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Maximum likelihood estimator (MLE) for a generalized Cauchy process (GCP) is
studied with the aid of the method of information geometry in statistics. Our GCP
is described by the Langevin equation with multiplicative and additive noises. The
exact expressions of MLEs are given for the two cases that the two types of noises
are uncorrelated and mutually correlated. It is shown that the MLEs for these two
GCPs are free from divergence even in the parameter region wherein the ordinary
moments diverge. The MLE relations can be regarded as a generalized fluctuation-
dissipation theorem for the present Langevin equation. Availability of them and of
some other higher order statistics is demonstrated theoretically and numerically.
© 2007 American Institute of Physics. [DOL: 10.1063/1.2800162]

I. INTRODUCTION

Stochastic processes with multiplicative noise have been studied in conjunction with the
appearance of power-law distribution in probability density and that of the long-time tail in
time-correlation function.'” In many practical situations, stochastic variables are often be driven
by both multiplicative and additive noises. Some stochastic processes associated with the two
types of noises have been studied by Deutsch,® Venkataramani et al.,’ Takayasu et al.,'” Levy and
Soloman,'" Nakao,'? Konno ef al.,"”® and others'*** in the fields of finance, physics, chemistry,
biology, fluid mechanics, and so on.

Recently, the g-deformation technique has been utilized in various ways. It has been used to
characterize the features of temporal correlation in time series and of structure of attractors in the
phase space in complex chaotic/turbulent time series analysis.zsf27 On the other hand, Tsallis et
al" proposed a new theory of g-entropy to derive a power-law-type distribution. Their studies on
the g-averaging method help us to avoid mathematical divergence of the variance. However, the
validity of their entropy concept is not proven completely although there are some successful
examples in the real world to support their theory. Also, they proposed28 a special nonlinear
Fokker-Planck (FP) equation associated with the power-law-type distributions and with the
anomalous super-or subdiffusion. The method of estimating the parameters of the FP equation
from the probability density function has not been given.

For practical applications, it is worth to give a method of inferring the parameters of the
system only from time series data in such a realistic situation that a multiplicative noise is
correlated with an additive noise. In the case of vector linear Langevin equation, the fluctuation-
dissipation theorem®"* (FDT) can be utilized to infer the system parameters even when noise
sources are mutually correlated. In spite of the vector linear Langevin equation, the general theory
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of FDT for vector nonlinear Langevin equations is not known. In statistics, it is recognized that the
maximum likelihood estimator (MLE) is one of the most reliable tool to infer parameters of
non-Gaussian probability distributions.

Here, we take the method of information geometry in statistics for generalized Cauchy pro-
cesses (GCPs) to give the MLEs to infer the parameters only from time series data for the GCPs.
The paper is organized as follows. Section II considers a GCP with two independent random
forces. We show (i) how the parameters of a CGP is connected to the Langevin equation; (ii) how
the universal statistics, free from the divergence, is derived by the method of information geom-
etry; (iii) how the values of MLEs changes. In Sec. IIL, it is shown that a GCP with two dependent
random forces will lead us to the probability density with broken symmetry. Then the expressions
of MLEs are shown. Numerical examples are also given. Section IV discusses (A) physical
significance of dual coordinate, (B) physical relation to FDT, (C) procedure to estimate param-
eters, (D) relation to Tsallis statistics, (E) connection to analysis on intermittent chaos, and (F) the
relevance of the situation of dependent noises to the phase-velocity fluctuation in a stochastic
complex Ginzburg-Landau equation. The final section is devoted to conclusions.

Il. GENERALIZED CAUCHY PROCESS 1

A. Model with two independent noises
Let us consider a GCP of state variable x with a multiplicative and an additive noise,
d
Ex=—ax+pr(t)+Fa(t), (1)
where « is a positive constant, both F,(¢) and F,(¢) are independent Gaussian-white noises with

null mean, i.e., (F,())=0 and (F,(1))=0,

(F(OF (")) =2D,8,81—1') (jk=p and a). )

B. Probability density

The FP equation for the stochastic differential equation (SDE) (1) becomes

{%P(x,z) - %[K(x)P(m)] + %{D(x)f'(x, 0. 3)

where K(x)=(a-D,)x and D(x):Dpx2+Da. The term D,x in the regression term K(x) come from

the Wong-Zakai noise correction®’ due to the Storatonovich interpretation of Eq. (1). At the steady

state, one obtains the probability density function in the form:**

2b-1 1
Px)= , 4
= b= 12.172) (@42 “
where B(b—1/2,1/2) is the Beta function,
D
a*=—4
P
and
1
b=—o 4~ (5)
2D, 2

It is readily seen that b—1/2=a/2D,>0, since « is assumed to be positive.
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C. Moments

The equation of moments (for n=1,2,...) can be derived from the FP equation in Eq. (3) as

) == (0K (W) + = (D00, ©

where K(x)=(a-D,)x and D(x)=Da+Dpx2. It seems that the set of even order moments (n
=2.4,...) are regarded as a kind of FDT (or generalized Einstein relation): —n{(x""'K(x))+n(n
—1){(x"2D(x))=0. Putting n=2 and n=4, one obtains

D 1 a?
()=t 7)
a-2D, 2b-312
and
3D 3 a*
4= a 2=_—' 8
&9 (1-41),)@> 4(b-312)(b-5/2) ®

Since the second and the fourth moment should have positive values, the different constraints, i.e.,
b>3/2 for n=2 and b>5/2 for n=4 [i.e., b>(2m+1)/2 for the 2mth moment, in general] must
be imposed.

It is clear from the expression of the moments (7) and (8) that they cannot be utilized to infer
the system parameters a and b for general circumstances even when b>1/2. Thus, it is not
suitable to call them as the fluctuation-dissipation relations for the GCP in Eq. (1).

