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Abstract 

   Recently, we have shown that protein kinase C (PKC) activated by phorbol 

12-myristate 13-acetate (PMA) attenuates the β1-adrenergic receptor (β1-AR)-mediated 

lipolysis in rat adipocytes.  Stimulation of cells by insulin, angiotensin II, and α1-AR 

agonist is known to cause activation of PKC.  In this study, we found that lipolysis 

induced by the β1-AR agonist dobutamine is decreased and is no longer inhibited by 

PMA in adipocytes that have been treated with 20 nM insulin for 30 min followed by 

washing out insulin.  Such effects on lipolysis were not found after pretreatment with 

angiotensin II and α1-AR agonists.  The rate of lipolysis in the insulin-treated cells was 

normalized by the PKCα- and β-specific inhibitor Gö 6976 and PKCβ-specific inhibitor 

LY 333531.  In the insulin-treated cells, wortmannin increased lipolysis and recovered 

the lipolysis-attenuating effect of PMA.  Western blot analysis revealed that insulin 

slightly increases membrane-bound PKCα , βI, and δ, and wortmannin decreases PKCβI, 

βII, and δ in the membrane fraction.  These results indicate that stimulation of insulin 

receptor induces a sustained activation of PKC-dependent antilipolysis in rat adipocytes.     
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1. Introduction 

 

   Adipose tissues have important functions in the regulation of energy balance.  

Adipocytes store excess energy supply as triglyceride droplets, resulting in the 

development of obesity.  During fasting and exercise, triglycerides stored in the cells 

are hydrolyzed producing glycerol and free fatty acids, which are important oxidative 

fuels for other tissues such as liver, skeletal muscle, kidney, and the myocardium.  

Different hormones govern the use of energy in the triglyceride depots (1, 2). 

   Rat adipocytes contain three β-adrenergic receptor (β-AR) subtypes: β1, β2, and β3.  

The three β-ARs are coupled with Gs protein and transmit an activation signal to 

adenylylcyclase, leading to an increase in cAMP.  The resulting activation of protein 

kinase A (PKA) mediates activation of hormone-sensitive lipase (HSL), which 

hydrolyzes triglycerides stored in the cells (1, 2).  The fact that the protein level of 

β2-AR is extremely low (3) and that lipolysis stimulated by norepinephrine and 
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isoproterenol is not significantly affected by a β2-AR antagonist ICI 118551 (4) indicate 

a very minor role of the β2-AR signaling for lipolysis in rat adipocytes.  β3-AR may 

represent the physiological receptor for high norepinephrine concentrations (100 nM), 

attained by sympathetic activity near adipose tissues in conditions such as fasting and 

cold exposure (5, 6).  In rat adipocytes, norepinephrine at concentrations usually found 

in the circulation (1−25 nM) stimulates mainly the high-affinity β1-AR and thereby 

induces lipolysis (5).  In humans, circulating catecholamine stimulates the β1- and 

β2-ARs, which are critical determinants for the rate of lipolysis induced by submaximal 

exercise in subcutaneous adipose tissue (7) and lipolysis in response to insulin-induced 

hypoglycemia in skeletal muscle (8). 

   The rate of lipolysis is regulated not only by lipolytic hormones but also by 

antilipolytic hormones.  Insulin is the most potent antilipolytic hormone in adipose 

tissues.  It inhibits the activity of HSL by decreasing the cAMP level through 

phosphorylation and activation of phosphodiesterase 3B (PDE3B) (1).  PDE3B 

stimulation by insulin requires the activities of phosphatidylinositol 3-kinase (PI3K) and 

protein kinase B (PKB) (1, 9, 10).  Lipolysis is also inhibited by the activities of 
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α2-AR and adenosine receptor that couple to Gi protein and inhibit adenylylcyclase, and 

by other activities of different effector molecules (1, 2). 

   Using rat adipocytes, we have shown that phorbol 12-myristate 13-acetate (PMA) 

attenuates lipolysis induced by submaximally stimulating concentrations of 

isoproterenol and norepinephrine (4).  The decrease in lipolysis by PMA may be due to 

specific inhibition of the β1-AR system by the activity of protein kinase C (PKC).  In 

this study, we attempted to characterize the signaling pathway of PKC-dependent 

antilipolysis in rat adipocytes.  It was found that stimulation of insulin receptor 

substitutes for the action of PMA.  The effect of insulin on lipolysis was blocked by 

PKC inhibitors and wortmannin.   

