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Abstract

We obtain a condition on the modification of graphs which guarantees

the preservation of the Gaussian upper bound for the gradient of the heat

kernel.

1 Introduction

Let us consider the simple random walk on an infinite graph X and denote the
kernel of the associated heat semigroup by kn. Our interest is to see whether
the gradient of the heat kernel ∇kn has the Gaussian upper bound:

∇kn(x, y) ≤ C√
nV (x,

√
n)

e−cd2(x,y)/n ∀x, y ∈ X, ∀n ∈ N
∗, (1)

where V (x, r) is the volume of the ball centered at x with radius r for the
combinatorial distance d and C, c are some positive constants.

In [7], Hebisch and Saloff-Coste proved that (1) is satisfied on discrete groups
of polynomial volume growth. After that, the author generalized their result to
the case of nilpotent covering graphs in [8] (see also [5], [6] and [9]). In the proof
of all of them, the periodicity of the graph is used essentially. In this article, we
prove that (1) is preserved under certain modification of the graph.

It should be noted that there is a connection between the estimate of (1)
and the Lp-boundedness of the Riesz transform ∇∆−1/2 on non-compact Rie-
mannian manifolds, where ∆ is the Laplace-Beltrami operator. Let M be a
non-compact complete Riemannian manifold with volume doubling property

∗Key words: gradient estimate of heat kernel, Gaussian bound, random walk on graph,

modification of graph.
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and pt the kernel of e−t∆. We assume that pt satisfies the on-diagonal upper
estimate

pt(x, x) ≤ C

V (x,
√

t)
,

for all x ∈ M , t > 0 and some constant C > 0. By Theorem 1.4 in [1], the
estimate

|∇pt(x, y)| ≤ C√
tV (x,

√
t)

e−cd(x,y)2/t

is sufficient to ensure the Lp-boundedness of the Riesz transform for all 1 <
p < ∞, namely there exists Cp such that for any compact supported smooth
function f ∈ C∞

0 (M),

‖∇∆−1/2f‖p ≤ Cp‖f‖p, 1 < p < ∞.

This fact is true also for graphs by Russ ([14]).
There are a lot of results about boundedness of the Riesz transform. See [1]

and the literature therein.

1.1 Notation and result

First we fix a graph XB which is the basis of our modification. Let XB =
(VB , EB) be an oriented, locally finite connected infinite graph. Here VB is the
set of vertices and EB is the set of oriented edges. For e ∈ EB, we denote by
o(e), t(e) and e the origin of e, the end of e and the inverse of e, respectively.
We always assume that the set of edges of a graph includes their inverse edges.
For x ∈ VB, let EB

x = {e ∈ EB | o(e) = x} and mB(x) := degB x := #EB
x the

weight on x. For x, y ∈ VB , n ∈ N, the transition probability pB
n (x, y) for the

simple random walk on XB is given by

pB
0 (x, y) =χy(x),

pB
n (x, y) =

∑

(e1,e2,... ,en)∈Cx,n

pB(e1)p
B(e2) · · · pB(en)χy(t(en)) n ∈ N

∗,

where χy is the characteristic function for {y} ⊂ VB, Cx,n is the set of paths
from x of length n and pB(e) = (degB o(e))−1.

The transition operator PB associated to the simple random walk on XB is
an operator acting on a function f on VB by

PBf(x) =
∑

e∈EB
x

pB(e)f(t(e)).

The n-th iteration u(n, x) = Pn
Bf(x) gives the solution of the heat equation

(∂1 + ∆)u(n, x) =0

u(0, x) =f (x),
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where ∂1u(n, x) = u(n + 1, x) − u(n, x) and

∆u(n, x) =
∑

e∈EB
x

pB(e)(u(n, o(e)) − u(n, t(e))).

Then the kernel kB
n (x, y) of Pn

B w.r.t. the measure mB is written as kB
n (x, y) =

pB
n (x, y)m−1

B (y).
For x, y ∈ VB , let dB(x, y) be the combinatorial distance from x to y and

VB(x, r) :=
∑

dB(x,z)≤r mB(z) the measure of BB(x, r) = {y ∈ VB | dB(x, y) ≤
r}. We assume that XB satisfies the volume doubling property, namely there
exists a constant C > 0 such that for any x ∈ VB and r > 0,

VB(x, 2r) ≤ CVB(x, r).

It follows that mB is uniformly finite. Because, for any y ∼ x, the neighbors in
VB,

mB(x) ≤
∑

dB(y,z)≤1

mB(z) = VB(y, 1) ≤ CVB(y, 1/2) = CmB(y).

Then we have

CmB(x) = CVB(x, 1/2) ≥ VB(x, 1) =
∑

dB(x,y)≤1

mB(y) ≥
∑

dB(x,y)≤1

1

C
mB(x) =

1

C
m2

B(x),

namely

mB(x) ≤ C2 ∀x ∈ VB .

