
eracily'm roots.

o=

Suppose that a‘l"). N ,aS.p) are not close to each other
and the expansion point (52} is well close to (s'), Then,
o, o will be good approximations of o{?, ..., af,
Therefore, putting A{z) = F(z,s") and ¢ = S") (t=
L,...,n), we evaluate Smith's error bounds pi (i = 1,...,1n)
Il the resulting discs Dy, ..., Dn do not intersect one another

and.al® € P; (1 £ § < n}, then we have the correspondence
ol == o (i=1,...,n).

Example 2 - Correspondence between the roots ex-
panded at different points,

Fo= o2t 4 (3d o fu g 3)s?
+  (—du' —Bu® — 3)g + (6u® + Tu? + 6u® + 2u + 3).

We consider the case (8% = (0} and (s®) = (0.2). F{z,0)
has the following 5 different roots ag”,. . ,nrfs”.

-2.1038 -+, i, 1.0518:- £ 0.5652.. -1

Choosing cr“) as an approximate root of F(z, 0.2), we eval-
uate Smith's error bound p(”

é‘) —  p =0,1589. .-,
a,’:’; — p2a=0.1395...,
(

i — a5 =0.1842.-.



F(x,0.2) has the following 5 different. roots a( i Tl

—2.1599..., £1.0362...i, 1.0799.. . £0.6472...}.
Since @i - (‘}l < pi, we have the correspondence am =
a® (i=1i,...,5) o

In the above example, we are able to “connect” the ex-
pansions at (¢*') and (s'®?) directly. Tf {Ja®F— & is not
small, however, Smith’s error bounds py, ..., p= mentioned
above becoma large. In such a case, we choose intermediate
points between (311} and (s'*), such as

i r—i .

(3 = (st - (s‘”). i=1,...,7-1,
and connect the expanmsions at {s'V) = (i) = ... =
(57 1) = (41, successively.

Remark 3 The roois of F(z,§7) can be computed
quickly by numerical iteration methods if we have good ini-
tal approzimations of the rools. In lhe above scheme, we can
use the roots of F(z, 3"V} as the tnitial approzimations of
the roots of F{z, 31).

Remark 4 [f P(x,u) has o singuler point near (§17),
the convergence rodits of some rool become very small. In
such o case, we musi chasse the points (.i(”}, e (877Y) s0
as to bypass the singular poinl.

Let the n roots @;(u) (r = 1,...,n} be expanded at tweo
different points () and {s' ). and lot the roots expanded be

Fels +v) = wilv) and @ils' +v) = Gi{vy:
pify) = ot E Z Cingo kg W UL
k=T k)b bke=k
[-=)
: &
wilv) = o+ Z: Z Chiharb ¥
k=1 ky+---+kgmk
{4.1)
Let {3} = () + (d), then we have
.m
C'\:ikl,‘...k.g = 2 Z Cirkp iy kpriz (4'2)
=0 jy+oebig=g
ky+7 ket § i
( ljl::) ( c“u) dft it
We have similar relations on wi(v) (f = 2,3,...). In order

to show it, we have only to consider polynomials F(z’, 1) =
FOlzu) Moz, u) - e’ o, u), where w is a primitive jth
rool of 1, hence Fy{z, 1) has n roots {@ (&)}, ---, {@u}}.
Thus, we obtain the following proposition.

Propositinn 4 Letwi(v) (i =1,...,n) and pi{v) {i=
1,...,n) be the power-series rools of F(z u), ezponded al

pamts {5} and (8"), respectively, and let d o |[s 5’|« 1.
Then, so long as we consider the coeﬁicmnta of pewer-series
roots fo O(d*), cemputing vi(v} ond o{(v) {0 total-degree
kE wrd th,..., v is equivalent {0 compuling wi(v) to tolal-
degree k ++ k.

The above analysis shows that, by using the power-series
raots expanded at different points, we can avoid compuling
the roots to a high power. However, we should notl chooge
the expansion points (s) and (s') suck that [|la - 5'|| < L.

5 Pinding approximate zerc-aum relations

In the actual computation, what we treat are not the ex-
act zero-sum refations in (2.9) but approximate ones among
the row vectors ay,. .., 4, in (3.2}, such that

{ g +edbag, = d,
(tetll/ max{lleill, - i B} < Ecm,

where g, is & suitably chosen small aumber. In this section,
we explain a method to calcwlate the approximate zero-saum
relations and investigate stability of the method. As we will
see below, the method becomes very unstable if some power-
series roots show “wild" bahavior, and we will propose an
idea to stabilize the method.

(5.1)

‘We calenlate ihe roots oy, ..., aa of F{x,s) numerically
by using floating-point numbers. Then, oy, ..., @ contain
numerica) errors of magnitude Ofepn ) which may canse large
errors in the power-series roots, However, in this paper, we
do not consider the numerical errors caused by rounding and
cancellation, Compared with instability caused by “wild"
rools, the numerical error is not a big problem; we have
only to perform the computation with 4 higher precision.

We assume that the jnput polynomial has bheen “regu-
larized” ta gsatisfy the following relations (the regularization
can be done easily by a transformation F(z, u) = aF{bz, ),
where o and b are suilably chosen real numbers).

Hoadedi = L 1) — fulude™fl = L, {(5.2)

Furthermore, we assume that F{z, t) has been made ap-
proximately square-free at tolerance e, by the multivariate
approximate GCD operation, see [6], [12].

The algorithm Elimn] given in 3 is for the exact zero-sum
relations. We replace the *zero check” in the algorithm by
the following “approximately-zero check™:

L. if |&] < ecwl)b|, with b; an element of a column vector
&, then treat b; as an approximately-zero element of
tolerance &g, of & ;

2, i B']§ < £cuelbll, with b a column vector eliminated by
veelor b, then treat &' as an approximaiely-zero vector
of tolerance ey, in the elimination.

In the acloal comgutnt.mn. we set s,.,‘ a8 £owe = 107F and
decrease it as 1072 = 107 = 10~ - untll a desired
tolerance. Then, we foerm the cnndldale factors and check
the tolerance e by the relation (1.1) a pesteriori.

We define Gz, v) and H{z, v) as

Gz, v}
Hiz,v)

fals +0)- (2~ () -+ (& — em (W)}

fals 0} (£ = Pupr (L)) {2 — pa(0)).
(5.3)

i

Therefore, we have fo ' = GH. We put

{@(w.ﬂ) = {fn/gm)Clz,v) + Dalx, v},

Az, v} (fafhn-m)}H (z,0) + Ap{z, v} (54}

Note that the expressions computed by the algorithm are not
G and £ but G and #, Note furthey that the coeflicients of



& and H (hence Ag and Ag) are infinite powes-series. We
represent & and A, (* is either & or #) as

Glz,v) = fal0)e™ 4 G (@)™ 4o+ Golu)s
A.(-’E,U) = Byin-) (U);T"Ml 4+t &;;D(U).
(5.5)
Then, the relations in (2.9) become as follows.

Ifs - (tp1 + ot omdla o —[5a;m—1}z+l '

2 (@} + -+ om)faer1 = 2lime1bam-1
—fabaim-2]2e41

L (el + o+ omdlmen = (-1)"m x
-m:}aﬂ;mwl - (m — 2)fn§:::?§m—26(?:m‘1

o (1) S et

where we have discarded O([ﬁau]ﬂ) terms. These are ap-
proximate zero-sum relations. }

In order ta see the effect of perturbation A on & and
H, we consider the Hensel construction of & and #. TLet
univariate polynomials A;{z), B;j{x) (0 < j <) be defined
to satisfy the following (in)equalities.

Aj(z)G (0 + Bilm)H(z,0) =2 (0<i<n),
deg(A;) < deg(H), deg({4;) < deg(H).
(5.6)

We define a special multiplication notation o as
AoF B A @ a-r(w)+ 4+ Anm) folu).  (5.7)

Then, [61* and [H]* are calculated iteratively as follows.

[ = [G1%! + Bo[fuF ~ [G1* [+ 114,
(MY = [+ Ao[fuF = [G1 AN
| , (5.8)
Bubitituting faGH + fnd for foF in the above formulas,
we see that ‘

WAl Irasl®l . hal _ |
e niEe s e e 69)

Similarly, we define @; and i (i = 1,...,n) as follows.

{ wim i+ bp (i=1,...,n),
GH=fo(m—d) (2 Ba).
The Hensel construction aklows us to calculate 1, ..., tpa;

in order o do so, we have only to seb G = fn - {2z ~ i) and
H = nFf{z — @) in (5.6) and (5.8), Thus, we see

{5.10)

fipc]* .
w =0(e) (i=L,...,n). (5.11)
Following Cauchy-Hadamard's theorem, we define
RLES
o= WOy 512
= e © ") (5.12)

U~ = 1 hence we have ||{wi}*]| = O(1) for considerably
large k then we say that the root i is teme, otherwise it
is called wild. Note that, if some root is wild then we have

at lenst ane other root which is also wild, because || frafj =
O(1) and fa - (@1 4+ + @n) = fu—1. Furthermore, even if
some power-series roots are wild, F'(z, ) has usually many
tame roots.

Assume that some power-series roots are wild, and put
7 = max{¥1,...,¥a}, Then, (511} and (5.12) tell us that
coefficients of terms of total-degree k, of wildest roots con-
tain perturbotions of magnitude O{y*£), while correspond-
ing coefficients of tame rools are of magnitude O(1), If these
coefficients are contained in the matrix M randomly, the al-
gorithm Eliml with any high precision cannot determine
desired zero-sun relations unless v*e & 1.

In many cases, the wild roots can be tamed as follows.

Strategy: Before applying the procedure Elimi, com-
pute (2 — iy, )+ {Z — ¥w,.) as b single factor, where
Puwyy. oo Pu, are the wildest roots, and treat tpi‘,,l +
vo- o+ o5 combinedly (the strategy can be applied
recursively).

This strategy is quite useful in many cases, as we will show
by an example in 8, However, if 7 and # have an approxi-
mately common factor hence we have

TGV, A ) > 0Q)  for large &,

then the strategy does not waork.

8 Empirical study

We show two examples, cne is a bivariate polynomial of
degree 20 contnining iwo approximate factors at tolerance
O(107%) and the.other is a bivariate polynomial of degree 10
containing two approximate faciors at tolerance O(107'7),
By the first example, we show that our method works quite
well if the power-series roots are tame. On the other hand,
the second example shows that wild roots make the compu-
tation very unstable. In order to show the instability clearly,
we perform the computation with double-precigion floating-
point numbers and compute the power-series roots up to
rather a high power.

We have implemented our method on Japanese algebra
system GAL. The computer used is o SPARC Station 5
{CPU: microSPARC 11, 70 MHz).

Example 3 Case of tame power-series roots.

F= GH+107D, where
Q= 2%+ (u4 1)z° 4 (1 — 2)2% + (2u® — u? - 2)27
+ (e — = 2 D 4 (20 — " 4 30® - 2)a?
+ (0 + 5u® ~ o + )z + (Bul® + 208 4 3ud 4+ 2),
H= o4 {u—2)2® 4+ (1% + 3u - 3)z” + (u* + 37 + 2)2°
+ (2u® - ot 30 — Dt 4 (0f + 4u® - 20 + 2)2?
+ (30 —u” + 207 — Ao + (' - B30 — 2t 4+ 3),
D= 2uz® — (3@ + w)z® + (u® — 3z + (37 — duP)e.

We note that @ and H are ahsolutely irreducible and G(z,0)
and H{z,0) are square-free. Calculating the power-series
roots up to u*’, we see that

Me®™ N S 47 for G, |w™l| S 54 for H,

hence all the roots are tame.



We see & = 1 in this example, hence we formed the matrix
M by the coefficients of u*,4%,...,u!! terms of () and
a® u*, ..., u'? terms of w¥(u). Then, after one application
of algorithm Elimi, with the cutoff parameter £ous = 1079,
we found that {1, 2, 3, 4, 6, 7, 12, 13, 14, 15} rows in
M satisly an npgroximate Zero-sum relation with the tol-
erance 7.9 x 16°° and (5, 8, 9, 10, L1, i6, 17, 18, 19, 20}
rows do with the tolerance 1.0 x 1077, (The computation
failed at the value of £oy = 107*). The computed factors
G and H, with tdeg(G) = tdeg{H) = 10, are almost dense,
containing many small terms of magnitude O(10™%) or less:
NG - Q)| = 0.000053 and | & - H]} == 0.000015. The total
computation time is 2,080 s (1910 ms for the power-series
root computation, 120 ms for the zerc-sum relation finding
and 50 ms for the factor formation).

Bxnample 4 Case of wild power-series roots,

F= GH+107%D, where
G= 2% (u-Da* ~ (2u® 4+ 3)2® + (2 - 3 - 2)z?

+ (' — u¥ + 3u ~ 3)r + (25 - 3u® — 4® + 3),
H= 24 (u+ D! + (20 - du~ 1)z°

+ (2ut + 30~ du? ~ Ju)e o+ (u® 4+ 20t - 44? - 3),
D= 2uz® 4 {30 - du)2® + (uf + 3uNz® ~ (3T + 4¥)z.

G and H are absolutely irreducible and G(z,0) and H(z,0)
are square-free. One may think that this example is much
simpler than Example 3, but it is noi.

Calculating the power-series roots up to u'?, we see that
N2l < 287 (1 < & < 5) for G(z,u). However, for
H{z,u), we find that ||fu]'"} < 13 for i = 3,4,5 while
Jifw:s) )] ~ 4.4 x 10° for i = 1,2, hence v, and pq are wild:

14

w34 =100 e 1T X107
—11 -0l e = T % 105

1
w2

R

The power-series roots truncated at 1! contain errors of
magnitude O(107enm). We ‘have formed the matrix # by
the coefficients of u®,v®, ..., u'" terms of :(x). Then, one
application of Elimi, with the cutoff parameter eqy, =2 1074,
gives us two approximate factors. (The computiation failed
at the value of gq¢ = 107%). Note that the value of
£ew {= 107%) is slightly larger than 4''e = O(1071%) =
O(107%). The tolerance of approximate zero-sum relations
among the row vectors in Af is 2.3 x 10~? for rows corre-
sponding to G and 1.2 x 107* for H. The computed fac-
tors G and H, with tdeg(G) = tdeg(H) = 5, are such that
(I& — G|} 2= 0.000000014 and ||/ — H|| = 6.0000000078. The
total computation time i3 430 ms the 7% of which is spent
to compute the power-series roots.

Finally, we comment that, if we apply the strategy men-
tioned in B to our example (i.e., we combine the roots ¢
and 2 first), then even the polynomial F = GH 4 107D
can be factored by the algorithm Elimi with £, = 1074,
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ON THE CONSTRUCTION OF A PSE FOR GCD
COMPUTATION

K. LI, L. H. ZHI AND M.-T. NODA

Dept. of Computer Science, Ehime University, Matsuyama 790-8577, Japan
E-mail: {likai, lzhi, noda} @hpc,cs.ehime-u.ac.jp

The increasing complexity in scientific and engineering computation is motivating
the building of powerful Problem Solving Environments (PSEs). In this paper,
we discuss current PSE-related research and propose a preliminary prototype and
easy-to-use PSE for multivariate polynomial GCD computation using a combi-
nation of the Maple and Matlab packages and programs in C. This integrated
computing environment enables improved use of existing resources to deliver more
efficient solutions, This approach is of particular importance for large scale sym-
bolic and numerical computations. An example is given to demonstrate the effi-
ciency gains with solving approximate multivariate polynomial GCDs using Hensel
lifting. Various issues related to the implementations are presented,

1 Introduction

The potential for Problem Solving Environments(PSEs) was recognized very
early, but inadequate computing power made such systems infeasible until the
1980s when serious work started again. In April 1991, a research conference
was held and issued a long report exploring this field *, In this report, PSE was
defined to be a computer system that provides all the computational facilities
necessary to solve a target class of problems. Thus PSE is essentially an
integrated framework. Projects such as PSEware, IAMC and OpenXM are
working on this area.

In this paper, we propose an easy-to-use PSE for GCD computation by
Maple 6/Matlab/C integration(MMC). We discuss the relevant issues in de-
tail, try to answer such questions as: Why do we need a PSE rather than
a monolithic package? Why should we choose the combination of Maple 6,
Matlab and C? How can those heterogeneous systems be available as com-
ponents? What concern should we take during the implementation? Some
examples that computing approximate GCDs of multivariate polynomials are
given to demonstrate the efficiency and necessity to make use of the PSE
rather than using a single package.



77

2 GCD Computation and its Solving Environments

2.1 CAS and GCD Computation

Problem of computing the greatest common divisor(GCD) of polynomials
is a fundamental concern of algebraic manipulation. Most of the previous
discussions are based on symbolic computation, and the relevant problems
can be solved by computer algebra systems(CAS), which try to carry out
problems in precise, exact mathematical models.

The research of GCD computation is evolving. Extensively, due to the
accummulation of floating-point error or to imprecise input, the coefficients of
polynomials may be inexact, and this leads to the conception of approximate
GCD 8. Considering that more and more symbolic-based algorithms involve a
large amount of numerical computations, or those so called hybrid algorithms,
should be addressed appropriately, people are expecting to obtain a more
powerful system which is equipped with both of high-performance symbolic
and numerical solvers.

2.2 MMQC: the Architecture

So, who can play the role of PSE for GCD computation? By providing the
framework for specifying the mathematical problem in a manner close to the
standard scientific notation, CAS satisfy several PSE functions. However,
their intrinsic limitations restrict their roles to be “problem solvers” rather
than sophisticated PSEs. One of the critical reasons lies on that the manner of
handling problems in exact models also leads to expensive memory consuming,
In case of solving such problem as approximate GCD which involves both of
symbolic and numerical computations, making full use of the advantages of
existing CAS and traditional numerical approaches with high speed and low
memory consuming might be the only choice right now.

. From the view of GCD computation, considering that CAS have pro-
vided main facilities, we propose a simplified architecture which is a relatively
succinet model illustrated in Fig, 1. Our strategy is treating a computer alge-
bra system as one of computational engine or symbolic problem solver, as well
as a “glue” environment; linking with other resources such as numerical based
library NAG, and high performance interactive matrix computation system
Matlab. We also hope it should be equipped with high level programming
language such as C or Fortran, for handling the user-defined computations.

The reason why we choose Maple 6, Matlab and C to be main components
of our framework is simple: They are powerful in their own appropriate do-
main; they are familiarized application packages and programming language;

—5E—
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Figure 1. Architecture of PSE for GCD computation.

and the integration is easy to be done. The third one is the most attrac-
tive. Maple 6 provides a convenient interface to other packages and also the
capability of invoking external C-based applications from within Maple. So
itself can perform the function of “software bus” or “glue system” to wrap the
necessary facilities. Thus people can benefit from this approach to construct
their favorite system due to different cases.

3 Integrated Environment Construction

Maple 6 provides an easy-to-use interface linking with Matlab. By enter-
ing the command with(Matlab), users can access all Matlab packages freely
from within Maple. The following command lines show the process: in Maple's
runtime worksheet, we link Matlab library with Maple, execute Matlab’s com-
mand, get the computing answer, and convert it to Maple’s data format.

with(Matlab);
setvar(‘‘Matlab.data’’, Maple.data);
Matlab[evalM] (f‘Matlab.command’’);
getvar(‘‘Matlabdata’’);

convert (%, Maple_type);

Besides the interface linking to Matlab, Maple 6 also provides the ability
to call external functions implemented in C. These functions can be user-
written, or supplied by a third party from a library., This external calling
facility leads to a capability of constructing a more flexible PSE by sharing
with other external solvers from within Maple. The external calling mecha-

—b6~—
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nism works by generating and using wrapper functions. The define_external
function generates a pair of wrapper functions, one written in Maple while
the other in C. The generated C wrapper is compiled into a shared object file,
and then linked into the running Maple kernel along with the actual external
function to be called. ,

In addition to the above two integrations, the facility of linking with NAG
also equips Maple 6 a powerful tool to handle numerical computations in an
efficient way. In the next section we will find that it makes sense to apply the
LinearAlgebra solver in place of invoking Matlab in some cases.

4 Implementation

The problem of approximate GCD of multivariate polynomials is drawing
increasing attentions. In addition to two typical methods previously proposed
by Noda, M.-T, Sasaki, T ® and Corless, R. M. et al 2, another approach that
modifies the EZGCD based on Hensel construction was briefly discussed?.
Here we detail in the implementation of the algorithm using the prototype of
this PSE framework,

The problem we consider here is: Given two multivariate polynomials
F(zy, +,2n) and G(zy,+,25) with coefficients of limited accuracy, are there
~ nearby polynomials with a non-trivial GCD for a given tolerance €?

When extending the Hensel algorithm from polynomials with exact co-
efficients to floating-point case, substantial modifications should be given to
assure a satisfied performance. In accordance with the most important issues
such as Hensel construction, Hensel lifting bounding and candidate factors
correction, we proposed the corresponding methods: Syivester matriz QH,
Solving overdetermined linear system and Linear optimization to be as the
solution®. The algorithm has been performed in Maple 6, Matlab and C. The
framework of the implementation is illustrated in Fig. 2.

The main solver Approx_GCD is written in Maple, and can be executed
in Maple 6. The arguments of the solver include the two given multivariate
polynomials, the order of variables and the precision. It gives an expression
of a polynomial acting as the optimized approximate GCD of the two given
polynomials, or gives a constant “1” if there is no non-trivial GCD as an
output. During the computing process, some heterogenecus solvers provided
by Matlab and C routines are also be invoked from within Maple 6 by the
main solver, in an effort to obtain a more efficient, solution.

The Sylvester matriz (JR solver is given by C routine qr_sylvester.c.
Being as an external defined function, it is called as a Maple procedure after
successfully defined by Maple 6’s function define_external which generates
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Hapleb NAG based Matlab: C routines:
package: linprog qr_sylvester(}
LeastSquare
Main solver & Overdetermined Linear Sylvester
Glue system linear system programming matrix QR
, solver problem solver solver

Figure 2. Framework of PSE for approx-GCD,

C wrappers to be linked into the running Maple kernel.

The overdetermined linear system can generally be solved by leastsquare
method. In Maple 6, the solution has been offered by both of 1inalg package
‘and LinearAlgebra package. Here we choose the NAG-based LinearAlgebra
package because it achieves more than 100 times faster than the former one.

On the third point, we are facing the challenge of solving minimization
problem, in an effort to obtain an optimized GCD and its cofactor with a
sufficient small backward error;

min[|A7z ~ blje, W

min{y : ATe —ye< b, ATz +ye> by c R}. (2)

Where A is a matrix and z, b are vectors. It is usually a large-scaled linear
programming problem, since A is big. For example, we let ¢ = (1, 12,3},
suppose the degrees of two candidate factors are 2 and 4, then 4 is a 84 x 45
matrix. Although Maple offers an algorithm in its simplex package, it is
designed for medium-scaled linear programming problems. On the other hand,
Matlab provides an efficient large-scaled linear programming solver linprog,
which is a primal-dual infeasible-interior-point approach. The solver offers us
a satisfied solution when being invoked as a component from within Maple.

The algorithm has been implemented in both of Maple and
Maple/Matlab/C(MMC) integrated PSE. The following table shows their
comparison. The experiments are based on bivariate polynomials, the solver
is Approx.GCD(F, G, ord,€), where we let ord=[z,y], and € = 1072,
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Table 1. Computing Result Comparison{on DEC Alpha)

[ Number of terms Maple PSE(MMC)
[ F(z,y) | Gla,y) | time(sec.) | backward error | time{sec.) | backward error
14 16 7.088 2.24e-3 1.448 2.01e-3
26 27 19.535 1.41e-3 3.758 1.82e-3
32 27 78.570 3.43e-3 3.808 2.45e-3
45 36 §93.354 6.80e-4 4.303 8.66e-4
55 44 118,164 2.83e-2 5.840 2.47e-2
84 63 199.058 2.46e-3 6.954 1.680e-3
90 7d 325.495 2.45e-3 7.331 2.46e-3
107 78 1783.306 1.36e-3 7.959 1.43e-3

5 Conclusion

In this paper, we briefly discussed the construction of an easy-to-use PSE
by Maple 6, Matlab and C for GCD computation. It is just a preliminary
attempt on the road of the relevant research. As an example, solutions are
given to compute the approximate GCD of multivariate polynomials by this
MMC-based PSE, Efficient and effective results are obtained. This research
is still on-going, and more mature approaches are expected.
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In this paper we propose two symbolic-numeric combined methods to solve poly-
nomial equations by using Ritt-Wu’s characteristic sets method. One method uses
multivariate approximate-GCD to compute pseudo remainders and a cutoff param-
eter ¢ to neglect polynomials if the coefficients are sufficiently small. The other
method uses Shirayanagi- Sweedler's stabilization techniques to guarantee relia-
bility of obtained solutions, We discuss the two methods by using experimental
results obtained from a problem of inverse kinematics of robot manipulators.

1 Introduction

Problems in robotics, computer aided design and control theory involve finding
the solutions to systems of non-linear polynomial equations. Some of features
of them are as follows :

o coefficients of the polynomials are floating point numbers or parameters.

e systems may be ill-conditioned depending on numerical coefficients, then
it becomes difficult to solve them accurately by numerical methods.

Thus, symbolic algorithms should be considered to solve such problems.

It is well known that the Grébner basis method can not be applied safely
with floating point arithmetic. In this paper, the Ritt-Wu's characteristic
sets method (abbreviated as Wu’s method) is modified to solve systems of
polynomial equations with floating point coefficients,

Software implementation of Wu’s method to Maple V have already been
done by D. Wang!. We first implement Wu's method in Risa/Asir by using
a similar method to the one described by D. Wang!, and then modify it to
allow computations of polynomials with floating point coefficients. In the
modification, a cutoff parameter is introduced to neglect polynomials whose
coefficients are sufficiently small. Further, we show that the multivariate
approximate-GCD proposed by Ochi,Noda and Sasaki® should be used in
pseudo remainders.
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Another method to compute Wu’s method with floating point arithmetic
uses Shirayanagi-Sweedler’s stabilization technique*. We will show that solu-
tions obtained by the latter are more reliable than those by the former.

2 Wu's method

Wu's method reduces input polynomial set PS to a family of triangular sets,
which is called as characteristic set C'S. Notations used in the algorithm are
as follows: :

e Let'z;,z9, +,2, be a set of indeterminates with order z; < zp < +++ <
xn-

¢ PS, CS and RS are polynomial sets.

o lvar(p;), ldeg(p;) and ini(p;) are the leading variable, the leading degree
and the initial of p; with respect to lvar(p;).

e A finite set of polynomials {p1,ps,...,Pn} is called an ascending set if
the following conditions are satisfied.

~ lvar(p;) < lvar(pg) < -+ - < lvar(p,)

— For i < j, deg(p;) with respect to lvar(p;) is smaller than deg(p;)
with respect to lvar(p;)

Then, the algorithm of Wu's method is written as follows.
Algorithm 2.1 {(Wu’s method)

Input: a polynomial set PS

Output: a characteristic set C§

stepl CS « basset(PS)
step2 RS 4+ remset(PS,CS)

stepd If RS = { }, then return CS as the solution, else set PS = PSURS
and go to stepl.