 

2. Materials and methods 

 

2.1. Materials 

   The β-AR agonists, isoproterenol and dobutamine, and the β1-AR antagonist, CGP 

20712A, were purchased from Sigma (St. Louis, USA).  Angiotensin II, phenylephrine, 



 7 

and methoxamine were from Wako Pure Chemical Industries (Osaka, Japan).  The 

PKC inhibitors, Gö 6976 and LY 333531, were from Calbiochem (Darmstadt, Germany) 

and Alexis (San Diego, USA), respectively.  PMA, wortmannin, and protease inhibitor 

cocktail were from Sigma.  The rabbit anti-peptide antibodies recognizing PKCα , βI, 

and βII were purchased from Santa Cruz Biotechnologies (Santa Cruz, USA) and the 

rabbit anti-peptide antibodies to PKCδ, ε, and ζ  were from Sigma. 

 

2.2. Animals and adipocyte preparation 

   Male rats of the Charles River CD strain weighing 200−240 g (7 weeks old) were 

used.  Animals were fed a standard commercial diet ad libitum and allowed free access 

to water.  The light cycle was 08:00−20:00.  Isolated adipocytes were prepared from 

the epididymal fat pads by the method previously described (4).  After collagenase 

digestion, cells were washed, suspended in Dulbecco’s modified Eagle’s medium 

supplemented with 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (Hepes), 

pH 7.4, 20 mg/ml bovine serum albumin (BSA), and 200 nM adenosine, and incubated 

at 37ºC for 4 h with gentle agitation.  If necessary, cells were treated with insulin for 
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the final 30 min of a 4-h-incubation.  Then, cells were washed with a buffered solution 

containing 119 mM NaCl, 4.7 mM KCl, 1.2 mM KH2PO4, 2.6 mM CaCl2, 1.2 mM 

MgSO4, and 32.3 mM Hepes, pH 7.4, 2 mM glucose, 20 mg/ml BSA, and 200 nM 

adenosine (buffer A).  After being washed, the volume of packed adipocytes was 

determined. 

 

2.3. Lipolysis and glycerol measurement 

   The packed adipocytes were diluted 10-fold with buffer A, and incubated at 37ºC for 

20 min in the presence of pharmacological agents.  The concentration of glycerol in 

the incubation mixture was measured to determine the rate of lipolysis.  Lipolysis, as 

assessed by glycerol release, linearly increased for at least 40 min (11). 

 

2.4. Western blot analysis 

   Adipocytes were washed three times with a buffered solution containing 10 mM Tris, 

pH 7.4, 0.15 M NaCl, 1 mM EDTA, 1 mM EGTA, and 0.5% protease inhibitor cocktail.  

Then, cells were processed for separation of the cytosol and membrane fractions as 
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described previously (4).   

   The membrane fraction from adipocytes was mixed with the sample-loading buffer, 

and subjected to sodium dodecylsulphate (SDS)-polyacrylamide gel electrophoresis 

followed by electrotransfer of protein onto a polyvinylidene difluoride membrane (4).  

After incubation of the membrane with the primary and secondary antibodies, 

immunoreactive bands were detected by ECL Plus (Amersham, UK).  Samples that 

were compared from each experiment were analyzed on the same immunoblot, and 

relative changes in the density of the bands were determined by scanning densitometry.  

 

2.5. Statistics    

   Each experiment was performed in duplicates and repeated three times or more.  

Results were mean values ± SEM.  In some cases, data were expressed as the 

percentage of the activity in control cells (taken as 100%).  If necessary, data were 

examined by Student’s t test to evaluate the statistical significance. 

 

3. Results 
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3.1. Effects of insulin, angiotensin II, and α1-AR agonist on the lipolysis-attenuating 

effect of PMA  

   Rat adipocytes possess a PKC-dependent signaling pathway for antilipolysis (4).  

To explore the mechanism of PKC signaling, adipocytes were treated with insulin, 

angiotensin II, and α1-AR agonist, which are known to activate the PKC pathway (2, 

12−17).  Adipocytes were treated with 20 nM insulin for 30 min, washed with an 

insulin-free buffer, and determined for the rate of lipolysis.  As shown in Fig. 1, 

lipolysis stimulated by low concentrations of dobutamine (0.4 and 0.8 µM) and 

isoproterenol (8 and 16 nM) was lower in the insulin-treated cells than the control cells.  

