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Abstract

Synthetic di¤erential geometry occupies a unique position in topos-theoretic
physics. Nevertheless it has appeared somewhat too conceptual to physicists
in general, partly because it has appeared to lack computational aspects. Its
computational facets are really concerned with computation of the quasi-colimit
of a �nite diagram of in�nitesimal spaces, or equivalently, with computation of
the limit of a �nite diagram of Weil algebras. Indeed we have been forced to
do a highly invovled computation of the above kind by hand in our previous
papers ([International Journal of Theoretical Physics, 36 (1997) , 1099-1131]
and [International Journal of Theoretical Physics, 38 (1999) , 2163-2174]). The
principal objective in this paper is to show that Gröbner bases techniques pro-
vide us with means that relegate such computations to computers.
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§0. Introduction

Synthetic di¤erential geometry, in which nilpotent in�nitesimals are visible
geometrically, is expected to play a predominant role in topos-theoretic physics
(cf. Isham and Butter�eld [Foundations of Physics, 30 (2000), p.1715]). Nev-
ertheless it has appeared somewhat too conceptual to physicists in general.
Physicists prefer computations, while synthetic di¤erential geometers have so
far made little account of computational aspects. In using orthodox di¤erential
geometry, physicists enjoy computation in local charts, while the main objects
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of study in synthetic di¤erential geometry are microlinear spaces, in which co-
ordinates are generally out of touch. The lacking of coordinates make physicists
feel somewhat alienated, but we should stress that computation of the quasi-
colimit of in�nitesimal spaces, or equivalently, computation of the limit of Weil
algebras play the same role in synthetic di¤erential geometry as computaion in
local charts does in orthodox di¤erential geometry. Even such computational
aspects in synthetic di¤erential geometry have appeared still too conceptual to
many poor physicists. The principal objective in this paper is to show that they
can be relegated to computers.
We denote by R the set of real numbers. The category of R-algebras and

their homomorphisms is denoted by R � Alg, while its full subcategory of �-
nitely presentable R-algebras is denoted by R�Algfp . Since we deal exclusively
with commutative algebras in this paper, commutativity is not explicitly stated.
It is well known (cf. Kock [1981, Appendix A]) that

Theorem 0.1. Let E be a category with �nite inverse limits and an R-
algebra object R. Then there exists, up to isomorphisms, a unique functor
SpecR : (R �Algfp)op ! E preserving �nite inverse limits and taking R[x] to
R.

AWeil algebra (over R) is a �nite-dimensional R�algebra W subject to the
following conditions:

(0.1) W is a local ring in the sense that for all a; b 2W,

if a+ b = 1, then either a or b is invertible.

(0.2) W can be written as W = R � m, where the �rst

component is the R�algebra structure, and the

second is the maximal ideal of W.

The reader should note that m is nilpotent by Nakayama�s lemma, for which
he or she is referred to Corollary 3.16 of Moerdijk and Reyes [1991, Chapter I].
For some characterizations of Weil algebras, the reader is referred to Theorem
3.17 of Moerdijk and Reyes [1991, Chapter I]. In particular, a Weil algebra W
is representable as an a¢ ne R-algebra R[x1; :::; xn]=I, in which there exists a
natural number k with xki 2 I for any indeterminate xi.

A homomorphism of Weil algebras from a Weil algebraW1 to another (pos-
sibly the same) Weil algebra W2 is a homomorphism of R-algebras from W1 to
W2 mapping the maximal ideal of W1 into the maximal ideal of W2. We de-
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note byWl the category of Weil algebras and homomorphisms of Weil algebras,
which is a subcategory of the category R�Alg. It is well known that the cat-
egory R�Alg is �nitely complete. In §1 we will show that the categoryWl is
also �nitely complete. We will give a necessary and su¢ cient condition for the
coincidence of the limit of a given diagram in Wl with that in R �Alg. The
limit of a diagram inWl is called good if it happens to be the limit of the same
diagram in R�Alg. The notion of a good limit is important, because it is well
known (cf. Kock and Lavendhomme [1984, Prop.1.2]) that

Proposition 0.2. Let E be a Cartesian closed category with �nite inverse
limits and an R�algebra object R. Let us assume that E and R satisfy the
following Kock-Lawvere axiom:

(0.3) For any Weil algebra W, the natural R-algebra homomorphism

R
W! RSpecR(W)

is an isomorphism.