We also assume that there exist positive constants C and c such that

kB
n (x, y) ≤ C

VB(x,
√

n)
e−cdB(x,y)2/n, (2)

∇BkB
n (x, y) ≤ C√

nVB(x,
√

n)
e−cdB(x,y)2/n (3)

for all x, y ∈ VB and n ∈ N∗, where ∇BkB
n (x, y) is the gradient of kB

n for the
first variable which is defined by

∇BkB
n (x, y) =





∑

dB(x,ω)≤1

∣

∣kB
n (ω, y) − kB

n (x, y)
∣

∣

2
pB
1 (x, ω)





1/2

. (4)

In this paper, we consider the stability of (3) under the modification of
XB = (VB , EB) given by

X = (V, E) = (VB\V ′
B , (EB ∪ A

+)\A−).
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Here A+ is the set of edges of a graph whose set of endpoints A+ is a subset in
VB and A− is the set of edges of a subgraph in XB with the following conditions.
If (VB , (EB∪A+)\A−) is connected, this is the modified graph X . Then V ′

B = φ.
Otherwise, we choose a connected component as the modified graph X . In this
case, we retake A

− by adding all edges of other components and denote by
V ′

B the set of vertices of them. Then the chosen connected component can be
written as (VB\V ′

B, (EB ∪ A+)\A−).
We identify A+ and A− with their associated graphs, respectively.
In other words, X is constructed by the following three operations from XB:

1. Add edges A+.

2. Remove (retaken) edges A−.

3. Remove isolated vertices V ′
B .

For x, y ∈ V , let d(x, y) be the combinatorial distance between x and y on X .
We assume that X is uniformly finite, namely the weight m(x) = deg x

on x ∈ V is uniformly finite. Moreover, we assume that the natural inclusion
I : (X, d) → (XB , dB) is a quasi-isometry, namely

(i) for a sufficiently large ǫ > 0, the ǫ-neighborhood of I(V ) coincides with
VB ,

(ii) there exist constants Q1 ≥ 1 and Q2 ≥ 0 such that

Q−1
1 d(x, y) − Q2 ≤ dB(I(x), I(y)) ≤ Q1d(x, y) + Q2 (5)

for all x, y ∈ V

(see [11]).
For x, y ∈ V , let pn(x, y) be the transition probability for the simple random

walk on X and Pn the associated semigroup acting on the function on V . The
kernel kn(x, y) of Pn w.r.t. the weight m(y) = deg y is written as kn(x, y) =
pn(x, y)m−1(y). The gradient ∇kn(x, y) for the first variable is also defined by
the same manner of ∇BkB in (4). It is known that a quasi-isometric modification
preserves the Gaussian upper bound for the heat kernel (2) (see [3]). Hence there
exist positive constants C and c such that

kn(x, y) ≤ C

V (x,
√

n)
e−cd(x,y)2/n (6)

for x, y ∈ V and n ∈ N∗, where V (x, r) :=
∑

d(x,z)≤r m(z). We remark that X
also has the volume doubling property.

Let A− = o(A−) ∩ V ⊂ V ⊂ VB be the set of endpoints of A− in V . For
x ∈ V , we denote by VA(x, r) the volume of A = A+ ∪ A− in X defined by

VA(x, r) =
∑

d(x, a+) ≤ r,
a+ ∈ A+

m(a+) +
∑

d(x, a−) ≤ r,
a− ∈ A−

m(a−).

Then the main result of this paper is the following:
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Theorem 1 If there exists a positive constant M such that

iVA(x,
√

i)

V (x,
√

i)
< M,

∞
∑

ℓ=1

VA(x,
√

ℓ)

V (x,
√

ℓ)
< M (7)

for all x ∈ V and i ∈ N∗, there exist positive constants C and c such that

∇kn(x, y) ≤ C√
nV (x,

√
n)

e−cd(x,y)2/n (8)

for x, y ∈ V and n ∈ N∗.

In this paper, we do not allow the modification of adding vertices. This is
because we need the injection of X into XB to obtain the expression of pn(x, y)
with pB

n (x, y) as in Lemma 2.1. However, our hypothesis of the modification
and the assumption (7) of the Theorem may be strong in some cases. Indeed,
there is a result that finite modifications of ZD lattice graph preserve (8) in [4].
Moreover, as in Example 1.1, our result does not show the preservation of (8)
under our modifications of Z

D if D ≤ 2.

Example 1.1 Let XB = (VB , EB) be the D-dimensional square lattice graph,
namely

VB = Z
D, EB = {(x, y) ∈ Z

D × Z
D | |x − y| ≤ 1},

where | · | is the Euclidean norm. For α < D, let us put

A
− = EZα = ∪x∈ZαEx, V ′

B = Z
α,

where

Z
α = {(x1, x2, . . . , xα, 0, . . . , 0) ∈ Z

D |xi ∈ Z, 1 ≤ i ≤ α}.