PMA attenuated lipolysis stimulated by low concentrations of dobutamine and 

isoproterenol in the control cells, but not in the insulin-treated cells.  

   The concentration of insulin (20 nM) used for pretreatment of adipocytes was 

sufficient for the total inhibition of lipolysis induced by 0.4 and 0.8 µM dobutamine in 

rat adipocytes, and washing out insulin partially restored the lipolysis (Fig. 1).  The 

restored lipolysis was again inhibited by insulin in the following assay of lipolysis.  
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Thus, insulin causes a reversible and an irreversible inhibition of lipolysis.   

   Next, adipocytes were treated with angiotensin II and α1-AR agonists, 

phenylephrine and methoxamine, and lipolysis was induced in the presence and absence 

of PMA before washing out the agents.  PMA was found to significantly attenuate 

lipolysis (Fig. 2).  Methoxamine decreased lipolysis, but PMA further reduced it.  The 

lipolysis-attenuating effect of PMA was detected in adipocytes that had been treated 

with angiotensin II, phenylephrine, and methoxamine for 30 min, and the agents were 

washed out (results not shown).  

 

3.2. Effects of PKC inhibitor and β1-AR antagonist on lipolysis  

   In the following experiments, lipolysis was stimulated by 0.8 µM dobutamine, as 

the effect of insulin was apparent (Fig. 1).  The results shown in Fig. 1 indicate that 

insulin may substitute for PMA and attenuate lipolysis.  To assess the significance of 

PKC activity, the effects of the PKCα- and β-specific inhibitor Gö 6976 (18) and the 

PKCβ-specific inhibitor LY 333531 (19) were determined in the insulin-treated 

adipocytes.  In the previous study (4), Gö 6976 was found to increase lipolysis in the 
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untreated adipocytes in the presence of PMA in a dose-dependent manner, and the 

lipolysis-attenuating effect of PMA disappeared in the presence of 0.3−3 µM Gö 6976.  

Similarly, the effect of PMA was suppressed by LY 333531 at concentrations of 0.5 µM 

or more (results not shown).  Fig. 3 shows that lipolysis in the insulin-treated cells is 

increased by 3 µM Gö 6976 much more than that in the control cells, resulting in a 

comparable level to the control.  LY 333531 at concentrations of 0.5 µM or more 

increased lipolysis in the insulin-treated cells to the control levels (Fig. 3). 

   The β1-AR antagonist CGP 20712A greatly decreased lipolysis induced by 

dobutamine in both control and insulin-treated cells, and abolished the difference in the 

rate of lipolysis between two cell preparations (Fig. 4).  The lipolysis-attenuating effect 

of PMA in the control cells as well as the increase of lipolysis by Gö 6976 in the 

insulin-treated cells were not found in the presence of CGP 20712A.  

 

3.3. Effects of wortmannin on the lipolysis-attenuating effect of PMA 

   Biological actions of insulin in the adipose tissues are mediated by the cell-surface 

receptor with intrinsic tyrosine kinase activity.  One of the immediate targets of the 
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insulin receptor is the insulin-receptor substrates (IRSs), and phosphorylation of IRSs 

on specific tyrosines creates binding sites for src homology-2 (SH2) domain-containing 

proteins, including PI3K (10, 20).  Recruitment and activation of PI3K initiates a 

series of events leading to biological actions of insulin (9, 10, 20).  Wortmannin, a 

PI3K inhibitor (21), inhibits many of insulin's effects on glucose and lipid metabolism 

(9, 10, 20).  In the present study, wortmannin increased lipolysis in a dose-dependent 

manner in the insulin-treated cells as well as lipolysis, to a lesser extent, in the control 

cells (Fig. 5).  With 40 nM or more wortmannin, no difference in the rate of lipolysis 

between the two preparations of cells was found.  Lipolysis in the control and 

insulin-treated cells determined in the presence of PMA also showed an upward 

tendency as the concentration of wortmannin increased.  The lipolysis-attenuating 

effect of PMA was not detectable in the insulin-treated cells in the presence of ≤8 nM 

wortmannin, but became apparent at higher concentrations, reaching a 43.7 ± 5.1% 

inhibition by PMA at 80 nM.  Inhibition of lipolysis by PMA in the control cells was 

always found within the range 42.3−49.9%, irrespective of the presence and absence of 

wortmannin. 
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3.4. Western blot analysis of PKC isoforms         