The algorithm is separated into two parts, basset and remset. The basset
is a procedure to obtain an ascending set from a given polynomial set PS.
Operations used in the basset are only comparison among degrees of each
polynomial in PS. _ :

The remset is a procedure to obtain a remainder set RS from PS and
CS. Here, details of remset are as follows.
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Algorithm 2.2 (remset) .
Input: PS = {p1,p2, - ,Pn} and CS = {c1,c2,"**,Cm}
Output: a remainder set RS

stepl RS + {} endi+ 1

step2 r + p;

stepd r « prem{r,¢;) forj =m,m~1,---,1
stepd RS + RSU{r} andi+i+1

stepb -ifi.g n, go to step2

The basic operation underlying all characteristic-set-based algorithms is the
pseudo-remainder (prem) of two polynomials 7 and ¢; with respect to some
variable z. While dividing 7 by ¢;, one can get a remainder formula of the
form

IS-T=Q‘CJ'+R, ‘

where the polynomial I is the leading coefficient of ¢; in . The integer s
is expressed as s = 1 + ldeg(r) — ldeg(c;). If ini(r) and ini(c;) are relatively
prime, GCD{(ini(r}, ini(c;)), then J = ini(c;}/GCD(ini(r), Ini(c;)).

3 Wu’s method using a cutoff parameter

If we use floating point arithmetic in Wu’s method, pseudo-remainder compu-
tations in Algorithm 2,2 produces rounding errors. Thus, we must consider
error estimation for pseudo-remainders including such errors.

We discuss the pseudo-division

I'fi = f2Q + R,

where 5 = 1+ ldeg( 1) ~ ldeg(fz) and I = ini(f2)/GOD(ini(f,), ini(f2)). Let
F;(X) and F(X) be polynomials as

F(X) = fi(X) + e (X),
Fy(X) = fo(X) + ea(X),

Polynomials €1 (X) and e2(X) are assumed to have negligible small coefficients.
Then, pseudo-remainder for F) and F are shown as follows.

FR(X) = B(X)Q + &, |
I = quo(ini(#,) /GCD(ni(F), ini(Fy); €)),
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where GCD(ini(F ), ini(Fy); €) shows an approximate-GCD with cutoff € de-
fined by Ochi, Noda and Sasaki®, and the function quo means the quotient
of ini(F2) divided by GCD(ini(#}),ini(F2);€). The above pseudo-remainder,
thus, may be called as an approximate pseudo-remainder. Then the error
estimate of R — R becomes important.

Lo norm for polynomials is used here for the error estimation. If it is
assumed that s is sufficiently small and the following strong conditions,

WAl = Al = 1iQ] ~ 1
and
llea]] % lleal| = 1 — Qlf = ¢,
are satisfied, the error R — R is estimated as follows.
1R - R|| = O(e)

By the error estimation above, Wu’s method using a cutoff parameter is
implemented as follows.

Algorithm 3.1 (Wu's method using cutoff parameter)
Input: a polynomial set PS, cutoff ¢
Output: a characteristic set CS

stepl CS ¢ basset(PS)
step2 RS « apx-remset(P.S, CS)

step2’ For allT; € RS
If |[rill <€, then RS « RS\{r:}.

stepd If RS = { }, then return CS as the solution, else set PS = PSURS
and go to stepl.

The remset in Algorithm 2.1 is replaced by apx-remset., The step2’ is
added to neglect small polynomials. The procedure apx~remset is written as
follows.

Algorithm 3.2 (apx-remset)

Input: PS = {p1,p2, - *,Pn}, CS = {e1,¢2, ", ¢m} and cutoff ¢

Output: a remainder set RS

stepl RS ¢ {} and i+ 1
step2 r + p;

stepd r « apx-prem(r,cj;€) for j=m,m-~-1,--- 1,
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stepd’ If ||r|| <¢, thenr ¢ 0.
stepd RS +— RSU{r} andi+i+1
stepb if i < n, goto step2

The procedure apx~prem computes the pseudo-remainder with tolerance e, in
the algorithm. The step3’ is added to neglect small polynomials, again.

4 An example: a problem of robot manipulators

Algorithm 3.1 is applied to a problem of inverse kinematics of robot
manipulators®, When the orthogonal frame (z,y) is introduced to a robot
arm as in Figure 1, we consider how to obtain the rotation angle of the 7th
joint, ;.

The problem is modeled by the length of robot arms, {;,i = 1,...,3, 61,
62, and joints. The joint (z;,11) is expressed as

w1\ _ (lzcos(fy + O3) + I3 cos(fy)
11 R sin(91 + 92) + Iy sin(@l) ’
The equation and restrictions of trigonometric functions are written as
o Ia(clcg - 8182) + lQCl,
y1 = lg{c1s2 + co81) + l231,
+si=1,
A +sk=1.
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where notations ¢; = cos #; and s; = sin§; are used.

If the coordinate of the joint (z1,31) = (1.5,0.3) and the length of arms
I2 = 1.0, {3 = 1.2 are substituted into the equation, then the input polynomials
for Wu’s method are expressed with floating point number as follows.

1.2(01C2 —8182) + 1.0¢; — 1.5 = 0,
1.2{cy39 + ce81) + 1.08; — 0.3 =0,
¢ +8f~1=0,
c2+s—-1=0,

Here, we apply Algorithm 3.1, that is the modification of Wu's method
proposed in previous section, to the above equations. The input polynomial
set PS doesn’t have any errors. However, since floating point computations .
are used in the algorithm, numeric errors should be considered during com-
putations. Thus, to eliminate errors, the cutoff parameter is introduced. In
the computation, it is taken as ¢ = 1075, Then the solutions are obtained as
follows:

40.2463s? — 9.8035853 — 23,176s2 = 0,

~6.2208s%c; — 1.244165% + 3.9398452 = 0, X
11.645353 + (8.95795s, — 1.41834)s? = 0, (1)
10.74955%¢; — 4.44089 x 10~1%53 + 0.4478985? = 0.

We obtained the characteristic set (1) by using 19 digits big-float on Risa/Asir.
Rotation angles #; and 8; can be successfully obtained by numerical compu-
tations from above triangular form.

The fourth polynomial in (1) contains the very small coefficient term,
—4.44089 x 107183, In the example, the term has no effect to the results and
may be neglected. However, in general, it is difficult to decide whether small
term is necessary for the exact symbolic solution or not. Further, sometimes,
the results may depend on cutoff values.

In the next section, we will consider another implementation of Wu’s
method using Shirayanagi-Sweedler's stabilization technique,

5 Wu’s method and its stabilization

Shirayanagi and Sweedler proposed a method of algorithm stabilization tech-
niques 4. Their motivation was that computations by symbolic algorithms
waste memory space by an intermediate swell of coefficients. Thus, if the
algorithm is combined with a numeric computation carefully, the results may
be accurate and stable, and furthermore computations may be done quickly.
As a numeric computation, a concept of interval arithmetic is introduced.
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Coefficients are described by rectangular interval numbers and are called as
Bracket Coefficients. The stabilized algorithm is executed by an increasing
precision of inputs, and then the result converges to the true output obtained
by symbolic computation. If the bracket coefficient contains zero, then it is
rewritten to zero. This process is called “Zero Rewriting”.

Wu'’s method is modified by using the stabilization techniques as follows:

o Variables take values from Bracket coefficients
¢ Zero Rewriting is applied to the steps to obtain pseudo remainders prem

o Repeat the algorithm by increasing digits of inputs and for computations.

Wu's method using the stabilization techniques is summarized as follows:
Algorithm 5.1 (Wu’s method using the stabilization techniques)
Input: a polynomial set PS (interval coefficients)

Output: a characteristic set C'S (interval coefficients)

stepl CS + basset(PS)
step2 RS + interval-remset(PS,CS)

step3 If RS = { }, then return CS as the solution, else set PS = PS U RS
and go to stepl. '

In the procedure interval-remset, the process, Zero Rewriting, is applied
to eliminate error for the coefficients of remainder polynomials. Further, it
is necessary to increase the precision of big floating point arithmetic, and to
repeat Algorithm 5.1.

The stabilized Wu's method is applied to the example discussed in the
previous section. Input polynomial equations are expressed by using Bracket
coefficients as

[1.2,1.2)(eree — 8182) + [1.0, 1.0)e; — [1.5,1.5] =0,

[1.2, 12] (C182 - 0231) 4 [10, 1.0]31 - [03, 03] = 0, 5
(1.0,1.0)¢f +[1.0,1.0)2 ~ [1.0,1.0) =0, _ @)
(1.0,1.0)¢} +[1.0,1.0)s3 ~ [1.0,1.0) = 0.
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If Algorithm 5.1 is computed in 19 digits, the following sclution is obtained,

( [40.24628674559999990, 40.24628674560000006] 5%
+[—9.803582668800000024, ~9.803582668799999971] 53
+{~23.17601341440000012, —23.17601341439999985)s2,
[—6.220800000000000005, —6.220799999999999993]s%¢1
+[~1.244160000000000001, ~1.244159999999999998] s

{ +[3.939839999999999993, 3.9398400000000000086)s2, 3)
[11.64533759999999998, 11.64533760000000001)s?
+([8.957951999999999998, 8.957952000000000009] 55
+[—1.418342400000000003, ~1.418342399999999997))s3,
[10.74954239999999998, 10.74954240000000001]s3co

| +[0.44789759999999999670, 0.44789760000000003094] 7.

Next, Algorithmb5.1 is repeatedly used but in an increasing precision.
The same problem is solved by 29 digits by using the same algorithm. Ob-
tained solutions are nearly the same as the previous solutions (3). Thus
the computation terminates. Unlike the cutoff method discussed in the last
section, the solutions have no negligible term. Thus, it seems that the Algo-
rithm 5.1 is more reliable than Algorithm 3.1 for floating point arithmetic.

6 Conclusion

Symbolic-numeric combined methods to solve polynomial equations by using
Ritt-Wu'’s characteristic sets method are discussed. Wu's method is modified
and then applied to input polynomials with floating point coefficients. Two
approximation methods for modified Wu’s method are examined. They use
1) cutoff parameters, and 2) the stabilization techniques for computing poly-
nomials with floating point coeflicients. An example of the reverse problem
of robot arms, shows that both methods give satisfactory results. Further, by
detailed comparison of the two methods, we may conclude that the method
2) is more reliable than 1).
Several works remain to be done. They include

» establishing error estimation for pseudo-remainders

e making algorithms for symbolic-numeric combined computation even
faster or parallelized.

— BT —
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Abstract

A symbolic-numeric combined methed to solve polynomial equstions have been
proposed by uaing Ritt-Wu's characteristic sets method. The method is extended 1) to
solve a system of polynomial equations with floating point coefficients and 2) to speed
up by using parallel computations. Especially, in 1), above, the stabllization technique
proposed by Shirayansgi and Sweedler is used. A parallelized mothod for the stabilizing
algorithm of Wu's method proposed here is applied to an Inverse kinematics problem
of robot manipulators,

1 Introduction

Problems in robotics, computer aided design and control theory involve finding the solutions
to systems of polynomial equations. Some of features of them are as follows :

o coefficients of the polynomials are floating point numbers or parameters,

» systems may be ill-conditioned depending on numerical coefficlents, then it becomes
difficult to solve them accurately by numerical methods.

Thus, symbolic algorithms, such as the Grébner basis method and the Ritt-Wu’s character-
istic sets method (abbreviated as Wu's method}{l, 2], are be used to solve such problems.
It is well known that the Grobner besis method can not be applied safely with floating
point arithmetic, In this paper, Wu's method is modified to soive systems of polynomial
equations with floating point coefficients and further is parallelized.
Wu's method is first implemented in & computer algebra system({CAS) Maple V by D,
Wang[3] and also in the CAS Risa/Asir[d]. In the implementation in the Risa/Asir, Wu's



method is extended to allow computations of polynomials with floating point coefficlents. In
(4], an algorithm stabilization technique proposed by Shirayanagi and Sweedler[5] is used to.
obtain accurate solutions of given system of palynomial equations.. We call it -as a. stnhﬂizad
Wu's method. The stabilized Wu’s method is executed In an increasing precision: of _in‘ ats;i
then the output converges to the exact output obtained by the symbolic’computation:#iz
In this paper, Wu's method is implemented on a parallel computer, I*\uitaua AP3000
Parallelization of Wu's method have already been discussed by Wang(6] and I, A, K]wa[‘r,iﬂ
However, a system of polynomial equations with floating point coefficients ia pot corﬂputoa
in their implementation. Thus here, the stabilized Wu's method is parallelized. 'In Gy
parallel stabilized Wu's method, computations of increasing precision of inputs should; be
done. Each computation of precision is done on each processor{worker) in our parallelized
method. Results of our parallel implementation are compared with that of by Wang and
Ajws. It is shown that our approach gives results faster than results by Wang and Ajwa.

2 Wu’s method

Wu's method reduces input polynomial set P& to a family of triangular sets, which is called
a8 characteristic set C'S. Notations used in the algorithm are as follows:

e Let zy,%q,  , %, be a set of indeterminates with order z; < 33 < -+ < z,.
e PS5, CS and RS are polynomial sets,

o Ivar(p;), ldeg(p;) and ini(p:) are the leading variable, the leading degree and the initial
of p w:th respect to lvar(p;).

» A finite set of polynomials {p1,p2,...,pn} is called an ascending set if the following
conditions are satisfied.

- lvar(p;) < 1VBI;(P2) ~< e < var(p,)

— For i < j, deg(p:) with respect to lvar(p;) is smaller than deg(p,) with respect to
lvar(p:)

Then, the algorithm of Wu's method is written as follows,

Algorithm 2.1 (Wu's method)
Input: a polynomial set PS
Output: a characteristic set C§

stepl CS « basset(PS)
step2 RS + remset(PS,CS)

stepd If RS = { }, then return CS as the solution, else set PS = PSURS and go to stepl.



The algorithm is separated into two parts, basset and remset. The bassat is a procedure
to obtain an ascending set from a given polynomial set PS. Operations used in the basset
are only compsrison among degrees of each polynomial in P§S,

The remsst is a procedure to obtain a remainder set RS from FS and CS. Here, details
of remset are as follows,

Algorithm 2.2 (remset)

Input: PS = {p1,p2,- +,pn} and CS = {c1,¢2, **, Cm}
Output: a remainder get RS

stepl AS +— {} andi 1

step2 r +« p;

stepd r « pren(r,c;) forj=mm-~1,-:-,1
stepd RS« RSU{r} andi—i+1

stepb ifi < n, go to step2

The basic operation underlying all characteristic-set-based algorithmas is the pseudo-remainder
(prem) of two polynomials r and ¢; with respect to some variable =, While dividing r by ¢;,
one can get & remainder formula of the form

I*r=Q:¢;+R,

where the polynomial I is, the leading coefficient of ¢; in z. The integer & is expressed
a8 8 = 1 - ldeg(r) — Ideg(c;). If ini(r) and ini(c;) are not relatively prime, then I =
ini(e;)/GCD(ini(r), ini{c;)).

3 Wu’s method and its stabilization

Shirayanagi and Sweedler proposed a stabilization technique [5]. Their motivation wes that
computations by symbolic algorithms waste memory space by an intermediate swell of nu-
merical coefficients. Thus, if the algorithm is combined with a numeric computation carefully,
the results may be accurate and stable, and furthermore computations may be done quickly.
As & numeric computstion, a concept of interval arithmetic is introduced. Numerical coeffi-
cients are described by rectangular interval numbers and are called as Bracket Coefliclents.
The stabilized algorithm is executed in an increasing precision of inputs, and then the result
converges to the true output obtained by the symbolic computation. If the bracket coefficient
contains zero, then it is rewritten to zero. This process is called “Zero Rewriting".
Wu's method is modified by using the stabilization techniques as follows:

o Variables take values from Bracket Coefficients
« Zero Rewriting ie applied to the steps to obtain pseudo remainders prem

o Repeat the algorithm in increasing digits of inputs and for computations.



Figure 1: Robot arm

Wu's method using the stabilization technique is summarized as follows:

Algorithm 3.1 (Wu's method using the stabilization technique)
Input: a polynomial set PS (interval coefficients)
Output: a characteristic set ¢S (interval coefficients)

stapl CJ + basset(PS)
step2 RS « interval-remset(PS,CS)

step3 If RS = { }, then return CS' as the solution, else set PS = PSURS and go to stepl.

In the procedure interval-remset, the process, Zero Rewriting, is applied to eliminate error
for coefficients of remainder polynomials, Further, it is necessary to increase the precision of
big floating point arithmetic, and to repeat Algorithm 3.1,
The stabilized Wu's method is applied to an inverse kinematics problem of robot manipulators[9].
When the orthogonsl frame (z,y) is introduced to a robot arm as in Figure 1, we consider
- how to obtain the rotation angle of the ith joint, §;. The problem is modeled by the length
of links, I;,4=1,.,.,3, 64, 63, and joints. The joint (x,3) is expressed as

z1 \ _ ( lacos(fy + 63} + Iy cos(6,)
" [3 sin(()l + 92) + lz sin(Bl) ’
The equation and restrictions of trigonometric functions are written as

£1 = l{c1cz — 8182) + oy,
th = l3(e18 + c291) + lasy,
a+s=1,
d+sl=1



where notations ¢; = cosf; and s; == sin#; are used.
If the coordinate of the joint (z1,3) = (1.5,0.3) and the length of links Iz = 1.0, I3 = 1.2

are substituted into the equation, then the Input polynomials for Wu's method are expressed
with Bracket Coeflicients as follows.

[1.2, 12] (clc2 - 8152) + [10, LO]C[ — [1.5, 15] = 0,

(1.2, 1.2} (c182 — c331) + [1.0,1.0]8, — [0.3,0.3] = 0, 1
(1.0, 1.0] & + L0, L.OJs? — [L.0, 1,0] = 0, ()
[1.0,1.0] 2 + [1.0, 1.0)sZ — [1.0, 1.0} = 0.

If Algorithm 3.1 is computed in 19 digits big-float on Risa/Asir, the following solution is

obtained.
[ [40.24628674559999990, 40.24628674560000006)s]

+[~9.803582668800000024, —0.80358266879999997 1] 53
+[—23.17601341440000012, —23.17601341430999985] 42,
[6,220800000000000005, -6.220799999999999993 821
+[~1,244160000000000001, —-1,244159999999999998] 5*
+[3.939839999999999993, 3.939840000000000006} 52, 2)
1 [11.64533756999999998, 11.64533760000000001}s3
+([8.957951999999999998, 8.957952000000000000} 2
+[—1.418342400000000003, —1.418342399999999997]} 82,
[10.74954239999999998, 10,74954240000000001]3c

| -+[0.44789759999999999670, 0.44789760000000003094}s?2.

Next, Algorithm3.1 is repeatedly used but in increasing precisions. The same problem
is solved by using the same algorithm in 28, 38 and 48 digits big-float. Obtained solutions
are nearly the same as the previous solution (2). Thus the computation terminates.

In the next section, the stabilized Wu's method is implemented on a parallel computer
for obtaining solutions quickly.

4 Wu’'s method and its parallelization

In a parailel implementation of the stabilized Wu's method, the following two types of com-
putations should be considered. They are

1. allocating prem to workers,
2. allocating computation in differential precisions to each worker.

Above two types of allocating methods are discussed. They are applied to an inverse kine-
matics problem of robot manipulators.

In Algorithm?2.2, the step2 and step3, the pseudo-remsinder of p; with respect to CS
can be computed relatively independent. Most of time consuming steps of Wu's method are
in these steps, We allocate polynomial pseudo-remainder computations to many processors
in the parallelize Wu's method. A Master-Worker model is used for programming model.
In Algorithm2.1, the master process computes the step 1, sends PS and CS to worker



processes, and receives A5 from them. Then finally it computes the step 3. Worker pro-
cesses receive p; and C'S, compute pseudo-remainders of p; with respect to C'S and send the
pseudo-remainders back to the master process, i.e., worker processes compute the atep2 in.
Algorithm2.1. This idea is proposed by Wang|6) and Ajwal7, 8].

The stabilized Wu's method Algorithm3.1 is executed in an increasing precision of
inputs, and then the stability of obtained solutions is checked. We allocate the computation
in different precision {0 many worker processes. The master process sends PS5,C8 and a
precigion to the worker process. It receives R.Ss computed in different precision and checks
the stability of obtained solutions. Each worker process recelves PS,CS and each precision,
and computes RS in given precision. It sends RS back to the master process.

The parallel stabilized Wu’s method is applied to an example of robot manipulators. The
example here is an extended problem discussed in the previous section. The arm consists of
4 linka. It is expressed as

( i1.4, 14} (010203 — C18983 — 91C283 — 318;03)
+[1.2,1.2] (c100 — 8152) + [1.0,1.0) ¢; ~ [3.0, 3.0 = 0,
[1.4,1.4] (c1c83 + €190 + 516263 — 519233)
{ 02,19 (c100 + ep00) + [1.0,10) 3y ~ [13,1.8] = 0,
[1.0,1.0) {c} + 81 -10) =0,

[10, 1.0} (¢} + 02 = 1.0) = 0,
| [1.0,1.0] (2 + 82 — 1.0) = 0.

where notations ¢; = coafy, 8 = sinf;,i = 1,...,3 are used.

In the problem, the number of equations is less than the number of unknowns. Thus
solutions are positive-dimensional. If we substitute numerical constraints to the solution, we
can obtain numerical values for each unknown. For example, c; = 0.7071, 8y = 0.7071,¢; =
0.5453, 7 == —0.8382,¢c3 = 0.6574, 33 = 0.7535 is a solution obtained from the constraints.
In Table 1, we show computational times for sequential Wu’s method{Sequential), the par-
allel stabilized Wu’s method with allocating prem(Prem parallel) and the parallel stabilized
Wu's method with allocating computation in differential precisions(Precision parallel), Theae
computations are done in 19, 28, 38, ..., 115 digits big-float. All experiments have been per-
formed on & scalar parallel server Fujitsu AP3000 which have 24 nodes and APnet. Each
node consists of 2 UltraSPARCII(360MHz) processors and 640MB memory. 4, 8, 12 nodes
are used as workers. To obtain computation times, a built-in function of Risa/Asir, time(),
is used. All computation times are shown in seconds.

Table 1: Computation times for parallel stabilized Wu's method (sec.)

fNo. of Workers | Sequential | prem parallel | precision parallel
1 216 — —
4 — 89.4 64.2
8 e 64.6 43,8
12 — 59.8 20.2

The stabilized Wu's method is executed in increasing digits of inputs, and then the sta-
bility of obtained solutions is checked. Two types of parallel implementations are compared.

Y e



Comparisons of computation times show that the precision parallel case are faster than the
prem parallel case, The reason of the fact depends on & number of communications among
processors. When allocating prem computations to meny workers, there occur too many pro-
cessor communications than the method of allocating the computation in different precision
to many workers.

5 Conclusion

The parallel implementation of the symbolic-numeric combined method to solve polynomial
equations by using the Ritt-Wu’s characteristic sets method{Wu's method) is discussed. Wu's
method is modified and then applied to input polymomials with floating point coefficients.
The algorithm staebilization technique is used for modifying Wu's method. The stabilized
Wu's method is then parallelized. Here, computations are executed in an increasing precision
and the stabliity of obtained solutions is checked. T'wo types of parallel implementations are
discussed. They are

1. allocating prem to workers,
2. allocating computation In differential precisions to each worker.

Thongh an example of the inverse kinematics problem of rabot manipulators, it is shown that
the latter is faster than the former. From the number of communicetions among processors,
the paralielized method of a allocating Wu's method computation in different precision to
each worker is better than the method of allocating prem computations to workers.

The following problems remain for our future studies.

s How to check the stability of obtained solutions.
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Abstract. We propose a rational function approximation method combining numeric and symbolic
computations. Given functions or data are first interpolated by a rational function, i.e. the ratio of
polynomials. Undesired poles appearing in the rational interpolant are removed by an approximate-
GCD method, We call the rational approximation a Hybrid Rational Function Approximation and
abbreviate it as HREA. In this paper we give a short survey of the HRFA and then discuss its accuracy
analysis by using the approximate-GCD proposed by Pan.

1. Introduction

Among rational approximation methods for a given set of data, rational interpolation
may be one of the simplest method. The set of data is interpolated by a rational
function. For that purpose, the function is first evaluated at several data points
in an interval and changed to the set of data. Rational functions discussed in the
literature [17], [18] are sometimes restricted to be irreducible, i.e, numerator and
denominator polynomials have no common factors other than a constant. However,
if the interpolation is done in floating point computations, pathological facts have
been observed by Noda et al. [14].
The following is shown through numerical experiments.

1. The denominator polynomial has a zero in the interval for the approximat-
ed range and this makes the rational function singular, We call the zero an
undesired zero.

2. A zero of the numerator polynomial may arise which is very close to the
undesired zero discussed above.

Experimental facts show that the singularity of the rationat function may be removed
by removing an approximate common factor from its numerator and denominator
polynomials. We use an approximate-GCD algorithm to compute such an approx-
imate common factor. We call this procedure Hybrid Rational Function Approxi-
mation and abbreviate it simply as HRFA.
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2. Hybrid Rational Function Approximation
Rationa} interpolation is a method for interpolating a set of discrete data
D={{(x,f)|i=0,..,m+n}, (2.1
where x; # x; for { # j, by a rational function
T a(X) = Pra(x}/ Qulx) (2.2)

which satisfies the conditions f; = Puy(xi) / Qulx), i = 0,...,m+ n. Here, m and
n are the degree of the numerator and the denominator polynomials, respectively.
Pulx) ! Ou(x) is called the (m, n) rational function, Rational interpolation can be
used as a method of approximating functions f(x), x € [a, b] as follows.

« Give sample points x;, i = 0,...,m+nst. a=x <+ < Xp.n = band compute
the values, f; = f(x).i=0,...,m+n.

+ Obtain a rational interpolant r,, ,(x) = Py, (x)/Qp(x) satistying fi; = Pr(x:)/Qn(x:)-
The computation of the rational interpolant is done based on a set of linearized

equations, Thiele continved fractions, and so on [3], [5], [18].
There are two well-known problems in rational interpolation:

s there may be unattainable points in D,
» there may be undesired poles in [a, b].

Several improvements have been proposed by several authors as follows:

» Van Bare! and Bultheel [22] have suggested a modified ratiopal interpolation that
has no unattainable point. However, the second problem remains if the method
is applied to function approximation.

» A condition is imposed that ensures that the rational interpolant (2.2) does not
have any poles on [g, b]. However, the condition is valid only for the case that a
continuous function f(x) is given,

» The method proposed by Berrut [1], [2] overcomes the two problems if f(x) is

continuous in [a, b). However, if f{x) is discontinuous and has poles in [a, b],
the methaod is not applicable.

Thus, there is no known method which avoids the above difficulties when any
f(x) is approximated. In numerical computations of rational interpolants (2. 2), the
following interesting phenomena are observed,

EXAMPLE 2.1, We consider that a function f(x) = 1/sin(x — n/4) is approximated
by (6,6) rational interpolation. The set of data D is given as equidistant points
xi=i/12and §; = f(x;) for i =0, ..., 12. The (6, 6) rational interpolant is expressed
as

Fe(x)

Rge(x) = 0ed)’

~T78=
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Figure 1. The undesired pole of Kg g(x).

Pe(x) = —0.18131x% +3.3199%° — 9.2545x*
+70.090x* — 75.525x% +231.93x — 1.4142,
O6(x) = —5.5692x° +17.993x% +2.0987x*
— 20.796x" +216.91x% — 165.00x + 1.

The denominator polynomial Qg(x) has an undesired zero zg = 0.0061095... Thus,
the rational interpolant Rg ¢(x) is not suitable for the approximation of f(x), x € [0, 1]
because the error of Rg ¢(x) near zg is very large. Rs ¢(x) around x = zg is shown
in Figure 1. On the other hand, the numerator polynomial P¢{x) has a zero very
close to zg. This fact suggests that if we can remove both zeros of the numerator
and denominator polynomials from the rational interpolation, we obtain a modified
rational function without the undesired zero.