It is easy to see that if α ≤ D − 2, the modified graph

X = (V, E) =
(

VB\V ′
B, EB\A−

)

is connected. Since BB(VB\V ′
B , 1) = XB, the condition (i) of the quasi-isometry

is satisfied. Since there are no added edges in X, dB(x, y) ≤ d(x, y) for any
x, y ∈ V . For x, y ∈ V , let c = (x, c1, c2, . . . , ck−1, y) be a geodesic from x to y
in XB. If c ∩ Zα = φ, d(x, y) = dB(x, y). If c ∩ Zα 6= φ, it has one connected
component. Then let us consider the parallel transformation c ∩ Z

α + eD ⊂
VB\V ′

B of c∩Zα, where eD = (0, 0, . . . , 0, 1). Let {ci1 , ci2} = ∂(c∩Zα) (i1 < i2),
the boundary of c ∩ Zα. Since

d(ci1−1, ci1 + eD) ≤ 2, d(ci2 + eD, ci2+1) ≤ 2,

d(x, y) ≤d(x, ci1−1) + d(ci1−1, ci1 + eD) + d(ci1 + eD, ci2 + eD)

+ d(ci2 + eD, ci2+1) + d(ci2+1, y)

≤dB(x, ci1−1) + 2 + dB(ci1 , ci2) + 2 + dB(ci2+1, y)

≤dB(x, y) + 2.
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Then we have

d(x, y) − 2 ≤ dB(x, y) ≤ d(x, y).

Hence X is quasi-isometric to XB if α ≤ D − 2.
It is proved that ∇BkB

n has the Gaussian estimate in [7]. The above theorem
asserts that if α < D− 2, then the Gaussian estimate (8) for ∇kn holds also on
X.

Example 1.2 More generally, let us denote XB = (VB , EB) the Cayley graph
of a finitely generated torsion free nilpotent group Γ with a symmetric set S
of generators including the identity e of Γ. Namely, XB is the oriented graph
defined by

VB = Γ, (x, y) ∈ EB if y−1x ∈ S.

From [7], the Gaussian upper bounds (2) and (3) hold on XB.
As a modification of XB, let us take a subgroup H of Γ, namely denote by

A− = EH = ∪h∈HEh and V ′
B = H. Let D be the volume growth of Γ, namely

D is the number such that the volume of the ball VB(x, r) of centered at x ∈ VB

with radius r in XB satisfies

C−1rD ≤ VB(x, r) ≤ CrD , ∀x ∈ Γ, r ∈ N
∗.

Similarly, let α be the number such that B(x, r) ∩ H satisfies

VA(x, r) =
∑

z∈B(x,r)∩H

m(z) ≤ Crα, ∀x ∈ VB, r ∈ N
∗.

In [10], it is proved that, if α ≤ D − 2, the modified graph

X = (VB\V ′
B, EB\A−)

is quasi-isometric to XB. The previous theorem asserts that if α < D − 2, then
the Gaussian estimate (8) for ∇kn holds also on X.

2 Proof of the Theorem

2.1 Difference between pB

n
and pn

For a+ ∈ A+ ⊂ V and a− ∈ A− ⊂ V , let

deg+ a+ :=#A
+
a+

:= #{e+ ∈ A
+ | o(e+) = a+},

deg− a− :=#A
−
a−

:= #{e− ∈ A
− | o(e−) = a−}.

Let us denote P+ and P− the transition operator on A+ and A−, respectively.
Then we have the following:
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Lemma 2.1 For x, y ∈ V and n ≥ 1,

pn(x, y) = pB
n (x, y) −

n
∑

ℓ=1

∑

a+∈A+

pn−ℓ(x, a+)
deg+ a+

deg a+

(

pB
ℓ (a+, y) − P+pB

ℓ−1(a+, y)
)

+

n
∑

ℓ=1

∑

a−∈A−

pn−ℓ(x, a−)
deg− a−

deg a−

(

pB
ℓ (a−, y) − P−pB

ℓ−1(a−, y)
)

.

(9)

Proof. For a real valued function f on VB, let I∗f be the pull-back to the
function on V by the inclusion I : V → VB. First, we show the following:

P (I∗f)(x) = I∗(PBf)(x) −
∑

a+∈A+

χa+(x)
deg+ a+

deg a+
(I∗(PBf)(a+) − P+ (f |A+) (a+))

+
∑

a−∈A−

χa−
(x)

deg− a−

deg a−

(I∗(PBf)(a−) − P− (f |A−) (a−)) .