Then the functor RSpecR(�) :Wl! E takes good �nite limit diagrams to limit
diagrams. Conversely, if a �nite diagram in Wl is taken to a limit diagram in
E by the functor RSpecR(�), then the diagram is a good limit diagram, provided
that �(R) = R, where � is the global sections functor.

In synthetic di¤erential geometry, the notion of a smooth manifold in or-
thodox di¤erential geometry should be replaced by that of a microlinear space.
Just as local charts enable orthodox di¤erential geometers to transfer from R to
smooth manifolds, good �nite limit diagrams in Wl enable synthetic di¤eren-
tial geometers to transfer from R to microlinear spaces. This makes the study
of Weil algebras downright central in synthetic di¤erential geometry. For text-
books on synthetic di¤erential geometry, the reader is referred to Kock [1981],
Lavendhomme [1996] and Moerdijk and Reyes [1991].

The principal objective in §2 is to give an e¢ cient algorithm for calculating �-
nite limits inWl. The calculation of limits of �nite diagrams in any �nitely com-
plete category is reducible to the calculation of products and equalizers, because
the limit of a �nite diagram is representable in terms of products and equalizers,
for which the reader is referred to MacLane [1971, Chapter V, §2]. Here the
calculation of the limit of a �nite diagram inWl means exactly the presentation
of the limit of the diagram as an a¢ ne R-algebra, provided that each object in
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the diagram is presented as an a¢ ne R-algebra. The calculation of the product
of two Weil algebras in the categoryWl is simple enough. If the two Weil alge-
bras are presented by R[x1; :::; xm]=I and R[y1; :::; yn]=J as a¢ ne R�algebras,
then their product is represented by R[x1; :::; xm; y1; :::; yn]=K, where K is the
ideal generated by I, J and xiy0js (1 � i � m, 1 � j � n). The calculation
of equalizers inWl is not so simple. We must solve linear equations and evoke
the elimination theory, in which familiar Gröbner bases techniques should be
invoked. Our standard reference on the theory of Gröbner bases is Adams and
Loustaunau [1994].

Fortunately or unfortunately, synthetic di¤erential geometry has dealt with
so simple diagrams that synthetic di¤erential geometers have not felt the need
of such algorithms keenly. This is why they have been content with their naively
combinatorial arguments. The remarkable exception is Nishimura�s [1997, 1999,
2001] general Jacobi identity, for which a moderately involved diagram should be
considered. The limit diagram for the general Jacobi identity lies on the verge of
feasibility of naively combinatorial arguments, which is why the general Jacobi
identity, though being fundamental in synthetic di¤erential geometry and even
in mathematics, had remained to be discovered for so long. We hope that our
new algorithm will transmogrify the landscape drastically in manipulation of
diagrams inWl, just as the theory of linear equations has made the calculation
of the value of two unknown quantities from their unit total and the total of one
of their attributes everyone�s job. It is generally believed that zero-dimensional
ideals render an attractive forum to the theory of Gröbner bases, and we hold
that the theory of Weil algebras and the study of zero-dimensional ideals can
and should weave together.

Section 1 is devoted to a short course on the category of In §3-§5 we deal with
three examples. The examples of §3 and §4 are so simple that the reader might
feel that we are pedantic and frothy enough to brandish and trot out our new
algorithm in such simple cases. We contend that the best way to understand
a new algorithm is to apply the algorithm to some well understood examples.
The last example dealt with in §5 is moderately involved. To deal with such an
example without our algorithm is to calculate the respective numbers of cranes
and tortoises from the totals of their heads and legs without knowing the theory
of linear equations at all. It is feasible as we did in Nishimura [1997, 1999], but
the spirit of algebra and algorithm traced back to medieval Arabians has en-
couraged us to �nd out a more systematic way. For the geometrical background
of §3 and §4, the reader is referred to Bunge and Sawyer [1994] and Kock and
Lavendhomme [1984]. For the geometric background of §5, the reader is referred
to Nishimura [1997. 1999, 2001].

§1. The Category of Weil Algebras
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The category R�Alg is well known to be �nitely complete. We would like
to show that the categoryWl is also �nitely complete. It is easy to see that

Proposition 1.1. R is a terminal object in the categoryWl.

Given two Weil algebras W1 = R � m1 and W2 = R � m2, their product
is de�ned as R � m1 � m2, in which the multiplication in W1 = R � m1 and
W2 = R � m2 persists, while it is stipulated that the multiplication of any el-
ement of m1 and any element of m2 should vanish. The product is denoted by
W1�W2. The mapping (a;m1;m2) 2 R�m1 �m2 7! (a;m1) 2W1 is denoted
by �1, while the mapping (a;m1;m2) 2 R�m1�m2 7! (a;m2) 2W2 is denoted
by �2. Then it is easy to see that

Proposition 1.2. For any Weil algebras W1 and W2, the diagram

W1 �1 �����W1�W2 �2�����!W2

is a product of W1 and W2 in the categoryWl.

