Epitaxial growth of Fe₃Si/CaF₂/Fe₃Si magnetic tunnel junction structures on CaF₂/Si(111) by molecular beam epitaxy

Ken'ichi Kobayashi^a, Takashi Suemasu^a, Noriyuki Kuwano^b, Daisuke Hara^b and Hiroyuki Akinaga^c

^aInstitute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan ^bDepartment of Applied Science for Electronics and Materials, Kyushu University, 6-1 Kasuga, Fukuoka 816-8580, Japan

^cNanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan

The Fe₃Si(24 nm)/CaF₂(2 nm)/Fe₃Si(12 nm) magnetic tunnel junction (MTJ) structures were grown epitaxially on CaF₂/Si(111) by molecular beam epitaxy (MBE). The 12-nm-thick Fe₃Si underlayer was grown epitaxially on CaF₂/Si(111) at approximately 400°C; however, the surface of the Fe₃Si film was very rough, and thus a lot of pinholes are considered to exist in the 2-nm-thick CaF₂ barrier layer. The average roughness (Ra) of the CaF₂ barrier layer was 7.8 nm. This problem was overcome by low temperature deposition of Fe and Si at 80°C on CaF₂/Si(111), followed by

annealing at 250°C for 30 min to form the Fe₃Si layer. The Ra roughness was significantly reduced down to approximately 0.26 nm. A hysteresis loop with coercive field H_c of approximately 25 Oe was obtained in the magnetic field dependence of Kerr rotation at room temperature (RT).

KEYWORDS: ferromagnetism, Fe₃Si, CaF₂, Si

Corresponding author: Prof. T. Suemasu, Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan.

TEL(FAX): +81-29-853-5111, Email: suemasu@bk.tsukuba.ac.jp

1. Introduction

In recent years, magnetic materials have been developed to be used in magnetic tunnel junctions (MTJs). They consist of two ferromagnetic electrodes separated by a barrier layer, and show the tunnel magnetoresistance (TMR) effect [1,2]. This phenomenon has been applied to magnetoresistive random access memory (MRAM). Since an MRAM has been proposed as a universal memory [3], in which not only high-speed operation in a static random-access memory (SRAM) but also high integrity in a dynamic random-access memory (DRAM) can be expected. In order to achieve Gb-scale MRAM, TMR ratios exceeding 150% and higher output voltages (>190 mV) are required [4]. However, the TMR ratio of current MTJs with an amorphous barrier layer is approaching its theoretical limit. One way to overcome these difficulties is to use fully epitaxial MTJs together with highly spin-polarized ferromagnetic electrodes. We think that ferromagnetic Fe₃Si is a good candidate for such a material. Fe₃Si is ferromagnetic up to 530-570°C [5-7], and it possesses two distinct Fe sites with magnetic moments $\mu_{Fe}^{I}=2.2 \ \mu_{B}/atom$ and $\mu_{Fe}^{II}=1.35 \ \mu_{B}/atom$, where μ_B is the Bohr magneton. Thus, Fe₃Si can be regarded as a Heusler alloy $Fe_{2}^{II}Fe_{2}^{I}Fe_{3}^{I}Si$, (DO₃ type) [8], and therefore a candidate for being half-metallic [9]. Fe₃Si has a lattice parameter of 0.564 nm, which is nearly lattice-matched to Si. Very recently,

the epitaxial growth of Fe₃Si on Si(111) was reported [10]. However, it is difficult to prevent the formation of interfacial compounds like FeSi due to the diffusion of Si atoms from the substrate into the grown films [11], which is unfavorable for large TMR ratios. To avoid this problem, we inserted CaF₂ layers between Fe₃Si and Si substrates. CaF₂ is known to grow epitaxially on Si(111) substrates at temperatures higher than 600°C [12-14]. We have realized the epitaxial growth of Fe₃Si on CaF₂/Si(111) by molecular beam epitaxy (MBE) [11,15].

The purpose of this investigation was to form $Fe_3Si/CaF_2/Fe_3Si$ TMR structures epitaxially on $CaF_2/Si(111)$ by MBE. Surface roughness and magnetic properties of the grown layers were also investigated.

2. Experimental

An ion-pumped MBE system equipped with electron-beam evaporation sources for Fe and Si was used. CaF_2 was evaporated by a high-temperature Knudsen cell. The Fe₃Si(24 nm)/CaF₂(2 nm)/Fe₃Si(12 nm) TMR structures were epitaxially grown on CaF₂/Si(111) by MBE as follows: first, a 50-nm-thick Si buffer layer was grown at 450°C on Si(111) substrates. Then, wafers were annealed at 1000°C for 30 min to improve the crystal quality. Next, 8-nm-thick CaF₂ was grown epitaxially on Si(111) at 600°C. Then, Si and Fe were co-evaporated at 400°C to form a 12-nm-thick Fe₃Si first layer, followed by a 2-nm-thick CaF₂ barrier layer grown at 600°C. Finally, a 24-nm-thick Fe₃Si 2nd layer was grown in the same manner. This sample is denoted as sample A. For comparison, the CaF₂/Fe₃Si/CaF₂ structure was grown at a low temperature as follows: after the growth of a 50-nm-thick Si buffer layer, 8-nm-thick CaF₂ was grown epitaxially on Si(111) at 600°C. Then, Si and Fe were co-evaporated at a low temperature of 80°C, and then annealed at 250°C for 30 min to form 20-nm-thick Fe₃Si. Finally, 2-nm-thick CaF₂ was grown at 280°C. This sample is denoted as sample B. The deposition rates of Si and Fe were kept constant at 4.0 and 2.2 nm/min, respectively. They were determined using the theoretical densities of Fe and Si to satisfy stoichiometry in Fe₃Si.