   In the previous report (4), we have shown that rat adipocytes express 

PKCα , βI, βII, δ, ε, and ζ.  PKCα , βI, and βII showed translocation from cytosol to 

membrane in response to acute treatment with PMA.  In this study, the amounts of 

membrane-bound PKC isoforms were determined before and after the treatment of 

adipocytes with 20 nM insulin for 30 min by Western blot analysis.  As shown in Fig. 

6, insulin caused slight increases of the membrane-bound PKCα , βI, and δ.  An 

increase of 19% was found in the membrane-bound PKCβII; however, this was not 

significant. 

   The data shown in Fig. 5 indicate that the active form of PKC responsible for 

antilipolysis in this study is rapidly decreased by wortmannin.  To examine this, 

adipocytes were treated with insulin followed by incubation with wortmannin for 10 

and 30 min, and the amounts of membrane-bound PKC isoforms were determined (Fig. 

6).  PKCβI and βII decreased after 10 min of treatment with wortmannin (Fig. 6).  A 

decrease of PKCδ was found after 30 min of treatment with wortmannin.  No marked 
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change by wortmannin was found in the membrane-bound PKCα , ε , and ζ .   

 

4. Discussion 

    

   Recently, we have shown that PKC is a regulator of lipolysis induced by 

submaximally stimulating concentrations of β1-AR agonists (4).  The present study 

shows that exposure of rat adipocytes to insulin followed by washing out insulin 

decreases lipolysis induced by low concentrations of the β1-AR agonist dobutamine.  

This effect of insulin was not detected in the presence of a β1-AR antagonist CGP 

20712A.  The PKC inhibitors, Gö 6976 and LY 333531, normalized the rate of 

lipolysis in the insulin-treated cells.  PMA could not inhibit lipolysis in the 

insulin-treated cells.  Wortmannin abolished the effect of insulin.  These data indicate 

that insulin delivers an antilipolytic signal by using the activity of PKC.  Insulin also 

promotes diacylglycerol production (13, 14, 22), which may substitute for the action of 

PMA. 

   Conventional and novel PKCs after activation by diacylglycerol bind to membrane 
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through interaction with receptors of activated C-kinase (RACKs) and other 

PKC-interacting proteins (C-KIPs) for biological functions (23, 24).  In adipocytes, 

insulin promotes translocation of PKCα  and β to membrane (14, 25, 26).  However, no 

consistent changes of intracellular distribution of PKCδ, ε  and ζ  by insulin have been 

reported (14, 25, 26).  In this study, we found small increases in the membrane-bound 

PKCα , βI, and δ after treatment of adipocytes with 20 nM insulin for 30 min.  It is 

known that the insulin-induced translocation of the PKC isoforms is very rapid and 

transient, and the membrane-bound PKC isoforms are maximal at 2−10 min of insulin 

treatment and then decrease in a time-dependent manner (14, 25, 26).  Because of 

prolonged treatment in the present study, no marked increase of the membrane-bound 

PKC by insulin could be detected.   Even with such small increases, lipolysis in the 

insulin-treated cells apparently responded to the PKC inhibitors, but not to PMA.  

Wortmannin suppressed the effect of insulin and recovered the lipolysis-attenuating 

effect of PMA.  These data suggest that the PKC isoform responsible for antilipolysis 

was activated in the insulin-treated cells. 

   There are reports suggesting that activation and translocation of PKC by insulin are 
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insensitive to wortmannin (12, 27).  However, other studies have shown that 

wortmannin inhibits both insulin-mediated translocation of PKC (14, 28) and glucose 

uptake (14).  In this study, wortmannin inhibited the PKC-dependent antilipolysis by 

insulin and decreased the levels of PKC isoforms in the membrane fraction.  Insulin 

may acts through PI3K to activate phospholipase C and phospholipase D, leading to 

production of diacylglycerol (13, 14, 22).  Binding of diacylglycerol to PKC results in 

a high-affinity interaction of PKC with the specific membrane sites (29), which is 

essential for PKC to accomplish biological functions (23, 24).  Wortmannin has been 

shown to inhibit diacylglycerol production (14, 22).  Wortmannin does not directly 

inhibit PKC or affect translocation of PKC isoforms or glucose uptake by PMA (14, 28).  

