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1. Introduction 

Most solar cells currently produced are Si based. However, the band gap, Eg, of Si is 

as small as 1.1 eV at room temperature (RT). This value is approximately 0.3 eV smaller than 

the ideal band gap (~1.4 eV) that matches the solar spectrum [1]. This small Eg value for Si 

results in low photoelectric conversion efficiency of Si solar cells. In addition, approximately 

200-μm-thick Si is required to form crystalline Si solar cells due to its small optical 

absorption coefficient α. Thus, new Si-based materials for high-efficiency thin-film solar cells 

are needed. Semiconducting orthorhombic barium disilicide (BaSi2) is thought to be a good 

candidate for such a material.  

The Eg value of BaSi2 has been previously ascertained from the temperature 

dependence of resistivity and diffuse reflectance spectra in bulk BaSi2 [2,3] and from scanning 

tunneling spectroscopy results of a few-monolayer-thick BaSi2 films on Si [4], to be 

approximately 1.1−1.3 eV at RT. The optical absorption spectra of polycrystalline BaSi2 films 

on transparent fused silica substrates show that its indirect absorption edge Eedge is 

approximately 1.3 eV. In addition, α reaches 105 cm-1 at 1.5 eV [5], which is approximately 

two orders of magnitude higher than the value for Si. This large α is thought to come from the 

contribution of the Ba 5d state to both the conduction and valence bands in BaSi2 [6]. From 

the viewpoint of application to solar cells, it is desirable to increase the band gap to 1.4 eV by 

applying band-gap engineering to BaSi2, that is, by replacing some of the Ba atoms with 
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isoelectric alkaline-earth metal atoms. The formation of Ba1-xSrxSi2 bulk itself has already 

been reported [7]. However, there were no descriptions of its optical properties. We have 

realized epitaxial growth of BaSi2 and Ba1-xSrxSi2 on Si(111) by molecular beam epitaxy 

(MBE) [8-11]. X-ray diffraction (XRD) measurements revealed that the a-axis lattice constant 

of Ba1-xSrxSi2 decreases linearly with increasing Sr composition x [10]. Very recently, we 

reported that the indirect optical absorption edge Eedge in Ba1-xSrxSi2 increases almost linearly 

with increasing Sr composition x when 0≤x≤0.5 [12].  

The purpose of this study is to investigate the details of the effect of Sr addition on 

crystallinity and optical absorption properties of Ba1-xSrxSi2. For this purpose, we prepared 

Ba1-xSrxSi2 films with different x values on transparent fused silica substrates covered with 

pre-deposited polycrystalline Si layers. The phase separation and saturation of Eedge in 

Ba1-xSrxSi2 with Sr compositions higher than 0.6 are described. 

 

2. Experimental  

An ion-pumped MBE system equipped with standard Knudsen cells for Ba and Sr, and an 

electron-beam evaporation source for Si was used. Transparent fused silica substrates covered 

with 100-nm-thick polycrystalline Si layers were used, so that the contribution of the substrate 

to the measured optical absorption spectra would be small [5]. The pre-deposited Si layers 

prevent diffusion of O atoms from the substrate into the grown layers. After hydrogen 
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termination of the Si surfaces that were etched by a HF solution, the wafers were thermally 

cleaned in UHV. Polycrystalline Ba1-xSrxSi2 films with various x values ranging from 0 to 

0.77 were then grown using MBE. The thickness of the grown layers was approximately 200 

nm. Details of the growth procedure have been described in our previous papers [5,12]. The 

crystalline quality of Ba1-xSrxSi2 was characterized by XRD measurements. The composition 

of the grown layers was evaluated by Rutherford backscattering spectroscopy (RBS) 

measurements using 4He+ ions accelerated at 2.3 MeV. The optical absorption spectra of 

Ba1-xSrxSi2 were measured at RT using a double-beam spectrophotometer (JASCO V570) in a 

transmission configuration. 