We compute an approximate-GCD of Pg(x) and Qg(x) to obtain an approximate

common factor of Pg(x) and Qg(x). The approximate-GCD proposed by Sasaki and
Noda with accuracy £ = 1072 is given by

£1(x) = GCD(Pg(x), Qg(x); ) = x — 0.006109593908.

g1(x) is removed from the rational interpolant Rg ¢(x} by division, and then rational
approximation rs s(x) is obtained as follows.

res = Ps(x),
T gs(x)
ps(x) = —0.18131x% +3.3188x" — 9.2343x"
+ 70.033x% — 75.097x + 231.47,
gs(x) = —5.5692x% + 17.959x% +2.2084x°

—~ 20.782x% + 216.78x — 163.68.
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The rational approximant rs s(x) has no undesired pole. Thus, we obtain a useful
rational approximant for the given set of data D. The above procedure is put into
the following algotithm.

Algorithm 1. Hybrid Rational Function Approximation (HRFA) [14].
Input: A set of discrete data D and accuracy e for the approximate-GCD.

Qutput: A rational approximation r(x} to the set of data D, which satisfies
lfi—r)l SE, i=0,..,m+n, 2.3)

where E is a small positive real number,

Method:
1. Approximate given points and values with a rational function.
m ,
Pad) _ 5%
Rualx) = Zo= = 5—. (2.4)
alL, 5 bt
i=0

We normalize the rational function by requiring that by = 1.

2. Obtain the approximate-GCD of P,,(x) and Q,(x) with certain accuracy
parameter g,

gx) = GCD(PM(X.), Qnx): S):
using the algorithm of approximate-GCD proposed by Sasaki and Noda
{19].
3. Divide P,(x) and Q,(x) by g(x} and let
pix) _ quo(Pulx), g(x))
(%)~ quo(@,(4), g0))’
where quo(A, B) denotes the quotient of A and B.

(%) = @.5)

The process to remove the approximate-GCD from the rational interpoiation in
the last step of the algorithm may be replaced by constructing a continued fraction.
This may give more accurate results of HRFA than those of [8]. The HRFA algorithm
has also a close relation with Padé approximation, as shown in [7].

We applied the HRFA to the Cauchy Principal Value integral (CPV) and a
kind of the Cauchy-type singular integral equation. Through examples, we showed
how computations by the HREA gives more accurate and stable results than usual
numerical computations. Their detailed discussions are described in (8] and {9].

In the HRFA algorithm, two difficulties occur:

« No relation between the parameter € for the approximate-GCD and the error E
of the obtained rational function is obtained.
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* There may be unattainable points of the rational interpolant.

We will consider the first problem in Section 3. A relation between the accuracy
of the approximnate-GCD and error bounds of the HRFA will be given. For the
second problem, we can check the values @, (x;} for i = 0,...,m + n to decide

whether unattainable points may arise. Unattainable points are defined for the set
of points (x;, f;) as

Rm,n(xl') 5‘5 fi (26)
The linearized equations to obtain the rational interpolant (2.2) are
Onlxi)fi = Prlxi) = G, i=0,...,m+n

Thus, if (2.6) holds, we must have Py, (x;) = Q,(x;) = 0. Thus it is enough to check
whether Q,(x;} is equal to zero or not for the rational interpolant obtained by the
linearized equations. '

3. Accuracy Analysis of HRFA

Several algorithms for calculating approximate-GCD and for polynomial division
have been proposed other than Schénhage [20] and Sasaki and Noda [19]. They
use different norms for the definition of approximate-GCD. For example, the L,
norm is used in {6, {16), and the L, norm is used in (4], [12]. Sederberg and Chang

[21] proposed first degree best approximate common factor for a norm defined in a
domain.

In further discussions to establish the accuracy analysis of HRFA, we consider
approximate-GCDs defined by the L) norm, i.e. these proposed by Hribernig and
Stetter [6], and by Pan {16].

3.1. HRFA BY APFROXIMATE-GCD PROPOSED BY HRIBERNIG AND STETTER

The approximate-GCD of two polynomials fy, f2 € C[x], where C[x] is the set of
complex number coefficient polynomials, is the following concept.

DEFINITION 3.1 Hribernig and Stetter. At the accuracy level o, two polynomials
ft- e Cix), { = 1,2, possess a near-GCD ¢ if there exist polynomials f; e Cix],
i = 1,2, which satisfy

ged(fl.f=¢ and |fi-fl<a =12 G.1
Equivalently, a near-GCD g of §, and f, satisfies

Fr=f -g;+F with | <a i=12 (3.2)

A near-GCD at accuracy level o will be denoted by a-GCD(f|, f5).
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Here, the norm of the polynomial means the L; norm, that is |[p(x)|| = fj laj|
j=0
nooo.
for polynomials p(x) = 3 a;%.
j=0

If @-GCD is used in place of the approximate-GCD by Sasaki and Noda, J,
and f, in the equation (3.2) should be read as P,,(x) and Q,(x), respectively. Also
d1» 4> and g should be read as p(x), g(x} and g(x), respectively. Therefore, (3.2) is

expressed as
P(x) = p(x)g(x) + 8P(x),
O(x) = g(xg(x) + 60(x),

where 6P{(x) = F| and 80(x) = 7 in the HRFA with the #; (i = 1,2) of Defini-
tion 3.1,

We consider the error between p(x) / g(x) and the interpolated rational function
P(x) / Q(x). The following theorem helds [10].

i

(3.3)

i

THEOREM 3.1. Let P(x) and Q(x) be polynomials in C[x] and let p(x) and q(x) be
polynomials satisfying ||6P(X)|| < o < 1 and ||8Q(x)|| £ & < 1 in the expression

(3.3). Then
P(2) o
<(g5]) L

PO _po
foreveryze [—1,1)s |0@)] > 1.

Q@ 4@
Theorem 3.1 gives the relation between the accuracy o of near-GCD and the error
E of the HRFA. We will normalize the error and rewrite the HRFA Algorithm 1, as
follows; .

Algorithm 2. HRFA by using near-GCD.

Input: A set of data D and accuracy E of the HRFA.

QOutput: A rational function p(x) / g{x) satisfying

lpx) 1 qx)y —yi| < E, i=0,..,m+n.

Method;
1. Obtain the rational interpolant P,,(x}/ Gy (x).
2. Compute ¢ = 0min |@a(x)]. If ¢ = 0, unattainable points appear in D
f=0,....m+n

and one must stop.
3. Normalize P, (x) and O,(x) as follows:

Pm(x) = Pu(x)/e, Qn(x) = Qu(x) /¢,
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4. Obtain o-GCD g(x) of P(x) and Q(x) where o = E/ {1+ [max {lf:]}+E)
=, .., m+n
and the rational approxirnation p(x) / g{x).

3.2. HRFA USING APPROXIMATE-GCD PROPOSED BY PAN

The approximate-GCD proposed by Pan is defined as follows. For two polyno-
mials u(x) and v(x), for the polynomial norm || 3, pix'll = ¥, |pi| and for a reat

b, an approximate ged, d* = ged®(u(x), v(x)), has been nonuniquely defined as
ged(u’ (x), v*{x)), where

degu*(x) < degu(x), degv'(x) < degv(x), (3.5
b Ge) — u@l| < 270lu@ll, v ) = vial| < 278w, (3.6
and u"(x) and v"(x) satisfying (3.5) and (3.6} are (nonuniquely) chosen so as to
maximize deg(d"(x)).
Several methods for computing the approximate-GCD are proposed in [16]}. We
consider §-gcds which are summarized as follows:

* The two polynomials

n I
ux =ux [Je~y) v =vx[Jx-z)
f=1 i=1
and & are given.
o A 8-ged di(x) of u(x) and v(x) is defined by the equation
. r
B =Tle—x) %=, +7,)12 g=1 ..,
g=1
where the set of pairs (i, Zj, }, -+ (i, 2;,) i @ maximum matching which maxi-
mizes r and satisfies [y;, — z;,| < 26.

» If § is bounded by the equation § < (1 +27%)/" — 1 and

m n
pa)=ux [ G~y)  a@=vx J] x=2z)
keptl Isr+]

where y;, and z;,, which are not used in the computation of the -ged, are

zeros of u(x) and w(x) respectively, then polynomials u"(x} = p(x)ds(x) and

v'(x) = glx)ds(x) satisfy the definitions (3.5) and (3.6).

If the 8-geds are used in the HRFA, we can easily give an accuracy analysis of
the HRFA from Theorem 3.1. The polynomials, u(x}, v(x), u"(x) — u(x), v*(x) — v(x)
and d*(x) appearing in the 8-ged, should be read as P, (x), Qx(x), 8P(x), SQ(x} and
g(x), respectively, Thus, for o = 272 max{||P(x)|], ||@(x)||}, the inequality

FO_sol ()00 e
s\'*zwl) =&

Q@) g
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holds for every z € [—1, 1) such that |Q(z)| > 1. We can rewrite the HREA using
the §-geds as follows:

Algorithm 3, HRFA using approximate-GCD proposed by Pan.
Input: A set of data D and accuracy E of the HRFA.

Output: A rational function approximation p(x} / ¢(x) which satisfies
|fi — pCa) 7 qx)| < E. (3.7)

Method:

1. Obtain the rational interpolant P, (x}/ Gn(x).

one must stop,
3. Normalize P,,(x) and Q,(x) as

pm(x) = Pplx)/c, Qn(«'ﬂ) =0,(x)/c.

4. Obtain a 8-ged g(x) of Pry(x) and 0, (x) where & = (1 + g —bylimax{mn} _ |
and 278 < E7 (max{||{Bnall, ||0,(0||}(1 + l.=0malé+m{|f,-|} + E)).

5. Obtain p{x), g(x) as follows:
pry =ux ] G-
k=deg(g(x))+ |
n

Q(x) = ¥X H ('x - ij))
= deg(g(x)) +1
where y;, and z;, Which are not used in the computation of the §-ged, are
zeros of P, (x) and Q,(x) and u = Icoef(P(x)), v = lcoef(Q,(x)), where
leoef(P,,(x)) means the leading coefficient of the polynomial Pp,(x).

We demonstrate through the next example that the HRFA by the 8-geds may
have advantage over the HRFA by near-GCD.

EXAMPLE 3.1. The function f(x) = sin{x)/ (x — n/4), x & [—1, 1] is approximated
with the equidistant points from —~1 to | as the sample points x;, { = 0, ..., m+n. That
is,xj=—142xi/(m+n),i=0,...,m+n. The error of the ratjonal approximation
is computed as

S |rGa) — Fx)
i=0,..,99
EAve = f
100

Table 1 shows numerical comparisons between the error of the HRFA using near-
GCD and §-geds. Here the near-GCD computed with E = 1072 and the §-gcds

x=~1+2x1(/99,
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Table 1. The emor, B4, of rational approximations for sinix) /
(x—nidyxe[-11].

interpolation HREA (Stetter) HRFA(Pan)
Run Tmn Epve Tern Epve

{4, 4) (3,3) -24858x 107 (3,3) 1.2885x10°*
(6,6) (5,5) 3.6042x107% (535 1.8385xI1¢7®
(1,11 (7.7) 22271 % 10™ (2,7 43366x 107
(12,12 (.7 75450x1077 (1T 27414 x107°
(13,13) (1,7) 24439%107°  (1,1) 36617 x 107"

computed with E = 1072 are shown. In this example, the Durand-Kerner method is
used to compute the zeros of the numerator and denominator polynomials for the
8-geds.

Resulis are shown in Table 1. A rational interpolant R,, , containg the approx-
imate-GCD. By the HRFA algorithms, it is reduced to a hybrid rational function
fmn With the error Eg,,. Table 1 show that the rational approximations cbtained
with Algorithm 3 are more accurate than those obtained with Algorithm 2.

4. Conclusion and Future Work

We give a brief discussion of the HRFA and its accuracy analysis,

The approximate-GCD algorithm plays the most important role for the accuracy
of the HREA. Through experimental error estimations, we have demonstrated that
the approximate-GCD algorithm proposed by Pan seems to be adequate for the
HREFA.

There remain several future applications of the HRFA as follows:

* Approximate-GCD algorithms may be applied to approximate transfer func-
tions of a high order system by a low order one in the critical case, where the
transfer function has closely located poles and zeros. It is known that the Routh
approximation method has a serious drawback in that the reduced model may
approximate the nondominant poles of the system.

« Bivariate rational interpolation computed by means of interpolating branched
continued fractions {5] may have undesired singularities [11]. Only multivariate
approximate-GCD methods (e.g., [4], {15]) are available in this case.
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Abstract

In 1993, Sasaki and Kako proposed a Hensel-like construc-
tion of {z, w1,...,u}, ¢ > 2, at a singular paint where the
conventional generalized Hengel construction breaks down.
In this paper, we first extend Sasaki-Kako's method so as
to apply to palynomials with vanishing leading coefficiants.
Then, we investigate a special case that the initial factors
are polynomials. We prove that the multivariate polyno-
mial can be decomposed at any singular point into fac-
tors which are polynomials in a main variable with coef-
ficients being (infinite) series of rational functions such that
SoreolMe(uy, o u) /D, .. 1e)). Here, Nioand Dy
are homogeneous polynomials in u; — 81,...,4 — 3¢ and
tdeg(Ni} - tdeg(Dyx)} = k, where {s,...,5) is the expan-
sion point and tdeg denotes Lthe total-degree. The extended
Hensel construction can be used to factorization of multi-
variate polynomials having a singular point al the erigin.
After performing the extended Hensel construction at the
origin, we search for the smallest subsets of Hensel factors
such that the product of the members of each subsat con-
tains no rational function. Then, we obtain the factorization
in K{u1,...,us}[x], with K a number field. Next, we search
for the smallest subsets such that the product of the mem-
bers of each subset contains no infinite series. Then, we
obtain the factorization in K|z, uy, ..., %], withoul employ-
ing the so-called nonzero substitution.

Key words; extended Hensel construction, Hensel con-
struction, generalized Hensel construction, analytic fac-
torization, multivariate factorization, nonzero substitution,
polynomial {actorization.

1 Introduction

Let X be a number field and F(z,u1,..., 1) be a square-
free polynomial over XK. Let K be either X or an alge-
braic closure of K. The generalized Hensel construction
invented by Musser [Mus7i] and improved by Wang and
Rothschild [WRT5| and Moses and Yun [MS73] is & very im-
portant operation in computer algebra, However, it breaks
down if the expansion point {si,...,8) € &' is so cho-
sen that F(z,s1,...,9:) = G{z)™, with G{z) an irreducible
polynomisl, We note that il #{z,&,...,3;) is square-free

*Work supported In part by Japanese Ministry of Education, Sci-
ence npd Culture under Grants 12450085,

and the leading coefficient w.ar.t. z, of " does not van-
ish at {81,...,4:), hence we have F(z,s,...,9) = elz —
a1) - (o — an), with n = deg, () and oy # oy (Vi # 1),
then the parallel Hensel construction with initial factors
ez — o), {x —eady. .., {= ~ ©2n), gives us the Taylor expan-
sions of the roots w.rt. =, ol polynomial Fz, uy,. .., u).

Therefore, we say that a point {s;,...,8:) € R’ is a sin-
gular paint for the Hengel construction if F{z,a1,...,3:) is
nol square-free and it is a singular point of the leading cocf-
fiedent if the leading coefficient w.r.t. &, of Pz, uy,..., u)
vanishes at the point. The case Pz, 81,...,5) = G(z)" is
the extremal case of singular points.

The Hensel construction at a singular point is impor-
tant in two points. Oope is that it Jeads us to an exten-
sion of the Puiseux seriea solutions of the bivariata algebraic
aquation F(x,1) = 0 to the solutions of multivariate one
F(z,u1y...,m} =0, £ > 2. For researches in this direction,
see {SK99) and [McD95]). The other is that it leads us to the
factorization in K{t,...,ur}fz], of Flz, ui,...,ur), where
the origin is a singular point. This kind of factorization is
closely related with analytic factorization, i.e., factorization
in K{z,uy,...,u¢}, and it is very important in mathemat-
ics. For the analytic factorization in X {z, 11}, see [Abh90]
or [McC87], for example.

For a bivariate polynomial F{z,w1), Kuo [Kuo88] de-
scribes a direct extension of Hensel's leinma in which the
expansion point is chosert at a singular point, Kuo's method
seems to be derived from ideas of Abhyankar [ALRBO), and
it gives us the Puilseux series in vy in a special case. Kuo's
description is quite informal from the viewpoint of computa-
tional algorithm, and McCallum {McC97| gives a complete
algorithm of the method. All of these works have been done
in the context of analytic factorization of F{x,u,). On the
other hand, Sasaki and Kako extended the Hensel consirue-
tion of #(x, uy,..., ue), & > 2, to the case of singular expan-
sion point, so as io generalize the Puiseux series solutions of
a bivariatie algebraic equation to the case of £ > 2. Sesaki-
Kako's method reduces to Kuo's method if the number of
sub-variables is reduced to one. Sasaki and Kako called
their method extended Hensel construction and the present
authots use this naming in this paper.

The extonded Hensel construction itsell is the same in
both £ = 1 and ¢ > 2 cases: we plot all the monomials of
F on a two-dimensional plaune (see 2 for details), draw the
Newton palygon A for the dots plotted, determine the ini-
tial faciors by factoring a homogenaous polynomial which is



obtained by summing all the monomials plotied on the right-
most bottom side of A, and construct the Hensel factors by
increasing the modulus by 1/# step {f is a positive integer).
The results obtained are, however, pretty different in £ = 1
and £ > 2 cases. Any homogeneous palynomial G{z, v, ) in z
and u; is equivalent to G{z, 1), and the number of different
monomials of the same degree in K([uy] is ons (except for the
coefficients}, These facts make the Hensel factors quite sim-
ple in the € = 1 case. In the { > 2 case, the Hensel factors
are expressed in terms of algebraie functions in t,.. ., uy,
in general, hence they are not easy to handle,

[8K99] investigates only the case of monic palynomials
{hence the leading coefficients are not singular). Therefore,
in this paper, we first extend Sasaki-Kako's method so as to
apply to the polynomlals with singular leading coeflicients.
This extension is straightforward, Then, we investigate a
special case that the initial factors are polynomials over K.
We find that any singular multivariate polynomial can be
decomposed into factors which are polynomials in x with
coefficients being series of homoegeneous rational functions
in t1,..., 1, Over

The extended Hensel factors can be used to factorization
of a multivariate polynomlal having a singular poins at the
origin. Choosing polynemials as the initial factors, we ob-
tain the Hensel lactors which contain rational functions in
their coefficients usually. We search for the smallest sub-
sets of factors such that the product of the members of sach
subset contains no rational function. Then, we abtain the
factorization in K{ul, . ue¥lz), of F at o singular point.
This factorization is not the analytic factorization for which
we must take unit factors in K{z,u;,...,w} into account.
However, the factorization in K{ui,. ..u;}{m] has a close
relationship to the. analytic factorization, and our factor-
ization itself is quite interesting mathematically, Next, we
search for the smallest subsets such that the product of the
members of each subset contains no infinite series. Then, we
obtain the factorization in Kfz, 41, ., 4], Note that, in the
conventional multivariate factorization algorithms, we shift
the origin if the orlgin is a singular point. This is called the
nonzero substitution, and it usually causes a large expres-
sion growth making the computation very time consuming.
The nonzero substitution problem has been attacked by by
Wang [Wan77) and [KT90] ete., but it seems to the authors
that the problem has not been solved satisfactorily. There
is no nonzero substitution in our {actorization method !

It must be mentioned, however, that the factorization
method to be described in thig paper is not able to give the
irreducible factorization in K{ui, ..., #}{z] except in simple
cases. In this paper, we focus cur attention on clarifying the
extended Hensel construction, and we discuss the irreducible
factorization in K{u1,...,u:}{z| elsewhere.

In 2, we survey Sasaki-Kake's method briefly. In 3, we
extend Sazaki-Kako's method so that it becomes applicable
to the case of singular leading coefficients. In 4, we derive
a decomposition theorem which is a main theorem in this
paper. In B, we describe the appllcatlon of the extended
Hensel factors to factorization in K{u,...,u}[z} and in
K|z, u1,. .+ U], respectively. We clarify the factors which
may appenr in the denominators of the Hensel factors, and
prosent a strategy lor finding the required combinations of
Hensel factors efficiently. In 8, we briefly discuss a problem
which we must solve Lo attain the irreducible factonzatmn
in K{“ll |“‘}[m] !

2 Brief survey of the extendad Hensel construction

Let K be o field of numbers, and let K be either K or an
algebraic closure of X, Let B{ur,...,u, K{u,,...,u) and
K{w,...,u} be the ring of polynomials, the field of ratio-
nal functions and the ring of formal power series, respec-
tively, over X in variables nwy, ..., ue. Let (8,...,8) € K‘.
and we abbreviate (u1,...,1u¢) and (1,...,8:) to (u) and
{s), respectively. Let a given polynomial F(z, 1) € K[z, y|
be square-free, primitive w.r.t. every variable and expressed
as
Pla) = W)™ fams 0" fowda”, i) 20
By deg(F), lc(F) and tdeg(f:), we denote the degree and
the leading coeflicient of F w.r.t. the main variable z, and
the totab-degree of f; w.rt. wy, ..., 4, respectively: i T =
eupt -+ uyf, ¢ € X, then tdeg(T) == e1-+- - +e,. By ard(fi),
we denote the order of fi, i.e., the minimum of the total-
degrees of terms of f;. For the rational function f(u)/g(u),
we define the order as ord(f/g) = ord(f} — ord{g). By
ged{F, 3}, we denote the greatest common divisor of F' and
G. By cont(F) and pp(F)}, we denote the content of FF(z, )
and the primitive part of F(z, u), respectively, w.r.t. , i.e.,
cont(F} = ged(fu, fo-1, -, fo} and pp(F} = F/cont(F).
By rem(F, G} and res(F, G}, we denote the remainder and
the resuitant, respectively, w.r.t, ©, ol polynomials F and G.
By {p1,...,m} we denote the ideal generated by py,..., ;.
Let G(u) be a finite or infinite series of rational functions
such that

Gy = B0, 0l e
do (u) di(u) dx (u) ’
e(u) and de(u) are homogeneous polynomials in K[u]
ord(gu/de) =k (k=0,1,2,...).

(2.2)
By K{(u)}, we denote the ring of series of homogencous
rational l‘unctions of nonnegative orders, such as G'(u) in

(2:2).

Definition 1 (singular pomt, singular leading co-
efficient) " We call the szpansion point (s} a singular point
for the Hensel construction, or a smgular point in shorl,
if F'(z, 8) is not square-free. If fu(s) = 0 then we say the
leading coeflicient is singular at (3).

One may think that we can avoid the case of singular
lending coefficients by the well-known transformation

Tt 0 Pz, 1) — f:'lF(-’E/fn.ul) & fla, ). (2.3)

Wesee (1) = 2"+ fac 12"Vt fy frmaz™ " F e -+-f,“‘fa
Hence, althongh Ty_makes the leading coefficient of F non-
singular, it makes 7 highly singular at (s). Therefore, we
consider F'(z, ) instead of F(z, 1),
For multivariate polynomial F(z, u) such that deg(F} =

m ant I"(a: 0) = ez™ (that is, J* has a singular point at
the origin but its leading coefficient is not singular at the
origin), Sasaki and Kako [SK09} proposed to extend the
Hensel construction as follows. First, introduce the total-
degree variable ¢ for sub-variables us,...,u; by the trans-
formation w — tu; (i = 1,...,8). (We may introduce
the welghted total-degree variable ¢ by the transformation



g e (= 1,...,8), where o ,...,wr are positive inte-
gers). Next, we define Nowton line and Newton polynomial

for F(z,u), as follows; Fig. 1 in 3 fllustrates the Newton line
in general cases,

Deflnition 2 (Newton line Lywm and Newton

polynomial Fia{w,u) for F(z,u) the case of ronsin-
gular leading coefficiant)

1. For each monomial ez’ t'ul? .-
Kandj=j,+-
the (e, e:)-plane;;

wlt of Flx, tu), withe €
+ji, plot a dot at the point (,4) in

8, Let Lyew be o straight line in (e-,e)-plane, such that
il passes the point (m,0) and another dot plotted and
that any dot plotied is not below Lyaw ;

4. Construct Fypw(z,tu) by surming all the monamials
which are plotted on Lyew -

FPiyew{z, bu) is homogeneous w.r.t. z and t*, where —) is the
slope of the Newton line {A > 0). Then, we define the ideal
Iy as follows. Let the Newton line be exfm+efpn = 1 {i.e,
the Newton line Ln.w and the ec-axis intersect at (0, 1)), and
determine positive integers 1, ji Lo satisly /v = gfm =)
and ged(sh, £} = 1, then
foo= (om0 gmel i Dlemi)/h
(2.4)
Since the Nowton polynomial Fiv.w(z,u) contains two or
more terms, we assume that it is factorized as follows (sce
[5K99] for the case of Fyewlz, u) = Glz, u)™).

Frawl, tu) = = G, tu) - GOz, r22,
gcd(GP],Gm) =1 forany i# j.

(2.5) .

We note that G(u}(:r: tu) is usunl]y a polynumjal in 5 and t*
with coefﬁcwnts of algebraic functions in tuy,..., tug, how-

ever, Cv' (.7:, tu) may be a polynomial in tuy,...,tu; and we
discuss thm case in 4. Using G(D}, G‘u) as mltial factors,
we can construct C}'U'), LG (k= 1,2,...) such that

Potn) = Mg tu) - 0 p tn) (mod fus). (2.8)

The procedure of construction is the same as that of the
generalized Hensel construction, see [SK99] for details,

3 The case of singular leading coefficient

Sasaki-Kako's method mentioned in 2 cannot direetly
be applied to polynomials with singular leading coefficients.
Hawever, it can be made applicable if we modify the method
slightly. In the following, we assume that F(z,u) and its
leading coefficient are singular at the origin,

Flz,u) = fa{u)z™ +- -
ord{fa)=v >0,

+ hu)z o+ folu),
fn(0) = 0.
Definition 8 {(Newton line Lyw and Newton

polynomial Fya.e(x, ) for F(z, v} the case of singular
leading eoefficient)

3.1

{. For cnch monomial ex*t¥uf! .. wdt of F(z, tu), withe €
Kandj=j + --+7, plat a do! ol the point (i,§} in
the (=, e}~ pianc,

2. Let Lxew be a straight line in {e=, er)-plane, such lhat
it pasaes the point (R, 1) and another dot plotted and
that any dof plolled is not below Lnow

3. Construct Fuaw(z, tu) by summing all the monomials
which are plotted on Lyew -

The slape of the Newton line may be positive, zero, Of neg-
ative, as jllustrated by Fig. 1.

Fig 1-1 Fig. 1-2

Newton lines for polynomials with singular leading coefls.
The slope may be positive (Iig.1-1) or negativa (Fig.1-2}

Let the stope of the Newton line be A {4 > 0 in Fig. 1-1
and A < 0 in Fig. 1-3}, and determine posilive integers fi
and i to satisly /A = |A| and ged(#2, #) = 1. According to
Lemma 1 in [SK99}, if we shift the Newton line by step 1/A
in the es-direction successively, all the integer tattice points
above the Newton line are ridden by the line. Therefore, we
determine pnlynomlal Pz, u,t) and ideal Iy ag follows.

oy Plaftim) (3.2)
Lo o= (%), k=1,2,3-.-. (3.3)

Note that the MNéwton lmes become honzoma.l hy the above
transformations,

Since the Newton polynomial Frew(z,u,t) for Fz,u,t)
has two or more lerms, we assume that it is Jactorized as fol-
lows (see [SKCO0] for the case of Fuaw(z, u,t) = Gz, 4, ™).