Accordingly, wortmannin did not inhibit the effect of PMA on lipolysis in the control 

and insulin-treated adipocytes.  Translocation of PKCα , βI, and βII to membrane by 

PMA was not inhibited by wortmannin (results not shown).   

   It is well known that, upon interaction with the specific membrane sites, PKC is 

irreversibly activated and plays a role in signaling after Ca2+ and diacylglycerol have 

returned to basal levels (23).  This sustained activation of the enzyme may account for 
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the PKC-dependent antilipolysis found after washing out insulin.  Alternatively, 

insulin tightly bound to the insulin receptor, which is not immediately removed by 

washing with an insulin-free buffer (30, 31), may sustain signaling for the activation of 

PKC.  Adipocytes that are treated with insulin followed by washing out insulin still 

show the acute effects of insulin (30, 31).  Insulin, present in the incubation mixture, 

provokes a prolonged increase of phosphatidylinositol 3,4,5-triphosphate (PIP3), a PI3K 

by product, in adipocytes that persists at least for 1 h with no marked decrease (32, 33), 

which contrasts with a rapid and transient increase of PIP3 by epidermal growth factor 

(EGF) (32).         

   LY 333531 exhibits 40-fold or more selectivity for inhibition of PKCβ compared 

with PKCα , δ, ε , and ζ  (19).  In cultured cells, LY333531 inhibits the PKCβ-mediated 

pathway with IC50 values of about 0.2 µM (34, 35).  However, even at 10 µM, LY 

333531 does not inhibit PKCδ in mouse adipocytes (36).  The fact that the effect of 

insulin is inhibited by 0.5 µM LY 333531 in the present study might suggest an 

involvement of the activity of PKCβ in the antilipolytic pathway.  Further studies are 

in progress to identify the PKC isoform responsible for antilipolysis.    
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   For full activation, PKB is phosphorylated at two sites by 

3-phosphoinositide-dependent kinase-1 (PDK1) and PDK2 (37).  Activation and 

translocation of PDK1 and PDK2 depend on PIP3.  Recently, PKCβII was shown to act 

as a PDK2 activity in some cases for activation of the catalytic domain of PKB (38).  

Thus, it is possible that PKCβII stimulated by insulin activates PKB, which then causes 

phosphorylation and activation of PDE3B.  To assess this possibility, the effect of a 

PDE3B inhibitor cilostamide (10) on the lipolysis-attenuating effect of PMA was 

determined.  In the untreated adipocytes, the effect of PMA was clearly detected in the 

presence of cilostamide (4).  Cilostamide at a concentration of 1 µM increased 

lipolysis in the insulin-treated adipocytes to a level higher than the control, although the 

mechanism is unclear.  Moreover, addition of PMA to the mixture containing 

cilostamide decreased lipolysis with a 29.2 ± 3.6 % inhibition (mean ± SEM, p < 0.01, n 

= 6).  The results suggest that rat adipocytes possess a PKC-dependent antilipolytic 

pathway, which is independent of the PDE3B activity.  

   In contrast to the results obtained with insulin, angiotensin II and α1-AR agonists 

failed to affect the lipolysis-attenuating effect of PMA, though the angiotensin II 
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receptor and α1-AR are coupled with activation of PKC (15-17).  Stimulation of 

α1-AR by norepinephrine results in translocation of PKCδ and ε to membrane (15).  

However, lipolysis induced by norepinephrine was clearly decreased by PMA (4).  At 

present, no evidence suggesting that stimulation of angiotensin II receptor or α1-AR 

induces PKC-dependent antilipolysis has been obtained.   

