Growth and characterization of group-III impurity-doped semiconducting BaSi₂ films grown by molecular beam epitaxy

M. Kobayashi^a, K. Morita^a and T. Suemasu^{a,b}

^aInstitute of Applied Physics, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8573, Japan

^bPRESTO, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan

Ga- or In-doped BaSi₂ films were grown on Si(111) by molecular beam epitaxy (MBE). The Ga-doped BaSi₂ showed *n*-type conductivity. The electron concentration and resistivity of the Ga-doped BaSi₂ depended on the Ga temperature; however, the electron concentration and resistivity could not be controlled properly. In contrast, the In-doped BaSi₂ showed *p*-type conductivity and its hole concentration was controlled in the range between 10^{16} and 10^{17} cm⁻³ at RT.

Keywords: BaSi₂, molecular beam epitaxy

Corresponding author: Prof. T.Suemasu, Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan.

Tel (Fax): +81-29-853-5111; Email: suemasu@bk.tsukuba.ac.jp

1. Introduction

Today, single crystal and polycrystalline Si predominate in solar cell materials. However, the band gap, E_g , of Si is as small as 1.1 eV at room temperature (RT). This value is approximately 0.3 eV smaller than the ideal band gap (~1.4 eV) for solar cells, resulting in low photoelectric conversion efficiency [1]. In addition, at least 200-µm-thick Si is required to produce crystalline Si solar cells due to its small optical absorption coefficient α . Therefore, new Si-based materials are required for high-efficiency thin-film solar cells. Semiconducting BaSi₂ is considered to be promising as such a material. BaSi₂ is an indirect band-gap semiconductor [2], stable at RT and atmospheric pressure [3], and is a better match for the Si(111) face than Si(001) with a lattice mismatch of less than 1.5% [4]. We have developed an epitaxial growth technique for BaSi2 and Ba1-xSrxSi2 on Si(111) substrates by molecular beam epitaxy (MBE) using a BaSi₂ template [5-7]. The E_g value of BaSi₂ is approximately 1.3 eV [2, 8-10], and α for this material reaches 10⁵ cm⁻¹ at 1.5 eV [2], which is approximately two orders of magnitude higher than that of Si. Furthermore, the $E_{\rm g}$ value can be increased up to approximately 1.4 eV, matching the solar spectrum, by replacing half of the Ba atoms in BaSi₂ with isoelectric Sr atoms [11]. Thus, BaSi₂ is considered to be a good candidate for high-efficiency thin-film solar cells. A p-n junction is a basic structure of solar cells, wherein photo-excited electrons and holes are separated by the electric field around the p-n junction. Therefore, we need to be able to control the conductivity of BaSi₂.

However, there have been no reports thus far on impurity doping into BaSi₂ for controlling its conductivity.

The purpose of this study is to form group-III impurity-doped BaSi₂ films by MBE and to evaluate their electrical properties. We chose Ga and In as the group-III elements for doping.

2. Experimental

An ion-pumped MBE system equipped with standard Knudsen cells for Ba, Ga and In, and an electron-beam evaporation source for Si was used for the epitaxial growth. The deposition rates of these materials were controlled using a quartz crystal monitor. For electrical measurements, high-resistivity floating-zone *p*-Si(111) (ρ =1000-6000 Ω ·cm) substrates were used. After cleaning the Si(111) substrate at 850°C for 30 min in ultrahigh vacuum (UHV), a well-developed 7×7 reflection high-energy electron diffraction (RHEED) pattern was confirmed. RHEED patterns were observed along the [1-10] azimuth of the Si(111) substrate.

MBE growth of Ga- or In-doped BaSi₂ films was carried out as follows. First, a 20-nm-thick BaSi₂ epitaxial film was grown on Si(111) at 550°C by reactive deposition epitaxy (RDE) and used as a template for BaSi₂ overlayers. Next, Ba, Ga (or In) and Si were co-evaporated on the BaSi₂ template at 600°C to form Ga- (or In-) doped BaSi₂ by MBE. The thickness of the grown layers including the template was approximately 250 nm. Details of MBE growth of BaSi₂ have already been reported in our previous papers [5-7]. The ratio of Ga vapor pressure to that of Ba (Ga/Ba ratio) was varied from approximately 1/1000 to 1/100 by changing the temperature of the Ga, T_{Ga} . The ratio of In vapor pressure to that of Ba (In/Ba ratio) was varied from approximately 1/1000 to 1/10 by changing the temperature of In, T_{In} .