FN'w(m’u’t) = C-v'iu)(:t:,u,t)-- 'C_"S‘n}(zyuni)l ¥ Z 2:
ged(G®,6) =1 for any i#j.
: (3.4)
Then, we can construct G (z,u,0) (i = L...,7), £ =

1,2,..., such that

Fle,ut) = ¢* o u, ) 68z, u, ) (mod i)
(3.5

For the later use, we describe the construction proce-
dure of G‘f")(z, u,t) briefly. We first calculate “Moses-Yun's
polynomials® W (i=1,...,r 1=0,1,...,n~1) to satisfy

B Fy
W(')-M+---+W”3 ew_x!l
1 @(o) G(ﬂ-) {3.6)
deg(W“’) < deg{3™) (i=1,....r).



Suppose that we have constructed C‘?E"') (' =0,1,...,k-1).
Then, we calculate

D = PtV G (mod Do)

3.7
J""z“+&“"1m“"+ R gy, @7

and construct G o GO s (1=1,,..,7) as

+ W‘_(O)‘f‘(]k)l {3.8)

Remark 1 Since the negoltive slope case is essenbially
the same as that treated in [SK99), we can unify Sasaki-
Kako's method and the above construction procedure.

56 = WD 4 W,

Example 1 The extended Hensel construction of a bi-
variate pelynomial F(z,y) with singular leading coefficient.
For easiness of reading, in this and the following examples,
we omit the total-degree variable £ and do not show F(z, u, {)
etc. but show F{z,u) etc.

Po= 2y + 208 )+ 20 - 27 + 3y - 2)
+ z(3y® - 0y7 - 5y) + (=2 =5y + 3pP).
(3.9)
The Newton polynomial and its irreducible factorization are
ag [ollows.
Fuew =o'y 42y + 007 = 2® (zy + 2) - (zy - 1), (3.10)
Putting G{ = 27, @ = ay + 2 and G = oy -1, we

calculate Moses-Yun's pu]ynumnds WU) (i=12%%1l=
0,1,2,3) as follows,

wf*:’ = —(zy +2)/4, W,E‘:: = —y? /13, W“:’ = 4* /3,
Wl( Vo -:n/?, = /6, Wi Y= u/6,
Wi = W“’ =-1f3, wi¥=13
W = o WP =2, W = 1/

We calculate 0% (k = 1,7) expllt:ltly

E=1:

o pM = 3:::33,.-"+3a,r y = 4V =37 =23y,
5@5“ Wi (3y) + W - (Gy) =,
sa) wf“ (31;’)+Wm @) = n
6600 2 Wi (ay?) + W (39) = 29,

k=12
D)= gz?y® — oy = dm = —dy?, dm = —by,
aai” W (—dy )+w‘” {- 5J)_5my/2,
JG%’) W"’ {-4y®) + WV (—By) = ¥*/2,
56 w"’ (=43%) + WD . (—By) = -3y,

Thus, we obtain the {ollowing Hensel factors.

G =2+ Bayf2, GY =ay+24y+1P/2
G =y — 142y~ 3%

4 When Initial factors are polynomials

In this section, we confine ourselves to the case that the
initial factors are polynomials in £ and wu,..., 1. For sim-
phctt.y, we treat F(z,tu) stc, without the transformation
in (3.2). We first define a Newton polygon for G(z,u) €
R{(w)}e].

Definition 4 (Newton polygon and Newton poly-
nomials for G(z,u)) For each term ex’tiufl .. ult /D(tu)
of Gle,tu), wherec € K, j = i+ -+ +jr and D{u) is a
homogeneaus polynomial in ua, ..., with ord({D) = d, plot
a dot at the point (i, —d) in the (ez,e))-plone. The New-
ton polygon N for G(z, u) is a convez hull containing all the
dots plotted. Let the bottom sides of N, counted clockwise,
be 81,...,8,. For each i € {1,...,p}, Newton polynemial
Fs,{z,u) is defined by the sum of oli the terms plotied on
S

i

Figure 2 shows the Newton polygon for polynomials in the
examples in this paper. Note that the Newton line is nothing
but the rightmost bottom side of the pelygon (S, in Fig. 2).

e 4

&2 S

€p

. . ,Fig. 2.
The Newton polygon for polynomials in Examples 1 ~ 4.

According to [SK989), Moses-Yun's polynomials W (I =
0,1,...,n—1) corresponding to an inttial factor G are de-.
termined uniquely by G® and the associated initial factor
HO % e, /69, Furthermore, the corresponding Hensel
factors G (k = 1,2,...} are also determined uniquely by
G® and HY, 50 long as we fix the leading coefficient of
G™) . Hence, in the following theoretical analysis, we con-
sider the case that the initial factors are only G and H®,

Lemma 1 Let an initial factor Gz, u) be o polyno-
misl in £ and uy,..., vy, then the corresponding Moses-
Yun's polynomials WY (I = 0,1,...,n—1) and the Hensel
factors G (£ =1,2,...) are elements of K{u)[z] :

W(”(ms“) € K(u)[a:} (t=10,1,...,n—1} (4.1)
Mz, v} e R(uw)z] (k=1,2,3,...). '
The rational funciion coefficients of W) and G0 — glk-1)

are homogeneous w.r.d. w1, .., .

Proof. We can calculate W% by applying the ex-
tended Euclidean algorithm and the division to G and



H®™,  These are rational operations over K(u), hence
Wi g Riu)[z]. Similarly, G is constructed by the ad.
dition and the multiplication of terms of F, G®, H®,
and corresponding Moses-Yun's polynomials which are in
K{u)[z]. Hence, G™ ¢ K(u)[z]. Since the coefficients of
G0 and H are homogeneous polynomials in u1,..., e,
and since the extended Euclidean algorithm and the division
preserve the homogeneousness, the rational function coeffi-

cients of W are homogeneous w.r.t. uy, ..., and 50 are
for G .. Gik-1), [n]

Lemma 1 tells us that we have the following Hensel con-
struction of FY(z,u) :

Plz l.*,i
—(ry/_—;x—ul = 6%/t ) HW(fth tu)  (mod Jun),
G(k)(ml u)rH“‘)(mu u) € K(“)E“’]l (k=1,2,...}.
(4.2)
Let the Newton polygons for G*)(z, 1) and H*)(z, u) be
N and N, respectively. Lat the sets of bottom sides
of ' and A", counted clockwise, be (5], . ,8}) and
(SV,-++,85), respectively, where one of the pair (5!,8/")
may be of length 0. (If length(S!) = O then the side S 15
nil). For each i € {1,...,p}, let Fi{z,u) and Fiu(z, u)
denote the sumns of all the terms of G and H'*) that are
plotted on S and S}, respectively. {If length(S{) = 0 then
we pub Fg (%, 1) = 1), Let the coordinates of the left edges
of &, & and & be (ni,u), {n}, v!) and (n},v!'}, respec-
tively. Putting ro = n, we express Fs; as follows. (fj-(n)(u)
is the terms plotted on Sy, of fi(u)).

Fs; = [, (0)2™ 0 o S W)™ (=1,...,0).
(4.3)
Lemma 2 For éuch i€ {1,...,p}, we have
length(S:) = length({5{} + length(S!"), )
Fs/(z,u) = F',S.’ (=, u)- Fj,.';‘.(x, 1), 4

Proof. The Newton polygon for the product Gie°) ft==}
is M and G (] contains all the terms of Fs,,..., Fs,.
The toerms of G} and H(™) which give Fs, must he
plotted on the sides of the same stope, of &' and A", re-
spectively; the reason is that, il 5 and )’ are of different
slopes, then the terms of F, - F¥, as a whole are ot plot-
ted on a line. Therefore, due to the convex property of the
Newton polygon, we can pair the sides of A" and N as
(81,801 (85, 82, satislying {4.4). u]

Now, Fg, isof the form Fg, (z,u) = g™ F[‘D)(a:,u), hence,

by factoring F,m(a:.u_) into relatively prime polynomials, it
can be factorized in K[z, «| as follows.

{ Ps,(z,u) = &+ cont(¥s,) 6Pz, 1)+ GIY) (2, u),

ged(G{Y, 68 =1 (¥i#4).
‘ (4.5)
By applying the extended Hensel construction to F(x, u)
with Initial factors =™ and G(z,1) (G = 1,...,1),

F(z,u} can be factorized as

P(z,u) = Fy(z, ) cont(Fs,) 07 (g, 1) - - Gz, u).

(4.6)
Hete, Fy{x,u) is a Hensel factor cotresponding to
z"t, Lemma 2 tells us that the bottom sides
of the Newton polygon for Fafz,u} are &2,...,5,.
Therefore, we have the correspondence Fs,{z,u) <=
[Newton polynomial for Fz(z,u}]. Since f.{.(:]{ﬂ) is con-
tained in both the lowest degree term of Fis, and the highest,
degree term of Fg,, we have

Fs,(2,u) = {Newton polynomial for Fa(z, u) £ (u)}.
{4.7)

Pactorizing Fs,(z,u) in K[z, u| similarly, and continuing
this procedure, we obtain the following theorem.

Theorem 1 {decompasition theorem) F(z,u) can
be factorized in K{(u)}[z] as

e
Plz,u) = fgm(u) H [g.—(u) . Gf;”)(:c,u) e Gg:” (z, u)]

i=1
@e(w) = cont{Fs )/ fiP{x) (i=1,...,p),
GS?)"'G(D}GPP(F‘;‘) (i=1....0]h

irj

ged(Gf,GIN) =1 (¥i# 4 or vj # ),
G5 e Killa) (=1 pmi=1.m).
{4.8)

Proof. The above discussion shows that F{z,u) can be
factorized as in the first Lo the fourth equalities in (4.8).
The problem s only the Rfth relation in (4.8). We note

that G{?! € Rz, u) for any i and j, and the coeficients of
GSE) are homogeneous rational functions of nonnegative or-

ders. Furthermora, the terms added to G?) by the extendad
Hensel construction ate plotted abova the hottom side of the
Newton polygon for G‘f;”, hence Lemma 1 tebls us that the
coefficients of the terms are homogeneous rational functions
of positive orders, Therafore, we ses Gf}’) & K{(u)}[z| for
any k. [m}

The above procedure constructs Hensel factors succes-
sively en 81 = Sa = --+ = 5,. We can also construct
Hensel factors successively on S, =+ Spy = -+ = 8. In
order to do so, we apply the following transformation They
to F(z, u), perform the extended Hensel construction of the
transformed polynomial, and apply the inverse transforma-
tion Ty,. to the Hensel factors obtained.

Taew t Flzu,.u0) — g5 R0 e, ). )

{4.9

Now, we have two sets of Hensel faciors, one contains
factors G,(;.’"] 's in {4.8), which are constructed from the right
to the left of the bottom sides of A, another contains factors
H‘-()’s below, which are constructed from the left to the
right,

a
Pl = 19 [T [l 180 B ),

i"‘(u) = wnt“(:l'is.)lffr(l?L(“) {i=1...p).

(4.10)



Theorem 2 Determine the initial factors GE?), . ,fo..)
and HD, ., H“” (i=1,.
irreducible polynamlu! in Rz, v or its power. Thenr; = r!
and G'(m)(:z: u) = U,,(u)H.(;")(a: w) (f = 1,...,n), where
Ui i3 a unit in K{{u)}.

.., p) o that each factor is an

Proof. Since the irreducible factorization of pp(Fs ) in
K[z, u) is unique up to units in ¥, we have r; = ! and

we may assume without Joss of generality that G'f?) = H,-‘:-n
{(i=1,...,m). Both G};’“J and H,-[;’“} are factors of F(z, )
in K{(u)}[x] However, G(‘”)j’H(“’) for any ¢ # ¢ or any
7 # ' becouse gcd(G‘m Hm

i +Hug) = L Therelore, we have
fw)lH_(?ﬂ)
i

, where the division is over R{(u)}. Considering
this division along the Newton line for G{), we see that
the quotient ia of the form 1+ £2} € K{(u)}, ord(g/k) 2 1,
hence the quotient §s a unit in K{(u)}. a

Remark 2 Theorem £ does not imply the unigueness of
the Hensel faciors in (4.8) for any weighting of sub-variables;
we have different Hensel factors G‘!J'f") 's for different weight-
ing u; =ty (i=1,...,0).

Example 2 We check Theorem 2 by the polynomial
used in Example 1.
F o= 2y 4@ + )+ 0 -0+ 3y - 2)
+ 2{3y’ — 0y° ~ 5y) + (—2! ~ 5y + 3P).
We first determine the Hensel factors from the right to the
left. Performing the extended Hensel construction of F up
to order 6, as in Example 1, we obtain the following Hensel
factors, ) ) ) . .
AP = 2’ +o(by/2+ 3304+ 0y%/2 - 28048
~ 45370 /32) — 37 /2 + pP /4 + 199 4,
Gﬁ) = zy+etyt y’/Z - ﬁ,yafd + y‘j?
+ 3y%/8 — 39y° /33,

DG = ay—14-3 -1~ syt anyt 4 143"

Since F{® = x?, we can (actorize ™ further as follows {we
can perform the extended construction only up to order 2,
because of lack of the accuracy of A},

RY = GG (mod (a2’ pY),
G = zhsy+1 450
G = a-ylr+siia-ytle

Next, we parform the extended Hensel construction from
the left to the right. We apply the transformation They in
(4.9) to F, obtaining F and its Newton polynomiat Fy.,, as
follows,

Fo= (3 -5y - 2p*) o+ 2 (=By - 1F + 3%
+ 2 =2+ 9y - 20 + 1) Faly + 3+
Fuow = 3:1:"y2 - 5’y — 2z°

i

(3c*) - (zp +1/3} - (zy - 2).

Patting F‘m = 3z9, I;'D = oy -+ 1/3, AY = Ty — 2,
we perfurm the extended Hensel construction of # up to
order 4. Applying ’1"“= to the Hensel factors computed,

let the results be F,m = TAFM, g = Tr;'wﬂﬂ),
HiY = Tl AW, we obtain

FY = —a¥(3y%/2) — 2(3y/2 + 119° 14 — 3147 /4)
+3-5y-%°,
HY = 2(1/3 - Ty/9 + 3dy* 27
‘ + 185y%/81 + 25047 /242) + 3,
HE = —o(2 45y +205%/2+ 795 /4 4 40y%) + 1.

According to Theorem 2, we have the correspondence
(G5, G0N o= (HE, H("‘"} with ambiguity of units
U;{u) { = 1,2). We remove the ambiguity by normaliz-
ing the lcading coefficients: we divide Hy; by le(Hz;), the
leading coeflicient of Hay {5 =1,2).

G+ HNe(HEY
z 43y + Ty® + 5y" - 3%y — 14345,

“)/lc(H“})
g —y/2+ 50 4 — 5712 — 3y 18 + 39y° /30,

fl

G &=

Note that we can calculate Gg’;) more economically by per-
forming the Hensel construction from the left to the right.
]

5 Factorization in K{u}[z) and in K[z,4], £2 2

In this section, we assume that £ > 2; if £ = 1 then G{u)
in (2.2) is an integral power series in u; and the coefficients
of ™)z, 1) are polynomials in .

The theme in this section is two kinds of factorization:
one is in K{u}[z] and the other Is in K[z,u4]. The prin-
ciple of factorization is_as follows. First of all, note that
Klz, 4] € K{u}ig] ¢ K{(u)}[z]. Therefore, if F(z,u) is
factorized inte Irreducible factors in K{(u)}[m] then we ob-
Lain the irreducible factors in K{u}[z] by the produets of
some irreducible factors in K{{u}}[z], and also obtain the
irreducible factors in K[z, u| similarly.

However, the theory we have developed in the previous
sections is not enough to perform the irreducible factor-

ization in K{(u)}[z); if an initial factor G¥ is such that
G‘(j) G", with m > 1 and & an lrredumble polynomial
in K[z, 1], thien the corresponding Hensel factor G(""} may
not be irreducible in K{(u)}[a:] In this paper, we trea.t only
the partial factorization in K{{x}}z]. In some cases, the

extended Hensel factors in X{{u)}(x] give the irreducible
factorization in K{u}{z], as the following theorem shows.

Theorem 3 Assume lhat the Newton polynomials
Fs,(z,u) (i=1,...,p) defined in Definition 4 are square-
frcc Then, the decompantwn of F(z,u) given in Theorem £
is the irreducible factorization in K{(1)}[s], g0 long as, for
enchi€ {1,...,p}, pp(Fs,) = Gm G‘f?? is the irreducible

factorization in Kz, ).
Proof. Considering the mapping F + Fs, ---Fs,, we

see that any irreducible factor in K {(u)}[], of F corre-
sponds to some factor of Fs, -+ Fs,. On the other hand,



Theorem 1 tells us that each irreducible factor in K[z, ), of
Fs,, 1 € i < p, corresponds to a factor in K{(1)}[z], of F.
Therefore, we have the one-to-one correspondence between
the jrreducible factors in K{(u)}[z], of F and the irreducible
factors in K[z, u, of Fis, - Fg,, a

Belore investigating the factorization. method, we re-
mark on iwo points. The firsi iz on the processing of fac-
tors d1(u)y. .., ga(u) in (4.8}, This processing is the same
as that of leading coefficients of factor polynomials in the
conventional factorization algorithma: we attach each di{u)

(1<i<p)to G.,)(m u), say, and adjust the leading co-
efficients of the products of (actors which give the required
potynomials in K{u}(z] or K[z,u). The second is on the
representation of the elements of K{{u}}. Given a homoge-
neous rational function N(u)/D(u), wereduce it to a unique
representation by a suitable method, and one method is ag
follows. We intraduce the lexicographic ordering for the
terms in K[u], which orders all the monic monomials in K[u]
uniquely, Let hi{D) denote the highest order monomial of
D{u). If N{u) contains a monomial M (u) which is 2 multi-
ple of ht(D) then we reduce MfD as

M — /(o) - (D)) - 220UD),

D
Note that M/ht(D)} € Kfu]. Continuing this reduction until
the pumerator contains no monomial which is 2 multiple of
hL(D), we obtain the required represent.ntinn of N(u)/D(u).
{This is nothing but the M-reduction in the Gribner basis
thenry) It is easily proved that the result of this reduction
is unique. Below, we assume that each element of K{(u)}
15 fully reduced.

Combining elernents of K{u}z] to get an element of
K|z,u] is. o main theme in the conventional factorization
algorithm, and it has baen well investigated so far. There-
fore, in this paper, we investigate how to combine Hensel
factors in K {(u)}[z] to get an eloment of K {u}[z].

Definition 6 (integral and rational Hensel fac-
tors) If a Hensel factar G(“’)(x u} in {4.8) is an integral
power series inuy, ..., ue then we call i Integral, otherwise
rational.

We first invesiigate the denominators in the extended
Henset factars, We assume as above that the initial factors
are only G and HY, and we denote the corresponding
Moses-Yun's polynominls by W and V¥, regpectively:

Priaw (2,8} = GOz, u} H Oz, u),
© _ g g™ ar, 0 5.1
& GatZ™ o g gort n:n'+m.( }
H® = ph 2™+ 4 hox®,
VOGO 4 OO = ot
deg{V") < m, deg(W'™) < ', (5.2)

[=0,1,...,n~1

The sub-resultant theory tells us that V® and W® are

expressed as

Gat 0 B o g™
eomen . :D

v = A %.;' b B0 1D 53
b oo b D

where D = res(G'®, H(O}),
[replace the last column by
4
(0. 0,2" 7y

wio

i

) (54)
For {21, V! and W are calculated as

V& = rem(z' VO, H®h
1 b (5'5)
Wt = rem(z' W™, g,
In particular, in the case of H{®) = ™, we can express v

and W explicitly as

v = {0,
for{>m { W = gl (5.8)
v =460
for { < m invizm=h) ey (87
{ Wt = [Gggi(zm—l) GO — 1) f2™",

where el

o = [Inverse of G moduto z™™'].
[av{zm—1)

Proposition 1 Jf the Hensel factors G and H)
are rational, the denominalors in their rational function co-
efficients are only res(G® H(Y), g., hm, powers of them
and their products. In particular, if H = =™ then anly go
and its powers appear as the denominators,

Proof. We have F,G' H™ ¢ Riz,u] and only V1
and WY may contain rational functions in their coeffi-
cients. Eqs. (5.8) and (5.4) show that V® and W® con-
tafn res(G'®, H1) in their denominators, and the divisiun
by H® and G'9 introduces hm,.gar and their powers ad-
ditionally in the denominators of V@ and W (t > 1),
respactively. In particular, if H'®) = z™ then GIMZ,.._,)
is calculated by Lhe power~3enes division of 1 by G**) mod-
ulo #™!, hence G‘ ( Jm-t) Contains only ga and its pow-

arg ag its denommal.ots- For example, G

Inv(::) = 1}90’
G{ﬂl‘zz) = —gq12/93 + 1/ g0, and so on. o

Putting the initial factors GO and H® a5 ¢ =
Fs, fz™ = cont{Fs ) G 61 and H® = 2™, we see
from the above pmposuuun that "the most. denommator fac-
tors which may appear in G11 Ve Gh, cancel one another
in G and only 19 appears in G‘“’) and H), Thus, we
abtain the lollowing corollary.

Corollary 1 Excepi far j,., , the denominator foctors
appearing in Gif” To ,G e ) in Theorem ! do not propagate
GG (G 2+ 1),



Proposition 2 Let the initial Jactors be pnmmue w.rb
z. The product of two extended Hensel factors, one is inte-
gral and the other is rational, iz not integral. The product of
lwo extended Hense! factors the denominators of which are
essenbially different (i.e. » different after removing the mulli-
plicity ond the cormmon facwr.s) 1z not integral,

Proef. Let G(**) be integral while H(=} be rational, and
assume that the rational term that appears first in H‘“") is
T'/h which has been fully reduced. If G g integral
then the denominator A must be canceled in G““’T/h. This
means that ' must be divided by &, because T has been
reduced, This contradicts that G is primitive.

Next, let both G) and H!™) be rational, and let the
denominators which appear first in G and H1* be g and
h, respectively:

G = Qe 4
H [C) H{ﬂ]

"i'S/g'i'"':
b T

Hera, g,h &€ K[u|, S,T € K[z,u], S/g and T/h have
been fully reduced, and we assumne for the moment that
ged(g, £} = 1. Let G and H be fully reduced w.r.t. h
and g, respectively, and the rosults be &' = AQa+G® and
HO = 0Qp + AW, with Qg,Qw € Rlz,u). 1f GI=IFrle)
is integral then we have

g T+ H' 5/g € Rz, v -
= G T/h+ A 5/g € Kz, u).

Since 3 and T have been reduced w.it. s and £ and §
have been reduced w.r.t. g, the above relation requires that
deg(GOT) = deg(H™S) and 1e(GOTYh + 1c{iTO8) g €
Ru). Lot le({GOT) and 1e(FrS) be fully reduced wat. h
and g, respectively, and the results be le{GDT) = qh + £
and lc(H('”S) = qg + & with g, q € K[u} Then, we
have £/h +3fg & Kiu} == 3¢ & K} 5t tg + 3h = cgh.
However, since £ and § have been fully reduced w.r.t. h and
g, respectwe]y. no term of {p and 5h gives a multiple of
hi(gh), hence we have ¢ = 0. Thus, {g-+3h = 0 = g|§ and
Rl = £ = =0 =2 1c(G™T) = ik and 1e(H)S) = q.g
== g | 1e(H) and &[1e(G®) == RPN = 1c(G) =0,
Similarly, the other coeflicients of G and H® must be
zero. This contradicts that G™ and A are primitive.
Finelly, in the case that g = cg and & = ech with
ged{#, h) = 1, the factorz § and h must be canceled if
@t H(=2) §s integral, hence the above proof is valid in this
case, 100, ]

Corollary 2 [n the above Proposition 2, an integral (ra-
tional) Hensel factor may be a sel of Hensel factors the prod-
uct of which Vs integral {resp., rational).

Proposition 2 leads us te the following strategy for com-
bining the rational Hensel factors to obtain an integral
Hensel factor.

1. First, for each 1 € {1,...,p}, do the following: if two
or more Hensel factors on 8 have a denominaior di{w)
which is peculiar to §; then combine Hensel factors
containing «;(u) and eliminate it.

2. Next if some Hensel factors on different sides
Sigr -1 5i,, have the same denominator d{u) then com-

bine Hensel factors containing d{u) and eliminats it.

Example 3 Combining rational Hensel factors.

Pz, y 2)

oy — 2+ 2y + 32+ 3%+ az’)
2( —2 4 3y - 42— 2t +4yz— 227 +y +5y 2+ 32%)
z ( —6y — 9y —ﬁyz-—az +3y +J z—5z )
(3y% ~ 59 - 7z — y2 - ot — 30?3yt -~ 22Y).
5:8)
The Newton polynomial Fs, for F' and its irreducible fac-
torization are as follows.

Fs,

+ 440

a'(y® — 2" + 2y +32) ~
oy -+ 9 ey +2) - 1)
Put F...(O) =z G{? =afy—z)+2and G =gy +2)- L.

Moses-Yun's palynomials V,(') and W (1 = 0,1,2,3) for
F,,m and G'Eg) are calculated as {ollows,

il

Vi = [ty +32) + 2/4, W = (v + z)“/(ay +2),

v = —ap2, Wi = (¥ +2)*/(3y + 2),
Vi =0, W = (y +2)/(3y + 2),
v = ng =1/(3y + 2).

Aswe see, W,(D {j = 1,2) are rational functions in 1, ..., ue.
Performing the extended Hensel construction, we sea that
rational functions appear in Hensel factors of order 2 or
morea.

ol 2° + 5xy/2,

G = zly-2)+2+ (y+2)
+ 212 ~ yz/6 ~ 457 /8) + 427 /{27y + 92),
w{y+z) -1+ {2y~ z)
— (3y° + 10pz/3 4+ 227/9) + 22°/(27Ty + 92).

]

it

2)
&y

The above GS":) and Gm are the Hensel factors on 81, Sinee
{l) € Qlz, 1,2, we have Fet e iy, z}[z] hence Prop. 2
te\ls us that G{m) (“’) € Qly, z}[#]. That is, F(z, y.z) is
reduclble m Q{y,z}[m] into at least two factors F( and
lelileig
Let us nexL calculate the Hensel factors on &3, The New-
ton polynomial Fs, on S» and its irreducible factorization
are as follows.

Fsy = —~22" - boy + 35" = —3(z + 3y) {z — y/2),

Putting GI? = 2 + 3y and G = = — y/2, we calculate the
corregponding Moses-Yun's polynomials W” {3 =1,2) as
fallows.

Wi = ~2/ (T9),
WQ(:) = 6/71

Wi =2/(my),
wid =171,

By this, we see that the Hensel factors on §; may contain

only y as the denominator factor. In fact, calculating ng.’



{7 = 1,2}, we see that ngf"’ contains y as the denomina-
tor factor. Therefore, Prop. 2 tells ug that the dencmina-
to18 in G‘,‘f) (1= 1,2) cannot be eliminated by mulliplying
G%T’ (j = 1,2), and we see that I(z, y,z)} is irreducible in
Clz,y, 2. Tn addition, we see that F§™) and GIP'GT) are
irreducible factors in C{y, z}[z]. o

Example 4 Combining integral Hensel factors.

F(z,y,z)

= s'(y® -2+ 2Py + 32+ 3y? +32Y)

+ (=24 3y~ 4z — W0 + byz — 22* + 17 + 67z + 327)

4 ot(~By — 9p® — Byz — B2t + 3y + 95 — 52%)

+ (3% - 5y ~ Tylz - 2t - 2yt — 3yPs® - 3ys® - 227).

