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1 Introduction

In this paper, we consider comparative statics in the rental housing market

model of Kaneko-Ito-Osawa (2006), where apartments are treated as indi-

visible goods and are exchanged with one composite good. In particular, we

consider the comparative statics of apartment rents when the quality of a cer-

tain apartment class is improved. This comparative statics will be contrasted

with another result. These comparative statics give similar e¤ects on the rent

of the apartments in question but opposite e¤ects on the rents of the other

apartments.

First, we explain the background of the model as well as the relationship to the

relevant literature, since the approach we take seems not to be well-known in

the urban economics literature. Then, we give diagrammatic explanations of

the two above-mentioned comparative statics results. Finally, we will mention

some possible extensions of our results.

Our approach is regarded as belonging to the literature of �assignment mar-

kets�from Böhm-Bawerk (1921), Neumann-Morgenstern (1944) and Shapley-

Shubik (1972). In this literature, markets with one indivisible good and one

divisible good have been studied, while allowing product di¤erentiation in

their indivisible units. However, the literature re�ects almost no interactions

with urban economics, except for Kaneko (1983) and Gerber (1985). Recently,

Kaneko et al. (2006) gave a more systematic application of the approach to

urban rental housing markets, and also studied various properties arising from

comparative statics. The present paper is a further study in this line of re-

search.
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We also �nd that our approach is related to the bid rent approach in the

urban economics literature originated with Alonso (1964), Muth (1969) and

Mills (1972). 1 Those models are typically described by continuous variables

and continuous functions. On the other hand, the main feature of our model

is discreteness, i.e., each housing unit is indivisible and the number of housing

units is �nite. An important di¤erence in methodology is that calculus is a

main method in the standard urban economic literature, while ours is truly

combinatorial.

Here, we give a brief description of our housing market model and our compar-

ative statics. The details will be given in Sections 2, 3 and 4. In our model, the

apartments are classi�ed and ranked qualitatively. Each household is assumed

to have the identical utility function expressed as hk+g(c). This utility function

is separable as the sum of the utility level hk from the k-th ranked apartment

itself and the utility level g(c) from the c of composite good. The �rst term,

hk, re�ects the �utility� from the housing attributes of the k-th apartment,

such as size, commuting time to the central business district (CBD) and age.

We interpret hk as representing the quality of the k-th apartment. 2 Here,

we can assume without loss of generality 3 that the qualities are arranged in

numerical order: h1 > h2 > � � � > hT . Thus, the lower the rank, the higher the

quality of the apartment.

In the rental housing market described above, we consider the competitive

1 For recent developments and treatments, see Arnott (1987) and Fujita (1989).
2 This de�nition of �quality�is independent of an income. See Example in Section

2.
3 This can be obtained by renaming the apartments under the assumption that no

indi¤erences are allowed.
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rents r1; :::; rT of apartments 1; :::; T , which are described in the �rst row of

Fig. 1. Now, we suppose that the quality (�utility�) hk is improved to ĥk,

but the other ht�s remain unchanged. The new competitive rents r̂1; :::; r̂T

described in the second row of the �gure di¤er from the original competitive

rents r1; :::; rT . In the shaded area of Fig. 1, rk increases to r̂k, but the rent rt

decreases to r̂t for t < k. It is, more or less, an assumption that the rent rt is

constant for t > k. This result will be given in Section 4.2 and will be proved

in Section 6.

The above result will be compared with another comparative statics result,

which is a variant of an earlier result in Kaneko et al. (2006). In this com-

parative statics, all the ht�s remain unchanged, but only the income of the

household choosing the k-th apartment increases. Then, the changes in the

rents r1; :::; rT are expressed as shown in Fig. 2.

Compare the shaded area in Fig. 2 with that in Fig. 1. The rents of the better

apartments than k change in the opposite directions, while we �nd the same

behavior of rent in the k-th. This contrast will be explained in Section 4.3.

In the above comparative statics of Fig. 1, only one apartment is improved.

However, this result can be extended to the case where several apartments are

improved, which will be discussed in Section 5. This extension is needed, for

example, when the commuting time to the CBD is shortened.

In the standard urban economics literature, we �nd some works such as Sweeney

(1974), Braid (1981) and van Lierop (1982) which discuss comparative statics

similar to ours. In particular, certain results in Braid (1981) are closely re-

lated to our comparative statics results, which will be discussed at the end of

Section 4.
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The format of this paper is as follows. Section 2 formulates our rental housing

market model. Section 3 introduces the rent equation, which is our main an-

alytical tool. Section 4 gives our results, expressed by Fig. 1 and Fig. 2, and

compares them with Braid�s results. Section 5 discusses the extension of our

result. Section 6 proves the above two results. Section 7 concludes the paper.

2 The market model

We follow a simpli�ed version of the rental housing market model (M;N) of

Kaneko et al. (2006). The symbols M and N denote the set of households,

M = f1; : : : ;mg, and the set of landlords, N = f10; : : : ; n0g. Each household

i 2 M having income Ii > 0 will rent at most one unit of an apartment.

Without loss of generality, we can assume that the households are ordered

in their incomes as I1 � I2 � � � � � Im. This is simply a renaming of the

households.