 

3. Results and discussion 

RBS and XRD measurements were performed in order to confirm the formation of 

Ba1-xSrxSi2 films. The RBS random spectra obtained experimentally were reproduced by 

simulations, and the Sr composition was then derived. Figures 1(a) and 1(b) show the RBS 

depth profiles of Ba, Sr, Si and O atoms in Ba1-xSrxSi2 for x=0.29 and 0.52. Ba and Sr were 

homogeneously distributed, and the Ba plus Sr ratio to Si was 0.5 in the grown layers. Similar 

results were obtained for Ba1-xSrxSi2 when x was lower than 0.6. On the other hand, several 

samples were prepared wherein x was higher than 0.6, however, we have not yet succeeded in 

forming Ba1-xSrxSi2 with homogeneous Ba and Sr distributions, as shown in Figs. 1(c) and 
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1(d). Values of x of 0.64 and 0.77 were obtained, assuming that the Sr atoms were 

homogeneously distributed in the grown layers. 

The θ-2θ XRD patterns of polycrystalline Ba1-xSrxSi2 for x=0, 0.29, 0.52, 0.64 and 

0.77 are shown in Figs. 2(a)−2(e), respectively. The origin of the broad diffraction peak seen 

at ~21o in all the samples is the substrate, as seen from Fig. 2(f). All the diffraction peaks seen 

in the sample without Sr addition (Fig. 2(a)) correspond to BaSi2, and they shifted clearly to a 

high-angle-region with increasing x as shown in Figs. 2(a)−2(d). The dotted lines are guides 

to the eye. This result indicates that the lattice spacing of the film decreased with increasing x. 

The atomic radius of Sr is smaller than that of Ba. Thus, when some Ba atoms in the BaSi2 

lattice structure are replaced by Sr atoms, this kind of lattice contraction will take place. It 

was found from XRD peak positions that a and b lattice constants in Ba1-xSrxSi2 decreased 

linearly with increasing x. Detailed results will be reported elsewhere. Similar lattice 

contraction is observed in Ca1-xBaxF2 [13], which is completely miscible and obeys Vegards 

law across the entire composition range. In contrast, the diffraction peak of the (301) plane 

splits into two peaks in the sample with x=0.77 as shown in Fig. 2(e). The peak position of the 

low-angle diffraction is the same as that of the BaSi2(301) plane. Thus, the high-angle 

diffraction is thought to correspond to the (301) plane of Ba1-xSrxSi2. The peak position of the 

(301) plane of Ba1-xSrxSi2 does not change between x=0.64 and 0.77. Therefore, the additional 

Sr might segregate in the form of Sr-Si silicides. Ba1-xSrxSi2 is not stable for high Sr content 
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because SrSi2 with a BaSi2-type structure does not exist at RT. Phase separation is therefore 

thought to take place for high Sr content. 

Figure 3 shows (αdhν)1/2 versus hν plots obtained for the 100-nm-thick BaSi2, 

200-nm-thick Ba0.71Sr0.29Si2 and Ba0.48Sr0.52Si2, and 100-nm-thick Ba0.36Sr0.64Si2 at RT, where 

hν is the photon energy, and d the thickness of the grown layers. The (αdhν)1/2 values of 

Ba1-xSrxSi2 (x=0.29, 0.52 and 0.64) are multiplied by some factors, so that the plots shift 

downwards or upwards to be distinguished in Fig. 3. This operation does not affect the optical 

absorption edges. The influence of the pre-deposited polycrystalline Si layer and the fused 

silica substrate was already subtracted by comparing the transmittance measured on the 

samples with and without the grown layers. The plots are fitted to straight lines, showing that 

BaSi2 and Ba1-xSrxSi2 are indirect band gap semiconductors. The indirect absorption edge, 

Eedge, with phonon emission is thus obtained from the intersection of the straight line with the 

horizontal axis. The values of Eedge obtained for BaSi2 and Ba1-xSrxSi2 (x=0.29, 0.52 and 0.64) 

were 1.30, 1.35, 1.40 and 1.40 eV, respectively, as shown in Fig. 3. Indirect absorption by 

phonon absorption is neglected, because the fitting was performed at a higher energy region 

than the indirect band gap. An alternative interpretation of this absorption edge is the presence 

of the Urbach tail. However, a plot of α vs. hν did not yield an exponential dependence. 