D. Maximum likelihood estimator

According to the method of information geometry in statistics by Amari,* Amari and
Nagaoka,35 Murrey and Rice,” and Kass and Vos,” the information geometrical potential (IGP)
for the probability density function (pdf) in Eq. (4) is given by

W(a,p)=In B(b-1/2,1/2) = (2b-1)Ina. )

The dual coordinate 7, for the natural (canonical) parameter b is given by

J
= £W(a,b) =(In(x*>+a?)= b)) - Yb-1/2)+21na, (10)
where #(z) is the digamma function defined in terms of the Gamma function I'(z) by

d I"(z)
2)=—Inl(Ez)=——. 11
W)= T =5 (n
It is easy to verify that the quantity 7, is exactly identical with one of the MLEs for the pdf in Eq.
(4) in statistics.
On the other hand, the parameter a is not the natural one. Taking the derivative of W (a,b)
with respect to a, one gets the second dual coordinate

J 2ab 2b-1
=——W(a,b)= = . 12
7 da (a.b) <x2 + a2> a (12)

)

One may define the second dual coordinate 77(20 in stead of 7, by factoring out 2ab as

1 1 1
0) _ =—|1=-— 1
7 <x2+a2> a2< 2b) ( 3)
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It is easy to see that the two parameters a and b in the pdf in Eq. (4) are estimated by the two
MLEs in Egs. (10) and (13) [or Eq. (12)] in the parameter space (a>0,b>1/2), since b—1/2
=a/2D,>0. They are free from divergence. Therefore, we can regard them as the generalized
FDT for the GCP in Eq. (1).

E. Higher order statistics and Fisher information matrix

To discuss the accuracy of estimated parameters a and b by the MLEs in Egs. (10) and (13)
[or Eq. (12)], let us derive the higher order statistics,

Iy(a,b) = ([In(x* + a*)]"), (14)

and

Tula,b) = [/ +a*)]") (15)

(m=2,3,...), and the Fisher information matrix,

gla,b) =(3£(x;a,b)d;{(x;a,b)) = - (d,0;{(x;a,b)), (16)

where €(x;a,b)=In P(x), 9,=0/96, (i=1,2;6,=b and 6,=qa).

The higher order moments I,,(a,b) (m=2,3) are given by (see Appendix A for derivation)
L(a,b)={n(x*+a*))>=[¢/' (b) =/ (b—1/2)] and IL;(a,b)==2{n(x>+a%))*+3{{In(x*+a>)]*){In(x*
+a?))+[¢/'(b)—¢/"(b—1/2)]. One can get compact expressions for the moments I,,(a,b) (m
=1,2,3) in terms of the cumulants as

(In(x* + a®)). = y(b) — (b 1/2) + 2 In a, (17)
((In(x*+a*) e == [ (b) - ' (b-1/2)], (18)

and
((In(x*+a®)P).= /() - ¢'(b - 172), (19)

where (z) is the digamma function, ¢’ (z) is the trigamma function, and ¢/'(z) is the tetragamma
function. Note here that (i) the first cumulant involves the parameters a and b and (ii) the second
and third cumulants involve only the parameter b.

On the other hand, the higher order mth moment of J,,(a,b) (m=2,3) is given in terms of the
beta function by J,(a,b)=(1/a*")(B(b+m—-1/2,1/2)/B(b—1/2,1/2)). Namely, J,(a,b)=(1
—1/2b)(1-1/2(b+1))/a* and J5(a,b)=(1-1/2b)(1-1/2(b+1))(1=1/2(b+2))/a’. In terms of
the cumulants with the constant factor 2ab [cf. Eq. (12)], they are expressed as

( 2ab )2 _2b-1
2+ad® C_az(b+1)

2ab \? 2b-1)(b-1
(20} L @mve-n -
X +a . ab+1)(b+2)
The Fisher information matrix g(a,b) should be evaluated according to the definition in Eq.
(16) since the parameter a is not the natural one. The result is given by

and
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TABLE I. Typical values of polygamma function.

z z) W' (2) Y'(z)
1/4 —y-3In2-m/2 17.197 —-129.328
1/2 —y+2In2 /2 —14{(3)
1 —y 216 -2£(3)
3/4 —y=-3In2+m/2 2.542 -5.303
3/2 2-2In2-vy —4+ 722 16—14£(3)
(a.b) = ( {(In(x* + a») .., & )
L=\ (102 + a?)2abl(? + ), ((2abl( +ad))),
_(—[w'(b)—w'(b—l/z)], * ) on
- — 1/ab, (2b-1D/la*b+1)

The first diagonal element becomes the same value as #W(a,b)/db*=-[4/'(b)— /' (b—1/2)]. On
the other hand, the second diagonal element in Eq. (21) differs from #*W(a,b)/da*=(2b—1)/a>.
The cross cumulant in the off-diagonal element (2ab/(x>+a?)-In(x*+a?)),={(2ab/(x*+a?) -In(x*
+a2))—2abl (x*+a*)¥In(x*>+a>))=—1/ab which is different from #¥(a, b)/ﬁaz?b——Z/a This
gii(0) represents the geodesic distance between the two d1str1but10ns p=p(x,0) and p'=p(x, O
+d0), ds*=|pp'|*= g,](ﬁ)dﬁ’db” in the Riemanian space 6 e ©.>*77 The Riemanian metric gii(0)
gives also the Cramer-Rao lowest bound**” which expresses the degree of accuracy for estimated
parameters. It is easily verified that the minimum value is attained Cov[F(x)—7;,F ()= 771]
=g;;(0)/N for Fi(x)=%,; 1n(x +a’)/N and F,(x)=X 2ab/(x +a?)/N by the MLEs in the case of
statistical inferrence on the fat-tailed distribution P(x,#) with N independent observations {x;}
even though the non-natural parameter a is involved.

F. Numerical examples

Some typical values of polygamma function for b=3/4, b=1, and b=3/2 are summarized in
Table 1. Also, typical values of (In(x>+a?))., {{In(x>*+a*)]*)., and {[In(x*>+a?)]?), are given in
Table II. In this table, the numeric values of ([In(x*+a*)1%). and ([In(x>*+a*)]*). are given for b
=3/4, since their corresponding analytic expression cannot be obtained. The function {(z) is the
Riemann zeta function defined by {(s) =2 k™".

The values of U,={{In(x*+a*)).-21na}, U,={{In(x*>+a*)]?),, and U;={In(x*+a?)]),,
which depend on only b, are depicted in Fig. 1 (U, solid line; U,, dashed line; Us, dotted line).
In the parameter range of 1/2<<b<<3/2, U, < U, <Ujs. This fact implies that large sampling error
is expected as the value of U,(i=1,2,3) increases in this region. On the other hand, values of U,
tend to converge to the order of O(0.1) in the region »>3/2. This means the associated sampling
errors also converge to values of the same order. When a long-time record of data is available, the
effect of sampling errors may be reduced. In this case, the third order cumulant U5 will be used as
information to infer value of the parameters.