The crystalline quality of the grown films was characterized by reflection high-energy electron diffraction (RHEED) and θ -2 θ X-ray diffraction (XRD). RHEED patterns were observed along the [1-10] azimuth of the Si. The surface morphology was investigated using atomic force microscopy (AFM). Magneto-optical Kerr effect (MOKE) was measured to obtain the hysteresis loop of the Kerr rotation using a 632.8 nm He–Ne laser with the magnetic field up to 1500 Oe in the film plane along the [1-10] direction of Fe₃Si.

3. Results and discussion

3.1 High-temperature growth of Fe₃Si

Figure 1 shows RHEED patterns of each stage of sample A. Figure 1(a) was taken after the thermal cleaning of the substrate. Figures 1(b-e) show RHEED patterns of the 8-nm-thick CaF₂ first layer, the 12-nm-thick Fe₃Si first layer, the 2-nm-thick CaF₂ barrier layer and the 24-nm-thick Fe₃Si second layer, respectively. Streaky RHEED pattern was observed in every stage. These results indicate that the Fe₃Si/CaF₂/Fe₃Si MTJ structure was epitaxially grown on CaF₂/Si(111), although small amount of FeSi was included as shown in the θ -2 θ XRD pattern of Fig. 2. Since the growth temperature of the CaF₂ second layer is much higher than 400°C, it is considered to be difficult to prevent formation of FeSi as shown in our previous paper [11]. As shown in Fig. 3, a hysteresis loop was observed at RT in the magnetic field dependence of Kerr rotation. However, a step-like hysteresis loop, which exhibits the difference in coercive field H_c between the two ferromagnetic Fe₃Si layers, was not observed. This means that the two layers are ferromagnetically coupled. Figure 4 shows the $2 \times 2 - \mu m^2$ -area AFM top view and cross-sectional profile of sample A. It was found that the surface of sample A was very rough; the average roughness Ra was 7.8 nm. This roughness is attributed to the rough surface of the Fe₃Si first layer as shown in Fig. 5. Figure 5 shows a typical example of the 2×2 -µm²-area AFM top view and cross-sectional profile taken after the growth of the 12-nm-thick Fe₃Si first layer in sample A. The Ra roughness already reaches 2.9 nm at this stage. We therefore speculate that there exist lots of pinholes in the 2-nm-thick CaF₂ barrier layer through which the two ferromagnetic Fe₃Si layers may contact. Thus, the formation of an Fe₃Si first layer with atomically flat surface is mandatory.

3.2 Low-temperature growth of Fe₃Si

In order to obtain Fe₃Si films with flat surface, we attempted low-temperature formation of Fe₃Si. Figure 6 shows RHEED patterns of each stage of sample B. Fig. 6(a) was taken after the thermal cleaning of the substrate. Fig. 6(b-e) are RHEED patterns taken after the growth of the 8-nm-thick CaF₂ first layer, after codeposition of Fe and Si at 80°C, after the subsequent annealing at 250°C for 30 min, and after the growth of the 2-nm-thick CaF₂ second layer at 280°C, respectively. As shown in Fig. 6(c), just after the codeposition of Si and Fe at 80°C, spotty RHEED pattern was observed, meaning crystalline Fe₃Si was formed even at such a low temperature. Because of the low-temperature, the surface migration of deposited Fe and Si atoms was limited, thus resulting in the spotty RHEED pattern. This spotty pattern changed into streaky after annealing at 250°C as shown in Fig. 6(d), meaning that the rough surface was flattened. After the growth of the CaF₂ second layer at 280°C, a streaky pattern was also observed as shown in Fig. 6(e); however, it seems spotty and diffused compared to the RHEED pattern of the 2-nm-thick CaF₂ layer grown at 600°C shown in Fig. 1(d). This was caused by the low-temperature formation of the CaF₂ layer. Fig. 7 shows the $2 \times 2 \mu m^2$ -area AFM top view and cross-sectional profile of sample B. We should note that sample B has a very smooth surface with Ra roughness=0.26 nm. The difference in the surface morphology between samples A and B is attributed to the difference in the growth temperature of the Fe₃Si first layer. A hysteresis loop is clearly seen in the magnetic field dependence of Kerr rotation as shown in Fig. 8. The coercive field H_c was approximately 25 Oe. By forming another Fe₃Si layer epitaxially on sample B, fully epitaxial MTJs together with highly spin-polarized half-metallic ferromagnetic electrodes will be obtained in the near future.