It is assumed that apartments are already built and �xed. The apartments

are indivisible goods and are traded for one perfectly divisible composite good

(money). The apartments are classi�ed into categories 1; : : : ; T by their hous-

ing attributes, e.g., their size and commuting times to the CBD. Thus, we

consider T kinds of apartments, and each kind is a category consisting of var-

ious units. It is assumed that each landlord j 2 N owns some units only in

one category and places them on the market.

With a slight stretching of these terms, we may write the k-th category of

apartments as the �k-th apartment.�Also, we may write �unit�to express an

individual apartment.

5



Consumption other than housing is summarized as one composite good. The

consumption set for each household is given as 
 :=
n
e0; e1; � � � ;eT

o
� R+,

where R+ is the set of nonnegative real numbers, ek is the T dimensional unit

vector with its k-th element equal 1 for k = 1; : : : ; T , and e0 is a zero vector

0. A generic element
�
ek; c

�
=
�
ek; Ii � pk

�
with k � 1 means that household

i rents one unit in the k-th category and consumes c = Ii � pk amount of the

composite good, where pk is the rent of ek. The zero vector e0 means that the

household does not rent any apartment in (M;N). 4

In the following, we de�ne the utility function and the cost function speci�ed

for our analysis.

Assumption A (Utility Function). Every household has an identical utility

function u : 
! R expressed as

u
�
ek; c

�
= hk + g(c), (1)

where h1 > h2 > � � � > hT , and g : R+ ! R is a strictly concave, continuous,

and monotone increasing function of c with lim
c!+1

g(c) = +1, and h0+g(Im) >

h1 + g(0).

The additional requirements stated after (1) are as follows: 1) The apartment

utility levels h1; � � � ; hT are ranked strictly in the numerical order; 2) the

last inequality is a boundary condition, where h0 is the utility level of no

apartment, e0. This inequality states that leaving the market is preferred to

renting an apartment with no consumption. 5

4 In our equilibrium analysis, this option 0 is not chosen in e¤ect.
5 Since h1 > � � � > hT and I1 � � � � � Im, the inequality h0 + g(Im) > h1 + g(0)

implies that h0 + g(Ii) > hk + g(0) for all i 2M and k = 1; : : : ; T .
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Now, we explain three important properties of Assumption A.

Identical utility function: We assume that every household has the same

utility function, i.e., ui(�; �) = ui0 (�; �) for all i; i0 2 M . Therefore, for each

k = 1; : : : ; T , the utility level hk is independent of i for all i 2 M . 6 This

assumption may look restrictive. Nevertheless, individual households with dif-

ferent incomes may behave di¤erently because of the normality property of

the utility function, which will be explained below.

Separability: The entire utility function u is expressed as the sum of utility

level hk from the k-th apartment and utility level g(c) from the consumption

of composite good c. The utility level hk re�ects the quality of the k-th apart-

ment.

Normality: The strict concavity of function g has the normality implication,

which is expressed as

if hk + g(c) = hk0 + g(c0); c < c0 and � > 0;

then hk + g(c+ �) > hk0 + g(c0 + �).

(2)

In (2), apartment k has a better quality than k0, since living in k with smaller

consumption c is indi¤erent to living in k0 with larger c0. When an income is

increased by the same magnitude � > 0, the household�s demand for housing

shifts to a better apartment. Thus, the apartment quality is a normal good.

This is the key to our comparative statics. We will give an example of a utility

function satisfying Assumption A at the end of this section.

The supply side is formulated as follows. As far as competitive equilibrium

is concerned, we can assume that only one landlord named k supplies all the

6 Also, see Example at the end of this section.
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units in the k-th category. That is, we assume N = f1; :::; Tg, and landlord k

has the cost function Ck. 7 For our analysis, we employ a simple form of the

cost function:

Assumption B (Cost Function). Each landlord k 2 N has a cost function

Ck : Z+ ! R+ expressed as

Ck(yk) =

8>>>>>>><>>>>>>>:
ak yk if yk � wk,

�large� if yk > wk,

(3)

where Z+ is the set of nonnegative integers, wk is the number of all units

owned by landlord k, yk is the number of units supplied to the market by

landlord k, and �large�is a su¢ ciently large number.

The cost function (3) means that landlord k supplies every unit up to wk with

the constant marginal cost ak > 0, but never supplies more than wk, since the

marginal cost Ck(yk + 1) � Ck(yk) for yk � wk is very large relative to the

market rent. 8

Now, we de�ne a competitive equilibrium in (M;N). Let (p; x; y) be a triple

of the rent vector p = (p1; :::; pT ) 2 RT
+, the apartment demand vector x =

(x1; :::; xm) with xi 2
n
e0; e1; � � � ;eT

o
for all i 2M , and the apartment supply

vector y = (y1; :::; yT ) 2 ZT+.

De�nition 1 (Competitive Equilibrium). We say (p; x; y) is a competitive

equilibrium if and only if

7 See Kaneko et al. (2006) for the explanation of this cost function.
8 The marginal cost ak is interpreted as the reservation price or operating cost for

the additional one unit.
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Utility maximization under Budget Constraint: for all i 2M ,

1) Ii � pxi � 0, where pxi =
PT
k=1pk xik.

2) ui (xi; Ii � pxi) � ui (x0i; Ii � px0i) for all x0i 2
n
e0; e1; � � � ;eT

o
with Ii�px0i �

0;

Pro�t Maximization: for all k = 1; :::; T ,

pkyk � Ck(yk) � pky0k � Ck(y0k) for all y0k 2 Z+;

Balance of Total Demand and Supply:
P
i2Mxi =

PT
k=1yke

k.