TABLE II. Typical values of the first, the second, and the third order cumu-
lants for b=3/4, 1, and 3/2. {(z) is the Riemann zeta function.

b (In(x*+a?)). ([In(x*+a*7?). {In(x*+a* 7).
3/4 m+21Ina 14.655 124.025

1 2In24+2Ina /3 12£(3)
3/2 2-2In2+21na 4-72/3 16-12¢(3)
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FIG. 1. The universal linear-log curves of U,(=(In(x*+a?)),~2 Ina) (solid line), U,(=([In(x*+4a*)]?).) (dotted line), and
Us(=([In(x*+a*)7?),) (dased line) as a function of parameter b are depicted. For 1/2<b<3/2, there is a monotonic order:
U, <U,< U,

Ill. GENERALIZED CAUCHY PROCESS 2

A. Model with two correlated noises
Next, let us consider the GCP under the influence of the noises F,(¢) and F,(t) in Eq. (1)
which are mutually correlated,
(F ()F,(t"))=2D,,d(t-1"). (22)

The parameters and the other constraints imposed on the fluctuating forces are preserved.

B. Probability density

The FP equation for the correlated noises becomes

J J s

—P(x)=—[Kx)P(x,t) |+ —[(D(x)P(x,t) |, 23

P (x) ax[ (x)P(x,1)] axz[( () P(x,1) ] (23)
where K(x)=(a-D,) and D(x):Dpx2+2Dapx+Da. The pdf at the steady state is given by

a—-D,)D D x+D
Py(x) = Po(Dx* + 2D x + D)0 12 exp{ _(a=D)Dyy_ arctan —u‘”—} ,

D,\D,D,-D;, \D,D,-D,
(24)

where P, is the normalization constant. To derive Eq. (24), the natural assumption among the

strengths of noises, DpDa>D§p, is adopted. To simplify the expression (24), let us put a?

=D,/D,, b=1/2+a/2D, in the same way in Eq. (5), and define new parameters as

> D
A= \raz—cz, c=—2
D,
and
2(b-1)c
=—. 25
A (25)
After transforming into the new variable ¢ via
é=x+c, (26)

the pdf takes in the compact form,

Downloaded 17 Dec 2007 to 130.158.56.186. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



103303-7 MLE for generalized Cauchy processes J. Math. Phys. 48, 103303 (2007)

0.1000

0.0100¢

PDF

0.0010¢

0.0001 L S . .
20 -10 0 10 20 30
xi

FIG. 2. The pdf profile P,(£) as a function of parameter f [f=0 (solid line), f=0.5 (dotted line), f=1 (dashed line)] with
a=1 and b=3/4.

P& = (2A)2 YT (b + if12)]*  exp[f arctan(&/A)]
(8= 20l2b-1) (£+AY)"

(27)

where A, b, and f are the three parameters defined in Eq. (25) (cf. the original number of
parameters are four; @, D,, D,, and D,,). Due to the existence of the correlation D,,#0, the
symmetry breaking of the pdf profile takes place. To obtain the analytical expression of the
normalization factor, we have used the variable transformation,

y=arctan(&/A), (28)

and the integral formula,

f /2 al(B+1)

cosP y cosh(fy)dy = (29)

0 2PC{B+2+ifH2)]*

In the limit f— 0, the pdf in Eq. (27) is reduced to the one in Eq. (4); the normalization factor is
reduced to a**~'B(b—1/2,1/2). The duplication formula for the Gamma function, I'(2(b—1/2))
=(277)"/2220-12-121 (b — 1 /2)T(b), is available to prove this formula in Eq. (29).

The most probable value (or the mode) of the pdf in Eq. (27) is placed at

= =(1-—]e. 30

=2 b)¢ (30)
In the original x coordinate in Eq. (24), x,=—(c/b), forms Eq. (26). The feature of deformation in
the pdf (27) as a function of f [f=0 (solid line); f=0.5 (dotted line); f=1 (dashed line)] for A

=1 and b=1 is displayed in Fig. 2. This result means that a careful detection of the position of the
mode x,, gives us available information on (c/ b).

C. Moments

Taking the same procedure as described in Sec. II, one obtains the expressions of the second
and the fourth moment in the form

2 2 2
(@)=r2 A (f>

232" (b-1D)(b-32)\2 (31)

and

_E A A4 J_l‘>2 (z)2
<é4>_4(b—3/2)(b—5/3)+(b—1)(b—2)(b—3/2)(b—5/2)(2 {2 +3b-5(. (32)

It is clear from the results that there are constraints 2b—3 >0 in Eq. (31) and 2b—5>0 in Eq.
(32). These constraints are same as the case of independent noises in Egs. (7) and (8) described in
Sec. II.
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The features of deformation from the case of f=0 in the pdf might influence upon the values
of odd order moments ((£&2"*!),(m=0,1,2,--+)). It is not easy to get useful analytical expressions
of them.

D. Maximum likelihood estimator

The IGP for the pdf in Eq. (27) can be defined in the form

V(A,b,f)=—(2b-1)In(2A) + InQ27) + In I'2b - 1) = In I'(b + if/2) = In ['(b - if72).

(33)

The two dual coordinates 7, and 7,°*° for the natural (canonical) parameters (b and f) are given
by

J 2, A2

m=- £W(A,b,f) =(In(& +A%)) (34)

=2 In(2A) + b + if12) + b — if12) = 21(2b — 1), (35)
and

J
m= ap‘I’(A,b,f) = (arctan(§/A)) (36)
=§{¢(b— if12) = ilb + if/2)}. (37)

The first dual coordinate (34) depends on the parameters A, b, and f. On the other hand, the second
one (36) depends only on two parameters b and f. The appearance of irrelevance of f to A is a
formal nature since f=2(b—1)/A, as defined in Eq. (25).