(5.9)

This F(z, y, z) is the same as in (5.8), except that the coeffi-
cients of 4z °yz and 5x°y2z are increased by 1, hence the ini-
tial factors and Moges-Yun's polynomials are also the same
as those in Example 3. Using the same symbols and per-
forming the extended Hensel construction up to order 4,
we obtain the following results {the denominstors disappear
magically).

Y = & 4 a(sy/2 +33° )4 — byz/2 + 5272
b9/~ 5282) — 32
G = mly-2)+ 24yt - yz/2

-yt A= [y 24 =AY,
oy + 2}~ 1+ ~2=3 ~yz
7 - — 2 syt e 2

1)
Gl

I

'Parforming the uxtended Hensel construction of F{®) with
initial factors Gﬁ) = 2+ 3y and G.(f,) =2 ~y/2, we see that
ng.’ (j = 1,2} are integral. Since ng-) { = 1,2) are integral,
we have a chance to get polynomial factors by combining
Hensel factors on sides 8 and Sz, In fact, calculating the
products. G{PGY) (7 = 1,3), we sce that these products
“divide F(z,4, 2) and they are irreducible facters in Q[z, y, 2].
u} .

6 Discussions

In [8K98), the Hense! faclors are expressed in terms of
algebraic functions which are the roots of Newton polynomi-
als, hence the Hensel factors obtained seem {o be difficult to
use for practical applications, In this paper, we have shown
that, by restricting the initial factors within the polyno-
mials, the resulting Hensel factors becoms useful in many
applications.

Hawever, in order to apply to the irreducible factoriza-
tion in K{u}[x] and in K[z,u], we must solve a problem:
how to perform the Hensel construction in K{(u)}(z], of
F(z,u) for which the Newton polynomial is Fiew(z,u) =
@Az, u)™, with G(z, u) an irreducible polynomial in K[z, ).
In the case of £ = 1, this problem has been solved by in-
troducing the concept of ezpansion base, see |AbhO0] or
[McC97) for the expansion base. In the case of £ 2 2, fol-
lowing {3199}, we are considering a different approach.
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“Approximate Zerc-points” of Real Univariate Polynomial
with Large Error Terms

AxirA TERUI' and TATEAKT SASAKI!

Let P(x) be a given real univariate polynomial and let Pz} = P(z) + Alz), where A(z) is
the sum of error terms, that is, a polynomial with small real unknown but bounded coefficients.
We first consider specifying the “existence domain” of the values of P(:r:), or the domain in
which the value of P{z) exists for any real number z, by the coefficient bounds for A(a),
and then introduce & concept of an “approximate rezl zero-point” of P(m_) We present a
practical method for estimating the existence domain of zere-points of P(z) by applying
Smith’s celebrated theorem. We next consider counting the number of real zero-points of
B(z). If all the zero-points are sufficiently far apart from each other, the number of real
zero-points of P{z) is the same as that of P(z), and we derive a condition for which we can
assert that P(x) and P(z) have the same number of real zero-points, We caleulate the actual
number of real zero-points by Sturm's method, which encounters the ac-called small leading
coefficient, problem. For this problem, we show that, under some conditions, small leading
terms can be discarded. Furthermore, we investigate four methods for evaluating the effect

Apr. 2000

of error terms on the elements of the Sturm sequence.

1. Introduction

In traditional computer algebra on polynomi-
als, we usually assume that the coefficients of
polynomials are given rigorously by integers, ra~
tional numbers, or algebraic numbers, and that
manipulation on the polynomials is also exact.
However, in many practical applications or real-
world problems, the coefficients contain errors;
that is, polynomials have “error terms.” In
such cases, many of the traditional algorithms
in computer algebra break down,

This paper considers the real zero-points of
a real univariate polynomial with error terms,

r “approximate polynomial,” where the coef-
ficients of error terms can be much larger than
the machine epsilon g,. In fact, even if the ini-
tial errors in coeflicients are as small as g, the
errors can become much larger than g, after the
calculation. Furthermore, in approximate alge-
braic calculation, we handle polynomials with
perturbed terms that are much larger than g,
in general.

If a polynomial P{z) has error terms, we can-
not draw the graph of function y = P(x); all
we can draw is the “existence domain” of P(x),
or the domain in which values of P(z) can ex-
ist. Similarly, in such a case, the positions of
its zero-points cannot be determined exactly;
all we can handle is the domains in which zero-

t Institute of Mathematics, University of Tsukuba

points can exist. Therefore, in this paper, we in-
troduce a concept of an “approximate real zero-
point” by defining a minimal interval outside of
which no real zero-points can exist. Although
the existence domains of real zero-points can be
calculated rigorously, we propose methods for
calculating them approximately and efficiently
by using Smith's theorem on the error bounds
of zero-points of a polynomial )

Next, we consider calculation of the number
of real zero-points of an approximate polyno-
mial by Sturm's method. If all the zero-points
are single and well separated, the number of real
zero-points is definite unless some error term
is quite Iarge, although the positions of zero-
points are changed by the error terms. How-
ever, in the calculation of the Sturm sequence,
the leading coefficient of some element may be-
come too small to determine whether it is equal
to zero or not, Since the sign of the leading
coefficient in the Sturm sequence is essential in
determining the number of real zero-points, this
is a serious problem. Our answer to it is that,
under some conditions, we may discard the
small leading term and continue further calcu-
lation of the Sturm sequence. Shirayanagi and
Sekigawa 1) also attacked this problem, and
proposed an interval arithmetic method with
gero rewriting. 'We will investigate the Sturm
sequence with interval coefficients in Section 5.

In Section 2, we investigate the existence do-

-mains of the values of a real approximate poly-
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nomial, then define an approximate real zero-
point. In Section 3, we propose a practical
method for calculating the existence domains
of the zero-points of an approximate polyno-
misl. In Section 4, on the assumption that the
polynomial does not have multiple or close zero-
points, we derive a sufficient condition for the
number of real zero-points not to he changed
by error terms. In Section §, we propose and
investigate several methods for checking the of-
fect of the error terms of a given polynomial on
the Sturm sequence.

2. Approximate Polynomials and Ap-
proximate Real Zero-points

Let P{z) be a given univariate polynomial
with real coefficients such that
Plz)=cenz" +--- + cox?, (1)
and let P(z) be a real univariate polynomial
such that

P(z) = P(z) + Afx), (2)

where A{z) represents the sum of real “error
terms,” that is, a polynomial with unknown
small real coefficients, Hence, we know neither
P(z) nor A(z); what we know usually is an
upper bound for each coefficient in A(z). Rep-
resenting A(z) as

Alz) = yqz™ L 4+ Ggaf, (3)
we assume that we know upper bounds
En—1;--+,Ep such that

18] <6, i=n-1,...,0. (4)
Throughout this paper, we write P(z | § =
g (i=mn-1,...,0)) to denote that the values
of 8n—1,..., 0 in P(z) are specified as §,-; =
€1y, 00 = g}, and so on.

2.1 Existence Domain of Values of

P(x)

Supposing that the variable = is fixed to zo
and that &,_1,...,dq are changed continuously
under the restrictions in Eq. (4); the value of
P(z) moves continuously inside an interval,
By changing zq In R, we will have the minimal
domain outside of which there is no possibility
of the existence of the value of P(x).

Definition 1 (existence domain) Let 2
be & real number and §; move continuously in

the whole interval [—e;, &) fori=0,...,n— L
Define Py{zo) and Pp(ag) as
Py(zo) = max  P(z), (8)
A
Pr(zo) = min  P(zo). (6)
el
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By changing the value zg in R, we obtain a
domain

{[Pr(=), Pu(z)] | = € R}. (7)
We call this domain the *existence domain of
P(z)." D

The existence domain of P(z) can be speci-
fied rigorously hy using P(x}. _

Lemma 1 Let the value of §; in P(z) be
changed continuously within the range [—¢;, &),
while the vaiues of 8, {j # ) are fixed, and, for
each real value of z, define Py {z) and P (x)
as

max P(x), (8)

PU‘ (QI) - dg[-e8d]
P(z). )

Pr{x)= min
£4(%) i€ |—eq84)

Then, we have
(P (2|8 =gy)
~if z > 0 oriis even,
P($ | 5;‘ = -—Ei)
ifz <0 and{is odd,
P(fB | (5" = —-Ei)
ifz > 0 oriis even,
Bz | & =<) 4
| ifz<0andqisodd
Furthermore, for any resl value o, }5(3:0) Moves
all the points inside [Pr, (o), P, (zo)].
Proof. Let @y be any real number. We see that
~&ilzol' < difzo|* < eifaol’, and since &zl
moves all the points inside [—g|zal*, £4]zol*], we
obtain the lemma, D
This lemimea directly leads us to the following
theorem:
_Theorem 2 Let the polynomials P{z) and
P(z) be as above; then the functions Py (z) and
Pr(z) in Eq. (7) are given as follows:

PU; (‘T") =9 (10)

PL‘. (:L‘) = 4

Pl |6; = e,
(2':”—1!"'10))
_ for z 2 0,

PU(-’E) = P(’.L" |6I = (_1)1'Ei (12)
fi=n~-1,...,0))
forz <0,

'13(32]5.' = —£4
(i=n—1,...,0)
_ for z = 0,

PL(m) = P(E |5! — (_l)i-HEI_ (13)
{t=n~1,..,0)0
for & < 0,

Furthermore, for any real number z, the
values of P(zg) move all the points inside
(Ps{ze}, Polzo)). 0
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Py(=) © Py(z)

2

(a) (b)
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Py(z) Py(z)

N/, b
—"a¢ /7 \

Py () P, ()
{c) (d)

Fig.1 Existence domain of an approximate real zero-point.

2.2 Approximate Real Zero-points and
Their Existence Domains
We first define a concept of "approximate real
zero-points” and their existence domains.
Definition 2 (approximate real zero-
point} A real number { iz an “approximate
real zero-point of P(z)” if there exist num-

bers & € [—eq,e] (i = n—1,...,0) such
that P(¢ | & = el t=n—1,...,0)) = 0.
Let [Ci1, Gzl oo (Gt Cmaly With €0 S €12 <

- < &1 < (2, be the set of all the approx-
imate real zero-points of P(:c) Then, we call
each interval [(z1,¢iz), I <4 <7, an “existence
domain” of the approximate real zero-point of
P(x). ]
Theorem 2 tells us that the existence domains
of all the approximate real zero-poinis can be
specified rigorously by drawing graphs of FPp(z)
and Py(z). Suppose {(},{z] is an existence do-
main of an approximate real zero-point. Since
¢1 and ¢ arg real zero-points of Py{z) and/or
Pp(z)}, and since Pr(zq) < Py(zo) for any real
number zo, the graphs of Pp(z) and Py(z)
around this interval can be classified into one
of the following four cases:

(&)  Pr{G1) = Pu() =0, Pr(e) < 0 for
Cl <$SC2,PU($) >0f01’§1 S$<C2,ﬂﬂd
there exists § > 0 such that Pp({; —#) > 0 and
Pyl + ) < 0 for any z € [0,4],

(b)  Py(Q) = Pe{le) = 0, Py(z) > 0 for
(<< G Po(r) <0for §§ <o <G, and
there exists ¢ > O such that Py({, —z) < 0 and
Pp(¢z + 2) > 0 for any z € [0,4],

() Puléh) = PulG) =0, Py(z) > 0 for
1 =2 < g PL(.I‘) <0for §; <z < (3 and
there exists § > 0 such that Pr{{; —x) > 0 and
Pr(¢a + z) > 0 for any z € [0,4],

d)  Py&) = Pu{te) =0, Prlz) < 0 for
Gz = Pulz) >0for § <z < and
there exists § > 0 such that Py (¢, — ) < 0 and
Py(Ga + ) < 0 for any x € [0, 4.

Figure 1 illustrates these four cases conceptu-

ally. Cases {a) and (b} usually correspond to a
single zero-point, while Cases (c} and (d) cor-
respond to multiple zero-points.

We now give a simple example of approxi-
mate real zero-points and their existence do-
mains. We will see that one of the existence
domains is fairly wide, which indicates that the
concent of approximate zero-point is indispens-
able in handling polynomials with error terms.

Example 1 Let F(zx, y) be

Fz,y)=2%-z% + 4% (14}
We calculate a singular point of F{z,y) with
approximate arithmetic of precision g, = 1.0 x
107%, First, let us calculate the discriminant
R(y) of F(z,y) with respect to z:

R(y) = res(F, dF/dz)

i zv?yd. _ 41}2- (].5)

R(y) has zero-points at y = 0 and £2/3/9. As-
sume that we have calculated the value of y =
2v/3/9 approximately as 0.384900. (Note that if
deg(R) 2 5 then use of approximate arithmetic
is necessary in general to solve R(y) = 0.) Let

P(z) and P(x ) be

P(z) = 2% - 2 + (0.384900)2, T

Bz} = P(z) - 6o, (16)
where [do| < 1.0 x 107%, and let us calculate
the approximate real zero-points of P(z). From
Theorem 2, we have

Pylx) = 2% — 22 4+ 0.148149, 17

Pr(z) = z° — 2% + 0.148147. (17)
Py(z) has a real zero-point at z ~ —0.333334,
and Pp(z) has real zero-points at z =
—0.333332, 0.665595, and 0.667738. Irom
Definition 2, the existence domains of ap-
proximate real zero-points of P(z) are in-
tervals [-0.333334, —0.333332], and [0.665595,
0.667738]. Therefore, with an approximate
arithmetic of precision g, = 1.0 x 107%, the
singular point (2, y0) of F{z,y) can be spec-
ified only vaguely as yy € [0.384899, 0. 384901]
and xp € [0.665595,0.667738).
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3. Bounding Existence Domains by
Using Swith’s Theorem

Although we have defined rigorously the ex-
istence domain of only real zero-points, we
present in this section a method for bounding
the existence domains of both real and complex
zerg-points by means of discs in the complex
plane, because the method is common to both
of them.

A key to bounding existence domains is
Smith’s celebrated theorem. (For the proof, see
Smith 1)

Theorem 3 (Smith) Let P(z) be as
above, Let a4, ..., z,, be n distinct numbers in

Cand ry, ..., 7y be defined as
i nP(z;)
! tn HE=1,¢J-(33J' - z)| (18)
j=1,...,n

Let D; (1 £ j £ n) be a disc of radius
r; with its center at x;. Then, the union
Dyu-.--U D, contains all the zero-points of
P(x). Furthermore, if & union Dy U-.-U Dy,
{m < n) is connected and does not intersect
with Dyy1,-.., Dy, then this union contains
exactly m zero-points. ]
3.1 Single Zero-points
Without loss of generality, we assume that P

and P are monic. Let ¢3,...,¢; and §1,...,¢{n
be the zero-points of P(x) and P(z)}, respec-
tively:

Ple) = (&~ )z - G} (z—a), (19)

P(a)=(z - Q)@ G) - (x - Ga). (20)
First, we consider the case in which ¢; is a
single zero-point such that [61 — ¢l = &y for
J=2,...,n Let z,...,2z, be approximate
values for &,...,¢n, respectwely {Actually,
we may determine z,..., 2z, by solving equa-
tion P{xz) = 0 numerically, and hence approx-
imately, with accuracy &,.} Using Theorem 3,
we can formally calculate the domain that con-
tains ¢; in C, as follows. Let R; be

Ry=n. — 2@l (21)

(e - 2)

then C1 is contained in the disc of radius R, with
its center at z;. Although we cannot calculate
P(z) explicitly, we have

|P(z1)] < ]P(z1)|+|A£z1)l
<SPG+ D gjlal

F=0

(22)

“Approximate Zero-points” of Real Univariate Polynomial 977

Therefore, By is bounded as
P+ 55 el

[[T5-(e1 — )]

In ordinary numerical computation, we calcu-
late an error bound by the above formula with
g; = 0, which gives a good estimate such that
the magnitude of the error bound is only sev-
eral times larger than the true error. Therefore,
wa expect that the above formula gives a good
bound.

3.2 Multiple or Close Zero-points

Next, we consider the case of multiple or close
zero-points. Without loss of generality, let () ~

e o (m < n) and assume that Gy -0 Cn
satisfy |(;—¢1| > ¢  forj=m+1,...,n. In
this case, we cannot apply Eq. (23) directly, for
the following reason. Let z1,..., 2z, be the same
as above and assume that we have calculated
them by a numerical method. Then 2y,...,2,
usually satisfy |z;—z1| = /e forj=2,...,m;
hence, in Eg. (23), we have
n

H(Zl - Zj) o H (31 - Zj) .(24)

el Jj=m-1

R £

(23)

Therefore, if | A{#:)| 3 &, an upper bound cal-
culated by Eq. (23) will be an overestimate.

We determine zj,...,25, s0 that the radius
R, in Eq.(?1) becomes as small as possible.
(The determination method is the same as that
described in the literature; for example, see
Iri®); the only difference is that our setting of
error terms is different from the conventional
ones.) We express P(z} as

P(s) = (@) & — Gu) - Q). (25)
From our assumption, we have
n

Qz1) = H (71 = ¢5) _
jw?ll‘{‘l (26)
o H (21 — 2}
j=m+1

hence Ry defined by Eq.{21) can be approxi-
mated as follows:

s (o1 = G) + A1)
R], =T- (27)
|H;}=2(zl - Z:')|
T (o1 = ) + A()/Q(=)|
~n: .

It~ 2)]
(28)
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If 21,...,2, are distributed equally on a disc
of radius » with its center at ({1 +-++ + G )/m,
we have

H(zl - CJ) ~2 rml
i=1

(29)
m
H(Zl - Zj) = m’r‘m‘“l,
and Eq. {28) can be evaluated as
¢
Rizn D AC (30)

where C' = ]ATzl)/Q (21)]. We can almost min-
imize the magnitude of R; by setting r as

r= 7/m— 0. (31)

With the ahove consideration, we calculate an
upper bound for R as follows:
(1) Calculate » from Eq. (31).

(2) Letﬁ=(c1+"'+(:1n)/mand
= [ -+ rexp(2rji/m) {32)
for § = 1,...,m. The approximate val-
ues z1,..., zy are distributed equally on

& disc of radius r with its center at 8.
(3) Substitute z1,. ..,z into Eq. (23} to ob-
tain a rigorous bound of Ry.

4. Calculating the Number of Real
Zero-points of a Real Approximate
Polynomial

If a real approximate polynomial has multi-
ple or close zero-points, they may change sig-
nificantly, or some real zero-points may become
complex, when the coefficients are changed
slightly. Therefore, it is not adequate to count
the number of real zero-points of a real approx-
imate polynomial that may have multiple or
close zero-points. On the other hand, if a poly-
nomial has only single zero-points, the number
of its real zero-points rarely changes, although
their positions may change considerably, when
the coeflicients are changed slightly. In this sec-
tion, we focus on calculating the number of real
zero-points of a real approximate polynomial
containing only single zero-points.

4.1 Sufficient Condition for Fixing the

Number of Real Zero-points

We first derive a sufficient condition for as-
serting that P(x) and P(z) have the same num-
ber of real zero-points. :

Theorem 4 Let P(z) and P(z) be as in
Eqs. (1) and (2), respectively. The number of
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real zero-points of P(z) is the same as that of
P(z) if the discriminant of P, or res(P, dP/dx)
does not become zero for any va.lues 8ty 2 0p
satisfying Eq. (4).
Proof, As the coefficients of P(z) change contin-
nously, the munber of real zero-points of P('c
changes only if there exist §; € [—g, &) for
i=20,...,n— 1 such that P{x) has real mul-
tiple zero—pomts Its contraposition shows the
validity of the theorem. ]
Theorem 4 tells us that we can calculate the
number of real zero-points of an unknown poly-
nomial P{z) by calculating the number of the
real zero-points of FP(z), so long as the dis-
criminant res(P, dP/dz) does not become zero
for any values d,,_1,...,80 satisfying Eq. (4).
Therefore, we can check the definiteness of the
number of real zero-points by checking whether
or not res(P,dP/dx) becomes zero because of
the error terms.
4.2 Problem of Small Leading Coefli-
cient in the Sturm Sequence
Below, the leading coefficient and the degree
of P(z} are denoted as lc(P) and deg(P), re-
spectively. Let (max be the maximum of the
absolute values of real zero-points of P(z).
The p-norm of P(z), with P(z) given in
Eq. (1), is defined as

n 1/p
1Pl = (Zw) , (33)

iml
p=12,...,00.
In this paper, we use the 2-norm for polynomi-
als.

Assuming that P(z) and P(z) satisfy the con-
dition in Theorem 4, ||P|lz =~ 1, and || Pllz = 1,
let us consider calculation of the number of real
zero-points of P{x) by application of Sturm’s
famous method to P{z). Sturm’s theorem is as
follows (for the proof, see Cohen?®, for exam-
pla);

Theorem 5 (Sturm) Let P{z) be a real
square-free polynomial of degree n, and define
a polynomial sequence {the Sturm sequence)

(Po(m),P1(m),...,Pn(w)) (34)
as
Pg = P;(.’L'),
P = 4P(z),
PI‘- = izt‘ergla(:})i..g,}:’iml) (35)
fori=2,...,n,

where rem(P;_y, F;—1) denotes the remainder of
Pi_o divided by P;_;. For a real number z, let
N(z) be the number of sign changes, counting
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from the left to the right without counting ze-
1os, in the sequence (34), and let s and ¢ be real
numbers satisfying s < ¢. Then, the number of
the real zero-points of P in the interval {s, t} is
equal to N(s) — N(t).

Note that we can calculate the number of all
the real zero-points of P by putting s = —
and ¢ = co in Theorem 5. In the following, the
zeros of the Sturm sequence and its medifica~
tions are not counted as sign changes.

Consider calculation of the Sturm sequence
of P(z} by means of floating-point arithmetic.
During the calculation, we may encounter the
leading coefficient problem: (1} it is hard for us
to decide whether or not a very small leading
coefficient is equal to zero, and (2) the division
by a polynomial by a small ieading coefficient
will cause large cancellation errors in the coef-
ficients of the remainder polynomial.

Let P, s, and ¢ be the same as in Theorem 5.
A Sturm sequence of P with P,, = (constant) 3
0 has the following properties (for example, see
Cohen ¥):
1°  For any real number z, consecutive ele-

ments P;_q1(z) and P;(z) do not simulta-
neously become zero.
2° I Pj(x) = 0 for some j (1 £ j < n) and
z € R, then we have P;_1(z}Pj51(z) <
0.
3® P, has no real zero-point.
With Property 1°, we can calculate the number
of sign changes by investigating each F; sepa-
rately. Let Pi{z;} = 0 for some z; € R; then
Property 2° means that F;_; and Py, have
no zero-point in the neighborhood of & = =,
Property 3° is trivial in our case, because P, =
(constant), but it is not trivial for the general
Sturm sequence. The above three properties
are sufficient for determining the number of real
zerg-points, and a sequence that has those prop-
erties is called a general Sturm sequence,

We note that the sign change of Pj(z) at
z = ;5 § 2 1, does not affect the number of
sign changes in the sequence (34); the value of
N(z) changes only when the evaluation point
passes a real zero-point of Pa(z) (= P(z)). Fur-
thermore, we can prove the following property
of the Sturm sequence:

Lemma 6 Let P(z) and Fy,..., P, be the
same as in Theorem 5, and assume that Py(z) =
0(1l < k <n)atc=mok1,... ki, where
Ix < deg(Pe) and |2y 5| > Cmax for j =1,..., I,
Define P{/{x} as
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Pl(e) = Jile) . (36)
T =T} (@~ Ty, )
and let s and ¢ be real numbers satisfying s < t.
For real number z, let N{x) be the same as in
Theorem 5, and let N{/(z) be the numbers of
sign changes in the sequence
(Pn(:[:)‘ e ,Pk_l(m),
P(z), Py (z), . .., Palx)). (37)
Then we have
Ni(s) = N{() = N(s) = N(5).  (38)
That is, Ni'{s) — N}/ (t) is equal to the number
of real zero-points of P(z) in the interval [s, ].
Proof. Property 1° assures us that there exists
a small positive number § such that [zx ;, — 4,
Tk, + 5] mn [:‘L‘k._-,'.2 - 5,1‘};,3', + 5] =@ forl <
J1 < o £ Iy and Prga(w) 52 0 for any = €
[ex,; — 2k + 8. We show N{(x) = N(x)
for any & € (zy; — d,zx; + 8). Consider
a case in which dPy/dz < 0 at £ = ap,,
Pr_1(zr,1) > 0, and Piya(xey) < 0. Prop-
erty 2° says that the sequence of signs of
polynomials (Py_i{z}, Pe(z), Peta{z)}) at = =
Ty — 6, & = gy and = zky + J are
{(+,4, =), (+,0,-) and (+,—, —), respectively;
hence the number of sign changes of the se-
quence {Py_q{z), P(x), Pesa(z)) is equal to 1
for any ¢ € [zk) — d,zx1 + 8], Now, as-
sume that P(z) > 0 for z € |z — &, 1 +
4); then the sequence of signs of polynomials
(Pres(2), P{!(z), Pusa ()} is (+,+,—) for any
z € [mk1 — 8, 2% + 8. Therefore, we have
Ny (z) = N(z) for any = € [ze1 — &, k1 + d].
The other cases can be proved similarly. m]
Theorem 7 Assume the same hypotheses
as in Lemma 6, and define a polynomial se-
quence
(Po(z),- .., P—r(z), Pi{z), ..., Py (x)) (39)
as

Pl = Py(x) 1

T Gmmg) (o)
Pyl = —rem(Pe, FY), (40)
P = —rem(P/L,, PiL))

fori=k+2,...,7",

where deg(P).) = 0. For a real number z, let
N"(z) be the number of sign changes in the
sequence (39), and let s and ¢ be real numbers
satisfying 5 < t. Then, the number of real zero-
points of P(z) in the interval [s,#] is equal to
N (s) — N*(t),

Proof. From Lemma 6, we need not consider
Tk 1.+ Tg,, for caleulating the number of
real zero-points of P{z). Let = be any zero-
point of P}; hence Py_j(zr) # 0. Then,
Py_1(zx) - P, (k) < 0 because —FPy,,(z) =
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Fio1(z) — Q{(z)P{'(z). Repeating this argu-
ment for 7’1, P, 5, and so on, we see that the
new polynomial sequence (39) satisfies Proper-
ties 1°, 2°, and 3° described above, and that
the sequence (39) is a general Sturm sequence
of P{z). Thus, we can count all the real zero-
points of P(z) by using the sequence (38). O

Remark 1 Properties 1%, 2°, and 3° are
enough to prove Theorem 7, and Lemma 6 is
unnecessary, We introduced Lemma 6 to help
the reader to understand what happens when
large real zero-points of Py are removed. 0

In Theorem 7, calculating the general Sturm
sequence by using Py’ in Eq. (40) is theoretically
simple but not practical, because we have to
calculate the real zero-points of Py rigorously.
‘We next show that, if a polynomial has small
leading terms, these terms correspond to zero-
points of large magnitudes.

Lemma 8 Leté€,,...,&0_s41 be real num-
berg such that 0 < |g;] < 1, and, without toss
of generality, let Q(z) be

Qe) = €at™ + -+ Eno g™ !