The existence of a competitive equilibrium in our model is guaranteed by

the existence theorem given in Kaneko (1982) and Kaneko-Yamamoto (1986).

However, the discreteness of our model generates indeterminacy in the compet-

itive rent vector, which could be an obstacle for our comparative statics. But

we can remove this obstacle by choosing a maximal competitive rent vector,

which we will de�ne below.

We say that p is a competitive rent vector if (p; x; y) is a competitive equi-

librium for some allocation (x; y). For the purpose of comparative statics, we

choose a maximal competitive rent vector as representative of the set of all

competitive rent vectors. A competitive rent vector p is said to be maximal

if p � p0 for any competitive rent vector p0. Also, a competitive equilibrium

(p; x; y) is called a maximal competitive equilibrium if p is maximal. A maxi-

mal competitive rent vector is unique if it ever exists. Its existence in (M;N)

is discussed in Kaneko et al. (2006). 9

Here, we give an example to illustrate the housing market model described

above.

9 The proof of this theorem is given in an earlier version of Kaneko et al. (2006),

which will be sent upon request.
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Example. Let s1; s2 and s3 be the sizes of apartments with 0 < s1 < s2 < s3,

and let t1; t2; t3 and t4 be the commuting times to the CBD with 0 < t1 <

t2 < t3 < t4. Then the apartments are classi�ed into 3 � 4 = 12 categories,

each of which corresponds to a cell in Table 1. For example, the upper right

cell is a category determined by s3 and t1. The apartments of size s3 and

commuting time t1 are classi�ed into this category.

Each cell in Table 1 has two components, k and hk, which are the quality

ranking of the category and the �utility�from one unit in the k-th category,

respectively. That is, hk is the �rst term of the utility function (1). For exam-

ple, the upper right cell ranks �rst in quality among the 12 categories and has

�utility�represented by h1.

This is derived from a more basic utility function. We assume that the house-

holds have the common basic utility function U de�ned over size, time and

composite good. For example, we suppose that the basic utility function is

given as

U(s; t; c) = s� t+
p
c, (4)

where s; t and c are variables for size, time and composite good, respectively.

By calculating s � t for every (s; t) pair in Table 1, we obtain the utility

level hk from an apartment in the category k. In fact, the ordering 1; :::; 12 is

determined by the values of hk�s. Since the upper right cell is the category with

the largest size s3 and the shortest commuting time t1, it provides the highest

�utility�of housing. In a similar manner, we calculate h2; :::; h12, which give

10



the ranks h2 > � � � > h12. 10 Since hk�s depend not only on the commuting

time but also on the size, households may prefer shortening the commuting

time to having a larger size, which case is found in the ranking h3 = s3� t3 >

h4 = s2 � t1 > h5 = s3 � t4 in Table 1.

Using the numbering of the cells based on the above-mentioned ranking, we

obtain u : 
 = fe0; e1; � � � ;e12g �R+ ! R de�ned as

u
�
ek; c

�
= hk +

p
c, (5)

where hk = s � t for k = 1; : : : ; 12 and h0 is chosen so that h0 +
p
Im > h1.

Also, since
p
c is strictly concave, this utility function u

�
ek; c

�
= hk +

p
c

satis�es Assumption A.

3 The rent equation

In the housing market model (M;N), a maximal competitive rent vector is

obtained as a solution for a certain equation system, called the rent equation,

which will play the central role for our comparative statics study. To intro-

duce the rent equation, we present three propositions and several concepts

developed by Kaneko et al. (2006).

First, the following proposition gives the basis for the rent equation.

Proposition 1 (Kaneko et al. (2006)). Let (p; x; y) be any competitive equi-

librium. Then,

10Here, this example is given for illustration of the components of our theory. A

more detailed example of a treatment of the Tokyo housing market is found in

Kaneko et al. (2006), Section 3.
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(1): If k0 < k and xi = ek for some i, then pk0 > pk.

(2): If xi = ek; xi0 = ek
0
and Ii > Ii0, then k � k0.

Proposition 1 states that in any competitive equilibrium, (1) a better apart-

ment is priced higher than a worse one, and (2) a household with a higher

income rents a better (or equal) apartment.

Second, we assume that for any maximal competitive equilibrium (p; x; y),

only the apartments in the �rst f (� T ) categories are traded:

Assumption C (Marginal Category). For any maximal competitive equilib-

rium (p; x; y), there is a category f such that

yk > 0 for k = 1; :::; f and yk = 0 for k = f + 1; :::; T .

We call f the marginal category. It should be noted that Proposition 1(1)

holds even if no units in the k0-th category are rented. We assume the marginal

category f to eliminate such a case. This category divides the market into two

segments: the categories which are active in trade, 1; : : : ; f , and categories

which are inactive, f + 1; :::; T . By Assumption C and Proposition 1(1), we

have p1 > p2 > � � � > pf . Note that the maximal competitive rents are uniquely

determined even for the inactive categories k > f . The maximal rent for k > f

is at most the marginal cost ak for providing one unit in the k-th category,

but may actually be smaller than ak.

Finally, to characterize a maximal competitive equilibrium, we de�ne a cer-

tain type of household. Let (p; x; y) be a maximal competitive equilibrium.