Since A is the non-natural parameter, the third dual coordinate 75 is expressed in terms of
subcoordinates both n§1)5<1/ (£+A?)) and 77(32)E<§/ (£+A?)) as

73=2bA7S) + f). (38)

This relation is derived by noticing the following two equations: (i) Differentiating both sides of
J7.P(&)dé=1 [cf. Eq. (40)] with respect to A, one obtains 2bA 7. +f7P=(2b—1)/4; (ii)
113=—3/IAV(A,b,f)=(2b-1)/A.

The subcoordinate ngl) is easily evaluated as

<1>_< 1 >_N0(A,b+1,f)_ b(b—-1/2)

BENEA2 )T ONyAbf) AP+ f4) (39)
where the function Ny(A,b,f) is defined by
_ “ exp(f arctan(&/A)) _ 27l (2b-1)
No(4.b.1) = J_m (& +A%P T QAP (b + if12))* (40)

By noticing the constraint 2bA 7/21)+ f n§2)=(2b— 1)/A, we obtain

3 (b-112)f
ST QS P L L (41)
E+A 2A(D7 + f714)
These analytical expressions depend on A, b, and f are available to infer the parameters. In this
case, the ratio of these becomes [cf. eq. (30)]
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(2)
n Af 1
B=" = (1 - Z)c. (42)
7

In the limit f— 0, the first dual coordinate in Eq. (35) 7, — ¢(b)—(b—1/2)+2 In a. One can

prove this with the aid of the duplication formula, ¥ (2b—1)=("(b—1/2)+ ™ (b))/2"+!
+3,01In2 for the polygamma function [9(z)=y(z), ¢V(z)=4'(z) and P (z)=¢/(z)]. The
second dual coordinate in Eq. (37) 7,—0 for f— 0. The third dual coordinate 7; is expressed in
terms of both 73" =(1/(£+A%) and 7{'=(&/(£+A%) in Eq. (38). In the limit f—0, 7’ —(1
—1/2b)/a? [cf. Eq. (13)] and 77;2)—>0. We can regard the MLEs as the for the GCP in Eq. (1) with
the correlated noises F,(¢) and F,(z).

E. Higher order statistics and Fisher information matrix

The expressions of the higher order cumulants (m=2,3,...) for the two natural parameters b
and f can be evaluated by taking derivatives of the IGP as described in Sec. II. Since the integral
formula Ny(A,b,f) is given in Eq. (40), the integral of moment,

exp(f arctan(&/A))
(§2+A2)b

K,(A.b.f) = 1\/31(1‘\,19,J‘)J0o [In(& +A%)]" dg, (43)

can be evaluated by using the recursion relation N,,(A,b,f)=—0dN,_(A,b,f)/db (m=1,2,...).
The results of cumulants C,,(A,b,f)={In(&+A?)]"), (m=2,3) are given by

Cpp= (= 1"y b+ if12) + /" D(b ~ if12) = 2"y V(20 - 1)}, (44)

Then, the cross-cumulant associated with the two natural parameters b and f is given by

Ny=— FH;JW(A’b’f) =(In(& + A?)arctan(&/A)). (45)
=é{¢/ (b +ifl2) — /' (b —ifl2)}. (46)

This statistics seems to be sensitive to the degree of broken symmetry in the pdf. The universal
statistics described here in the present GCP take real values though they are expressed in terms of
the polygamma functions with imaginary argument.

The analytical expressions of all elements of the Fisher information matrix are obtained (see
Appendix B for derivation) according to the definition g(A,b,f)=—(d;0;((&;A,b,f)), where
€(&;ALD,f)=In P(£),d;=0/060(i=1,2,3;6,=D, 6,=f, 6;=A),

((In(& +A*) ), *, *
g(A,b.f) = (arctan(&A)In(& + A?)),., ([arctan(&A) )., *
24b | _fE€ 2 2 2Ab | _f&€ 24b € )2
<(§2+A2 + §2+A2)1n(§ +A )>c’ <(§2+A2 + §2+A2)arCtan(§/A)>c’ <|:§2+A2 + §2+A2:| >c
C2 , * s *
S| omme (UALY G- if12) + ¢ (b+if12)], , (47)
bf> (2b-1)f (2b=1)(b+1+f%/4)
TAG+A)? 4A(b*+f14)° A (b+1)2+1%4]

The matrix elements {(3,j),j=1,2,3} are different from PWV(A,b,f)/dbdA==2/A,
PY(A,b,f)]If0A=0, and PV (A,b,f)/JA’=(2b—1)/A?, respectively. The evaluation of cross
cumulants in the off-diagonal matrix elements in g;(6) is reduced to calculating (1/ (£+A?),
(1/(8+A2)?), (£1(E+A?)), and (¢/(E+A%)?) (see Appendix B).

With the use of g(A,b,f), one can verify also that the minimum value of the Cramer-Rao’s
inequality™ " is attained Cov[F(&)-1,,F}(§)-1,]=g,(0)/N for F|(§)==,In(&+A>)/N, Fy(é)
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FIG. 3. The universal curve S;(={7,-21In(A)}) as a function of parameter b for f=0.25 (solid line), f=0.5 (dotted line),
f=0.75 (dashed line), and f=1.0 (dash-dot line).

=3, arctan(£/A)/N, and F53(§)=2[2Ab/(&+A?) +fE/(£+A?)]/N by the MLEs in the case of
statistical inferrence on the fat-tailed distribution P(£, ) with N independent observations {&;}
even though the pdf has a broken symmetry, and the non-natural parameter A is involved.

F. Numerical examples

The curves of S;={#n,—-21In(A)}, n,, and 7, for f=0.25, 0.5, 0.75, and 1.0 as a function of
parameter b are displayed in Figs. 3-5.

There are marked difference among the pdf profiles for f=0.5 and 1.0, as shown in Fig. 2.
However, as far as the universal curve of S| in Fig. 3 is concerned, there are no marked difference
among the values of S; as a function of f (f=0.25,0.5,0.75,1.0). Namely, the curves of S;=7,
—21In(A) as a function of f and b are located in the narrow band. One can say that S; is not
sensitive statistic to variation of the parameter f. The effect of sampling errors in S, takes the same
order of magnitude for the variations of f (=0.25, 0.5, 0.75, and 1).