The crystal quality of the grown layers was characterized by X-ray diffraction (XRD) measurements. The electrical properties were characterized by Hall measurements using the van der Pauw method. The applied magnetic field was 0.2 T normal to the sample surface.

3. Results and discussion

3.1 Ga-doped BaSi₂

Figure 1 shows the θ -2 θ XRD patterns for undoped BaSi₂ and Ga-doped BaSi₂. Diffraction peaks of [100]-oriented BaSi₂ are observed for the undoped BaSi₂, showing that BaSi₂ was grown epitaxially. However, by increasing the Ga temperature, the [100]-oriented peaks exhibit a decrease in intensity, and several diffraction peaks other than those of [100]-oriented BaSi₂ begin to appear. These results show that Ga doping deteriorated the crystallinity of the grown layers, and polycrystalline BaSi₂ was formed.

Undoped $BaSi_2$ showed *n*-type conductivity. However, it was often difficult to obtain steady Hall voltages on the undoped $BaSi_2$ at RT because it was often difficult to make ohmic

contacts due to its high resistivity. On the other hand, ohmic contacts were easily formed on Ga-doped BaSi₂. All the Ga-doped BaSi₂ specimens showed *n*-type conductivity in this work. This indicates that some of the Ba atoms in the BaSi₂ lattice structure were replaced by Ga atoms, thereby generating electrons. Figure 2 shows the T_{Ga} dependence of resistivity ρ and electron concentration n. For Ga-doped BaSi₂ prepared with $T_{Ga} > 800^{\circ}$ C, the values of n and ρ are on the order of 10^{20} cm⁻³ and several m Ω ·cm, respectively. They do not show distinct dependence on T_{Ga} . In contrast, the *n* and ρ values changed drastically for the Ga-doped BaSi₂ formed with $T_{\text{Ga}} < 800^{\circ}\text{C}$. They are on the order of 10^{15} cm^{-3} and several Ω ·cm, respectively, and also do not show distinct dependence on T_{Ga} . The Ga/Ba ratio of these samples was approximately 1/1000. Thus, we suppose that most of the doped Ga atoms were not activated. The origin of this abrupt step-like change is not clear at present and is under investigation. We have to note that the values of *n* and ρ , obtained for Ga-doped BaSi₂ formed with $T_{\text{Ga}} < 800^{\circ}\text{C}$, include some amount of errors. Assuming that a built-in potential at the *n*-BaSi₂/*p*-Si interface is 1 V and a dielectric constant of BaSi₂ is 12, a depletion width in the *n*-BaSi₂ is estimated to be approximately 0.1 μ m when the *n* values come to the order of 10¹⁵ cm⁻³. This value of 0.1 μ m is comparable to the grown thickness of the *n*-BaSi₂. In order to obtain reliable *n* and ρ values, at least 1-µm-thick *n*-BaSi₂ is required.

Figure 3 shows the temperature dependence of the electron concentration n in Ga-doped BaSi₂ prepared with T_{Ga} =700°C. The electron concentration decreased with

decreasing temperature. This temperature dependence is typical for *n*-type semiconductors. The activation energy E_D was derived to be approximately 0.12 eV, assuming that the electron concentration obeys the following equation:

$$n(T) \propto \exp(-\frac{E_D}{2kT}),$$

where *k* is the Boltzmann constant and *T* is the absolute temperature. The electron mobility μ is approximately 300 cm²/V·s at RT, and reaches a maximum value of 1800 cm²/V·s at 200 K.

Figure 4 shows the temperature dependence of the resistivity ρ for the two samples, that is, the Ga-doped BaSi₂ prepared with T_{Ga} of 700°C and 800°C. For the sample prepared with T_{Ga} =700°C, ρ increases with decreasing temperature. This temperature dependence is typical in semiconductors. In contrast, ρ is approximately 0.002 Ω ·cm at RT and decreases slightly with decreasing temperature for the sample prepared with T_{Ga} =800°C, suggesting that this Ga-doped BaSi₂ is almost degenerated. On the basis of these results, it can be stated that it is difficult to control the electron concentration in BaSi₂ by doping Ga. Thus, we conclude that Ga is not suitable as an *n*-type dopant for BaSi₂.