It follows from Proposition 1(2) that households with higher (or equal) in-

comes rent better (or equal) apartments in the maximal competitive equilib-
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rium. Thus, we can assume that the households rent apartments in categories

1; : : : ; f in the order of their incomes, I1 � � � � � Im. Under this assumption,

the household that rents the last unit in each category has the lowest income

among households in the category. This household plays an important role in

characterizing the maximal competitive rent vector.

Formally, for each category k = 1; :::; f � 1, we de�ne the last household with

the lowest income in category k as:

G(k) =
kP
t=1
yt (6)

This is the number of households renting apartments in categories 1; :::; k; and

thus, G(k) is the last household in category k:We call G(k) the k-th boundary

household. The income IG(k) of household G(k) is called the k-th boundary

income.

Note that there may be multiple maximal competitive allocations, though the

maximal competitive rent vector is unique. The boundary household in each

category depends upon the choice of a maximal competitive allocation (x; y).

However, this indeterminacy is inessential because of the uniqueness of the

maximal competitive rent vector.

The rent equation is de�ned as (7) with unknowns r1; :::; rf :

hf�1 + g
�
IG(f�1) � rf�1

�
= hf + g

�
IG(f�1) � rf

�

hf�2 + g
�
IG(f�2) � rf�2

�
= hf�1 + g

�
IG(f�2) � rf�1

�
...

h1 + g
�
IG(1) � r1

�
= h2 + g

�
IG(1) � r2

�
:

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

(7)
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The rent equation states that each boundary household G(k) is indi¤erent

between renting a unit in the k-th category at rk and renting a unit in the (k+

1)-th category at rk+1. When rf is given, the �rst equation of (7) determines

rf�1(> rf ) uniquely, which is the maximal rent that the boundary household

G(f�1) pays for the unit in the (f�1)-th category. The qualitative advantage

of the (f � 1)-th over the f -th is re�ected in the di¤erence between rf�1 and

rf . One may interpret the di¤erence between rf�1 and rf as the premium

for the quality di¤erence, which is described by the following equivalent form

of the �rst equation of (7), g
�
IG(f�1) � rf�1

�
� g

�
IG(f�1) � rf

�
= hf�1 �

hf > 0. Since the utility function has income e¤ects, households with higher

incomes want a better apartment more than those with lower incomes. The

other unknowns rf�1; : : : ; r1 are determined in the same manner. We call any

solution, (r1; : : : ; rf�1; rf ), of (7) a di¤erential rent vector. Note, again, that

a di¤erential rent vector (r1; :::; rf ) is uniquely determined if the rent of the

marginal category rf is given and �xed.

The above process of determining apartment rents has a similarity to Ricardo�s

(1965) di¤erential rent theory. Therefore, we use the term �di¤erential� to

describe a solution of (7).

In a more general framework, some maximal competitive equilibrium may not

satisfy the rent equation. 11 However, Kaneko et al. (2006) gave two su¢ cient

conditions: either condition is su¢ cient for the maximal competitive rents

p1; : : : ; pf coincide with the di¤erential rents, r1; : : : ; rf . In fact, one of their

conditions is satis�ed in the present framework. Thus, in our housing market

(M;N), we have the following proposition.

11An example of this fact is given in Kaneko et al. (2006).
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Proposition 2 (Kaneko et al. (2006)). Let ((p1; : : : ; pT ); x; y) be a maximal

competitive equilibrium. Then (p1; : : : ; pf ) is a di¤erential rent vector.

Proposition 2 implies that the di¤erential rent vector (r1; : : : ; rf�1; rf ) deter-

mined by rf = pf coincides with the relevant part of the maximal competitive

rent vector, (p1; : : : ; pf�1; pf ). Here, we take pf as given, which is determined

by the maximal competitive equilibrium. For example, suppose that there are

some unoccupied units in the marginal category f . Then, due to competition,

rf is determined uniquely to be the operating cost, af . 12 Proposition 2 guar-

antees that we have the maximal competitive rents p1; : : : ; pf as the solution

of the rent equation (7) with rf = af .

4 Comparative statics with quality changes

We �rst give an outline of comparative statics in (M;N) developed by Kaneko

et al. (2006). Second, we give the main result of this paper: a comparative

statics result when a quality improvement of apartments occurs only in one

category. Then, this result is compared with another result, which gives par-

tially the same e¤ect but opposite e¤ects on the other part. Finally, we apply

the above main result to a situation where the qualities of apartments are

improved in multiple categories.

12A similar idea is found in Braid (1984), p.274.
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4.1 Basic comparative statics

In this section, we explain the basic parameter changes in comparative statics

in (M;N), and present one related proposition. Although these follow those

of Kaneko et al. (2006), we review them for completeness. Suppose that the

market (M;N) changes into (M̂; N̂) with certain changes in market parame-

ters. We make Assumptions A, B and C on both (M;N) and (M̂; N̂). We list

the possible changed parameters as well as the unchanged ones as follows:

C0: the categories 1; : : : ; T and the utility function u(�; �) remain unchanged.

C1: the households M = f1; : : : ;mg change to M̂ =
n
1̂; : : : ; m̂

o
;

C2: the incomes I1; : : : ; Im change to Î1̂; : : : ; Îm̂;

C3: the cost functions Ck change to Ĉk (k = 1; : : : ; T ); 13

C4: the marginal category f changes to f̂ ;

C5: the boundary income IG(k) changes to ÎĜ(k).