In Fig. 4, 7, shows monotonic decrease as a function of b. Also, 7, is sensitive to the
parameter f. Namely, the separability of each curve for different values of f as a function of b is
clear. For 7, large variations as a function of f can be seen in Fig. 4. The increase of relative
magnitude of sampling errors is expected as the value of f becomes large. But, it is not worry
about the absolute values of them.

In Fig. 5, the curves of 7, as a function of f and b are depicted. The monotonic dependence
of 7, can be observed in the whole region of 4 in the case f=0.25. On the other hand, the curves
of f=0.50 intersect those of f=0.75 and f=1.0 in the region of 0.5<b<0.7. It is important to
notice that 7,(=(In(&>+A2)arctan(é/A)),) takes the form of the gradient of 7, with respect to b.
Although 7, is a higher order statistics for the MLEs #,, 7,, and 753, the cross cumulant 7z, may
be helpful to infer value of the parameters by virtue of medium sensitivity to variation of f.

1.5

1.0 N

eta2

0.5

0.0 i : ;
05 10 15 20 25 30
parameter b

FIG. 4. The universal curve 7,(=(arctan(£/A))) as a function of parameter b for f=0.25 (solid line), f=0.5 (dotted line),
f=0.75 (dashed line), and f=1 (dash-dot line).
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FIG. 5. The universal curve 7,(=(In(&+A%)arctan(&/A)),) as a function of parameter b for f=0.25 (solid line), f=0.5
(dotted line), f=0.75 (dashed line), and f=1 (dash-dot line).

IV. DISCUSSIONS

A. Physical significance of dual coordinate

Let us discuss the physical significance of the dual coordinate in the GCP before considering
the difference between the natural and nonnatural parameters in terms of the FDT in the GCP. To
get a clear physical picture, we introduce a Langevin equation with a multiplicative noise F,,(z),
which is equivalent to the case of correlated noises (D, # 0) [cf. FP equation in Eq. (23)],

d [
Ex =—ax+ \“"2(Dpx2 +2D,,x+ D,)F,(t). (48)

For brevity of discussion, the Wong-Zakai (WZ) noise correction (the Ito correction) is not ac-
counted here. Taking the transformation of variable with

X+c
X= 1 (49)
we have
%X: —aX+ B+ \IZDI,(X2 + 1)F, (1), (50)
where
<Fm(t)>:03 <Fm(t)Fm(t,)>: 5(t_t,)’ (51)

and g is the parameter in terms of &, D), D,,, and D, [A and c are defined in Eq. (25)] defined by

ap»

ac
=—, 52
B=- (52)
Then taking the nonlinar transformation with
X =sinh(Y), (53)
we have the Langevin equation with the additive noise F,,(z),

d —
~ Y == atanh(Y) + B sech(Y) +\2D,F (1. (54)

When the WZ noise correction (the Ito correction) is taken, « in Eq. (54) is replaced by ¢=«
—D,,. Without bypassing the FP equation, one can write down immediately the pdf for Y,
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PS(Y)ZPO eXP{— V(Y)/Dp}’ (55)

where P is the normalization constant, and the potential is defined by

V(Y) = aIn(cosh(Y)) — B arctan(sinh(Y)). (56)

By virtue of the above transformations of variables, the number of parameters in the pdf for ¥
reduces to two. They are defined by

a
01 =
D,
and

0= L =015, (57)
D,
where s is the nondimensional scale factor s=1/vr—1 with r=D,D,/ D5p> 1. It is important to
notice that these {6, 6,} are both natural parameters for the pdf in the coordinate Y. We can say
that the above Langevin equation for Y is the canonical equation in the GCP. The dual coordinates
(In(cosh(Y))) [i.e., {In(X>+1)) in the X coordinate] and {arctan(sinh(Y))) [i.e., (arctan(X)) in the X
coordinate] are expressed in terms of the two natural parameters {6, , 6,} that they are not embed-
ded in nonlinear function. It is important to see how to eliminate non-natural parameter that is
embedded in linear/nonlinear function, in addition to get the physical significance.
Without taking the variable transformation, it is not avoidable to have complicated expres-
sions in the MLEs with natural and non-natural parameters and to give supplementary coordinates
such as (1/(x*>+a?)) and x/(x*+a?) that are shown in Sec. III.

B. Physical relation to fluctuation-dissipation theorem

By observing the Langevin equation for Y in Eq. (54) and the corresponding pdf in Eq. (55),
one can see that the natures of statistical quantities in the Y coordinate might be combined with
that of the potential V(Y). Since the potential function is concave up for positive &> 0. It is easily
expected that the nondivergent property of the statistical quantities in the ¥ coordinate is ascribed
to the global stability of the highly nonlinear potential V(Y). The MLE relations in the Y coordi-
nate reduce to

(In(cosh(Y))) = In 2+ {( 6; +i6:/2) + YA 6, — i6,/2))} — (26, — 1) (58)

and

(arctan(sinh(Y))) = é{l//(el —i60,/2) — (0, +i6,/2)}. (59)

These are obtained from Egs. (35) and (37) with substitutions é—X, A—1, b— 6,, f— 6,, and
with noticing the relations In(cosh(¥))=(1/2)In(1+X?) and arctan(sinh(Y))=arctan(X).

The MLE relations obtained in Egs. (58) and (59) can be regarded as the exact expression of
“a generalized fluctuation-dissipation theorem (GFDT)” with the two natural parameters 6,
=a/D, and 6,=p/D, [i.e., the ratios of the strengths of fluctuation (D,,D,) and the coefficient of
gross nonlinear dissipation a [s~'] and that of gross nonlinear excitation (negative dissipation)
B=ac/A [s7]) for the “canonical” equation in Eq. (50) in the Y coordinates. The canonical
equation has only the two natural parameters « and 8. Namely, in the Langevin equation in Eq.
(54), two different processes of a nonlinear dissipation « tanh(Y) (“kink-type” nonlinear normal
mode) and a nonlinear excitation (negative dissipation) B sech(Y) (“soliton-type” nonlinear nor-
mal mode) are competing under the influence of the additive noise F,,(z). Therefore, the GFDTs in
Egs. (58) and (59) are those for the gross nonlinear dissipation of “kink™ and for the gross
nonlinear excitation (negative dissipation) of “soliton” in terms of the two natural parameters for
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the nonlinear normal modes in the Y coordinate. For the special case with only the kink-type
nonlinear mode is relevant, §,=1 and 6,=0 [i.e., P,(Y)=exp(-In(cosh(Y)))/w=sech(Y)/ ], the
GFDT reduces to (In(cosh(Y)))=1In 2 and (arctan(sinh(Y)))=0.