3.2 In-doped BaSi₂

Next, we selected In as another group-III impurity atom and attempted to use it to dope BaSi₂. Figure 5 shows the θ -2 θ XRD patterns for undoped BaSi₂ and In-doped BaSi₂. In contrast to the results obtained for Ga-doped BaSi₂, the diffraction peaks of [100]-oriented BaSi₂ are dominant over the whole range of the In/Ba ratios in this work, although weak

diffraction of the (310) plane begins to appear for samples formed with $T_{\text{In}} > 700^{\circ}\text{C}$.

Hall measurements were performed on the In-doped BaSi₂. All the In-doped BaSi₂ showed *p*-type conductivity. This indicates that some of the Si atoms in the BaSi₂ lattice structure were replaced by In atoms thereby generating holes. Figure 6 shows the T_{In} dependence of the hole concentration *p* measured at RT. The different data points indicate different measurements. The *p* value tends to increase with increasing T_{In} in the range of 550° $\leq T_{In} \leq 650$ °C, meaning that epitaxial growth of *p*-type BaSi₂ was realized for the first time. At higher T_{In} , the *p* value almost saturates or scatters. We therefore assume that most of the In atoms doped in BaSi₂ were not activated in the heavily In-doped BaSi₂. Further studies are necessary in order to investigate whether the hole concentration can be controlled to within several orders of magnitude in BaSi₂ by doping In.

4. Conclusion

Ga- or In-doped BaSi₂ films were grown on Si(111) by MBE, and their electrical properties were investigated. Ga-doped BaSi₂ shows *n*-type conductivity. However, with increasing concentration of Ga atoms doped in BaSi₂, the crystalline quality of the films deteriorated. The electron density was on the order of 10^{15} cm⁻³ or 10^{20} cm⁻³, and thus was not controlled properly by doping Ga. On the other hand, In-doped BaSi₂ unexpectedly showed *p*-type conductivity. The hole concentration was controlled in the range between 10^{16} and 10^{17} cm⁻³ at RT.

Acknowledgements

This work was partially supported by Grants-in-Aid for Scientific Research (B) (18360005) and Exploratory Research (18656093) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, PRESTO of JST and the TEPCO Research Foundation.

References

- [1] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, New York, 1981.
- [2] K. Morita, Y. Inomata, T. Suemasu, Thin Solid Films 508 (2006) 78.
- [3] M. Imai, T. Hirano, Phys. Rev. B 58 (1998) 11922.
- [4] R. A. Mackee, F. J. Walker, J. R. Conner, R. Raj, Appl. Phy. Lett. 63 (1993) 2818.
- [5] Y. Inomata, T. Nakamura, T. Suemasu, Jpn. J. Appl. Phys., Part 1 43 (2004) 4155.
- [6] Y. Inomata, T. Nakamura, T.Suemasu, F. Hasegawa, Jpn. J. Appl. Phys., Part 2 43 (2004) L478.
- [7] Y. Inomata, T. Suemasu, T. Izawa, F. Hasegawa, Jpn. J. Appl. Phys., Part 2 43 (2004) L771.
- [8] J. Evers, A. Weiss, Mater. Res. Bull. 9 (1974) 549.
- [9] K. Ojima, M, Yoshimura, K. Ueda, Jpn. J. Appl. Phys., Part 1 41 (2002) 4965.
- [10] T. Nakamura, T. Suemasu, K. Takakura, F. Hasegawa, Appl. Phys. Lett. 81 (2002) 1032.
- [11] K. Morita, Y. Inomata, T. Suemasu, Jpn. J. Appl. Phys., Part 2 45 (2006) L390.

Figure captions

Figure 1 θ -2 θ XRD patterns for undoped BaSi₂ and Ga-doped BaSi₂. The Ga temperature was varied from 700 to 850°C.

Figure 2 T_{Ga} dependence of resistivity ρ and electron concentration *n* in Ga-doped BaSi₂ measured at RT.

Figure 3 Temperature dependence of electron concentration n in Ga-doped BaSi₂ prepared at T_{Ga} =700°C.

Figure 4 Temperature dependence of resistivity ρ of Ga-doped BaSi₂ formed at T_{Ga} =700 and 800°C.

Figure 5 θ -2 θ XRD patterns for undoped BaSi₂ and In-doped BaSi₂. T_{In} was varied from 550 to 750°C.

Figure 6 Dependence of hole concentration p in In-doped BaSi₂ on T_{In} measured at RT.

Figure 1 Kobayashi et al.

Figure 2 Kobayashi et al.

Figure 3 Kobayashi et al.

Figure 4 Kobayashi et al.

Figure 5 Kobayashi et al.

Figure 6 Kobayashi et al.