The unchanged parameters are only listed in C0, but the other parameters

listed in C1-C5 are possibly changed.

Among those parameters, the change of the k-th boundary income IG(k) to

ÎĜ(k) plays an important role in our comparative study. Especially, the income

di¤erence ÎĜ(k) � IG(k) is crucial. Note that this change may be caused by the

other parameter changes listed in C1-C4. Kaneko et al. (2006) focused the

di¤erence ÎĜ(k) � IG(k) and provided the following proposition.

Proposition 3 (Kaneko et al. (2006)). Let r = (r1; : : : ; rf ) and r̂ = (r̂1; : : : ; r̂f̂ )

be the di¤erential rent vectors in (M;N) and (M̂; N̂). Let k be a category num-

13 Since we have assumed that the landlords are identi�ed with the categories,

1; : : : ; T , the landlords remain the same, but their cost functions may change.
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ber with 1 � k � min(f; f̂)� 1. Then,

r̂k � rk � r̂k+1 � rk+1 if and only if ÎĜ(k) � IG(k) � r̂k � rk. (8)

Note that � in (8) can be replaced by �, >, < or =. Proposition 3 claims

that the comparison of the rent di¤erences at k and k+1 is reduced into that

of the boundary income di¤erence at k and the rent di¤erence at k. 14 This is

the theorem to be used for our comparative statics results.

4.2 E¤ects of quality changes on rents

Now, we are ready to present the two main theorems of the present paper.

Suppose that (M;N) changes into (M̂; N̂) with C0-C5 as described in Section

4.1. Let r = (r1; : : : ; rf ) and r̂ = (r̂1; : : : ; r̂f̂ ) be the di¤erential rent vectors

in (M;N) and (M̂; N̂). Now, for the �rst theorem, we consider the following

speci�c change from (M;N) to (M̂; N̂). Let k (� f � 1) be a category:

CS1: f̂ = f and r̂f̂ = rf ;

CS2: ÎĜ(t) = IG(t) for all t � f � 1;

CS3: ĥk > hk and ĥt = ht for all t � f � 1 with t 6= k.

Condition CS1 states that the marginal category f remains unchanged and

also its rent. Condition CS2 states that all the boundary incomes remain

unchanged. Condition CS3 states that a quality improvement of apartments

occurs only in the k-th category. Thus, the parameters, other than the quality

of apartments in category k, are �xed. It should be noted that, although hk

increases to ĥk, it is still assumed that ĥk�1 > ĥk. In Section 7, we will mention

14 Braid (1981) gave a di¤erential equation similar to (8). See his equation (6).
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a case in which this assumption is eliminated.

Under the above conditions, we have the following comparative statics result,

which will be proved in Section 6.

Theorem 1. Under CS1, CS2 and CS3, we have the following:

(i) r̂t = rt for all t = k + 1; : : : ; f � 1;

(ii) r̂k > rk;

(iii) r̂t � rt for all t = 1; : : : ; k � 1;

(iv) 0 � r̂t � rt � r̂t+1 � rt+1 for all t = 1; : : : ; k � 2.

When IG(k�1) > IG(k), (iii) and (iv) hold with strict inequalities.

Fig. 3 is a schematic representation of Theorem 1. The horizontal axis ex-

presses the ranking of categories and the vertical axis expresses apartment

rents. The solid line and the dotted line depict the di¤erential rent vectors

in (M;N) and (M̂; N̂), respectively. In Fig. 3, the assertions of Theorem 1

are: (i) for categories worse than k; the rents form one line; (ii) for category

k, the point on the solid line jumps to that on the dotted line; but (iii) for

categories better than k, the solid line moves down to the dotted line. These

two opposite e¤ects, (ii) and (iii), make the solid and dotted lines intersect.

We will comment on assertion (iv) after presenting the next theorem. An em-

phasis of Theorem 1 is the contrast of the increase in rk and the decreases in

rk�1; : : : ; r1.

The above result may look counter-intuitive in the sense that we may expect

increases in rents for categories better than k. We will argue, however, that

closer examination of the economic structure will yield a natural explanation:

it is, in fact, not counter-intuitive. Before the explanation, however, we present
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the second theorem, Theorem 2. This is a variant of a result in Kaneko et al.

(2006), which looks opposite to the �rst theorem. Theorem 2 will also facilitate

understanding of the �rst theorem.

To state Theorem 2, we keep condition CS1 but replace conditions CS2 and

CS3 by

CS2�: ÎĜ(k) > IG(k) and ÎĜ(t) = IG(t) for all t � f � 1 with t 6= k;

CS3�: ĥt = ht for all t � f � 1.

Only the boundary income of category k increases, but there are no changes

in the other boundary incomes - - CS2�, and all the qualities of apartments

remain unchanged - - CS3�. With the above-stated replacements, we have a

result opposite to Theorem 1. A sketch of a proof will be given for completeness

in Section 6.

Theorem 2. Under CS1, CS2� and CS3�, we have the following:

(i) r̂t = rt for all t = k + 1; : : : ; f � 1;

(ii) r̂k > rk;

(iii) r̂t > rt for all t = 1; : : : ; k � 1;

(iv) 0 < r̂t � rt < r̂t+1 � rt+1 for all t = 1; : : : ; k � 2.