In the limit of small Y, the expansion of In(cosh(Y)) with respect to ¥ (In(cosh(Y))=~Y?
+0(Y*)) leads to the Einstein relation (Y?)=D,/ -+ 8*/ a?, i.e., the FDT in the ¥ coordinate for the
linear system with the constant bias 8. In the same limit, the expansion of (arctan(sinh(Y)))
(arctan(sinh(Y)) = Y+ O(Y?)) gives the first moment (¥)= 3/ «. Namely, the MLE relations reduce
to the traditional FDT in the Y coordinate in this limit.

The physical and mathematical arguments described in the Y coordinate are used to interpret
the MLE relations as the GFDT for the nonlinear normal modes in the X coordinate for the
Langevin equation in Eq. (50) on account of the nonlinear transformation X=sinh(Y) from the ¥
coordinate to the X coordinate. Namely, the nonlinear normal modes in the X coordinates reduce
to X/(1+X?) and 1/y1+X2. The associated dual coordinate for the two modes are (1/2)(In(1
+X?)) and (arctan(X)) in the GDFT of the X coordinate on account of the integral formulas

4 00
Jax(x/(1+X*)]=(1/2)In(1+X?) and [dX[1/V1+X*]=arctan(X).

Finally, let us argue with the MLE relations for Eq. (1) in the original x coordinate (or the &
coordinate) in connection with the GFDT in terms of natural and unnatural parameters. It is clear
physically that the multiplicative noise xF,(¢) plays the role in giving rise to (i) intermittent burst
in temporal profile and (ii) fat tail in pdf. The interplay between the two noises F,(¢) and F (1) is
the origin of the natural D, and the unnatural parameter D, in the diffusion coefficient D(x)
=Dpx2+2Dapx+Da in the FP equation. One should note that D,, is not counted as unnatural
parameter since it is removed by introducing the shift é&=x+c¢ as shown in the pdf of the &
coordinate in Eq. (27). In observing the Langevin equation of (48) in the x coordinate [this is
equivalent to Eq. (1)], the X coordinate is connected with the original x coordinate by the affine
transformation é=x+c=AX in Eq. (49). Following the argument described in the ¥ and X coor-
dinates, the nonlinear “collective” mode in the original x coordinate associated with the Langevin
equation of Eq. (48) is defined by Coll(x) = ax/(D,x*+2D,,x+D,) [the ratio of the dissipation ax
to the strength of fluctuations D(x)]. Consequently, the statistical measures associated with the
collective mode become <ln(Dpx2+2Dapx+Da)> and (arctan([(D,x+D,,)/ \DpDa_DZp])> [cf. the
pdf in Eq. (24)]. With noticing the integral formula [dxx/(Dx*+2D HX+D,)=(1/ 2Dp)ln(Dpx2
+2D,,x+D,)~(D,,/2D,\D,D,,-D;, arctan{(D,x+D,,)/\D,D,,~D;,}, the function Coll(x) ex-
presses a nonlinear mixed mode. The interplay among the noises and the state variable x makes
things complex. Thus the MLE relations in the x coordinate are regarded as a GFDT for the
nonlinear collective (mixed) modes Coll(x) for the GCP in Eq. (1).

Okabe® proposed a generalized FDT for one-dimensional nonlinear diffusion process. But the
FDT cannot be utilized in the situation that the ordinary second moment diverges.

C. Procedures to estimate parameters

To give the way of thinking to estimate parameters in the GCP, let us exhibit first the param-
eter estimation for the amplitude distribution for a stochastic Ginzburg-Landau equation: P (R)
=287 V2/T((y+1)/2)]R™Y f:xp(—,BRz).39’40 The parameters B and vy are natural ones. In this
case, the MLE relations become (R*)=(y+1)/28 and (In R)=y{((y+1)/2)—(1/2)In B. The param-
eter estimation can be done successfully with the two MLEs. The cross cumulant between them
(the off-diagonal element of Fisher information) is given by (R? In R).=1/2. In this case, one can
also estimate successfully values of these parameters by combining (R?) and (R*InR), with
simple algebraic calculation and without bypassing the digamma function gb(z).39’40

The method of parameter estimation from time series data in the GCP should be recursive
even in the case of independent noise since there is the non-natural parameter a in the pdf for the
GCP. One can take the MLEs {In(x’+a®))=uy(b)—y(b—-1/2)+21Ina in Eq. (10) and (1/(x?
+a?))=(1-1/2b)/a* in Eq. (13). Also, one can take the combination of {1/(x*+a?)) and {In(x?
+a?)/ (x*+a?)).=—1/2a’h* in Eq. (21) (the off-diagonal element of Fisher information). The latter
combination gives an estimation procedure without the di-gamma function ¢{(z). But, due to the
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existence of the non-natural parameter a, a recursive procedure with the Newton method starting
from a set of initial values (a,b) is required to get convergence in any case. In estimating value of
¥(z), it is convenient to take the series expansion form, ¥(z)=—y—2._(1/(z+n)—1/(n+1)) [for
the polygamma function, gb(’”)(z)=2:=0((—l)"’“m!/ (z+n)"*1) is available]. Numerical test teaches
us that the other combinations with higher order moments (HOMs) do not show good performance
due to large sampling error in HOMs.

The procedure of parameter estimation in the case of dependent noises in the GCP seems to be
more confusing. It is desirable if one can start an estimation from the canonical equation in the Y
(or X) coordinate with only the natural parameters. Unfortunately, this is not possible since the
values of four parameters «, D,,, D,,, and D, are not given a priori. Then one can start from the
pdf in the coordinate ¢ in Eq. (27) with three parameters A, b, and f since the shifting parameter
¢ can be easily determined at a glance provided that the pdf in the x coordinate is given. Then
combining the MLEs, 7,, 7,, and 77%’) (j=1,2) in Egs. (35), (37), (39), and (41), one can deter-
mine values of the three parameters. To determine them, those four equations seem to be redun-
dant. Noticing the relation of the ratio of Egs. (39) and (41) given in Eq. (42), i.e., 77(32)/ ﬁ§1)=(1
—1/b)c, the parameter b is estimated. Then combing Egs. (35) and (37), for example, the remain-
ing parameters A and f are estimated. An another procedure with the combination of #;, 7,, and
7, in Eq. (46) is possible. The other procedure without use of the digamma function, for example,
is also possible by taking (1/(&+a?)), (£/(&+a?)), and (1/(&+a*)?).