(10)

When x 6∈ A+ ∪ A−, clearly P (I∗f)(x) = I∗(PBf)(x). In the case of x = a+ ∈
A+\A−,

P (I∗f)(a+) =
1

deg a+

∑

e∈Ea+

I∗f(t(e)) =
1

deg a+

∑

e∈Ea+

f(I(t(e)))

=
1

deg a+







∑

eB∈EB
I(a+)

f(t(eB)) +
∑

e+∈A
+
I(a+)

f(t(e+))







=
degB a+

deg a+
· 1

degB a+

∑

eB∈EB
I(a+)

f(t(eB)) +
1

deg a+

∑

e+∈A
+
I(a+)

f(t(e+))

=
deg a+ − deg+ a+

deg a+
PBf(I(a+)) +

1

deg a+

∑

e+∈A
+
I(a+)

f(t(e+))

=PBf(I(a+)) − deg+ a+

deg a+






PBf(I(a+)) − 1

deg+ a+

∑

e+∈A
+
I(a+)

f(t(e+))







=I∗(PBf)(a+) − deg+ a+

deg a+
(I∗(PBf)(a+) − I∗P+f(a+)) .
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When x = a− ∈ A−\A+, similarly we have

P (I∗f)(a−) =
1

deg a−







∑

eB∈EB
I(a

−
)

f(t(eB)) −
∑

e−∈A
−

I(a
−

)

f(t(e−))







=
deg a− + deg− a−

deg a−

PBf(I(a−)) − 1

deg a−

∑

e−∈A
−

I(a
−

)

f(t(e−))

=I∗(PBf)(a−) +
deg− a−

deg a−

(I∗(PBf)(a−) − I∗P−f(a−)) .

Finally, if x = a ∈ A+ ∩ A−, we have

P (I∗f)(a) =
1

deg a







∑

eB∈EB
I(a)

f(I(t(eB))) +
∑

e+∈A
+
I(a)

f(t(e+)) −
∑

e−∈A
−

I(a)

f(t(e−))







=
deg a − deg+ a + deg− a

deg a
PBf(I(a)) +

1

deg a

∑

e+∈A
+
I(a)

f(t(e+))

− 1

deg a

∑

e−∈A
−

I(a)

f(t(e−))

=I∗(PBf)(a) − deg+ a

deg a
(I∗(PBf)(a) − I∗P+f(a))

+
deg− a

deg a
(I∗(PBf)(a) − I∗P−f(a)) .

Hence (10) is obtained.
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From the definition of pn(x, y), we have

pn(x, y) =
∑

(e1,e2,... ,en−1)∈Cx,n−1

p(e1)p(e2) · · · p(en−1)
∑

e∈Et(en−1)

p(e)pB
0 (t(en−1), y)

=
∑

(e1,e2,...en−1)∈Cx,n−1

p(e1)p(e2) · · · p(en−1)

×
(

PBpB
0 (t(en−1), y) −

∑

a+∈A+

χa+(t(en−1))
deg+ a+

deg a+

(

PBpB
0 (a+, y) − P+pB

0 (a+, y)
)

+
∑

a−∈A−

χa−
(t(en−1))

deg− a−

deg a−

(

PBpB
0 (a−, y) − P−pB

0 (a−, y)
)

)

=
∑

(e1,e2,...en−1)∈Cx,n−1

p(e1)p(e2) · · · p(en−1)p
B
1 (t(en−1), y)

−
∑

a+∈A+

pn−1(x, a+)
deg+ a+

deg a+

(

pB
1 (a+, y) − P+pB

0 (a+, y)
)

+
∑

a−∈A−

pn−1(x, a−)
deg− a−

deg a−

(

pB
1 (a−, y) − P−pB

0 (a−, y)
)

.

By using (10) inductively, we conclude

pn(x, y) = pB
n (x, y)−

n
∑

ℓ=1

∑

a+∈A+

pn−ℓ(x, a+)
deg+ a+

deg a+

(

pB
ℓ (a+, y) − P+pB

ℓ−1(a+, y)
)

+
n

∑

ℓ=1

∑

a−∈A−

pn−ℓ(x, a−)
deg− a−

deg a−

(

pB
ℓ (a−, y) − P−pB

ℓ−1(a−, y)
)

.

2.2 Estimate by induction

We prove the Theorem by an induction on time. Since ∇k1(x, y) is bounded
w.r.t. x, y and the support of ∇k1(x, y) as a function of y ∈ V is included in
B(x, 2), it is trivial to see that there exist positive constants T1 and t1 such that

∇k1(x, y) ≤ T1

V (x, 1)
e−t1d2(x,y).