The comparative statics conditions of Theorem 2 di¤er from those of Theorem

1 in that only the k-th boundary income increases in Theorem 2, while only

the k-th apartment quality is improved in Theorem 1. Their resulting e¤ects

are opposite, which are written in their third assertions. Thus, Fig. 4, depict-

ing Theorem 2, di¤ers from Fig. 3 in that the dotted line moves up without

intersecting the solid line.

In addition to those opposite changes in rents, each theorem has the fourth
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assertion (iv) about the decrements (or increments) of rents for categories

1; :::; k � 1. That is, the di¤erences determined by the solid and dotted lines

are diminishing in the direction from category k � 1 to better ones. Behavior

of such decrements (or increments) was discussed in Kaneko et al. (2006),

Sections 5 and 6.

4.3 Comparison of Theorems 1 and 2

Now, we consider the reason why and how we have the opposite e¤ects in The-

orems 1 and 2. Recall that in the rent equation, the k-th boundary household

G(k) is indi¤erent between the actual choice (ek; IG(k)� rk) and the reference

point (ek+1; IG(k) � rk+1). With this point in mind, we examine the di¤erence

between Theorems 1 and 2. The examination will proceed in three steps: the

rent changes for categories k + 1; : : : ; f , that for k, and those for 1; : : : ; k� 1.

The key to the two di¤erent results of Theorems 1 and 2 is an opposite move of

the utility level of the boundary householdG(k�1). For Theorem 1, the quality

improvement of the k-th apartment increases the utility level of household

G(k � 1), while for Theorem 2, the income increase of the k-th boundary

household G(k) decreases the utility level of household G(k � 1). Before this

key step, which is explained in the following Step 3, we begin by explaining

the other two steps.

Step 1: Both Theorem 1 and Theorem 2 have no parameter changes for

categories k+1; : : : ; f . Thus, the rents for these categories remain unchanged.

This step is applied to the solid lines for k + 1; : : : ; f in Fig. 3 and Fig. 4.

Step 2: Consider the k-th boundary household in the case of Theorem 1.

In (M;N), the boundary household is indi¤erent between the actual choice
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(ek; IG(k) � rk) and the reference point (ek+1; IG(k) � rk+1). In (M̂; N̂), the

k-th boundary household is still indi¤erent between the actual choice and the

reference point, but no change occurs in the reference point, since r̂k+1 = rk+1.

Thus, the k-th boundary household�s actual utility level remains unchanged

after the quality improvement (ĥk > hk), which implies a decrease in its

consumption, i.e., r̂k > rk.

In the case of Theorem 2, almost the same logic works with the change from

the quality improvement to the income increase, in which case the normality

property of the utility function is needed.

These e¤ects are illustrated by the rent increases at k in Fig. 3 and Fig. 4.

Step 3: Consider the (k � 1)-th boundary household in the case of Theorem 1.

Note that the utility level of the k-th boundary household remains unchanged

even after the quality improvement, and that the (k � 1)-th boundary house-

hold has a higher income than the k-th boundary household. 15 From the nor-

mality property of the utility function, it follows that the (k � 1)-th boundary

household prefers (êk; IG(k�1) � r̂k) in (M̂; N̂) to (ek; IG(k�1) � rk) in (M;N),

where êk denotes the improved apartment. That is, the reference point in

(M̂; N̂) gives a higher utility level to the (k � 1)-th boundary household than

the corresponding reference point in (M;N), which corresponds to the key

mentioned above.

The quality of the (k � 1)-th apartment does not change, and the (k � 1)-th

boundary household is indi¤erent between the actual choice (ek�1; IG(k�1) �

r̂k�1) and the reference point (ê
k; IG(k�1) � r̂k) in (M̂; N̂). Thus, the utility

premium from (ek�1; IG(k�1)� rk�1) to (ek�1; IG(k�1)� r̂k�1) is re�ected in an

15Here, we assume that IG(k�1) > IG(k).
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increase in consumption, i.e., IG(k�1)�r̂k�1 > IG(k�1)�rk�1. Thus, r̂k�1 < rk�1.

This is illustrated by the rent decrease at k � 1 in Fig. 3.

Now, consider the (k � 1)-th boundary household in the case of Theorem 2.

Here, the change in the reference point (ek; IG(k�1) � r̂k) to the (k � 1)-th

boundary household is only the increased rent r̂k, i.e., the lower consumption

IG(k�1) � r̂k. This implies that the utility level of the (k � 1)-th boundary

household decreases, which corresponds to the key mentioned above. Since the

(k � 1)-th boundary household�s income remains unchanged, the indi¤erence

relation between (ek�1; IG(k�1)� r̂k�1) and (ek; IG(k�1)� r̂k) implies a decrease

in consumption, i.e., IG(k�1) � r̂k�1 < IG(k�1) � rk�1. Thus, r̂k�1 > rk�1. This

is illustrated by the rent increase at k � 1 in Fig. 4.

The argument immediately above can be extended to have r̂t < rt (t =

1; :::; k � 2) in Theorem 1 and r̂t > rt (t = 1; :::; k � 2) in Theorem 2.

We have completed our explanations of Theorems 1 and 2.

Finally, we should mention certain results by Braid (1981). 16 He studied the

comparative statics in a housing market model with a continuous income dis-

tribution and a continuous quality distribution. He obtained results similar to

Theorems 1 and 2, which are discussed in his Sections 3 and 4. His second

result, when the income distribution changes only at a certain income level,

is essentially the same as Theorem 2. We should mention the di¤erence of our

Theorem 1 from his �rst result.