So there may arise a question: Which is the best choice among many possibilities. In general,
there are large sampling errors in the higher order statistical quantities than those in the lower
order ones. Then recursive procedure is not avoidable in the GCP in any case. In the iterative
procedure to get convergence, the digamma function with complex argument in the form of the
series expansion works well. Numerical test also teaches us that the use of the MLEs #;, 7,, and
ngj)(j =1,2) in Egs. (35), (37), (39), and (41) seems to be the best choice. To confirm reliability of
estimated values of the parameters (A,b,f), Fisher information given in Eq. (47) is available.

D. Relation to Tsallis statistics

Tsallis et al."* introduced a generalized entropy,

1 - fdx[p(x)]*

S,pl=k (60)
g-1
Under the constraint [ ¢(x) being arbitrary function of x],
fdxcb(X)p(X)” =(¢(x)), (61)
one can derive the relevant pdf in the form
pyx) =[1-B(1 - q)p(x0)]"1 1z, (62)

where Z,=[dx[1- B(1-q)$(x)]"1-9). The traditional statistics are obtained in the limit of g— 1.
There are three different types of the definition of expectation value.*' The case &(x)=x* with the
definition of expectation value in Eq. (61) is the original one due to Tsallis ef al**

(o), = f d(x1a)x[apy(x)]7. (63)

Under the definition of this g-deformed statistics, Tsallis and Bukman proposed a nonlinear FP
equation (¢ # 1) in the following form:*®
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ﬁ[P(x,t)] =- i{F (O[P(x, 0]} + Dﬁz[P (x,0))]7, (64)

ot ox ox
where ¢(x)=—[F(x)dx. Physical and mathematical significance of the nonlinear FP equation has
not been shown in conjunction with the incorporation of the multiplicative noise up to now.

With the aid of the MLEs described in Sec. II, one can infer the parameters ¢ and 8 in Eq.

(62). However, there is no clear certification that the temporal profile (the stochastic process)
coincides with the observed one derived from the nonlinear FP equation (the corresponding SDE
does not exist in the rigorous sense). Since the nature of intermittency and of anomalous
diffusion”® for Eq. (64) is usually quite different from the one with the multiplicative noise though
the pdf takes the same form [cf. Egs. (4) and (62)]. Also, the value at g=5/3 may give an
additional problem in practical applications.

E. Connection to analysis on intermittent chaos

Jensen ef al.”® and Halsay et al”’ proposed a thermodynamic formalism and applied it to
characterize various chaotic time series data. The theory is based on the partition function,

x(q.€) = J dat'"p(a,0), (65)

where p(a,€)=€*"¥p(a,€), and the multifractal dimension (MFD) in terms of x(g,€) defined
by

D(g) = 1 In[x(g,0)]

66
g-1 In¢ (66)

The theory of MFD has been successfully applied to characterize fractal natures of chaotic
attractors, self-similar structures of time series in the phase space (cf. Table II in Fujisaka and
Inoue”) for systems of low-dimensional chaos.® Various simple models which generate intermit-
tent chaos (types I, II, and III) by chaotic modulation have been studied.”® However, the related
inverse problems for inferring parameters of models with various intermittent nature only from
time series data are quite laborious, in general. The intermittent natures in more sophisticated
models are not well described both physically and mathematically. Actually, it is known that the
statistical mechanical description based on the coarse-grained stochastic processes of fluctuations
(e.g., soliton number, soliton amplitude, interdistance between solitons) is still in the qualitative
level though it is shown that the pairing of solitons is universal nature. Specifically, in the case of
“soliton turbulence,” wherein annihilation/creation of solitonlike (or holelike) objects takes place
in PDEs, e.g., a driven nonlinear Schrédinger equation,“’43 complex Ginzburg-Landau equation,44
Kuramoto-Sivashinsky equation,45 Benny equation,4 it is shown that the pdfs of amplitude and
phase fluctuations for their PDEs can be successfully described by a class of simple SDEs (Refs.
46 and 42 with multiplicative noise.

F. Availability in a stochastic complex Ginzburg-Landau model

Consider the stochastic Ginzburg-Landau model under the influence of multiplicative noise
F(t)(=F(t)+iF,(#)) in the complex number,***

d%A =(a+iwg)A—(b+ic)|APA+AF(r). (67)

The random force of complex number F(r) represents the existence of both amplitude and fre-
quency modulations: (Fg(f)Fg(t'))=2D8(t—1") and (Fg(t)Fg(t'))=2D&(t—t"). The amplitude R
and the phase ® equation in Eq. (67) after the Wong—Zakai31 noise correction become
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d
ER =(a+D)R - bR® + RFg(1) (68)
and
d 2
o= R+ Folt). (69)

An expedient procedure of parameter estimation for the parameters a, b, and D from the
amplitude-pdf P (R) is demonstrated in our previous papers.7’39’40 However, the detailed descrip-
tion of parameter estimation for the pdf of the phase-velocity has not been given in detail.

Since the amplitude equation in Eq. (68) can be rewritten in the closed form with only R>.
Therefore, R? can be eliminated with the use of R? in Eq. (69). Thus, the equation of the phase-
velocity v ,=d¢/dt (P = p+w,) reduces exactly to

vgp=2{a+F,O,+ %vi +F,(1), (70)
where
F)= Fr) = 2Py (71)
and
Fi(0) = Fal0) 4 2aFo(0) = 2 (Faf0) + 2Fa(DF0). (72)

It is clear that Eq. (70) with the parametric (71) and the additive noise (72) may be relevant to
the Cauchy process with the correlated noises. At least, under the assumptions that >0 and b
>0 and ¢ <0, av¢+(2b/c)vfﬁ can be replaced by the effective linear damping —yv , with >0,
D,=4D(1+4b*/c?*), D,,~8abD/c, and D,~4aD after neglecting the higher order correlations

of the noise sources Fi(1), Fo(), and Fg(t).
The detailed analysis of the model in conjunction with real electroencephalography signals
will be published elsewhere.