Next, for ν > 1, let us assume that there exist positive constants Tν and tν
such that

∇ki(x, y) ≤ Tν√
iV (x,

√
i)

e−tνd2(x,y)/i

for all x, y ∈ V and 1 ≤ i ≤ ν − 1. Let us separate ν = m + n so that m = n
or m = n + 1 depending on whether ν is even or odd. By the Cauchy-Schwarz
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inequality, we have

e2tνd2(x,y)/ν∇kν(x, y) ≤ ‖e4tνd2(x,·)/n∇kn(x, ·)‖L2‖e4tνd2(·,y)/mkm(·, y)‖L2 .

Since km has the Gaussian upper bound (6), if tν is sufficiently small,

‖e4tνd2(·,y)/mkm(·, y)‖L2 ≤ C′(tν)

V 1/2(y,
√

m)
≤ C(tν)

V 1/2(y,
√

ν)
.

We aim to show that

‖e4tνd2(x,·)/n∇kn(x, ·)‖L2 ≤ C(tν)(Tν + c(tν))1/2

√
nV 1/2(x,

√
n)

. (11)

For n = 1, this is trivial. Thus we always assume that n > 1.
By using Lemma 2.1, we have

‖e4tνd2(x,·)/n∇kn(x, ·)‖2
L2 =

∑

z∈V

e8tνd2(x,z)/n
∑

d(x,ω)≤1

|kn(ω, z) − kn(x, z)|2 p1(x, ω)m(z)

=
∑

z∈V

e8tνd2(x,z)/n
∑

d(x,ω)≤1

|pn(ω, z) − pn(x, z)|2 p1(x, ω)m(z)−1

=
∑

z∈V

e8tνd2(x,z)/n
∑

d(x,ω)≤1

∣

∣

∣pB
n (ω, z) − pB

n (x, z)

−
n

∑

ℓ=1

∑

i=+,−

i
∑

ai∈Ai

(pn−ℓ(ω, ai) − pn−ℓ(x, ai))
degi ai

deg ai
(pB

ℓ (ai, z) − Pip
B
ℓ−1(ai, z))

∣

∣

∣

2

× p1(x, ω)m(z)−1

≤2
∑

z∈V

e8tνd2(x,z)/n
∑

d(x,ω)≤1

∣

∣pB
n (ω, z) − pB

n (x, z)
∣

∣

2
p1(x, ω)m(z)−1

+ 2
∑

z∈V

e8tνd2(x,z)/n
∑

d(x,ω)≤1

∣

∣

n
∑

ℓ=1

∑

i=+,−

i
∑

ai∈Ai

(pn−ℓ(ω, ai) − pn−ℓ(x, ai))

degi ai

deg ai
(pB

ℓ (ai, z) − Pip
B
ℓ−1(ai, z))

∣

∣

2
p1(x, ω)m(z)−1

=I1(n, x) + I2(n, x).

We estimate I1 and I2 separately.

2.3 Estimate of I1

Let us recall the property of XB and X . Since mB and m are uniformly finite
and the inclusion I : V → VB is a quasi-isometry between X and XB, there
exists C > 0 depending only on MB = maxx∈VB

mB(x), Q1 and Q2 in (5) such
that

I1(n, x) ≤C
∑

z∈VB

e8tνQ2
1d2

B(x,z)/n
∑

dB(x,ω)≤Q1+Q2

∣

∣kB
n (ω, z)− kB

n (x, z)
∣

∣

2
mB(z).
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For dB(x, ω) ≤ Q1 + Q2, it is easy to see that

∣

∣kB
n (ω, z)− kB

n (x, z)
∣

∣

2 ≤(Q1 + Q2)M
2
B

∑

dB(x,ω′)≤Q1+Q2

∣

∣∇BkB
n (ω′, z)

∣

∣

2
. (12)

Hence I1(n, x) is estimated by

C
∑

z∈VB

e8tνQ2
1d2

B(x,z)/n
∑

dB(x,ω)≤Q1+Q2

∣

∣∇BkB
n (ω, z)

∣

∣

2
mB(z).

Since ∇BkB
n has the Gaussian upper bound (3),

∑

z∈VB

e8tνQ2
1d2

B(x,z)/n
∑

dB(x,ω)≤Q1+Q2

∣

∣∇BkB
n (ω, z)

∣

∣

2
mB(z)

≤ C
∑

z∈VB

e8tνQ2
1d2

B(x,z)/n
∑

dB(x,ω)≤Q1+Q2

C2

nV (ω,
√

n)2
e−2cd2

B(ω,z)/nmB(z)

≤ C′

nV (x,
√

n)2

∑

z∈VB

e−(2c−8tνQ2
1)d2

B(x,z)/nmB(z).

Consequently, if tν < c/4Q2
1, there exists C(tν) independent of Tν such that

I1(n, x) ≤ C(tν)

nV (x,
√

n)

which gives a desired bound (11).