Note that, given two arrows ' : W1 ! W0
1 and  : W2 ! W0

2 in Wl,
there exists a unique arrow '� : W1�W2 ! W0

1�W0
2 in Wl such that

�1 � ('� ) = ' � �1 and �2 � ('� ) =  � �2.

It is also easy to see that

Proposition 1.3. For any parallel arrows W1 � W2 in the category Wl,
its equalizerW1 �!W1 �W2 in the category R�Alg belongs in its subcat-
egoryWl.

Theorem 1.4. The categoryWl is �nitely complete.

proof. This follows simply from Propositions 1.1-1.3 by dint of Theorem 1 of
MacLane [1971, Chapter V, §2]. �

Let U1 :Wl ! R �Alg and U2 : R �Alg ! R �Mod be forgetful func-
tors, where R �Mod is the category of linear spaces over R and their linear
maps. Let M :Wl ! R �Mod be a functor assigning, to each Weil algebra,
its maximal ideal and, to each homomorphism of weil algebras, its restriction
to maximal ideals. Every category is uniquely decomposed into connected cat-
egories, each of which is called a connected component. For the de�nition of the
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connectedness of a category, the reader is referred to Borceux [1994, 2.6.7.e] or
Schubert [1972, De�nition 9.1.1].

Theorem 1.5. Let F : J!Wl be a �nite diagram of Weil algebras. Then
U1(Lim �� F ) and Lim �� U1 � F are naturally isomorphic i¤ the category J is con-
nected.

proof. It su¢ ces to show that U2 � U1(Lim �� F ) and U2(Lim �� U1 � F ) are nat-
urally isomorphic. It is easy to see that

(1.4) U2 � U1(Lim �� F ) = R+ Lim �� M � F

while

(1.5) U2(Lim �� U1 � F ) = Rm + Lim �� M � F ,

where m is the number of connected components of J. Therefore the desired
statement follows. �

§2. Algorithms

In order to calculate �nite limits inWl, it su¢ ces to calculate �nite products
and equalizers in Wl. The calculation of �nite products in Wl is straightfor-
ward. Given two Weil algebrasW1 andW2 as a¢ ne R�algebras R [x1; :::; xn]=I
and R[y1; :::; ym]=J respectively, W1�W2 is represented as an a¢ ne algebra
R[x1; :::; xn; y1; :::; ym]=K, where K is the ideal generated by I, J and xiyj for
all natural numbers i; j with 1 � i � n and 1 � j � m.
We will present an algorithm for calculating equalizers. Given parallel ar-

rows W1

'��!��!
 

W2 in Wl with W1 = R � m1 and W2 = R � m2, let e1; :::; ep

and f1; :::; fq be linear bases of m1 and m2 respectively. Since '(m1) � m2 and
 (m1) � m2, there exist aji ; b

j
i 2 R(1 � i � p and 1 � j � q) such that

(2.1) '(ei) =
Pq

j=1 a
j
i fj

(2.2)  (ei) =
Pq

j=1 b
j
i fj

By solving the linear equation

(2.3)

264 a11 � � � a1p
...

...
aq1 � � � aqp

375
264 x1

...
xp

375 =
264 b11 � � � b1p
...

...
bq1 � � � bqp

375
264 x1

...
xp

375
6



we get (c11; :::c
p
1); :::; (c

1
r; :::c

p
r) as a system of fundamental solutions of (2.3). We

let gk be

(2.4) gk =
Pp

i=1 c
i
kei (1 � k � r)

Therefore, given x 2W1, we have '(x) =  (x) i¤ it is a linear combination
of 1; g1; :::; gr. Thus we get an equalizerW1 = R�m1, where m1 is generated
linearly by g1; :::; gr.
Our story of equalizers in Wl is not over. Although g1; :::; gr are linearly

independent by de�nition so that there is no linear redundance among g1; :::; gr,
it may be the case, by way of example, that g1 is representable as a polynomial
of g2; :::; gr so that g1 is R-algebraically redundant. Therefore we must �nd out a
subset gk1 ; :::; gks of g1; :::; gr, for which there is no such R-algebraic redundance.
Once we �nd such a subset gk1 ; :::; gks of g1; :::; gr, we have to �nd out the ideal
of relations among gk1 ; :::; gks .
We assume throughout the rest of this section that W1 and W2 are �nitely

presented as a¢ ne R-algebras R[x1; :::; xn]=I and R[y1; :::; ym]=J respectively.
Let us start on the �rst task.