16 Sweeney (1974) �see particularly p.164 �and van Lierop (1982) are also related

to our approach. Sweeney (1974) treats housing qualities as discrete variables, while

van Lierop (1982) takes them as continuous variables.
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The �rst result is similar to Theorem 1 in that when the quality distribution

changes at a certain quality level, all the a¤ected rents decrease, while in

Theorem 1, all the rents other than that with a quality change decrease. 17

Since housing quality is expressed by a continuous function in Braid (1981),

a quality change should be made without breaking continuity. This is why his

result di¤ered from ours.

5 Application: multiple improvements

In Theorem 1, we assumed that an apartment quality is improved only in

one category. In this section, we show that Theorem 1 can be extended to

a case with improvements in multiple categories. We obtain this extension

by repeated applications of Theorem 1, which is shown using the example in

Section 2.

Recall the market example (M;N) of Table 1 with U(s; t; c) = s�t+
p
c. Now,

consider the change: the commuting time t3 is shortened to t̂3. Then, utility

levels h3; h7 and h11 increase to ĥ3; ĥ7 and ĥ11, respectively. Table 2 expresses

this situation, where the improved categories are indicated by shading.

The above entire change is divided into the three steps indicated in Fig. 5. The

�rst vector, (h1; :::; h12), is transformed into the second vector with the change

of h11 to ĥ11, and this second one is then transformed into the third one with

an additional change of h7 to ĥ7. Finally, the fourth vector is obtained from

the third one with the change of h3 to ĥ3. Theorem 1 is applied to each step.

17Note, however, that (i), (iii) and (iv) of Theorem 1 are similar to Braid�s results.

See FIG . 3 of Braid (1981).
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In the �rst application, r1; :::; r10 are decreased into r̂1; :::; r̂10. In the second

application, r̂1; :::; r̂6 are decreased. Finally, in the third application, we have

new rents for categories 1 and 2, which are respectively smaller than r1 and

r2. As a result, we may conclude that the rents decrease for categories 1, 2, 4,

6, 8 and 10, which are closer to the CBD than t3. 18

However, when the commuting times t2 and t3 in Table 1 are shortened si-

multaneously, the above procedure cannot be directly applied. This change

is expressed in Table 3. Here, apartments in consecutive categories, e.g., the

10-th and the 11-th, are improved together. In this case, we cannot apply

Theorem 1. In fact, we have succeeded in generalizing Theorem 1 to treat this

case, which will be done in a separate forthcoming paper.

6 Proofs of Theorem 1 and 2

Proof of Theorem 1. The categories in (M;N) are the same in (M̂; N̂)

by C0, and the number of equations in the rent equation (7) is the same for

(M̂; N̂) by CS1. Thus, the rent equations for (M;N) and (M̂; N̂) are expressed,

respectively, as:

ht + g
�
IG(t) � rt

�
= ht+1 + g

�
IG(t) � rt+1

�
for t = 1; : : : ; f � 1; (9)

ĥt + g(ÎĜ(t) � r̂t) = ĥt+1 + g(ÎĜ(t) � r̂t+1) for t = 1; : : : ; f � 1. (10)

18Note that the resulting rent changes in the 7th and 3rd categories are not de�nitely

determined. Although r7 and r3 decrease in the �rst step, the 7th rent increases in

the second step, and the 3rd rent increases in the third.
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By CS3, ĥt = ht for all t � f � 1 with t 6= k, and by CS2, ÎĜ(t) = IG(t) for all

t � f � 1. Now, by subtracting (9) from (10), we have

g
�
IG(t) � r̂t

�
� g

�
IG(t) � rt

�
= g

�
IG(t) � r̂t+1

�
� g

�
IG(t) � rt+1

�
(11)

for all t � f � 1 with t 6= k.

(i): Consider (11) with t = f � 1. Since r̂f = rf by CS1, we have

g
�
IG(f�1) � r̂f�1

�
�g

�
IG(f�1) � rf�1

�
= g

�
IG(f�1) � r̂f

�
�g

�
IG(f�1) � rf

�
= 0.

This and the strict monotonicity of g imply IG(f�1) � r̂f�1 = IG(f�1) � rf�1,

that is, r̂f�1 = rf�1. We can repeat the above argument for t = f�2; : : : ; k+1,

and we obtain r̂t = rt for all t = k + 1; : : : ; f � 1. 19

(ii): Consider the right-hand sides of (9) and (10) with t = k. Since ĥk+1 =

hk+1 by CS3, ÎĜ(k) = IG(k) by CS2 and r̂k+1 = rk+1 by (i), we have:

ĥk + g(IG(k) � r̂k) = hk + g
�
IG(k) � rk

�
. (12)

Since ĥk > hk by CS3, we have g(IG(k) � r̂k) < g
�
IG(k) � rk

�
. This and the

strict monotonicity of g imply IG(k) � r̂k < IG(k) � rk, that is, r̂k > rk.