2.4 Estimate of I2

In order to make the induction work, we estimate I2 by the following:

2
∑

z∈V

∑

i,j=+,−

n
∑

ℓ1,ℓ2=1

∑

a1i∈Ai

∑

a2j∈Aj

e8tνd2(x,z)/n

∑

d(x,ω)≤1

|kn−ℓ1(ω, a1i) + kn−ℓ1(x, a1i)|degi a1i

∣

∣kB
ℓ1(a1i, z) − Pik

B
ℓ1−1(a1i, z)

∣

∣

× |kn−ℓ2(ω, a2j) − kn−ℓ2(x, a2j)|degj a2j

∣

∣kB
ℓ2(a2j , z) − Pjk

B
ℓ2−1(a2j , z)

∣

∣

× mB(z)2m(x)−1m(z)−1.

11



By the Cauchy-Schwarz inequality for ω, I2 is less than

2
∑

z∈V

∑

i,j=+,−

n
∑

ℓ1,ℓ2=1

∑

a1i∈Ai

∑

a2j∈Aj

e8tνd2(x,z)/n

×





∑

d(x,ω)≤1

|kn−ℓ1(ω, a1i) + kn−ℓ1(x, a1i)|2 m(x)−1





1/2

degi a1i

×
∣

∣kB
ℓ1(a1i, z) − Pik

B
ℓ1−1(a1i, z)

∣

∣





∑

d(x,ω)≤1

|kn−ℓ2(ω, a2j) − kn−ℓ2(x, a2j)|2 p1(x, ω)





1/2

× degj a2j

∣

∣kB
ℓ2(a2j , z)− Pjk

B
ℓ2−1(a2j , z)

∣

∣mB(z)2m(z)−1

≤2
∑

z∈V

e8t2νd(x,z)/n
n

∑

ℓ1=1

∑

i=+,−

∑

a1i∈Ai

2 sup
d(x,ω)≤1

kn−ℓ1(ω, a1i) degi a1i

×
∣

∣kB
ℓ1(a1i, z) − Pik

B
ℓ1−1(a1i, z)

∣

∣

n
∑

ℓ2=1

∑

j=+,−

∑

a2j∈Aj

∇kn−ℓ2(x, a2j) degj a2j

×
∣

∣kB
ℓ2(a2j , z) − Pjk

B
ℓ2−1(a2j , z)

∣

∣mB(z)2m(z)−1.

Using the same arguments in (12),

∣

∣kB
ℓ (ai, z) − Pik

B
ℓ−1(ai, z)

∣

∣

=
∣

∣

(

kB
ℓ (ai, z) − kB

ℓ−1(ai, z)
)

+
(

kB
ℓ−1(ai, z)− Pik

B
ℓ−1(ai, z)

)∣

∣

≤ 1

deg ai

∑

eB∈EB
ai

∣

∣kB
ℓ−1(t(eB), z) − kB

ℓ−1(ai, z)
∣

∣ +
1

degi ai

∑

ei∈Bi
ai

∣

∣kB
ℓ−1(ai, z) − kB

ℓ−1(t(ei), z)
∣

∣

≤∇BkB
ℓ−1(ai, z) + MB#BB(ai, Q1 + Q2)

∑

dB(ai,ω)≤Q1+Q2

∇BkB
ℓ−1(ω, z)

≤2MB#BB(ai, Q1 + Q2)
∑

dB(ai,ω)≤Q1+Q2

∇BkB
ℓ−1(ω, z). (13)

Then we obtain

I2(n, x) ≤C ′
∑

z∈V

e8tνd2(x,z)/n

n
∑

ℓ1=1

∑

i=+,−

∑

a1i∈Ai

sup
d(x,ω)≤1

kn−ℓ1(ω, a1i)
∑

dB(a1i,ω1)≤Q1+Q2

∇BkB
ℓ1−1(ω1, z)

n
∑

ℓ2=1

∑

j=+,−

∑

a2j∈Aj

∇kn−ℓ2(x, a2j)
∑

dB(a2j ,ω2)≤Q1+Q2

∇BkB
ℓ2−1(ω2, z)mB(z)2m(z)−1.

12



Lemma 2.2

n
∑

ℓ2=1

∑

j=+,−

∑

a2j∈Aj

∇kn−ℓ2(x, a2j)
∑

dB(a2j ,ω2)≤Q1+Q2

∇BkB
ℓ2−1(ω2, z)mB(z)2m(z)−1

(14)

≤C(tν)Tν + C√
nV (x,

√
n)

+
C(tν)Tν√
nV (z,

√
n)

.