   The β1-AR is the dominating lipolytic AR subtype in rat adipocytes and responds to 

low plasma concentrations of norepinephrine (5).  Adipocytes from transgenic mice 

overexpressing β1-AR show an increased sensitivity of lipolytic response to 

isoproterenol and dobutamine, which may be important for preventing diet-induced 

obesity (39).  The present study indicates that insulin-mediated PKC signaling 

regulates the sensitivity of lipolysis to low concentrations of the β1-AR agonist.  In 

contrast to the reversible inhibition mediated by other effector molecules, 

PKC-dependent antilipolysis is active even after washing out insulin.  These results 

suggest a unique role for PKC signaling in the metabolism of triglycerides.    
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Figure Legends 

 

Fig. 1  Effects of PMA on dobutamine- and isoproterenol-stimulated lipolysis.  The 

isolated adipocytes were treated without (control) and with 20 nM insulin for 30 min.  
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The cells were washed with an insulin-free buffer, and mixed with increasing 

concentrations of dobutamine (A) and isoproterenol (B) in the presence ( ) and 

absence ( ) of 0.8 µM PMA.  After being incubated at 37ºC for 20 min, the amount 

of released glycerol was determined.  The results were expressed as mean values ± 

SEM of ten (A) and four (B) experiments.  * p < 0.05; ** p < 0.01; *** p < 0.001, 

compared to no PMA.  

 

Fig. 2  Effects of angiotensin II and α1-AR agonist on the lipolysis-attenuating effect 

of PMA.  The isolated adipocytes were incubated in buffer A in the absence (None) 

and presence of 1 µM angiotensin II (AngII), 10 µM phenylephrine (Phe), and 10 µM 

methoxamine (Methox) at 37ºC for 30 min.  Then, the mixtures were added 0.8 µM 

dobutamine with and without 0.8 µM PMA.  After being incubated at 37ºC for 20 min, 

the amount of released glycerol was determined.  The results were mean values ± SEM 

of four to seven experiments, and were expressed as the percentage of the lipolytic 

activity determined without PMA or other agent.  * p < 0.05; ** p < 0.01; *** p < 

0.001, compared to no PMA.  +++ p < 0.001, compared to control (None). 
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Fig. 3  Effects of Gö 6976 and LY 333531 on lipolysis.  Lipolysis was stimulated in 

the control ( ) and insulin-treated ( ) adipocytes by 0.8 µM dobutamine in the 

presence of Gö 6976 (A) and LY 333531 (B) at 37ºC for 20 min.  The results were 

mean values ± SEM of eight experiments, and were expressed as the percentage of the 

lipolytic activity in the control cells determined in the absence of the PKC inhibitor.  

*** p < 0.001, compared to control cells. 

 

Fig. 4  Effects of CGP 20712A on lipolysis.  The control and insulin-treated 

adipocytes were stimulated by 0.8 µM dobutamine in the presence and absence of 16 

nM CGP 20712A at 37ºC for 20 min.  The mixtures also contained 0.8 µM PMA or 3 

µM Gö 6976.  The results were mean values ± SEM of four experiments, and were 

expressed as the percentage of the lipolytic activity determined without PMA or other 

agent in the control cells.  ** p < 0.01, compared to value determined with no agent.  

 

Fig. 5  Effects of wortmannin on lipolysis.  The control (A) and insulin-treated (B) 
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adipocytes were stimulated by 0.8 µM dobutamine in the presence ( ) and absence 

( ) of 0.8 µM PMA at 37ºC for 20 min.  The mixtures also contained wortmannin in 

the concentrations indicated.  The results were mean values ± SEM of four 

experiments, and were expressed as the percentage of the lipolytic activity determined 

without PMA or wortmannin in the control cells.  * p < 0.05; ** p < 0.01, *** p < 

0.001, compared to value determined without PMA. 

 

Fig. 6  Effects of insulin and wortmannin on membrane-bound PKC isoforms.  (A), 

the isolated adipocytes were treated without (control, C) and with 20 nM insulin (I) at 

37ºC for 30 min.  Aliquots of the insulin-treated cells were washed with an insulin-free 

buffer and incubated with 80 nM wortmannin for 10 min (I + W10) or 30 min (I + W30).  

The control-, insulin-, and insulin/wortmannin-treated cells were washed and subjected 

to preparation of the membrane fractions.  Western blot analysis was performed by 

using the antibobies specific to PKCα , βI, βII, δ, ε, and ζ  as described in Materials and 

methods.  The results shown were a representative from four experiments.  (B), the 

isolated adipocytes were treated as in (A).  Immunoblots were scanned and quantified 
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by a densitometer.  The results were mean values ± SEM of four experiments, and 

were expressed as the percentage of the control cells.  * p < 0.05, ** p < 0.01, *** p < 

0.001, compared to control cells.  + p < 0.05, ++ p < 0.01, compared to insulin-treated 

cells. 
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