V. SUMMARY AND REMARKS

We have studied the universal statistics of a GCP in Eq. (1) with two independent/dependent
random forces with the aid of the method of information geometry in statistics.”* ™’ The geometri-
cal concept becomes more useful in the detailed analysis of statistical inferences based on the
Fisher information matrix obtained in this paper.

In the case of independent random forces, we have derived the three universal statistics, the
first, the second, and the third order cumulant of In(x*>+a?) for the natural parameter b. The
universal statistics for the non-natural parameter a are the moments of 1/(x*+a?). Fisher infor-
mation matrix is also obtained. It is shown that (i) they are free from the divergence; (ii) the
second and the third order cumulant depend only on the parameter b; (iii) the availability for
estimating the parameters with combining the MLEs 7, =(In(x*>+4?)), 7,=(1/(x*+a?)), and the
cross cumulant (In(x%>+a?)/(x*+4a?) is also discussed in Sec. IV C.

Then, in the case of dependent random forces, we have derived also all the universal statistic
quantities (the dual coordinate®*??); (7,:) the first moments of In(&+A2), (7,:)arctan(£/A),
(73:)1/(8+A?), and &/(£+A?). 1t is also obtained all the matrix elements of Fisher information
including (7,:) the mutual correlation between In(&2+A?) and arctan(&/A). It is further shown that
(i) nondivergent natures of them and (ii) feasible procedures of estimating parameters with the
MLEs and Fisher information are discussed in Sec. IV C.
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Discussions are also given for physical significance of dual coordinate, physical relation to
FDT, relation to Tsallis statistics, connection to analysis on intermittent chaos, and relevance to the
phase-velocity distribution in a stochastic complex Ginzburg-Landau system in conjunction with
the GCP.* The universal statistics and Fisher information derived in this paper might be useful
to analyze economic time series data when F,(t) and F,(f) can be modeled by Gaussian-white
noises.

The MLEs under the influence of colored noises for complex nonlinear dynamical systems
with a cubic nonlinear term such as nuclear power reactors and electroencephalography/
magnetoencephalography in human brains are under investigation based on the GCP in the ca-
nonical form in Eq. (50) [or Eq. (54)]. Their results will be published elsewhere.
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APPENDIX A: INTEGRAL FORMULA USED TO DERIVE EQ. (14)

The mth order moments are defined by 1,,(a,b)=PyK,(a,b),K,(a,b)= [ [In(x*+a®)]"(x?
+a®)dx(m=1,2,...) in Eq. (14), where P, is the normalization constant. One should note that
K, (a,b) of m=0 is just given in terms of beta function B(u,v) in the form

©

Ko(a,b)= | P+a®)Pdx=a""*B(b-1/2,1/2) = P (A1)

—00

for real constants of ¢>0 and b>1/2. Thus Pal is expressed as P51=exp(ln B(b-1/2,1/2)
—2b-1)Ina)=exp(InI'(1/2)+In I'(b—1/2)=In I'(b) - (2b—1)In a). By noticing the recursion re-
lation K,,(a,b)=—3K,,_,(a,b)/ b, one obtains for m=1 as

* d
K,(a,b) = f In(x? + a®)(x* + a®)Pdx = - £P51 =(b)— (b 1/2) +2Ina)P,".
Hence we have

I,(a,b) = PoK,(a,b) =[(b) — (b - 1/2) + 2 In a]. (A2)

The recursion relation for K,,(a,b) is applied for m=2 and 3. The results are given by

K>(a,b) = f"“ [In(x* + a®>) P(x* + a®) Pdx = - %Kl(a,b),

Iy(a,b) = PoKy(a,b) = {[/(b) = b~ 1/2) + 2 Inal* = [¢/'(b) - ¢/ (b = 1/2)]}, (A3)

and

K;(a,b) = f‘” [In(x* + a®>) P(x* + a®) Pdx = - %Kz(a,b),

Iy(a,b) = PoK;(a,b) = {[(b) — (b - 1/2) + 2 Ina]’

— 3 (b) = ' (b= 112))[¢h(b) — Wb - 172) + 2 Ina] + /' (b) — /(b — 1/2)}.
(A4)
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APPENDIX B: DERIVATION OF FISHER INFORMATION MATRIX IN EQ. (47)

The matrix elements of Fisher information g(A,b, ) for the two natural parameters b and f are
obtained by taking the derivative of the IGP, i.e., gij=¢9i¢9j‘I’(A,b,f) (i,j=1,2; 9,=0/3b and 0,
=3/ df).

For the non-natural parameters, one needs to evaluate them directly from g(A,b,f)=
—(3,0/((A,b,f)), €=In P(&;A,b,f). Specifically,

a4 2b-1 1 5 1 &

e vy ARt rvE T AS S Trve T A
FeN_ 2 B2
s A T\ E+A2)” "y

> é
<0Aaf> =_<(§2+A2)2>' (B3)

The statistic (1/(&+A?)) is given in Eq. (39). The statistic {1/(£&+A?)?) is evaluated by the
integral formula Ny(A,b,f) defined in Eq. (40) as

< 1 >_N0(A,b+2,f)_ (b+1)(b+ 1/2)b(b = 112)

and

(B4)

(E+A%2]  NyAbf) — AYD>+L14)[(b+ 1)+ f214]

Therefore, when (£/(&2+A?)?) is given, all the matrix elements are determined. Differentiate Eq.
(40) twice with respect to A, we have

2 b 2 2y42 o 3 _2b(2b—1)
(f - 2b)< fz +A2> + (4b + 4b” - f7)A <(§2 +A2)2> + (2Af + 4Afb)< (52 +A2)2> = 12
(BS)
Inserting Egs. (39) and (B4) into Ee. (B5), we have
¢ _ (-12)pb+112)f (B6)
(E+AY2 ] 2830 + Db+ 1)> + 4]

Thus, inserting Egs. (39), (41), (B4), and (B6) into Egs. (B1)—(B3), all the matrix elements are
obtained, as described in Eq. (47).
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