(iii): We �rst show that r̂k�1 � rk�1. Let � = IG(k�1) � IG(k) � 0. Since

g is strictly concave, we have, from (12), ĥk + g(IG(k) � r̂k + �) � hk +

g
�
IG(k) � rk + �

�
, that is,

ĥk + g(IG(k�1) � r̂k) � hk + g
�
IG(k�1) � rk

�
. (13)

Using the rent equation (10) with t = k� 1 in (M̂; N̂) and (9) with t = k� 1

in (M;N), we obtain the following equation from (13):

ĥk�1 + g(IG(k�1) � r̂k�1) � hk�1 + g
�
IG(k�1) � rk�1

�
. (14)

19 To be exact, the induction principle must be used.
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Since ĥk�1 = hk�1 by CS3, we have g(IG(k�1) � r̂k�1) � g
�
IG(k�1) � rk�1

�
.

This and the strict monotonicity of g imply IG(k�1) � r̂k�1 � IG(k�1) � rk�1,

that is, r̂k�1 � rk�1.

Now, using (11) and r̂k�1 � rk�1; we have g
�
IG(k�2) � r̂k�2

�
�g

�
IG(k�2) � rk�2

�
= g

�
IG(k�2) � r̂k�1

�
� g

�
IG(k�2) � rk�1

�
� 0; where the strict monotonicity

of g is used in the last inequality. Thus, we have r̂k�2 � rk�2. We can repeat

this argument, and we have r̂t � rt for all t = 1; : : : ; k � 1.

(iv): By CS2 and (iii), we have ÎĜ(1)�IG(1) = 0 � r̂1�r1. Thus, by Proposition

3 (Kaneko et al. (2006)), we have 0 � r̂1 � r1 � r̂2 � r2. From this and CS2,

we have ÎĜ(2)� IG(2) = 0 � r̂2� r2. By applying Proposition 3 again, we have

0 � r̂2�r2 � r̂3�r3. Repeating this argument, we have 0 � r̂t�rt � r̂t+1�rt+1

for all t = 1; : : : ; k � 2.

When the di¤erence � = IG(k�1) � IG(k) de�ned in (iii) is strictly positive, the

subsequent inequalities all become strict.

Sketch of the proof of Theorem 2. This theorem can be proved in an

almost similar manner to the above proof of Theorem 1. The main di¤erence

is that the normality property of the utility function is used for (ii), while it

was used for (iii) in the proof of Theorem 1. Another di¤erence is that only

the boundary income IG(k) increases in this theorem, while only hk increases

in Theorem 1. This generates the opposite behavior stated in (iii). The other

parts of the proof are essentially the same.
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7 Conclusions

This paper investigated the relationship between the qualities of apartments

and their rents. The main result states that when a quality is improved in

one category of apartments, the apartment rent for the category increases

but the rents for the better categories decrease (Theorem 1). For the purpose

of comparison, we gave another comparative statics result where an income

increase occurs in one category (Theorem 2). In this case, the di¤erence is

that the rents increase for the better categories. Thus, we have shown a quite

opposite behavior in rents with certain changes in parameters, whereas we

might expect similar resulting e¤ects. Also, we discussed the di¤erence between

our main result and Braid�s (1981).

As an extension of the main result, we considered a case where qualitative

improvements occur in multiple categories. The extension was considered in a

rental housing market where categories are determined by commuting times

and apartment sizes. As a result, we obtain the implication that when some

improvement occurs in one residential area, the rents decrease in areas closer

to the CBD.

Finally, we mention one possible area for future research. For Theorem 1,

we assumed that the apartment ranking remains unchanged after a quality

improvement. This assumption excludes some important cases. For example,

suppose that a quality improvement occurs in the k-th category in (M;N)

but changes the category ranking, such as the (k � 1)-th, in the new market

(M̂; N̂). Here, we conjecture that a conclusion similar to Theorem 1 would

hold. That is, r̂t < rt for all t = 1; : : : ; k � 2 would hold for the above case.
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Although we have not succeeded in proving this conjecture, we have obtained

many numerical simulation results in which the conjecture holds. The above

problem and simulation results will be discussed in a separate paper.
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Fig. 3. Quality is improved only in the k-th category.
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Fig. 4. Boundary income increases only in the k-th category.

(h1; :::; h12)
1! (h1; :::; h10; ĥ11; h12)

2! (h1; :::; h6; ĥ7; h8; h9; h10; ĥ11; h12)

3! (h1; h2; ĥ3; h4; h5; h6; ĥ7; h8; h9; h10; ĥ11; h12)

Fig. 5. Multiple improvements.
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Table 1
Categories of apartments.

time�size s1 s2 s3

t1 8 h8 4 h4 1 h1

t2 10 h10 6 h6 2 h2

t3 11 h11 7 h7 3 h3

t4 12 h12 9 h9 5 h5

legend

k hk

Table 2
h11, h7 and h3 increase.

time�size s1 s2 s3

t1 8 h8 4 h4 1 h1

t2 10 h10 6 h6 2 h2

t3 ! t̂3 11 h11 ! ĥ11 7 h7 ! ĥ7 3 h3 ! ĥ3

t4 12 h12 9 h9 5 h5

legend

k hk

Table 3
Improvements occur in consecutive categories.

time�size s1 s2 s3

t1 8 h8 4 h4 1 h1

t2 ! t̂2 10 h10 ! ĥ10 6 h6 ! ĥ6 2 h2 ! ĥ2

t3 ! t̂3 11 h11 ! ĥ11 7 h7 ! ĥ7 3 h3 ! ĥ3

t4 12 h12 9 h9 5 h5

legend

k hk
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