F Dpes T8 e+ Bga?, (41
where |b;| > 1 ({=n-s,...,0) for b; # 0. Let
#1,...,In be the zero-points of Q{z) such that
|z1] < -+ < |2n|. Then we have

im |z5] = oo,
(l-'n|-n|5n—a+1)""(ul--°|0) (42)
J=n—-8+1,...,n
Proof. Define Qr(z) as
Qifx) = 2™ QQ/x) _
= by e+ ba:{:ei (43)

and let Zy,...,E, be the zero-points of Qr{x)
with || < +-+ < |Zn|. Then we have b,_; = ¢;
for j=mn,....,n—8+1and Tn_iq, = L/xy for
i=1,...,n. Wehave [fs] »0(i=mn,...,n~
s+ 1) for byl =0 (f =m...,n—38+ 1}
hence |z;| — oo for g5 — 0. O
Remark 2 Although Lemma 8 is a limit-
ing case of {€n,...,Epest1} — (0,...,0) and
is sufficient to prove Theorem 9, we investigate
the location of zero-paints of @r(z) in the ap-
pendix. O
Theorem 7 and Lemma 8 lead us to an idea
of discarding the small leading terms to calcu-
late a general Sturm sequence in practice. Since
the zero-points of Pi(z) are moved slightly by
discarding the small leading terms, we must be
more careful than in Theorem 7. _
Theorem 9 Define P(z) and P(z) as in
Eqs. (1} and (2), respectively. Let {(FPp = P(z),
P, = dP/dz, Py,..., P, ...} be the Sturm se-
quence of P(z) and assume that Py(z) has small
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leading terms as
Pule) = enma™ +1°
vt Epny—at+1T
B s T
o b0t

nk—8+1

(44)

where
max{lek.ﬂk |a seey lEk,nk—s-}-ll}
m {|bkn,—ss. - 1b .
€ bm]:élﬂﬂ kng Si '| k,Og}

Define a polynomial sequence

(P ($), e ,P —1(3),
Pz(m). . ,Pi,(m)) (45)

Pit = bk,nk«-amnk_s + -
et b.’c,[]mu)
Pl = —rem(P_y, ), (46)
B = —rem(Py, PLy)
fori=k+2,...,7,

where deg{F},) = 0. For a real number z, let
N'(z) be the number of sign changes in the se-
quence {45}, and let s and { be real numbers
such that 8 < —(max 8nd (max < . Then, if
P(x), Pi—1(z), and P.{x) satisfy the following
two_conditions, the number of real zero-points
of P(z) is equal to N'(s) ~ N'(th
(1)  The resultant res(P,Pi) does not be-

come zero for any values dp_1,...,00

satisfying Eq. (4) or when the values of

Ekmyr -1 Ekng_,q, 8re changed to zero.
{2)  The resultant res(Pr_q, Pi)} does not be-

come zero when the values of €5.4,,..

Ekny_,q. 8¢ changed to zero.
Proof. Even if Py(z) has real zero-points whose
magnitudes are larger than that of any zero-
point of P(z), Lemma 8 and Coendition (1)
assure us that these real zero-points will be
“safely removed” from Pi(z) by changing the
values of €xn,. ..\ Ekn—s+1 t0 0. We also see
that the removed zero-points do not affect the
calculation of the number of real zero-points, as
Theorem 7 shows, Next, changing the values of
€k,;’s to 0 will change the values of the other
zero-points of Fy(z) slightly. However, Condi-
tion (2) assures us that none of the real zero-
points of Fi(z) passes through the real zero-
points of Py..;(z); hence the sequence (45) is a
general Sturm sequence. Therefore, as in The-
orem 7, we can calculate the number of real
zaro-points of P(x) by using the sequence (45).

O

Theorem 9 tells us that the problem of small
leading coefficients reduces to checking whether
or not any resultants become zero, We will pro-
pose several methods for this in Section 5.
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We explain Theorem 9 by means of an exam-
ple with exact arithmetic.
Example 2 Let P(z) and P( )b

P{z) = zb +42. + S40L,,

202 + 5 mﬁ°1
— 20z z
= 4
P(z) = P(x) + §p a2 (47)
+ 50,323 At 50,[]‘$0,

where numbers Jg4,...,8p,0 are unknown but
bounded as '

- 160,5] < € =1/10000. (48)

We obtain (P, ..., Ps), the Sturm sequence of
P(x), as follows:

Py = P(x),
P = d P ( )
— 53_' +16$ N 19203 2
—40z + 5
Py =— 25005‘7 + 94203m2
— B 1
5 51
Py = ~ 7099337035503 z? (49)
+ 4898974540.’.!: + 94210995,
P, = —~ 1336086143841703070
4 §0107686642 (037007 40873600
+ 5&1:470528230934408
504076866421037007T4D873400 *
P,5 = — (31566650856766728652582995
7694414724087925197085657)
/(3381870037241780324384640
. 993113760900000}).
Therefore, we have N{—oo) — N(co) = 3.

In Eq. (49), P, has a small leading coefficient.
{Correspondingly, Py{z) has a real zero-point
at « = 37680.5.) The conditions in Theorem 9
are satisfied as follows. First, the existence do-
mains of approximate zero-points of P(x) in
the neighborhood of z = 0 are the intervals
[-0.12992, ~-0.12989], (0.44536,0.44541}, and
{0.19803,0.1981Q], while the existence domains
of approximate zero-points of Pp{x) when we
change the value of the leading coefficient con-
tinuously from ~1/2600 to 0 are the intervals
{—0.01877227..-,—0.01877227-.], [0.T08722,
0.708735], and [37680.5,00). Therefore, the
existence domains of the real zero-points of
P(z) and Pa(x) do not overlap; hence we
have res(P, M) # 0. Second, the exis-
tence domains of approximate zero-points of
Py{x) are the Intervals [0.134731,0.134738],
and [0,910227,0.010260], Therefore, the exis-
tence domains of the real zero-points of Py ()
and Po(z) do not overlap, hence we have
res(Py, Py} # 0. Since P(z), P(z), Py, and P,
satisfy the conditions in Theorem 9, we can cal-
culate P§, ..., Pi as follows:
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P = 07— g,
Pl o= Ciitrosor1 0600825
3 B3597675330342T
__ 18170018322060675
, 33430070192L3708 !
P} = (6544015983161815588348053  (50)
0106785213)
/ (3302598479780132420606390
0312900000).
We have N'(~c0) — N'(c0) = 3 = N{—cc) —
Noo). a
5. Evaluating the Effects of Error

Terms

Theorems 4 and 9 show that some impor-
tant problems in counting the number of ap-
proximate real zero-points can be reduced to
checking whether or not some resultants be-
come zero owing to the error terms. In this sec-
tion, we consider how to evaluate erross in the
resultant of an approximate univariate polyno-
mial. We investigate four methods: (1) eval-
uating the “subresultant determinant” by us-
ing Hadamard’s inequality, (2) calculating the
Sturm sequence with the coefficients of interval
numbers, {3) solving a linear system on polyno-
mial coefficients and evaluating errors in the so-
lution by a standard method in numerical anal-
ysis, and (4) calculating the Sturm sequence
with parametric error terms. The experiments
were performed with GAL (General Algehraic
Language/Laboratory, a LISP-based computer
algebra system) on NS-LISP (Nara Standard
LISP) running on a SPARC Station 5 (CPU:
microSPARC II, 70 MHz) and SunQOS 4.14,

5.1 Evaluation of the Subresultant De-

terminant

Except for the overall signs of polynomials,
the Sturm sequence is the same as the polyno-
mial remainder sequence (PRS) for which the
subresultant theory has been developed (For
subresultant theory, see Mishra”), for exam-
ple) With this theory, we can express the
elements in the Sturm sequence by the de-
terminants of the coefficients of two consecu-
tive elements. Let (Fp = PP, = dP/dz,
Py, ..., Pey, By, ...) be a Sturm sequence, and
assume that

Pi_1(z) = aix* + -+ + apz",

— 1 -
Py(z) Em:lj- ++sm_,,,,1;u'"'s+1 (51)
+ b @™ 4 -+ Bp2?,
where
ma'x{'ehﬂkll Ty |€k1ﬂk"'3+11}
< it (bl ol
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as befors.
Let 5;(Py_1, Py) be the following determi-
nant:
Si(Pr1, By) =
a’I Y + Ve

ay
Em'* Em—s410m—g

Em 't Emeestl (52)
i—1
...... Qogip1 T Py

"""" a;  x°Ppy
""" br-2i41 T P

bn—s*** b1 a:OPk

Si(Pe—1, Py} is called the i-th subresultant of

Pei(z) and Py(z), and we have Puiiz) =

%8:(Py—1, Pe), with +; a constant. For exam-
ple, if deg(Pi—1) = deg(Fi} + 1, we have
Fiey1(x) = 81(Pg—1, Fr)

@ a1 Peo1(z)

= |&m Em~1 TPy(x)

em  Pilz)

Below, we consider only the leading coef-
ficients of Prs1, Petz, and so on. Apply-
ing Hadamard's inequality to the subresultant,
we ean bound the efiect of gm,. .., Em—spry O0
le{ Pryy), as follows:

Proposition 10 Define P} and 7 as fol-
lows.

P =P —(eme™+ -
R Em_s.].lm’"“""l) (54)
= bp—gZ™ T 1o - by,

L= |P§ |
{G=9) el kPeslf™

3
+3 Ll Py ),

f=L
T 1o(S:(Pe_y, P)) £ 0 and

{Isml 4+ '5m-a+ll} L
< lae® - 1e(Ss{ Pe—1, P, (66)
i=8,...,m,

(53)

(55)

then
le(S:(Pe—1, P))x

ar®  1e(Si(Pe—1, PL}) > 0. (57)

Proof. Note that
le(Si(Pe—1, P)) =

at T )
at
En ‘' Em—s+1 bay—s
Em Y Emegdl (58)
' al—2i
QAp—i—1
bn-2i |’
br—s - bm—i
and
le(Si(Pr-1, Fy)) =
[+ T ]
ar v G-l (59)
b -+ e o bmea |’
bres 0 b

where a; = b; = 0 for j < 0. By expanding
the determinant in Eq. (58) with respect to the
(i + 1)-th row as

Em ' Em—gtl bm—s **  Bm—ni

(60)

Em ' Em—st1 00

+ 0"'0bm—a"‘bm~2i +
and expanding the last determinant similarly,
we finally obtain

1C(Si{Pk—1| Pk))
= ata . IC(S-;(P‘k—IsPEZ))

i+l
4+ det(R; ),

§=1

(61)

where
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Ri,j = | det’(R'i‘j)]
a < Mi{lafU=Y P TY), (66)
j = 11 veey 8y
5 | det(R:, )]
brn—s < Miflail? | Pe-al§ 3, (66)
s+l i+1,
where ‘
. M = {fem| + -+ Jem-sial} W Pull (67)
™ . From the assumption (56}, we have
m
i+1 i1
> det(Rig)] < > |det{Ri 5)|
j=1 i=1 (68)
< {lem|+ -+ |Em—ss1|} - L
< o Yo{S: (P, PO
Therefore, from Egs. (61) and (68), we obtain
b (62) Eq. (57). 0
m—s From the fundamental theorem of subresul-
Em—st1 0

Em—-s+1 bm—s

Em } e em—s+1
ap—2¢

2peni--1

bn—2

bm_2itj_a

bm 2

bm"s s bm-—l’
Expanding det(F; ;) with respect to the {i+j)-
th row, or the row
(0 O Emesp1 0:--0),  (63)
we have
det(Ri,j)
= (1) ¥, det( Ry j4) 4+ (64)
sk (—1)i+2j+35m—s+1 det(Rij j+s)
where R;;, is a 2i x 2 submatrix obtained
by removing the (i + j)-th row and the g-th
column from R; ;. After removing several top-
left diagonal elements a;'s of H; ; 4, and apply-
ing Hadamard's inequality to det{R; ;q}, with
inequalities ] + |ai—1]? + <+ + |apai]® <
[Pi-1l13 and Jemt® -+ - e sqt [+ [Bm—a[* +
v+t |bm—2:i]* < || Pell3, we finally obtain the fol-
lowing inequality:

tants ¥}, we have
Si(Pe-1, F{) = Pyn le(Pyyy) o7

h
xH{IC(P£+':H1)(dk+l—2+dk+l—l) (69}
=1

X (_1)(nk+l-—2‘“")«+h)(ﬂk+t«—1—"k+h) ,

where h = i — s ngyy = deg(Py,,;) and
d; = n; —nj41. Therefore, we can calculate
ke(S;(Pr1, Py)) easily from le(Py,, ).

Proposition 10 shows that, so long as g,
... Em—ss1 satisfy the condition (562, dis-
carding terms £,2™, ..., emosrz™ ¥ in By
does not change the signs of leading coeffi-
cients of the subresultants 8;(Py_y, P{) fori =
0,...,m — s — 1. However, in actual ealcula-
tion of the Sturm sequence, the number L in
Eq. (55) seems to become too large, hence the
condition (56} is not useful in practice.

5.2 Utilization of Interval Arithmetic .

In this method, we transform the coefficients
of the given polynomial into interval numbers
each of which includes the corresponding error,
and calculate the Sturm sequence by using in-
terval arithmetic.

By observing how the widths of intervals in-
creased during the calculation, we found that
the increase of the width of each interval was
about one decimal-digit for each remainder
computation. In fact, the division of polynomi-
als of degree difference 1 requires two “polyno-
mial x number” multiplications and two poly-
nomial subtractions. The width of an interval
is increased to about twice that of the origi-
nal interval by one arithmetic operation if the
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operands are of almost the same widths; hence
the width increases by about 2* = 16 times
after the polynomial division. Thus, for a poly-
nomial of degree 10, for example, the width of
an interval in the last element of the Sturm
sequence may become about 1010 times lavger
than the initial widths, which shows that this
method is not useful in practice.

5.3 Standard Method in Numerical

Analysis

In numerical analysis, we have a good method
of error estimation for the solution of a system
of linear equations. Calculation of the resultant
can be reduced to solving a linear system.

Usually, the norm of vectors and matrices are
defined as follows. Let © = (z1,...,%m)7 bea
vector in ™. Then, the p-norm of x is defined
as

" ifp
el = (Zlm[”) : (70)
i=1

p=12co.
Let A = (ai;) be a real (m, m)-matrix. Then,
by using the norm of a vector, we define the
BAll, = max

D-NOTIM 0[ A as
”Am' i 7]
0 ( )

In this paper we use onty A1 and [ Al 6.
Let () and G(x) be

F(x) = frn™ A+ -+ + foz°, (72)
fin #0,

G(x) = gnz™ 4+ 905501 (73)
gn #90,

where m. > n. Calculation of the PRS is equiv-
alent to eliminating the terms of higher degrees
of F' and G to derive R;, a polynomial of degree
s, for 0 € s € n— 1. For each R, there exist
polynomials U, and V, such that

U F' + VoG = R,

deg{l/;) <n—s-1, (74)

deg{V;) Sm-—s5-1.

We consider calculating Ry = res(F,G). Let

Ug and Vg be expressed as

Up = g1 @™ 4o o R(}:EO, (75)
Vo= 'Um_1$m"l +"'+’v0$0. (76)
From the relation UgF 4 VG = Ry, we obtain

o system of linear equations on the coefficients
in Uy and V}, as follows:

Apr. 2000
Sm gn
ffn E gﬂv
fm ‘ gn
o 0t gt il
Jo Do go
fo 9o
Un-1 -0
Un-2
o '
X = . .
Um-—1 . (77)
Um -2 :
: 0
g RO

Us and V can be normalized in any way so
long as Uy and Vp satisfy the above relation.
Therefore, we normalize Uy and Vg as u,—y =

gn and ¥p..1 = —frn. With this normalization,
we can rewrite the relation (77) as
fm n
.. . Up—2
fm n
fi fmm In Up
L Vpn—
fo i igeT -
ho ot .U
fo fu g0 91 0
Onwtfm — fm-10n
gn--mfna — fogm , (78)
0
where g; = 0 for j < 0, and
Ry = foto + govo. (79)
The linear system (78) is of the form
Az = b, (80)

where A is a “coefficient mafrix,” and 2 and
b are vectors of unknowns and given numbers,
respectively. We briefly describe a perturbation
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Table 1 Condition number of the matrix in Eq. (78) computed for 10
polynomials with random-number coefficients,

Degree Condition number
of 1-norm ©0-norm

P(z) | Maximum Minimum  Average | Maximum  Mimmum Average
10 873 x10% 1.69x 107 255%10% [ 796 x10° 292 x 102 2499 x 10°
20 257 %105 444 x 108 205x 105 | 851 %105 1.83x10% 1.08 x 105
30 116 x 107 - 4,97 x 10% 246 % 10°% | 597 x 107 245 x 104 1.18 x 10°
40 537 x 107 148x10% 7.44x10% | 476 % 107 6.0l x10¢  6.00 x 105
50 147 x 108 1.56x 105 2,25 %107 | 642 %107 7.38x10' 8.00x 108

theory for linear system. (The theory can be
found in various works on numerical analysis;
see Higham ¥ for example.) Assume that b has
an error Ab that causes an error Az in the
solution . Then we have
Alx -+ Axy) = b+ Ab. (81}
Using Eq. (80), we can easily evaluate the mag-
nitucle of Az, as
HAb]|

Bdeadl oy apa-yy g

Furthermore, assume that A has an error AA
and that the error of @ becomes Axy + Ama, as
follows:

(A Ad)(w+ Axy + Axo) = b+ Ab.(83)
Using Eq. (81}, we derive the following evalua-
tion of Az,.

[| Az ||
|z + Azy + A '
< [l A M o
- |l All

Equations (82) and (84) lead us to the following
evaluation:

[ Az {f + §Azs]]
il + Azl + | Amzll (85)
< lapra-y {Iegt+ Ll
- fial ol
The number ||A|[|47"], which is called the
“condition number,” specifies how the initial er-
rors are magnified in the solution.

Although we did not consider rounding errors
in floating-point arithmetic in the above evalu-
ation, the evaluation of rounding errors can eas-
ily be included by adding AR, a term represent-
ing rounding errors, into A. It is known that, if
we solve Eq. (80) by Gaussian elimination with
pivoting, for example, the errors Az + Az in
the solution « are well bounded by Eq. (85) (see
Higham %),

Applying Eq. (85) to the linear system (78),
we can bound the errors |8, | and |d,,| of the so-
lutions ug and vp, due to the perturbations 4,
of fy (i =0,...,m) and &, of g; ( =0,...,n).

Equation (79) tells us that if lfous + gove| >
[fo-duqls |90+ 6y,| then we can say definitely that
Ry # 0 for the perturbations of the coefficients
of F and G. If |foup -+ gave| < |fouol, lgowe|
then this case corresponds to F and G hav-
ing mutually close zero-points, and the above
method cannot be applied to such cases. If
|fotto + govo| is not small, then we can apply
the above method so long as |4,,| and |4,,| are
not large. Equation (85) shows that the mea-
sure of largeness of |6,,| and |d,,] is the con-
dition number. Therefore, in order to check
whether or not the above method is useful,
we check the largeness of the condition num-
ber for polynomials of degrees from 10 te 50.
We generate a real univariate polynomial P{x)
with random coefficients, and construct the ma-
trix in the left-hand-side of Eq. (78} by putting
F = P and ¢ = dP/dz. We generate each
coefficlent ¢ of P(zx) to satisfy |¢f < 10. We
set deg(P) = 10,20,30,40,50, and generate
10 polynomials for each degree. We used the
LAPACK library 1) linked to GAL to estimate
the condition number (for estimating the con-
dition number, see Natori®| for example).

Table 1 shows the result of computations.
Tor each degree of polynomial, we show the
maximum, minimum, and average values of our
estimates of 10 condition numbers. We see from
this result that, for a polynomial of degree 10,
for example, the error in res(P, dP/dz) may be-
come 10% or 10? times larger than the error in
the initial polynomial. Although these numbers
are rather large, they are much smaller than the
increase of the interval width explained above.

5.4 Calculating Error Terms Paratnet-

rically

The method deseribed in this subsection gives
good estimates of errors in the Sturm sequence,
but the caleculated value does not give the rig-
orous error bound.

For simplicity, we assume that P(z) is monic
in Eq. (1), and express P(zx) in Eq. (2) as
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Table 2 || Pu(®,dn—1,...,80)[l/1 P (2,0,...,0)| for 10 polynomials, where
P, is the last element of the Sturm sequence.

Degree Polynomial norm
of 1-norm CO-TIOET
}5(17) Maximum Minimum Avaraga Maximum Minimum Average
10 2567x 107 L02x10?7 seTx108 | 1.52x10% 168 x 0%  5.00 x 108
20 283 x10°  1.34x10° 1.81x10° | 3.65x10° 344 x 10°  2.62 % 108
a0 2.68 %109  7.01x 108  113x 10 | 475 % 10° 178 x 10  1.78 x 10°
40 350 x 1018 200 x 101 539 % 1012 | 1.60 x 104 1.42 x 10'!  3.65 x 10%2
50 280 % 1017 7.81 x 1005 9,19 x 10%0 | 2.47 x 1087 1832 x 10%6 1,36 x 10%7
Table 3 Computing times for calculating Sturm sequences with and
without parameterized error terms.
Dagree Computing time (insec.}
of With error terms Without error terms
Plz) [Maximum Minimum  Average | Maximum  Minimum  Average
10 70 50 55 10 < 10 < 10
20 420 400 403 10 < 10 < 10
30 1420 1330 1357 20 10 11
40 3280 3210 3244 50 10 31
50 G080 6030 6050 50 30 37
Pz, 80_1,...,80) total-degree 1, and substitute 1 for ¢ after the

=" + (Cn—l + Jn—l)mn_l +

=+ (co -+ 60)a°,
where &n..1,...,6p are parameters representing
errors in the coefficients. Exact calculation of
the Sturm sequence of & parametric polyno-
mial P exactly is extremely time-consuming,
because P is {n+ 1)-variate. However, if we ne-
glect all the quadratic and higher-order terms
with respect to dy-.1,...,0p, then the compu-
tation cost is only O{n) times larger than that
of & numerical Sturm sequence, Therefore, we
calculate the 4-th element P; of the Sturm se-
quence as

131-(3:,5 1y 0) & Pi(z,0,...,0)
+-P!',n-l(m101"'p0)5 -1+
ek Bgle,0,. 080,
where F; j = 8P;/86; (j =n-—1,..., 0). Then,
by neglecting the terms of order O(82), we can

approximately bound the effect of error terms
fairly well, as

|7 - P
.S ’-Pt',n—l(m301 e :0)| Epeit et
R !Pi.0($10) e 30)|EU|
where | (polynomial)| denotes a polynomial with

the coefficients replaced by their absolute val-
ues.

Actually, the caiculation is performad by
introducing the total-degree variable t for
(5,1_1,...,50 as 55 — 5it (Z =0,...,n—1). We
caleulate the Sturm sequence only up to the

(86)

(87)

(88)

calculation,

We calculated the Sturm sequences with and
without parameterized error terms. For this ex-
periment, we used the same polynomials as in
Section 5.3. .

Table 2 shows the value | P {(z, 8,1, .., 80|
N Pr(,0,...,0)||, where Py(z, dn-1,...,80) is
the last element, of the Sturm sequence, and Ta-
ble 3 shows the computing times of Sturm se-
quences with and without parametric errors. In
Table 2, for each degree of polynomial, we show
the maximum, the minimum, and the average
of 10 ratics. Note that the values in Table 2
show how the initial errors are magnified by
the computation of Sturm sequence, just as the
values in Table 1 show. Comparing with Ta-
ble 1, we see that the numbers are too large for
polynomials of higher degrees. Table 3 shows
the maximum, minimum, and average values of
the computation times for ten examples. We
see that, very roughly speaking, the computa-
tion time for a parameterized sequence is about
deg(P) times larger than that for a numerical
sequence. These results indicate that we can
use this method only for polynomials of low or
medium degrees.

6. Discussion

In this paper we have considered the real
zero-points of a real univariate polynomial with
error terms whose coefficlents may be much
larger than g,. For such an approximate
polynomial, we introduced the concept of an
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“approximate real zero-point” and proposed a
method for calculating the existence domains of
zero-points fairly accurately and simply.

Next, we considered how to calculate the
number of real zero-points of an approximate
polynomial by Sturm’s method. We gave a suf-
ficient condition for the number of real zero-
points to be definite. We also derived a suffi-
cient condition for the small leading coefficients
in the Sturm sequence to be discarded, and
showed that these problems can be reduced to a
problem to that of estimating the errorsin the
resultants of univariate polynormials.

Finally, in order to estimate the errors in the
Sturm sequence, we investigated four methods:
(1) evaluating the “subresultant determinant”
by using Hadamard's inequality, {2) caleulat-
ing the Sturm sequence with coefficients of in-
terval numbers, (3) solving a linear system on
polynomial coefficients and evaluating errors in
the solution by a standard method in numeri-
cal analysis, and (4} caleulating the Sturm se-
quence with parametric error terms. Method 1
is theoretically correct, but the calculated up-
per bound is too large, and with method 2 the
width of each interval number grows too rapidly
during the calculation of the Sturm sequence;
hence methods 1 and 2 do not seam to be use-
ful in practice. Method 3 gives a rather prac-
tical estimation, and thus seems to be useful
in practice. Method 4 gives the errors rather
accurately, and we have seen that caleulating
the resultant by PRS gives much larger errors
than method 3. This means that the errors con-
tained in the resultant depend on which method
we have used to calculate the resultant, and
method 3 seems to be the best for evaluating
the errors.

We still have a problem in cases where P(x)
has multiple or close zero-points. Let us briefly
mention what happens if £(z) has close zero-
points. Let ||| be an appropriate norm of
a polynomial defined by Eq.(33), and agsume
that {|P| = 1 and P contains m close zero-
points of closeness ¢, 0 < § « 1, around the
origin. Then, Sasaki and Sasaki® tell us that
1Be| = O(%) and | Pyl = O, ||Prsall =
O, ... |Beiml| = O(6™+1). Therefore, if
these close zero-points can be separated and
counted as m single zero-points, we must have
|Prsmll > ey or 6 > =t/5,. On the
other hand, if we change coefficients of P(x)
slightly, the positions of these close zero-points
are changed considerably. Thus, the treatment
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of close zero-points is not easy and remains an
open problem.
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Appendix: On the Zero-points of
Eq. (43)

Let 0 <& <« 1 and let P(z) be
P(z)=cpa™ + -+ + eprz™ 1 (89)
FE™ b Emer T 4 g,
wheren >mandcq, ..., 0m+15Em—1, .-+ £0 &TE
numbers such that
II’lELX{'Cn], e -tl?m-H!} =1 ¢ 5& 0, (90)
el < (VEY (i = 1,..,m).
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We choose ¢ to satisfy Ve = max{{/|emi] |
i=1,...,m}. Putting e = %/, we prove the
following theorem in this appendix:
Theorem 11 Let {;,...,{, be the zero-

points of P(:c), where

|C1| RS- I':ml

< ]Cm 1[ - et | (91)
fe= % < 1/9 then {m] and |Gny| are
bounded as

{Gml
14 3e 16e
<7 [l_ 1_(1+3e)2} |
92
me+1| (
1+3e 16¢
rul R R s

Furthermore, we can approximate the right-
hand-side expressions of Eqg. {92) as

|¢m]

< %. + l6e
“ 1536 (1-+3e)3]’
(93)
Km—i-l!
1 e(l-0e) N 32¢?
2 2A1+3e)  (I+3e8 D

Before the proof, we investigate the zero-

points of P(x) roughly, Put

Pl2) = 2™+ gpgxc™ 4.0

PIJ‘(:E) = l,t,nﬂ:n—m-:_glm t+eo, (94)

. 1T+ 1,

Note that P(z) =~ P" (:c)P’(:c) Using the
following well-known theorem (see Mignotte®
for example), we can bound the zero-points of
P'(x) and P"(z) easily as in Corollaries 13 and
14 helow,

Theorem 12 Let A(z) = 22" +ap— 12"}
4+ 4+ ap, with a,a9 ¥ 0, be a polynomial
with complex coefficients and with zero-points
$1y+++,Cn Then, we have the following bounds
for the zero-points of A(x):

max{|¢1],...,[¢al}
< 'an' + max{|an—1|» sy |ﬂ'0|}
= |2 (95)
min{|¢i],. .., [¢al}
g
= Jao[+ mex{Jaal,..., lanl} o

Applying Theorem 12 to e =1 P! w/ex) and
P"(z), respectively, we obtain the following
corollaries:

Corollary 13 Let the zero-points of P'(z)
be {iy...,(,,; then we have max{|¢{],...,|¢/ [}

Apr. 2000

<2 e 0

Corollary 14 Let the zero-points of P*{z)
be ¢l 151. .., Ch; then we have min{|¢f  [...,
= 172,

These corollaries show that P(x) has m zero-
points of magnitude 5 2 ¥/ and that the other
(n—~m) zero-points have absolute values 2, 1/2.
We now prove Theorem 11,

Proof of Theorem 11. We first consider
the zero-point ¢ of Eq. (89), such that |} <
2 %/e. Applying the transformation { = e (=
() to P(() = 0, we obtain

e e
+ (™ (em-1/e)™ 7+ (96)
+(eo/e™)(" = 0.