Theorem 2.1. Let g1; :::; gr be polynomials in R[x1; :::; xn]. Let l � r. Let
I be an ideal in the R-algebra R[x1; :::; xn]. Let G be the reduced Gröbner basis
for the ideal < I;w1 � g1; :::; wr � gr > in the R-algebra R[w1; :::; wr; x1; :::; xn]
with respect to an elimination order with the x variables larger than the w vari-
ables and, at the same time, the variables wl+1; :::; wr larger than the variables
w1; :::; wl (e.g., the lexicographic order w1 < ::: < wl < wl+1 < ::: < wr < x1 <
::: < xn). Exactly speaking about the elimination order, we have, for any power
products X,X 0 in variables x1; :::; xn, any power products W1,W 0

1 in variables
wl+1; :::; wr and any power products W2,W 0

2 in variables w1; :::; wl,

(2.5) XW1W2 < X 0W 0
1W

0
2 i¤

8>><>>:
X < X 0

X = X 0 and W1 < W 0
1

or
X = X 0;W1 =W 0

1 and W2 < W 0
2.

9>>=>>;
Then the R-subalgebra V of R[x1; :::; xn]=I generated by g1 + I; :::; gr + I is

already generated by g1 + I; :::; gl + I i¤ G\R[w1; :::; wr] contains a polynomial
wk � hk with hk 2 R[w1; :::; wl] (l + 1 � k � r). In this case, G\R[w1; :::; wl] is
a Gröbner basis for the ideal of relations among w1; :::; wl with wk representing
gk + I (1 � k � l), and we have gk + I = hk(g1 + I; :::; gl + I) (l + 1 � k � r).

proof. In order to get the �rst conclusion in the theorem, it su¢ ces to
apply the discussion in the proofs of Theorems 2.4.7 and 2.4.13 of Adams
and Loustaunau [1994] to the R-algebra homomorphism from R[w1; :::; wl] to
R[wl+1; :::; wk; x1; :::; xn]=K assigning gk +K to wk (1 � k � l), where K is the
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ideal < I;wl+1 � gl+1; :::; wr � gr > in the R-algebra R[wl+1; :::; wk; x1; :::; xn],
where it is established in the course that we have gk + I = hk(g1 + I; :::; gl + I)
(l + 1 � k � r) in this case. That if one of the equivalent conditions in the
�rst conclusion holds, then G\R[w1; :::; wl] is a Gröbner basis for the ideal of
relations among w1; :::; wl with wk representing gk + I (1 � k � l) follows by
Theorems 2.3.4 and 2.4.10 of Adams and Loustaunau [1994]. �

This theorem gives the following algorithm for our �rst task.

Algorithms 2.2. (Weeding out R-algebraic redundance)
Input:arbitrary generators g1; :::; gr of the R-algebra W1.
Output:generators gk1 ; :::; gks of W1 without R-algebraic redundance.
1. Let X = fg1; :::; grg and Y = � (the empty set).
2. Choose gk from X and ask whether gk is in the R�subalgebra generated

by (X � fgkg) [ Y , which is decidable by Theorem 2.1. If the answer is yes,
then let X := X � fgkg. If the answer is no, then let X := X � fgkg and
Y := Y [ fgkg. Repeat this process until X becomes empty.
3. Output Y .

Now we turn to our second task. This can be carried out by the following fa-
miliar algorithm, for which the reader is referred to Theorem 2.3.4 and Theorem
2.4.10 of Adams and Loustaunau [1994].

Algorithm 2.3. (Computing a Gröbner basis for the ideal of relations)
Input:generators gk1 ; :::; gks of the R-algebra W1.
Output:a Gröbner basis for the ideal of relations among gk1 ; :::; gks .
1. Compute a Gröbner basis G for the ideal <I;w1 � gk1 ; :::; ws � gks > in

the R�algebra R[w1; :::; ws; x1; :::; xn] with respect to an elimination order with
the x variables larger than w variables, where gk = gk + I (1 � k � r).
2. Output G\R[w1; :::; ws].