Therefore, the absorption edge can be better interpreted as being due to indirect absorption 

rather than due to the Urbach tail absorption.  
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The Eedge values of the other samples were derived in the same way, and are 

summarized in Fig. 4 which shows Eedge as a function of x in Ba1-xSrxSi2 measured at RT. It 

was found that Eedge increases almost linearly with increasing x and reaches approximately 

1.40 eV when x is 0.52. This suggests that the band gap of BaSi2 is increased by the addition 

of Sr. It was also found that Eedge slightly scatters, depending on its thickness (see the Eedge of 

BaSi2); however, the dispersion of Eedge was 30 meV at most. On the basis of the above results, 

we conclude that Eedge of Ba1-xSrxSi2 is increased by approximately 0.1 eV by increasing the 

Sr composition x up to 0.52. On the other hand, the Eedge value almost saturates for Ba1-xSrxSi2 

when x is 0.64. Taking into account the fact that the formation of Ba1-xSrxSi2 with x>0.6 is 

difficult, as described above, it can be stated that the expansion of Eedge in Ba1-xSrxSi2 is 

limited up to approximately 1.4 eV. 

 

4. Conclusions 

Ba1-xSrxSi2 films with various Sr compositions were grown on transparent fused silica 

substrates by MBE, and the effects of Sr addition on the crystallinity and optical absorption 

properties were investigated. Ba1-xSrxSi2 films with homogeneous Ba and Sr distributions 

were obtained when x<0.5. The Eedge value increased almost linearly with increasing x and 

reached approximately 1.40 eV when x was 0.52. On the other hand, for higher x values, the 

Eedge value saturated, and the formation of homogeneous Ba1-xSrxSi2 films itself was difficult 
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for samples in which x>0.6 since phase separation occurred.  
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Figure 1  RBS depth profiles of Si, Ba, Sr and O atoms for Ba1-xSrxSi2 grown on 

transparent fused silica substrates when x is (a) 0.29, (b) 0.52, (c) 0.64 and (d) 0.77. 

 

Figure 2  θ-2θ XRD patterns of Ba1-xSrxSi2 films grown on transparent fused silica 

substrates when x is (a) 0, (b) 0.29, (c) 0.52, (d) 0.64, and (e) 0.77; (f) is the XRD pattern of 

the substrate used. The dotted lines are guides to the eye. 

 

Figure 3  (αdhν)1/2 versus hν plots for 100-nm-thick BaSi2, 200-nm-thick 

Ba0.71Sr0.29Si2 and Ba0.48Sr0.52Si2, and 100-nm-thick Ba0.36Sr0.64Si2 measured at RT. 

 

Figure 4  Sr composition, x, dependence of indirect absorption edges in Ba1-xSrxSi2 

measured at RT. 
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Fig. 1 Morita et al.

12 



 
 

 

 

 

 

 

 

 

(e) x=0.77

X
R

D
 In

te
ns

ity
 [a

rb
.u

ni
ts

]

2θ [deg]
 

 

 

 

(d) x=0.64

 

 

 

 

(b) x=0.29

 

 

 

 

(212)

(013)
(201)

(a) x=0
(402)

(112)
(202) (301)

 

 

 

 

(c) x=0.52

 

  

 

20 30 40 50 60

(f) Substrate

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Morita et al. 
 

 

 

 

 

 

 

 

 

13 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

1

2

3

1.5 2.0 2.5

  

 

 Photon Energy [eV]

 

 

 
Ba0.36Sr0.64Si2

Ba0.48Sr0.52Si2

Ba0.71Sr0.29Si2

BaSi2

 

(α
dh

ν)
1/

2   [
eV

1/
2 ] 

 

 

RT

 

 

 

 
 
 
 
 
 
 

Fig. 3 Morita et al. 
 

 

 

 

 

 

14 



 

 

 

 

 

 

 

 

 

 

 
 
 

0.0 0.2 0.4 0.6 0.8 1.0

1.3

1.4

1.5

RT

A
bs

or
pt

io
n 

e

  

 

 
 

dg
e 

[e
V

]

 Sr composition x

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Morita et al. 
 

15 