We are considering the zero-point ¢ such that
I} £ 2, hence the zero-point is determined
mostly by the terms of degree < m and the
terms em45€/(™ M (j = 1,...,mn—m) contribute
only as small correction terms because e < 1.
(We can state this situation as follows. Con-
sider a set of equations of degree m:

A 2™ + (cm_l/e)zm”1 4

+leo/em)P =0,
tm € {1 +Emy18Z + - (97)
+ C eﬂ mz’n—-m |

- |z| = Cmax}a
where (max 5 an upper bound of |¢n/e]. Ob-
viously, ¢ == (/¢ i a solution of one equation
in this set. For the solution of any equation in
this set, we can derive an upper bound.} Thus,
rewriting the above equation as

(ere™ ™M™ 4+ emarel + 10T
+ (Em-1/e){™ 1+ . (98)
+ (e0/e™)C° = 0,
we can regard Eq. (98) as an equation of de-
gree m with the leading coefficient a,, = 1 +

Cm+16C + 4 ca€® ™M™ 1, Therefore,
from T heorem 12, we obtain

16} €1+ max{lem—1/el,..., leo/e™}/|am]
<14 _ 1 -
T 1-e P |eC[m-m
1 . _
it
_2- 3|eCf
Tl 2|eC|
or
1< Zg . (100)
Inequality (100) glves us
21¢12 — (14 3e)|¢) + 2e > 0. (101)

Let 2_ and z,. be the solutions of equation 2z%—
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(14 3elz 4 2e = 0 with z_- < z;. We see that
zy are real if and only if e £ 1/9, and z_ o~ 2e
and z; ~ (1 —e)/2 for |e| « 1. Therefore, we
have

a¢] < (1+ 3e)

16e
1+ 3e)? (102)
for e < 1/9. Using the inequality +/1 -z >
1—2/2 ~ 2%/2, which is valid for 0 < 2 < 1,
and putting = = 16¢/(1 + 3¢)?, we obtain
4|¢| < {1+ 3e)

x 11—,/1—

8e 128¢2
X [(1+3e)2 + (1+3&)"]' (103)
or
1 16e
I¢] < 2e - [1+3e+ a3 {(104)

This inequality is valid for 16e/{i + 3e)? < 1,
or for e < 1/9.

Next, we consider the zero-point { of Eq. (89),
such that 1/2 < |¢]. Dividing P{¢) = 0 by ¢,
we obtain the equality

Cal™ ™ st omyr§ + 1

+ em-1/¢ +Em—2/c2 4o

-+ Eg/(M =0

Since we are considering the zero-point ¢ such
that 1/2 < |¢|, the terms en—;/¢7 (5 =
1,...,m) contribute only as small correction
terms because [em—j| < 1. Thus, following the
same reasoning as for Eq. (98), we can regard
Eq. (105) as an equation of degree n — m with
the constant term ag = 1 + y—1/( + -+ +
g0/¢™ = 1. From Theorelm 12, we obtain

(4=

(105)

1+ max{[eal, ., lemt1}/]aol
1

v

1+ 1/(1~lef¢] — - —]e/¢I™)
u (106)

L ety
_ -2e/(|
e 3ge/gJ‘
Inequality Eq. (106) gives us
21¢] - (1 + 3e)[¢| +2e > 0. {107)
Solving Eq.(107) with condition e < 1/9, we
obtain
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4/¢| > (1 + 3e)
16e
x |1 10— . 108
T T T e (108)

Using the inequality v1~2z > 1 —2/2 —z%/2
again, we obtain

4|¢] > (1 + 3e)
8e 128¢?
X [2‘ i+3 0 +3€)"]’ (109)
or .
1 e(l—0e 32e
Kl>5 - 5073 " T O
for e < 1/9. |

{Received December 11, 1998)
{Accepted January 6, 2000)

Akira Terui was born in
1971, He received his M.S.
degree from Univ. Tsukuba in
1997. Since 1999 he has been
in Univ. Tsukuba as a research
associate. His research interests
include theory and application
of approximate algebraic computation: solv-
ing system of algebraic equations, calculation
of singularities of algebraic functions, ete., by
means of computer algebra with approximate
computation. He is a member of IPSJ, JSIAM,
JSSAC and ACM.

Tateaki Sasaki was horn in
1946. He received M.S. and
D.S. degrees from Univ., Tokyo
in 1970 and 1973, respectively.
He had been a researcher of
RIKEN: The Institute of Phys-
* ical and Chemical Research (In-
formation Secience Laboratory) in 1974-1991
and a visiting researcher of Univ. Utah (Dept.
Computer Science) in 19731979, Since 1991,
he has been a professor of Univ. Tsukuba (In-
stitute of Mathematics). His research interests:
include algorithm development of computer al-
gebra and development of formula manipula-
tion gystem. [n particular, he is an initiator of
approximate algebra. He is a member of IPSJ,
JSIAM, JSSAC, MST and ACM.

—111-



PHYSICAL REVIEW D, VOLUME 62, 044050

Wave propagation in linear electrodynamics
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The Fresnel equation governing the propagation of electromagnetic waves for the most general linear
conslitutive law is derived. The wave normals are found to lie, in general, on a fourth order surface. When the
constitutive coefficients satisfy the so-called reciprocity or closure relation, one can define a duality operator on
the space of the two-forms. We prove that the closure relation is a sufficient condition for the reduction of the
fourth order surface to the familiar second order light cone structure, We finally study whether this condition

is also necessary.

PACS number(s): 04.20.Cv, 04,30.Nk

I. INTRODUCTION

The electromagnetic wave represents perhaps the most
important classical device with the help of which one can
carry out physical measurements and transmit information.
The inwrinsic properties and motion of material medin, as
well as the geometrical structure of spacetime, can affect the
propagation of ¢lectromagnetic waves, In the most generat
seiting [1,2], electromagnetic phenomena are described by
the pair of two-forms A, F (called the electromagnetic exci-
tation and the field strength, respectively) which satisfy the
Maxwell equations dH =J,dF=0, together with the consti-
tutive law H = H(F}. The latier relation contains crucial in-
formation about the underlying physical continwum (i.e., ma-
terial medium andfor spacetime). Mathematically, this
constitutive law arises either from a suitable phenomenologi-
cal theory of a mediom or from the electromagnetic field
Lagrangian,

In general, the constitutive law establishes a nonlinear (or
even nonlocal) relation between the electromagnetic excita-
tion and the field strength. The function (or functional} H(F)
may depend on the polarization and magnetization properties
of matter, and/or on the spacetime geometry, i.e., metric,
curvature, torsion, and nonmetricity. Previously, the propa-
gation of electromagnetic waves was analyzed for a variety
of constitwive laws: for nonlinear models in Minkowski and
Riemannian spacetimes (3], for electrodynamics in a
Riemann-Cartan manifold {4), and also for certain nonmini-
mal and higher derivative gravity models [5], Numerous au-
thors [6] discussed electromagnetic waves in Binstein-
Maxwell theory. The main aim of this paper is to investigate
wave propagation in Maxwell electrodynamics with the most
general finear constitutive law. We derive the generalized
Fresnel equation which determines the wave normals directly

*Also at Department of Theoretical Physics, Moscow State Uni-
versily, £17234 Moscow, Russia, Bmail address: yo@thp.uni-
koeln.de

tOn leave from Department of Human Informatics, Mukogawa
Women's University, 663-8558 Nishinomiya, Japan, Email address:
fukui @mwu,mukogawa-w.ac.jp

¥Email address: gr@thp.uni-keeln.de

0556-2821/2000/62(4)/044050(5)/$15.00

62 044050-1

from the constitutive coefficients. This result is of interest,
e.g., for various applications in crystaloptics and related do-
mains,

Another motivation for the present work comes from the
study of a deep relationship between the duslity operators
defined on two-forms and the conformal classes of spacetime
metrics in four dimensions. Within classical Maxwell elec-
trodynamics, Toupin, Schonberg, and others [8] have noticed
that the constitutive coefficients define a duality operator,
provided a certain reciprocity or closure condition is fui-
filled, and gave first demonstrations of the existence of the
corresponding conformal metric structure. Later these obser-
vations were rediscovered and developed in mathematics [9]
and in gravity theory [10]. Recently the complete explicit
sotution of the closure relation has been given [11], and it
was conjectured that the reciproeity condition is & necessary
and sufficient condition for the standard null-cone structure
for the light propagation (see also independent arguments in
Ref. [12]), Here we give a partial answer to this question,

II. ELECTRODYNAMICS WITH LINEAR CONSTITUTIVE
LAW

Let us consider the Maxwell equations in vacuum

dH=0, dF=0, 2.1)

i.e., we assume that the electric current three-form J vanishes
in the spacetime region wnder consideration. Given the local
coordinates x!, i=0,1,2,3, we can decompose the exterior
forms as

1 1
H=§-Hudx'/\dxf. F= -Z-F,de‘/\dxf. (2.2)

Following Refs. [11,13), we write the linear constitutive law
in terms of the electromagnetic excitation and field strength
tensors as

1
HI'J=X EUI’?XH'“"FIHH s i.j. .. =0, l=213' (2'3)
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Here ey is the Levi-Civita symbol and x%(x) an even
tensor density of weight +1 (called the constitutive tensor
density) which can be decomposed according to

X = £ W alx) e, with yliHI=0, (2.4)

Here f(x) is a dimensionful scalar function such that x'/*' is
dimensionless. The pseudo-scalar constitutive function a(x)
can be identified (on the kinematic level) as an Abelian axion
field, whereas f(x) can be interpreted as a dilaton scalar

field, Note that ¥ /¥ has the sume algebraic symmetries and
therefore the same number of 20 independent components as
a Riemannian curvature tensor:

o . a .y o . [ 3NN a

xljkf=_xﬂ.{f#._x|jfk= Mi_;" XI”Hl=0. (2.5)
This foliows from the existence and the structure of the La-
grangian for the linear electrodynamics Vy,=— HAF, see
Refs. [2,13]. It is convenient to adopt a more compact (es-
sentially bivecior) notation by defining the three-(co)vectar
quantities

Hy Hy
Dh=| Ay |, H.=| Hn
Hy, Hu
and
Fa Fiy
B\ Fayt, Ep=| Ful, (2.6)
Fi Fa

for the electric and magnetic excitations, and for the mag-
netic and electric field strengths, respectively. The Latin in-
di¢es label now 4,b,¢, ... =123, The constitutive tensor is
then naturally parametrized by a triplet of 3X3 matrices,

;(”“={A"b,8a,,.6"¢,}. 50 that the constitutive law (2.4) is
finally recast into

Ha cbn Bnb —Ey —E,
pe =f(x) A“b Cab Bb +a(x) B? B

Here the 3 X3 matrices satisfy A= 4%, B =8, , and
C =0, thereby providing the algebraic properties (2.5).

11, WAYE PROPAGATION: FRESNEL EGUATION

In the theory of partial differential equations, the propa-
gation of waves is described by Hadamard discontinuities of
solutions across a characteristic (wave front) hypersurface §
[7]. One can locally define S by the equation d{x")=const,
The Hadamard discontinuity of any function F{x) across the
hypersurface S is determined as the difference [F]{x)
wF{x, )= F(x), where x,=lim,_g{x+¢) are points on
the opposite sides of S=x. An ordinary electromagnetic
wave is a solution of the Maxwell equations (2.1) for which
the derjvatives of H and F have regular discontinuities across
the wave front hypersurface S.

PHYSICAL REVIEW D 62 044050

In terms of the (co)vectar components, we have on the
characteristic hyperserface 3:

(D=0, [ D]=d"q;, [H. =0 [8/H,]=haq;.
(3.1}

[8%}=0, (8B =b%q;, [E)=0, [8E)=e.q,,
(3.2)

where d%.h,,b% e, deseribe discontinuities of the corre-
sponding quantities across S, and the wave covector normal
to the front is given by

gr=a;®. (3.3)
Equations (3.1),(3.2) repecsent the Hadamard geometrical
compatibility conditions. Substituting Eq. (2.2) into Eq.
{2.1), and using Egs. (2.6) and (3.1),(3.2), we find

god”— Mg, h =0, gob®+egue.=0, (34)

qq.d"=0, gq,b%=0, (3.3)
where €77 is the three-dimensional Levi-Civita symbot. In
this system only the six equations (3.4) are independent. As-
suming that go#90, one finds that Bqs. (3.5) are trivially
satisfied if one substitutes Bq. (3.4} into them. (Note that the
characteristics with go=0 do not have intrinsic meaning for
the evolution equations, since they obviously depend on the
arbitrary choice of coordinates.)

Differentiating Bq. (2.7) and using the compatibility con-
ditions (3.1),(3.2), we find additionally six algebraic equa-

tions
hy _ Cab Bﬂb (_eb (—e“ 3.6
dﬂ _'f(x) A{lb Cba bb + “(x) ba . ( i )

Note that the constitutive coefficients and their first deriva-
tives are assumed to be continuows across S.

We can now substitute 47 and b, from Eq, (3.6) into the
first equation (3.4), which gives '

[l g~ Ae,+C, P+ a(x)qoh?
=f(x) e qy(~C Ce gt Bogb") =~ alx)e™qpe, .
(3.7

The terms propottional to the axion field «(x) drop out com-
pletely due 1o Eq. (3.4), and then one can also remove the
common dilaton factor f(x) on both sides of the equation,
[We assume f(x)#0, since otherwise there is no hyperbolic
evolution system.] Finally we substitwte 5% in terms of e,
from the second equation (3.4), and after some rearrange-
ments one finds

(a3 A+ qoqa{Co "+ CP e ™)+ q,9,6 /B, e,
=Q. (3.8)

This homogeneous algebraic equation hos a nontrivial solu-
tion when

0440502
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Wesdetlgd 0+ gog ]G0, e+ Y697 4 4 " 1B, =0,

This is a Fresnel equation which is central in the wave propa-
gation analysis, It determines the geometry of the wave nor-
mals in terms of the constitutive coefficients A, B,C. A direct
caleulation yields the general result

W=g5qiM + gig. M+ a5q,9,M°
+ o059 M+ 4,8,0.,M°")
=0, (3.10)

where we have denoted

Mi=det A, M"1=2 e,,,,dA""’C”,A o (3.11}

Mab'EB,d(A“bA cd_AacAbrf)_Acdca:de
+aACt 0d 3 A%bge 0 (3.12)

M“bc==2ECd‘[Bdf(AabCfgmAafcbg)'i'cﬂ:cbjcja‘]

(3.13)
Mobed i geef Bh B [ P8, —~CoC0 ] (3.14)
Nole that only the completely symmetric parts M1 -9,
p=234, contribute to the Fresnel equation, Since g0,
one can delete the first factor in Eq. (3.10), and thus we
finally find that the wave covector g; lies, in general, on 2
fourth order surface. This is different from the light cone
(i.e., second order) structure which arises only in a particular
case, In the next section we demonstrate that the latter cor-
responds to the closure condition. Earlier, the relation be-
tween the fourth- and the second-order wave geometry was

studied by Tamm [16] for a special case of the linear consti-
tutive law,

IV. THE CLOSURE RELATION AS A SUFFICIENT
CONDITION

The linear constitutive law defines a duality operator
when the constitutive coefficients satisfy the '‘reciprocity’*
or “closure’’ rejation [8,11);

1 ° s )
) Eijn qu"Xm"qu ikl _ 5” , (4.1)

or in terms of the 3X3 matrices

AMBL-b'i' cneccbg - (sg f C(a‘..A b)“:O, Ct(aBb)r';(O.
4,

The general solution of the closure condition (4.1),(4.2)
reads [11]

1
_A“b:"—- m(k?'Bab‘"kﬂkb)—Bnb‘ (4'3)

PHYSICAL REVIEW D 62 044050

(3.9)

1
C“b=B"dEdbckc=m Each,[bkc . (44)

Here k% is an arbitrary three-vector, kyi=Bak% &°
=B ,,k°k?, and B denoles the inverse matrix to Byp.
Starting from Eqs. (4.3),(4.4), the direct calculation yields

N A b 45)
M= det B detB} °* '
wo=—apef 1- £ 46)
Tder B det B}’ '
Mot =~ —1—4kﬂkb+26ab 1 - _Ii) 4.7)
det B det B/'
M 4Bb(ake), (4.8)
M(nbfd) = —{det B)B(an edy, (4.9)

Substituting all this into the general Fresnel equation (3.10),
we find

2q0(g.k%)

2 2
qq k
W= - g} - ) -
Uqa[ Videt B'|\ detB)  ider8|
2
~ vlidet B|(74448°")

= —og(g;8")% (4.10)
Here o=sgn(detB), and g” s the (inverse) four-
dimensional metric which arises from the duality operator
and the closure relation [11,13]

(4.11)

1 K
" e
e —=—=—| 1~ 5|,

|det B| detB

kﬂ

gﬂnz.__,_,_____

det 8]
-y )

This metric g,y (defined up to a conformal factor) always has
the Lorentzian signature, although it is not necessarily inter-
pretable as a spacetime metric (this is n so called optical
metric, in general; see, e.g., Ref. [14]). As shown in Ref.
(13}, the constitutive tensor density (2.4) can be rewritten in
terms of this metric as

XM= fx)V=gls"g ~gg") + alx) . (4.14)

(4.12)

(4.13)
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Thus we indeed recover the null cone g;4'=¢;q,8"=0
strocture for the propagation of electromagnetic waves from
our general analysis: provided the constitutive matrices sat-
isfy the closure relation (4,1),(4.2), the quartic surface (3.10)
degenerates to the null cone for the induced merric g;.

Tt is worthwhile to note that the Fresnel equation (3.10)
can be rewritten in an explicitly covariant form

GMg:q,9:ar=0,

i =0,123, (4.15)

where the fourth order totalty symmaetric tensor density GY*
is construcied as the cubic polynomial of the components of
the constitutive tensor

Gk, _1_1,mnp{i;,j|qr|t;,i‘):l'u5

7 (4.16)

murs€pgin -

(Here the total symmetrization is extended only over the four
indices f,f,k,/ with all the summation indices excluded.)
Tamm [16) has introduced a similar *'fourth-order metric'
for the particular case of the linear constitutive law.

V. THE CLOSURE RELATION AS A NECESSARY
CONDITION

Tt was conjectured [11,13] that the closure relation Is not
only sufficient, but also a necessary condition for the reduc-
tion of the quartic geometry (3.10} to the null cone. The
complete proof of this conjecture requires a rather lengthy
algebra and will be considered elsewhere, Here we demon-
strate the validity of the necessary condition in & particular
case when the mateix C=0.

Putting C* =0 we find from Egs. (3.11)-(3.14) that

#M?=0 and jab ©=(}, whereas
M= B (A A~ A A5, (5.1
Miabed = ¢ dey B) 4 lobged), (5.2)
Consequently, Eq. (3.10) reduces to
W= g3(del Agg+ g5 y+ det Bag), {5.3)

where a1=A%q,q,, B1=B"q¢,qy. and y=Mg.q,. As-
suming that the last equauon describes a null cone, one con-
cludes that the roots for qﬂ should coincide and thus neces-
sarily

y*=4 det A det Ba . (5.4)

Let us write (det.AdetB)=g|det.Adet B,
= sgn(det.A det 3). Then Eq. (5.4) yields

with s

l

2 detAdetBi ~—-sh \/ det Adet B -'g= o

(5.5)

where A is an arbitrary scalar factor. Recalling the definitions
of a,B,7, we then find

AW=g\2pe0, (5.6)

PHYSICAL REVIEW D 62 044050

Consequently, M=det A=sAS/detB and M®*=22*B"5,
and therefore one verifies that

2 ‘)

= e (3 2 ab 2
W= detB(?‘ g+ 5q,9,8% det B)2.

(5.1
We immediately see that for s=—1 the quadratic form
in BEq. (5.7) can have either the (+———) signature
or (+++~). Similarly, for s=1 the signature is either
(++++) or {4+ —-), Therefore, the Fresnel equation
describes a correct light cone (hyperbolic} structure only in
the case s= — 1. Finally, one can verify that the above solu-
tions satisfy

1

4 Eijmn qursXm“qu ”“_5)‘26“ (58)

which for 5= — 1 reproduces the closure relation (4.1) after a
trivial rescaling of the constimtive tensor density {and sub-
sequently absorbing the factor A into the *‘dilaton™ field ).

VI. CONCLUSTONS

In this paper we have derived, extending the earlier results
(see, e.g., Refs, [6,14,16]}, the Fresnel equation governing
the propagation of electromagnetic waves for the most gen-
eral linear constitutive law, The wave covector lies, in gen-
eral, on a fourth order surface. Such peneric fourth order
structure is not affecied by the axionlike and dilatonlike pats
of the constitutive tensor. Note, however, that the linear con-
stitutive law H=a{x)F does not lead to hyperbolic evolu-
tion equations, and hence necessarily f(x)# Q.

We have proved that the closure relation {4.1) is a suffi-
cient condition for the reduction of the fourth order surface
to the familiar second order light cone structure, The corre-
sponding family of conformally related metrics g coincides
with that derived in Ref. [11}, see also Ref, [13], This result
may be considered as an alternative (as compared to Ur-
bantke's scheme [9,103) derivation of the Lorentzian metric
g from a duality operator. In terms of the Lagrangian, the
closure relation is equivalent to the statement that Vy,
== HFOFA*F+ a(x)FAF], where the Hodge operator
is defined by the metric g.

Far the special case C7,=0Q we have proved that the re-
quirement of reduction of the fourth order Fresnel structure
to a second order one implies a relation between the consti-
mtive coefficients which is slightly weaker than the closure
retation {4.1), in that it allows for an arbitrary scalar factor.
The latter though can be removed by the redefinition of the
dilaton field f(x). Also the signature of the resulting qua-
dratic form is not fixed, so that one hos to impose hyperbo-
licity as a separate condition,

It is worthwhile to note that the results obtained can be
directly gpplied 10 the refinement and generalization of the
previous analyses of the observational tests of the equiva-
lence principle, See, for instance, Ref. [15] where some par-
ticular cases of the Fresnel equation have been studied in this
contexL.
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2.1 FLHEBEELORER

BT & S o E IR Bl TRIEGERI 21T S &, TTOM f (o) DI TH
BOEH L TELNAHEEEAALEZEER L., PR R TUE SBENS
%o Chid, PRELEICHET 2 FHBERODF pm(z) OBRRADTE ¢.(z) ORFIC
EMIGEVMER L > TWAZ ENFERE - TS (2. FIXE, ¥ log(z + 2) 2l
MR (-1, 1] OMTHFoBOREM 4 R (m=n=4) OFHEKTHEBTZILE
XD, BYHTE T CHU - RARIER &, ROL S aHEHEIRO NS,

i
0.988 0.988 1
0,988 0.986 1

]
0,684 4 0.984 §
0.962 4 0.982 1
0,98 ] 0.95 1
0.978 0.978
0.976 0.976

085 088 ro‘i'f T osa o9 086 0.68 "o.é? T ok8 088
(a) TCOBISK log(z + 2) (b) FEEEEM ry4(2)

L AR 4 M7 TR S N REIC & B HEEREGED
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0.6931471 + 0.01180017z — 1.168640z* — 0.53532162% — 0.04802865x1
1 —0.7043236x — 0.9975914z2 — 0.239826522 —~ 0.01131871 21

raa(z) =

—0.04802865( + 8.201649)(x + 2.616697)(z + 0.9999999) (z - 0.6724661)
~0.01131871(z + 15.91957)(z + 3.727162)(z + 2.214231)(z — 0.6724660)

ZOFEHEK TR, MERKERCEET 308085 0.6724660 LIEEICENVET A
KA FDRA 06724661 MEEL TV S, JOX S HEHEESE RO TEEEMETS
&, TOESMISEVEORFADMTICTAELEIRENS (K1),

3 NATYw REERYLIMN

HEBEELAET - LIRCRN A TR EAEEREL, BREDENEESHRO
—DITNA TV REEBEGAAH S (1, 2, 3 N 7Y v REBEECELIS, HE
B OS FARICEET BELIMSEVVEDR SR, ER GCD B THERT L
LTERDKL T LT, SFTRMELMNRINERTRR DV L S A Soe
TREHETHB, N TV v FEBEMRELO 7 VI ZLER 2 CRT, M2 07
WTU ZLOHTAVENBEL GCD ZRD B IR IR 4 D7V TV X LEFIE
T3,

(AA] : BEEM rpa(z) = 2E

an{z)

[i74] © SHEETERE LICHEEN () = &

(=)

rd=DFINE
1. AppGC D{pm(x), ga(z)) = g(x)

B 2: AT Uy FEEBREENO7Z VT X1

3D7NAY XLIE, Euclid DERRER TR NUSAEICHGTES & 5 It
L7 XheEoTnd, 407 TY L3, AHOZEROEN S
Do THnaE0LUTEDROBELKL, $5—~FORE &> TRV & iFE
b DD T E DBDM (yir, 255) OFFVEED . TOEEER GCD dy(z) DR
ERBEHICUTHEMGCD BT A2 L5 7 NIV XLIEE > TS, A TVUw
FEHBEEGEL TR, 2FoROSHEHADELNEBRFETEZR DL &M%
HTHaH, NOSEXOBOMEERBLHE L GENUGCD #RHBK 4 07 )L
DZLOBFNE LTS,
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[AH] : BEHK PAi(z), Po(z)
(5] : ¥R GCD AppGCD(P(z), Py(z)) = g(z)

(7h I XL)
L F 4+ Pz}, G + Py(z)
2. F = QG+ max(1, |Q|)R 279 Q, R RS,
(HQll : B Q DHBMDHHHE DR A M)
3. if all coefficients of R < ¢
then AppGCD(Py(z), Palz)) = R
else ' + G, G + R go to step2.

