

第1回つくば3Eフォーラム 筑波大学大学会館ホール(3F) 2007年12月16日 (独)物質・材料研究機構 片田康行

- ・研究の背景とねらい
- ・高窒素ステンレス鋼 (HNS)の開発 (N/MS)
 - * 加EESR法によるHNSの創製
 - * HNSの機械的性質/耐食性
 - * ニッケルフリーHNS
- ・固体高分子型燃料電池用セパレータへの適用
- ・まとめ

Operated by BChydro

VIS

Vancouver Fuel Cell Vehicle

Program

各種燃料電池の構成と特徴

燃料電池 の種類	アルカリ 型 (AFC)	固体高 分子型 (PEFC)	リン酸 型 (PAFC)	溶融炭酸 塩型 (MCFC)	固体酸化 物型 (SOFC)
作動温度 (℃)	4	——低温型——		◀─────高温型	<u>ข</u> ่►
	室温~230	室温~100	180 ~ 205	630 ~ 670	~ 1000
発電出力	~ 10kW	1kW ~100kW	50 ∼200kW	300kW ∼MW	100kW ~200kW
用途	宇宙用	携帯電話 自動車	ビル用発電	大規模発電	大規模発電

固体高分子型燃料電池の模式図

グラファイトと金属の比較

セパレータ特性/素材	グラファイト系	金属系
耐食性	Ø	\bigtriangleup
接触抵抗	Ø	\bigtriangleup
強度	Δ	Ø
ガス透過性	Δ	Ø
大量生産性	Δ	Ø
コスト	Δ	Ø

◎:優れている

△:やや問題あり

スタック(積層)されたセルの模式図

PEMスタックのコスト

「固体高分子形燃料電池セパレータ量産化技術開発」、NEDO、平成13年度成果報告書、 住友金属工業株式会社 (2001)

耐海水ステンレス鋼開発の研究目標

NIMSで開発された加圧ESR溶解装置

窒素ガス加圧式ESR装置の模式図

オーステナイト系高窒素ステンレス鋼

HNSの機械的性質

HNSの局部腐食特性

Fig.3. Relationship between pitting corrosion resistance equivalent (%Cr+3*%Mo+10*%N) and pitting potential in artificial seawater (45°C).

Fig.5. Relationship between crevice corrosion resistance equivalent (%Cr+3*%Mo+10*%N) and crevice corrosion potential in artificial seawater (35° C).

As received

After rinsing

Enlargement

Initiation of crevice corrosion

HNS (23Cr-4Ni-2Mo-1N)

Duplex stainless steel (25Cr-7Ni-3Mo-0.15N)

No corrosion

No crevice corrosion was observed so far in the filed test

N添加による耐食性向上の発現機構

Passivation film

(Production of Fe-, Cr-hydroxide) $Fe^{2+} + 2OH^{-} \rightarrow FeOOH + H^{+} + e^{-}$ $Cr^{2+} + 2OH^{-} \rightarrow CrOOH + H^{+} + e^{-}$ (Production of Fe, Cr-oxide) $Fe_{2}O_{3}, Cr_{2}O_{3}$ (Production of anmonia) $N + 4H^{+} + 3e^{-} \rightarrow NH_{4}^{+}$ (Increase in pH value by ammonia)

Fig.12 Qualitative model of passive film of HNS

After polarization, N is enriched in the inner layer of passivation film, and formed NH_4^+ resulting in increasing pH value in the corroded area.

 \rightarrow Crevice corrosion suppressed

Examples of Ni Allergy (via internet survey)

Due to jeans stud

Due to rings

Due to watch strap

Cashier handling coins

Pompholyx

Patch test to Ni sulphate

ニッケルフリー高窒素ステンレス鋼の応用展開

非磁性・ニッケルフリーHNS \rightarrow インプラント材、歯科材料、 手術用/手術室用機器

時計バンド

装飾品

発電条件・MEA・HNSセパレータ

- セル温度: 348 K
- アノードガス:純水素 (利用率70%, 加湿温度 343 K)
- カソードガス:空気 (利用率 40 %, 加湿温度 343 K)
- MEA:市販品 (50×50 mm²)
- 締め付け圧:150 N cm⁻²
- 電流密度: 0.5 A cm⁻²

MEA (50mmx50mm)

HNSセパレータ (50mmx50mm)

浅石他:材料と環境2007講演集(2007)

発電特性の比較

(a)HNS (B)SUS304 1000h発電後のi-V特性の比較(SUS304で劣化を確認)

まとめ

- 燃料電池用セパレータ市場では、低コスト・大 量生産が可能な金属セパレータの出現が期待 されている。.
- NIMSで開発された低ニッケル型オーステナイ
 ト系ステンレス鋼製セパレータは、安定した発 電特性を示した。.
- ・ 低 Ni γ系高窒素鋼 (HNS) は金属用セパレー
 タとして期待されるが、コストや加工性について
 さらなる検討が必要である。