4. Conclusion

We have realized the epitaxial growth of $Fe_3Si(24 \text{ nm})/CaF_2(2 \text{ nm})/Fe_3Si(12 \text{ nm})$ MTJ structures on $CaF_2/Si(111)$ by MBE. However, the Ra roughness of the surface is approximately 7.8 nm. The rough surface was attributed to the surface

roughness of the Fe₃Si first layer (Ra=2.9 nm). In order to overcome this problem, Fe₃Si was formed by low-temperature codeposition of Fe and Si at 80°C, followed by 250°C annealing for 30 min. The surface morphology was greatly improved and the Ra roughness was deduced down to approximately 0.26 nm.

Acknowledgements

This work was supported in parts from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

References

- [1] T. Miyazaki, N. Tezuka, J. Magn. Magn. Mater. 139 (1995) L231.
- [2] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74 (1995) 3273.
- [3] R. E. Fontana, S. R. Hetzler, J. Appl. Phys. 99 (2006) 08N902.
- [4] S. Yuasa, A. Fukushima, T. Nagahama, K. Ando, Y. Suzuki, Jpn. J. Appl. Phys., Part 2 43 (2004) L588.
- [5] A. Ôsawa, T. Murata, Nippon Kinzoku Gakkai-Shi 4 (1940) 228.
- [6] M. Hong, H. S. Chen, J. Kwo, A. R. Kortan, J. P. Mannaerts, B. E. Weir, L. C. Feldman, J. Cryst. Growth 111 (1991) 984.
- [7] J. Waliszewski, L. Dobrzyński, A. Malinowski, D. Satuła, K. Szymański, W. Prandl, Th. Brückel, O. Schärpf, J. Magn. Magn. Mater. 132 (1994) 349.
- [8] W. A. Hines, A. H. Menotti, J. I. Budnick, T. J. Burch, T. Litrenta, V. Niculescu, K. Raj, Phys. Rev. B 13 (1976) 4060.
- [9] R. A. de Groot, F. M. Mueller, P. C. Van Engen, K. H. Buschow, Phys. Rev. Lett. 50 (1983) 2024.
- [10] T. Sadoh, H. Takeuchi, K. Ueda, A. Kenjo, M. Miyao, Jpn. J. Appl. Phys., Part 1 45 (2006) 3598.

- [11] T. Sunohara, K. Kobayashi, M. Umada, H. Yanagihara, E. Kita, H. Akinaga, T. Suemasu, Jpn. J. Appl. Phys., Part 2 44 (2005) L715.
- [12] H. Ishirwara, T. Asano, Appl. Phys. Lett. 40 (1982) 66.
- [13] R.W. Fathauer, L.J. Schowater, Appl. Phys. Lett. 45 (1984) 519.
- [14] C. A. Lucas, D. Loretto, G. C. L. Wong, Phys. Rev. B 50 (1994) 14340.
- [15] K. Kobayashi, T. Sunohara, M. Umada, H. Yanagihara, E. Kita, T. Suemasu, Thin Solid Films 508 (2006) 78.

Figure captions

Figure 1 RHEED patterns of each stage of sample A. (a) was taken after the thermal cleaning of the substrate. (b), (c), (d) and (e) show RHEED patterns of the 8-nm-thick CaF_2 first layer, the 12-nm-thick Fe_3Si first layer, the 2-nm-thick CaF_2 barrier layer and the 24-nm-thick Fe_3Si second layer.

Figure 2 θ -2 θ XRD pattern of sample A.

Figure 3 Magnetic field dependence of Kerr rotation obtained at RT for sample A in longitudinal geometry.

Figure 4 AFM top view and cross-sectional profile of sample A.

Figure 5 AFM top view and cross-sectional profile of the 12-nm-thick Fe₃Si first layer in sample A.

Figure 6 RHEED patterns of each stage of sample B. (a) was taken after thermal cleaning of the substrate. (b), (c), (d) and (e) are RHEED patterns taken after the growth of the 8-nm-thick CaF_2 first layer, after codeposition of Fe and Si at 80°C, after annealing at 250°C for 30min, and after the growth of the 2-nm-thick CaF_2 second layer at 280°C, respectively.

Figure 7 AFM top view and cross-sectional profile of sample B.

Figure 8 Magnetic field dependence of Kerr rotation obtained for sample B at RT.

Fig. 1 Kobayashi et al.

Fig. 2 Kobayashi et al.

Fig. 3 Kobayashi et al.

Fig. 4 Kobayashi et al.

Fig. 5 Kobayashi et al.

Fig. 6 Kobayashi et al.

Fig. 7 Kobayashi et al.

Fig. 8 Kobayashi et al.