B 3 R GCD DTN TFY XL

[AA] - BB Pile) = u x [T, (2 — ), Pal) = v X [y (& — 2), TG
[H] : BRI GCD G — ged © dg(z)

v =DFIN
‘IJ(I) = [l —2), = = l’-‘i;ifii (k=1,2,-+-,7)
ik, 2 R ENTNEER Au(z), Pol) DT,y - 23] < 26 BT D,

4: Pan DL GCD OF ATV XL

3.1 AT REEBREBOEL O

2.1 HIOOHITHER U T B BB rya(z) ZEOTNA 7Yy REEEMGERRT o/ H
%N E3DFP NI XL TEM GCD DE%RRD B &,

AppGCD(ps(z), qu(z)) = g(z) = —0.008251166z + 0.005548411
L%, TOME GCD DETLOMEERS &, LUTDL 34 f(z) BEEAS,

pa(x)/g(2)
u(z)/9{z)

5.820832z3 + 68,7924622 + 187.8921z + 124.9160
1.37177123 4 29,98820z2 + 141.0683z + 180.2204

5.820832(z + 8.201647)(x + 2.616740)(z + 0.9999340)
1.371771(z + 15.91957) (z + 3.727228)(x + 2.214140)

COFEANTHEAMZETS £, FREZBOROEREETALRBA T EHXT
3% (M 5),

fla) =

12
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0.988 4

0.986 4

0.8

0.984

0.58

0.978 1

0,978 4

-1 08 -06 04 <02 "1 032 0A xo.'a 08 1 0.85 066 08T 088 0.69
(a) (b)
& 5: /AT Ny R BRSO

R 5D (a) b, ARERE (-1, 1] 2E2ELLESDT, (b) EF1 &R UCHEREA
Lt DTH 3. TOENL, OB L TRSEL DRV ERE T LG
LNBTLAMERETE S,

4 FHERELILOF
41 TRELFOLZEL

T TR, BYHREIBESERNORBELE LS B L EORKELED LD E
KDOWTHEHRNET 3. log(z + 2) ZHEREE (-1, 1] THEEEGELET > B0
FREEBOMBRER LICET. BT(55 LEMNATVE L0, DFSRORK
A6 ROFEEEL. r(10,10) & 53 TAEA 10 ROWHBEK TELT 5 & LBk
T3, TOREND, BOMBICEUTIRERBMEN TR, EUHEADTESD
HH 2T 5 FSHADKEMNAKZOESICTRBELZBENHLT {Z-TWA I Litbh
%, #1 TIHHEAZEMERC L >R BEOTHRELEOMBERLTHA M, #HE
ROWDAREARETE, PRETBIEENREZL00, BULS LBEs
Abohz,
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1 ARBEEEOME (log(z + 2), MK [-1,1])

B r(5,5) | r(10,10) [ 7(15,15) | r{20,20) | r(25, 25)
1087 | -0.080667 | -0.66028 | -0.54814 | -0.17765 | 0.74821
-0.87680 0.59266

20 M7 —| 0.35248 | -0.37456 | -0.098106 | 0.24963
054999 | 0923831 - -
0.72561

30 Hy - ~| -0.56625 - | 0.29373

40 K1 - - ~| 0.81169 -

50 #r - - -1 -0.78720 | 0.96187

| 60 Hf -~ - - — | -0.75259

4.2 1TRIDZREE

WEDFERD 5, [ UEOFEER THEELR T BeTh, FUHEc L »
TRBEEBOMENELLTWA T Ebh b, £, BWHEE LT T ER
RHELHRNE 5, FT T, Gauss HEFEREH T 3 REITHOREEEZRD,
THIDOHR & NAEAEOBERKIC DV TORIERT -7z R1THEALLLOLE LA
Hlog(z +2) T, EMUEMERM[-1,1) & LIeBEa0TR0&4#E, K6 KRT, &

0% cond A = A |4 K &2 TRBTV 3,

1e4-70 r
le4-G60
le+50
le+40
le+30

le+20

le+10

T =T ; T T en ] §
N S
r(15,1l8 -
r(20,20) -« ... ]
c . 1(25,38), == ]
f 1 1 1 1 I 1 1
20 40 60 80 100 120 140 160

180 200

& 6: log(z + 2) B EHEEALT 2 BESORBITH DR

R6HBh5E 5, HEESMECHEEE BRI ERME Lo TV

~122—
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3, ¥, THIORGBEIEVHEBRODENESI BT T L I REKROENEL
HBix-oTaH, FUHEEESL TR LEN>T—EDBIIINELTL AT Mb
B, FEBOZEHEEHELERN, 2FTRICSRDOL 5 AEROBER AR &
5 EHEEEHEICEVTY, EUHEMPEVESIREBHREOBERFREELLD,
WRBLNLREEHREPEEITE S, —A. T0LIRIBAICEHFYREE 085
Ficgae, JRBOELBELSNAFHEROBELRELTL AT ebh b, 20
&3 ZBETHEEEMEA RO L DR, K605 (10, 10) BB T A S
40 HT, r(15,15) FEEH TR0 fiFLRB T hbhd, TTT, RMb8uE, BN
AEHAE N THNERCRRT 2hDEREEZ > TWA T LICIEET 3, 9F5E
A5 ROFEEH T, RUEP WM BETEELTHAT AL, 108K LTI0
FORERTS L. BONCROBBIRELAL LFERVEVA 2, K1 T, 53
K7 10 M TS EREAME U, 20 HFLLE TIRAXREREIRGO O, FEICER
T AHEOHEN SRR 10N T LT oA BERROC LN TELIRESIIESTY
B THELEIDNS,

TTT, PEVCVENTFR CRBONAMOENTEETH-Th, BRELTHES
NEEEBRGENUETS M1 IKRENE LS CRRERERECAH, Fhlls
OMMIE LU L BEGALREITY TN TES, LENST, N7 U w REBREEE
BIAEFE LU TTRAEZEERE T, BREZEMNMEONS, N7V v REH
FESGEMIC & D RRE R RE LIES OO L OB X 2 IR, BRIk,
KRR [-1,1) %2 100 28 LIz, (k= 1,2,---, 100) BRWLT, RO LS EHBETR
¥hie,

E = max({|log(zg + 2) — #(ze)]), (k =, 1, -+, 100)

# 2 FOMBE OBEE (ogle + 2), HERM(-1,1))
HkT | r(5,5) | r(10,10) | r(15,15) | r(20,20) | »(25,25) |
10 47 0.5¢-9| 1.0e-9{ 3.0e-8| 2.6e-0| 4.00-8
20#F | 1.9¢-10| 2.7¢-16 | 1.6e-17| 3.0e-18| 3.6¢-18
30#F || 1.9e-10| 1.5e-19 | 6.3e-24| 1.60-26| 6.5¢-26
4047 || 1.9¢-10| 1.5e-19 | 1.3¢-28 | 3.1¢-31| 4.7e-33
S0HF [ 1.9¢-10] 1.5¢-19 | 1.3e-28 | 1.4e-35| 2.20-43
60HF || 1.9¢-10 | 1.5¢-19| 1.3c-28 | 9.8¢-38 1 6.50-47

4.3 A=

FETIE. EBADE L #1218 5 NS RVRRE TS A, FRELES
BIHEE LU vE BB ME B N5 T LRI TR U, 20T, HUHEADE
DERIE B NAROESEERIET Biobic, BEOEERS I,
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F3ORRNS, BOENTREE LG > TOAFEUEOPEOERTE, TRE
R ABEOEER S LA ERETELS BRI TV A LHMT A LA TR
%o BB, BHPRELADFE L LT, AIRROREI/NMOELIC & 2 D820
WA & o T, Gouss HEEOHFEE TITbN 5 ERy MBROBREFVRE ST
WBI LR ENEZI LD,

2 3 BE || Az ~ bl (log(z + 2), RARIRME (1,2])
AP || r(5,5) | r(10,10) | r(15,15) | r(20,20) | r(25,25)
10 l.4e-8| 2.3e-9] 6.2e-8| 1.3e-8] 1.5e-8
2045 || 4.2¢-19| 2.3e-18 | 6.5e-19 | 2.3¢-18 | 1.7¢-18
30H7 | 1.8¢-29 | 4.2¢-28 | 2.00-28 | 1.0e-28 | 3.de-28
40H7 | 2.5¢-39| 6.0e-39{ 5.9¢-38 | 7.3e-39 | 1.4e¢-38
507 | 2.40-49 | 7.Be-49{ 2.5¢-48 | 1.0e-47 | 2.0e-48
60KF | 1.1e-59 | 4.8¢-59 | 6.6e-58 | 9.7e-58 | 1.6¢-57

4.4 oFRBR O IR I

FRREN TN L5 &5 HEROELRT S BE. HEETS HFEEEOSF
DRORBIC L > T, FRETFIOTRIANBEICE 0 E3 X5 hiand s, T
D& 3 HFFFICH U THEHERITS &, Gauss EEDHEBR TV IR ENE
Uafedd, fE~BICRDBZ LI TERN. ETAM, BELNEGERL R FIR
ToE, FFMGEMIC K BREN LT VBB RELT, BHF—RICRE-TLE
SHEMBB. TOXI EEROME UTiE, Runge DFlE LTHIENS 1/(252% +1)
O &3 I EBEC cos(z) kR EDEBAET 55, MECRTIROMEN 0 ERD Sy
YEERELBTOLD THKTR, BH/MGELT 3 Z L ITFIOEN T 0
hSENEERD 0T, RFROMIIEMTEE LIP3 ERMIcBLTaC ki
3.

TD &S IFRYINEGED E I EEFIF U T Gauss THEERITI L. FRES >/
EBEEFIEFREITRTOBNCEENETENS T LT, I SRR LZD, B
—HFEADOHEN—FICRES, T LTRE-THEERE, ShaToEamed
U HIEL  OMBOBERTER L DIE - T3, TD& S BFPSER
BEROBBIE. N7V y FEEREELERV T FOBOERFEZRETH
i, PRELREORVEEELEHESEMNT 5T LN TEROT. AR HMEH
HETRRDBENTERNE S B REERE, FE/MUEMNT 3T LIt &> TRD
BTENTEDBEIICHD, TOEEE, Runge DRIL LTHEN D1/ (2522 + 1)
HlE UTHUTICHHT %, '
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4.4.1 Runge OFIDHE

Runge O, TEOBBMNEEBNOER LT D, B5h5EEA A ToREN
Re—HTHTLNEENTH 2. TTT FmA, 7R n ROEFHBEE roa(z)
ERTET DL, ria(z), malz) L BEME, ERCTOBRER2C—ET S, X
2, JTOEHEREHE D LIS MCIBORERE B ras(z) R rialz) BERFANT
ELERTICEREZS,

1 BEREE T EHRE

HEEFBE T raa(x) K EBEMUERDEL S LT3 L, Gauss iHEEOHERBE TR

DEI RSV IEENEL S,
1 -1 1 -1

0 2 0 2

0 0 -1 0

60 0 -3

00 0 0

00 0 0

0 0 0 O

0

0

0

CTC, RERK o RRFTIUE, BEHETEONS ra(n) BRD & 31255,

-

1

[an N v Y o S v R o Y e}

Lo TS - B e B i R ]

0

r3s{z) =

0

-1

0

25 +azx

(1 +252%)(25 + az)

REBRBROFENTODHE (25 + az) RO FOROFLARF 2> THD, iR
{EFhid Runge DPOTTOEREC~RT BT LIIALHITH 3,
Ric, T 7&EBRECTVWBBEROITOMNARS LG 3 HEUOMEEETS o,
LAEMA, UTOX 3 ZTHERET 5.

0

0

[ © 8

o
Cr b
[=3+.]

—

240

oo
=1

L
br3
0
25

26
_ 6250
12754
_ 51250
216801
— 2500
1989

b

d

THICH U THRIBRAARTY, FEEMORKRERD S L RO & 5 T HEEEA

/o503,

r3a(z) =

l-l--g—g—az

1+ 2—;;;1 + 262 - g8
25a + bz

(14 2522)(25a + bz)
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S o, b AFENIEE, FFTROLREERFLE-THED, B INITO
Runge DHIOMEE~BT 5T 05,

, BEHERToEBS

BEHEC X o Tra(z) BROKD &TH L, BEVMGEIMNIC K 2BEME, &
KTy I ES BT TRTOBIICHNLENRD, —EICHERDB T LN
TED, B SHTHE LR, XDK31ck 3,

1.0 -10 10 ~1.0  0.038462 -0.038462  0.038462 | 0.038462 ]
o 20 0 2.0 —0.076924 0 -0.076924 0
0 ¢ -1.0 0 0 0.038462 - 0 096154
0 b 0 -0.3704 -0.029402 -0.019602 0.0011756 | —0.49004
0 0 0 0 -0.051899 -0.0094565 0.0020770 | ~0.23643
0 0 0 0 0 —-0.050274 0.179e6| -1.2569

L @ 0 0 0 0 0 —0.880 e-5 | 0.530 e-4

TV IEBRET TR OREOMIC, BRI 5 HI LT VE{E —0.88008 o6,
0.53991 -4 BAFENT VB, THICL - T, EHEMORBIZ—FIORED., X
DX I3k B,
1.0000 - 2.4541z + 0.5 e-d % + 0.9 e-d 2°
1 — 2.4550z + 25.001z% — 61.348z3
. 0.1467 05 {z — 0.40749)(z + 185.61)(z — 164.85)
' ™" (z ~ 0.40749) (22 ~ 0.3798 e-4 z + 0.040004)

ras(z) DOFITRHIIL, (2 —0.40749) &0 3 ERINEHBRFRFELTVA L
rhibhhd, Thad, FREREEE U5 FREE & 5EMNEIERFTH 3.
YE GCD ZAWT ThERET HUE,

~2.4541 B 1.0
—61.34872 — 24550  24.998z% + 1.0004
L7 0. 7oD Runge DHIDRIE 1/(252% + 1) iKW U THBEREMNCE > TN
T EDGH B,
W, BEHEOBAYARCS VBB R EBITIRTORMNCa, b &1
HERRATACLE#E XD, TT Tid, —-0.88008 ¢-6,0.53991 e-4d BZEFNFTH
a,b CEERZZILICES,

Ta,a(?-')' =~

Flz) =~

(10 -1.0 1.0 10 0038462 -0.038462  0.038462| 0.038462 ]
0 20 0 2.0 —0.076924 0 -0.076924 0
0 0 -10 0 0 0.038462 0| 0.96154
0 0 0 —03704 —0.029402 ~0.019602 0.0011756 | —0.49004
c 0 0 0 —0,051899 -~0.0094565 0.0020770 | —0.23643
0 0 0 0 0 -0.050274 0.179 e-B| —1.2569
0 0 0 0 0 0 a b |
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CTHICH U TEBRARITI &, MUTOL ) HHEEEMI 5N 5.

a+0.107 0-3 az + 0.04bz + 0.5 c-4 az? + 0.137 -8 bz? — 0.1 ¢-3 az® — 0.3 e-5 bz®
a + 0.0002az + 0.040bx + 25.001az2 4 0,35772 ¢-5 bx? -+ bz?

COEETRPFORCHBEEFRFELRY. TTT, FUSHTHBTL
BEMR LU THNIREERAT S &,

. - a + 0.04bz _ (25.0a + 1.0bz)
Ta3(®) > 502 T et T8 (104 25.02%)(35.00 + L0b3)
LD, BEHBEERT>RBESLRAICERENBONS, ¥, T THYRMHE,

MEE e=001b=50%RATHL,

1.+ 200.02z + 0.73795 e-3 22 — 0,015100z°
1+ 200.10z + 25.01922 + 5000.0z3
o 0302 o5 (2 -+ 0.0049995 ¢-2)(z + 115.07)(z — 115.12)
; (2 + 0.0049975)(x? 4 0.62948 ¢-6 z + 0.040020)

raalz) =~

COEETRALERBEEC SN, AL GCD ZH DL &,

flz) ~ 10
~ 94,89822 41,0004

LD ROBBISIWVEEEENMEE NS T MG 5.

AU &M, ra(z),rss(z), - KBERLND. rq(z) TR¥EEFFI 2 R00OEZFAL
ZD, res(z) TRIEERFIIXOSHA L LB, £LT, N7V w RAEEMEGIL
TS T ETRTIEDN LROTTOFHMEIC—BT 2 & 5 hFEERcERET I3,

4.4.2 log(z +2) DFES

TDES B ANOEERR Gauss HEHOHBEETEU B, MEEMATH
FRBEE tln b log D & 5 BEBEIEM LGS EBEL TS EIbNS. LML
CO&IHRETR, FEHEBOSFIRORBNMIRTH TS, MEHERT-
BTV IEBNECKN. LML, BUEERERC X 3EMTE, B
& 57T Gauss ZEZOHEBBICRE LN R 6N 3, MELT, loglz +2) EHMHERS
(1, 1) IEBNT raa(z) BEMTITEAEER B,

1. TSN WRS
B SHITHERIT 2T 5, REBOBATHRNL S I, FRAHIRE
ENMAEHEAE N THNRECKRT 2 0DEREZ -2 TVS, LT, 1§
BRI h A REOBER R 2 7cbici}, RN L THakkE
SOFUNEBRBELUTHERZITIONEND S, TIT, FAM ML S OB,
r34(z) TORBECLLIORMBORMEEMN 10T THB I LRFEINE LMK
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BESTELTWAENE S, TOES i, &EBICHU TR FoEME TR
ITH &, ROESHEENBLNS,

FEHT 3HTT Gauss IHEHEREA LIS, SALINITRRROL S Ik %,

(1.0 -1.0 100 ~1.00 0 0 0 0]
0 2.00 0 200 -110 -1.10 —1.10 1.10
0 0 -1.00 0.00100 0.550  0.549  (.549 0.144
0 0 0 -0.371 -0.0421 0,176  0.321| —0.00158
0 0 0 0 0.0259 -0.0729  0.283| 0.00639
0 0 0 0 0 0.00362 -0.0109| 0.00279

| 0 0 0 0 0 0 0.00633 ] —0.000298

BIEOTRSD D &, BN ST U TNV @2RDRES ~0.000208 BFET
5. TTT, BERAR L > THONZFHBEL, ROK IS, -

0.693 + 2,252 + 1.57z% + 0.0133z3

1+ 2.532 +0.6292% — 0.04715%
(2 +117.)(z + 1.00)(z + 0.447)
(z + 2.86)(z — 16.7){(z + 0.446)

BRDE (z+0.447) & (z+0.446) BN AFGARFIc > TED, Thick-»
THONEEE ry3(2) RPBELREEEL S, FT T, ELIGCDE#ANT
ZOLERFERET A RENS S, CCC, REERLEZALENEGTIO
BROTOMNEHEE T > TSRS —0.000208 285 o TEEMI TRBRICHE
BRARTS & XD &S HEHENEBLNS,

r3a(z) =

= 0.282

o) o 2095+ (217 279.0)3 + (161 + 128.0)a” + (0,135 + 407.a)a’
33T = - 14 (242 — 400.a)z + (0.771 + 475.a)z? + 158.az3

COEETE, EUNAHEERREELEY, LTAN, TDa Yk,
PR a=102RATHL, ROL S AIHHRFEREC S,

0.695 -~ 2790.z + 1280.2% + 4070.2°

1 — 4000.z + 4750.z2 + 1580.2°
(z + 1.00)(z ~ 0.000249)(z: — 0.685)

(z + 3.69)(z — 0.000250)(z — 0.685)

COFETRARETERZECEN, N7V FEHEBEGRLETS L Fa
B 1 ROEHBEEICR D, FUOMBEALTH T ENTE S,

. BMTMEXRE LGS

T, FEBORELCH LTI EREEOAUEERL T EROL S AFtR
2175, raa(z) DBESOKAERIL 10T HOT, BN 15 THERT > 2 Licd
3. T2L, Couss HEETEZALENETIICBNT, ZE 8N elEx-

1"3,3(:!.') =

= 2.58
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TWFRRAME, —0.166227168740054 x 1078 LW S FHET 15 FHic i L Tk
EXRFHTMERD, LDLE, BERAK L - THELNZEEEEE., 9F
SEHGELN R IERFR R, CTT. CORSE a LI RREIcEBEH
ZTEROEBEZITOI L, a i EDXIRERKALTE, DFOEHCITERN
ZAGERT SRAE,

ChoDT EHEaH5 k51, T HEE I,
o ARIESUIBEBEEUDLILIESE
o REHOAETICHUTHEEENRD W&

KHNB T Mg d, £ LT, Runge DRID L SR, AU HERTI,
TORBIE I e DR R ESEADORBEETRIZRLLTVAE L5 IEH X 5.

5 RE(LEMRERVCEERKERM

5.1 =t

LE(cHE (4] 13, FREATAVIY XLEEEET AT ZLERTZFELL
THREINTWVWALODTHB. RENTILVI) ILEHEHE TOETRIHRE LT
Wa ik, ANCRE NG ULEEFIAT 2L T, HEOBLIE2<{ B 5EE
BHLTULESBEHES, TOX3B7NT) XLMREERZ 7Y L EPHE
ha3:0T, RENEZLOELTR OMEBORESEEFOLI BT T XLESH
Fohs,

FEERTNITV X LOFRRTICRT. BTO7NVIVILKEHLTX =1/3%

[AH] s X
({BH) : Zero ¥E7zid NonZero

[PITUXA] :

Y =3X ~1

ifY = 0 then = return Zero
else return NonZero

B 7 REEET NIV XL

AAThiE, IEUL Zero BHEENBH, X = 0.3333... DL S WMl LIER2 AT
%L NonZero MEE NS, THIZ, EBORBEEN B EFTEELWHIT Zero %
BRIZLHTERY, TOXIEREEATNVITUZILTE, BE/NBELLEZMEER
A3 iz ko> THRESRTHyAMmcED, BORCIEI{ TN TERE-
TLES I RTNI) XL TH S,
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RERCERIE. TOXIBWREERT VI X L% NSRBI NGER U 7o il% 8
WTHHDMICIE I TN TEZ XS BRELTNT) LK ERTIFETH S,
RELOFEZROEL I BEDTH 3, -

1. Phd) ZLORERER T,
2. F—DOFEF REHRH cEEHRZ 3,

3. PiEOAGEXT. (RHGEHOEaEE ]I | 2175,
(KEgD 02 BB THNE, TORMEOICHEMRA )

—ROMBFIEN EREFBECER I AR ERETR, REfo¥uFeiz 3T
bhiznh, SECER TR TKMBROE B 282 2175 T &7, RS
TEULWAMICHESZ ENTEZ LS >Tn3, DECEHRTIR. EOMICE[ L
¥ THGNEE BT RN BHERTS KBNS 5. AURENNSWVIESIIE. B
EHRZHLENTCRHEBE TEoE BRI LT LES T ETELWVERBL AN
BENHDH, HYHHE LT TRDELUHERTI LT, S THOBIEDL T
L AR BERE RTB (4 |

FHEOEE T, CoussHEEDTN TV X LERERTAT LE2EZ 5, Gauss
MEETR, BRNELoREORBSBEREFEELEZVR, SV I/ELOHERT S
TeHOYOYENEFELTEN., BEEDEWETFLVIV LLTERLEILNS,

5.2 X

£ 4 WECEHREROWICHBEECEMN (log(z + 2), HHRME -1,1])
O.. FRETEOTWEFHEENELNS
X... AAHBETS /B ENEL S

[B%H [ r(5,5) [ r(10,10) | r(15,15) [ #(20,20)
119 #7 O X X 1 X
28 Ky O X X X
38 i O TEW X X
48 7 O O X X
57 F7 O Q| “iEnk X
67 K7 O O Q X
77 Hi O O O| FEM
86 #fy O O O XM
96 #7 O O O Q
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% 5 LRACERR VISR (cos(5a®), SRR (-1, 1))

[ B#K | r(10,10) | r(15,15) | r(20,20) | r(25,25) | (30, 30)
19K X X X X %
28 i O X X X X
38 # O X | FIERE X X
48 i O X O X X
57 §f O X O X %
67 K7 O X O X | FIERE
TTHT O X O X Q
86 ¥ O X O X O
96 ¥ O X O X O

LR LI O T F SO BT o B R ORBRE L BO LB ENER 4, £S5
WCiRd, BE{L U Gauss IGERZFA U THBBEOELURT - 12BE. BWHEN
INEVWE R POBERIOMPEN O EERECYRBEMI ThATLEY, i
ERBTSVIEBAETD, —H, BUEELF TV L, BARE S &5k
Bo DS BILRE S HBEHOB L XN ETE D, FL{ TOMMERLT
B ERNTERNS. X BICEYNE LTNIROBICITRT 5, BRELTIE, T
DrEDOEYHNEGFEIRETIEOHRL DL ERE{ B TVEH, RE-
FMOMIRERELTED, HECELRITS L RRERERE Uk & 5 AEELA
/BENB, £, #B5OKS ICHBICRTHRXOMEN 0 IR, BELFER
EEREVBEXRTSVIEBMEL, BA—BECRELLN, ChBORERND, BT
{EEERFIET A, BEHEOBRICA 2 HRRRBE I LNTEL LV S,

6 F&o

FEMHEEEELRITS T e 2E R TORE, BONHREMC I RAEREL
FUBTENBHB. ZCT, TLEREOHBICHTAHACOVTHL CRML, B
AENCHFZBCTUTOX S BRI LALLM R o T

1. FHREGECTREA S TOETEE. COMCHRT 23 FORFAZEMGCD
K& - TR CERMETREMEELREI T LRTES,

2, UL, PREZBENET 5 BFRAOMBRIEMGHRICL > TELT 5,
3. FHEBORBERET 27DOREITIE, MO TERHETHS,

4. BEMITIE Gauss IEETRO T AW, LD XS B RSE R E USHS
LA T8y T BRIF AN T & %,
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COLS3RAEREL, HEEIEcaBETa LNt

1. AR ERTHIFCEERRD LBONAF SR BRHETELNT 258
Runge D 1/(252% + 1) & rpa(z)(m > 1, n > 2) OF K EEMNE 2 &I
DNTRELIEE T A, RETHIRIZETOEEN L3 THNELS, Thb
B, ZUVEBEERREIT, CORIBRITVIESL UETHONAERICRES 2R
ALT, FHESORRERET S L, BonsFHEERECOREERET LD
5P ROEERFMEC, TheliftdThdEL < ToFHEMIcE 5.

2. LM% R NEHETENT IR
EELHETERTOEEN VSR 2{THNEET 20, 2/ METE TSN
BAT B, M elRFOBERSRN BTy /&8, fE—BK
RETZHIENTE S, FHEEOS ForRORKE, < O/ NIk
BH, TR ELEESAOERICAE<MET S, O EizEEN
FEREOBEBETH D, FOMER—ETIREND, OWTNOPETE o O
COD TR OYBREEIRLELHE BTG LTED, EROENCIIER:
BIEE 12U,

3. —ROMENISBONI TS EFHNKUHETEN T AIES

FRTIE, loglz +2) KDWTHRE BTk, BRELT, 2 LIERISENES
ENELTWAZ b o, REERBLBROEE, EThoOFERN
OEEICDNTIR 2. LRARTH S, L L, TTTRERHEER., ThHfh
IRENR R SR NI B AEMUTEEL, FREELE>THWAIRTH
B LIEMoT, BYHREAE  HNEE3EE, 2 O/ Mo 0 lES <M,
—EOMEEL UTRBEHBERIZ CLichs, ERICHOBEETHERTS &,
2. OBEIT 0N KA CORFRPMNrENEREREHAD, ReBEaEE
Rl HHEEE LS,

DEDEL S HRECH LT, RECEREHCTHERZ{T 7. TOEGKE, A
ROoNDETHUMERINS CTNEHHERITI T LiTks, TIT, HARED,
FNHTTOBBOEMICE> TV ABEITIE, BT RRERRITE CEWEICIE »
Tnd, TDOND, BEFDIEDICIRAELFIANLHEE BB, FEETEOR
WEEETENU TSR T L REHTIENTES, £, BFECRTIEN0ES
, EN-REREESTNI LMD, MEHREORBRIC S o7 ERERZT LA TE
BFETHDB LN B,

% Ok
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