Proof. From the induction hypothesis for ∇kn and the Gaussian upper bound
for ∇BkB

n ,

n
∑

ℓ2=1

∑

j=+,−

∑

a2j∈Aj

∇kn−ℓ2(x, a2j)
∑

dB(a2j ,ω2)≤Q1+Q2

∇BkB
ℓ2−1(ω2, z)mB(z)2m(z)−1

≤
∑

i=+,−

∑

ai∈Ai

{ Tν√
n − 1V (x,

√
n − 1)

e−tνd2(x,ai)/(n−1)χBB(ai,Q1+Q2+1)(z)

n−1
∑

ℓ=2

Tν√
n − ℓV (x,

√
n − ℓ)

e−tνd2(x,ai)/(n−ℓ) C√
ℓ − 1VB(z,

√
ℓ − 1)

e−cd2
B(ai,z)/(ℓ−1)

+ χB(x,1)(ai)
C√

n − 1VB(ai,
√

n − 1)
e−cd2

B(ai,z)/(n−1)
}

≤ C′Tν√
n − 1V (x,

√
n − 1)

+

n/2
∑

ℓ=2

∑

i=+,−

∑

ai∈Ai

C′Tν√
nV (x,

√
n)

C√
ℓ − 1VB(z,

√
ℓ − 1)

e−cd2
B(ai,z)/(ℓ−1)

+

n−1
∑

ℓ≥n/2

∑

i=+,−

∑

ai∈Ai

Tν√
n − ℓV (x,

√
n − ℓ)

e−tνd2(x,ai)/(n−ℓ) C′

√
nVB(z,

√
n)

+
C′

√
n − 1VB(x,

√
n − 1)

e−c′d2
B(x,z)/(n−1).

Since

∑

ai∈Ai

e−tνd2(x,ai)/ℓ =

∞
∑

k=0

∑

k≤d2(x,ai)/ℓ<k+1

e−tνd2(x,ai)/ℓ

≤
∞
∑

k=0

#{a ∈ A | tνd2(x, ai)/ℓ ≤ k + 1}e−k

≤
∞
∑

k=0

VA

(

x,

√

t−1
ν (k + 1)ℓ

)

e−k

13



and VB(x, r) is comparable with V (x, r), (14) is less than

C′Tν + C√
n − 1V (x,

√
n − 1)

+
C′Tν√

nV (x,
√

n)

n/2
∑

ℓ=2

∞
∑

k=0

CVA(z,
√

c−1(k + 1)(ℓ − 1))√
ℓ − 1VB(z,

√
ℓ − 1)

e−k

+

n−1
∑

ℓ≥n/2

∞
∑

k=0

TνVA(x,
√

t−1
ν (k + 1)(n − ℓ))

√
n − ℓV (x,

√
n − ℓ)

e−k C′

√
nVB(z,

√
n)

.

By the volume doubling property on X ,

n/2
∑

ℓ=2

∞
∑

k=0

VA(z,
√

c−1(k + 1)(ℓ − 1))√
ℓ − 1VB(z,

√
ℓ − 1)

e−k

=

n/2
∑

ℓ=2

∞
∑

k=0

VA(z,
√

c−1(k + 1)(ℓ − 1))

V (z,
√

c−1(k + 1)(ℓ − 1))
· V (z,

√

c−1(k + 1)(ℓ − 1))√
ℓ − 1VB(z,

√
ℓ − 1)

e−k

≤
∞
∑

k=0





n/2
∑

ℓ=2

VA(z,
√

c−1(k + 1)(ℓ − 1))√
ℓ − 1V (z,

√

c−1(k + 1)(ℓ − 1))



 C(c−1(k + 1))δe−k

for some δ > 0. From the assumption (7) for VA in Theorem 1, this is uniformly
bounded for z ∈ V . Then the lemma follows.

By this lemma and the Gaussian upper bounds for ∇BkB
n and kn, I2 is

estimated by

C′
∑

z∈V

e8tνd2(x,z)/n
{

∑

i=+,−

∑

a1i∈Ai

C

V (x,
√

n − 1)
e−cd2(x,a1i)/(n−1)χBB(a1i,Q1+Q2+1)(z)

+
n−1
∑

ℓ1=2

∑

i=+,−

∑

a1i∈Ai

C

V (x,
√

n − ℓ1)
e−cd2(x,a1i)/(n−ℓ1)

× C√
ℓ1 − 1VB(a1i,

√
ℓ1 − 1)

e−cd2
B(a1i,z)/(ℓ1−1)

+
∑

i=+,−

∑

a1i∈Ai

χB(x,1)(a1i)
C√

n − 1VB(a1i,
√

n − 1)
e−cd2

B(a1i,z)/(n−1)
}

×
(

C(tν)Tν + C√
nV (x,

√
n)

+
C(tν)Tν√
nV (z,

√
n)

)

.

Since

e8tνd2(x,z)/n ≤ e16tνd2(x,a1i)/(n−ℓ1)e32Q2
1Q2

2tν e32Q2
1tνd2

B(a1i,z)/(ℓ1−1)
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for 1 < ℓ1 < n,

I2(n, x) ≤C ′′
∑

z∈V

{

∑

i=+,−

∑

a1i∈Ai

C

V (x,
√

n − 1)
e−(c−16tν)d2(x,a1i)/(n−1)χBB(a1i,Q1+Q2+1)(z)

+

n−1
∑

ℓ1=2

∑

i=+,−

∑

a1i∈Ai

C

V (x,
√

n − ℓ1)
e−(c−16tν)d2(x,a1i)/(n−ℓ1)

× C√
ℓ1 − 1VB(a1i,

√
ℓ1 − 1)

e−(c−32Q2
1tν)d2

B(a1i,z)/(ℓ1−1)

+
∑

i=+,−

∑

a1i∈Ai

χB(x,1)(a1i)
C√

n − 1VB(a1i,
√

n − 1)
e−(c−32Q2

1tν)d2
B(a1i,z)/(n−1)

}

×
(

C(tν)Tν + C√
nV (x,

√
n)

+
C(tν)Tν√
nV (z,

√
n)

)

.

By the volume doubling property for V ,

1

V (z,
√

n)
e−cd2(a,z)/n =

1

V (a,
√

n)
· V (a,

√
n)

V (z,
√

n)
e−cd2(a,z)/n

≤ 1

V (a,
√

n)
· V (z,

√
n + d(a, z))

V (z,
√

n)
e−cd2(a,z)/n

≤ 1

V (a,
√

n)

(

1 +
d(a, z)√

n

)δ

e−cd(a,z)/n

≤ C

V (a,
√

n)
e−cd2(a,z)/2n.

For sufficiently small tν > 0, I2 is estimated by

{

∑

i=+,−

∑

a1i∈Ai

C

V (x,
√

n − 1)
e−(c−16tν)d2(x,a1i)/(n−1)

+ C

n/2
∑

ℓ1=2

∑

i=+,−

∑

a1i∈Ai

C

V (x,
√

n)
e−(c−16tν)d2(x,a1i)/n C√

ℓ1 − 1

+ C

n−1
∑

ℓ1>n/2

∑

i=+,−

∑

a1i∈Ai

C

V (x,
√

n − ℓ1)
e−(c−16tν)d2(x,a1i)/(n−ℓ1)

C′

√
n

+
C√

n − 1

}C(tν)Tν + C(tν)√
nV (x,

√
n)

.

Here we remark that

∑

z∈V

1

V (a,
√

ℓ)
e−cd2(a,z)/ℓ ≤ C ∀ℓ ≥ 1.
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By the same argument in Lemma 2.2 with the assumption (7) of the Theorem,
we conclude that

I2(n, x) ≤C
{

∞
∑

k=0

√

c(tν)(k + 1)(n − 1)VA(x,
√

c(tν)(k + 1)(n − 1))

V (x,
√

c(tν)(k + 1)(n − 1))
(c(tν)(k + 1))δe−k

+

∞
∑

k=0

c(tν)(k + 1)(n − 1)VA(x,
√

c(tν)(k + 1)(n − 1))

V (x,
√

c(tν)(k + 1)(n − 1))
(c(tν)(k + 1))δe−k

+
∞
∑

k=0

n−1
∑

ℓ1>n/2

VA(x,
√

c(tν)(k + 1)(n − ℓ1))

V (x,
√

c(tν)(k + 1)(n − ℓ1))
(c(tν)(k + 1))δe−k +

√
n√

n − 1

}

· C(tν)Tν + C′(tν)

nV (x,
√

n)

≤M
C′(tν)Tν + C′′(tν)

nV (x,
√

n)

which gives a desired bound for (11).

2.5 Conclusion of induction

From the above arguments, for small tν > 0, we obtain

∇kν(x, y) ≤ (C(tν)Tν + C′(tν))1/2

√
νV (x,

√
ν)1/2

C(tν)

V (y,
√

ν)1/2
e−2tνd(x,y)2/ν

under the hypothesis that

∇ki(x, y) ≤ Tν√
iV (x,

√
i)

e−tνd(x,y)2/i

for 1 ≤ i ≤ ν − 1. Since X has the volume doubling property, by the same
arguments as in the proof of Theorem 5.2 in [3], we have

∇kν(x, y) ≤ C′′(tν)(C(tν)Tν + C′(tν))1/2

√
νV (x,

√
ν)

e−tνd(x,y)2/ν .

Finally, by taking Tν large enough so that

C′′(tν)(C(tν)Tν + C′(tν))1/2 ≤ Tν ,

we obtain

∇kν(x, y) ≤ Tν√
νV (x,

√
ν)

e−tνd(x,y)2/ν .

Then the proof of theorem is complete.
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