If the number r of the linear basis g1; :::; gr of m1 is not so large, as is the
case in the following three examples to be discussed in the succeeding sections,
it is not di¢ cult to guess putative generators of the R-algebra W1 by writing
out the multiplication table. If our putative generators indeed generate the R-
algebra W1 with or without R-algebraic redundance, we can con�rm this by
using Theorem 2.1, in which the ideal of relation among these putative gener-
ators is obtained as a by-product. Of course, in order to know whether there
is R-algebraic redundance among these putative generators, we must invoke
Algorithm 2.2.

§3. The Main Limit Diagram for the Ambrose-Palais-Singer Theo-
rem
It is very important in the synthetic proof of the Ambrose-Palais-Singer theorem
to calculate the equalizer of the following parallel arrows:
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(3.1) V
���!��!
�

U,

where

(3.2) U = R[u1; u2; v1; v2]= < u31; u
3
2; v

2
1 ; v

2
2 >

(3.3) V = R[x; y; z]= < x3; y2; z2 >

(3.4) �(x) = u1u2, �(y) = v1, �(z) = v2

(3.5) �(x) = u2, �(y) = u1v1, �(z) = u1v2
Let f 2 V, which is of the following form:

(3.6) f = a+ a1x+ a2y + a3z + a11x
2 + a12xy + a13xz+

a112x
2y + a113x

2z + a123xyz + a1123x
2yz

It is easy to see that

(3.7) �(f) = a+ a1u1u2 + a2v1 + a3v2 + a11u
2
1u
2
2+

a12u1u2v1 + a13u1u2v2 + a112u
2
1u
2
2v1+

a113u
2
1u
2
2v2 + a123u1u2v1v2 + a1123u

2
1u
2
2v1v2

On the other hand we have

(3.8) �(f) = a+ a1u2 + a2u1v1 + a3u1v2 + a11u
2
2+

a12u1u2v1 + a13u1u2v2 + a112u1u
2
2v1+

a113u1u
2
2v2 + a123u

2
1u2v1v2 + a1123u

2
1u
2
2v1v2

Therefore f is in the equalizer of (3.1) i¤ the coe¢ cients of f are pervious to the
following linear equations:
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(3.9) a1 = a2 = a3 = 0

(3.10) a11 = 0

(3.11) a112 = a113 = a123 = 0

Thus we can see that f is in the equalizer of (3.1) i¤ it is a linear combination
of the following linearly independent polynomials:

(3.12) 1

(3.13) xy

(3.14) xz

(3.15) x2yz

It is easy to see that

(3.16) (3.13)(3.14) = (3.15)

Let�s compute the reduced Gröbner basis of the ideal < x3; y2; z2; xy�w1; xz�
w2; x

2yz � w3 > in the polynomial algebra R[x; y; z; w1; w2; w3] with resepct to
the lexicographic order z > y > x > w3 > w2 > w1, which goes as follows:

(3.17) G = fw21; w22; w1w2 � w3; xw1w2; x2w1; x2w2; x3; yw1; xy � w1; y2;
�zw1 + yw2; zw2; xz � w2; z2g

Therefore we have

(3.18) G\R[w1; w2; w3] = fw21; w22; w1w2 � w3g,

which recon�rms (3.16). The diagram (3.1) is now seen to be completed into
the following equalizer diagram:

(3.19) W1 '1����!
V

���!��!
�

U,

where

(3.20) W1 = R[w1; w2]= < w21; w
2
2 >
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(3.21) '1(w1) = xy and '1(w2) = xz.
It remains to show that there is no R-algebraic redundance among the gen-

erators w1 + I; w2 + I of W1, where I is the ideal < w21; w
2
2 >. This goes as

follows:

(3.22) The reduced Gröbner basis of the ideal < w21; w
2
2; v1�w1; v2�w2 > in

the polynomial algebra R[w1; w2; v1; v2] with resepct to the lexicographic order
w2 > w1 > v2 > v1 is G1 = fv21 ; v22 ; v1 � w1; v2 � w2g, so that G1 \ R[v1; v2] =
fv21 ; v22g. This means by Theorem 2.1 that w2 + I is not R-algebraically redun-
dant among w1 + I and w2 + I.
(3.23) The reduced Gröbner basis of the ideal < w21; w

2
2; v1�w2; v2�w1 > in

the polynomial algebra R[w1; w2; v1; v2] with resepct to the lexicographic order
w2 > w1 > v2 > v1 is G1 = fv21 ; v22 ; v1 � w2; v2 � w1g, so that G1 \ R[v1; v2] =
fv21 ; v22g. This means by Theorem 2.1 that w1 + I is not R-algebraically redun-
dant among w1 + I and w2 + I.

§4. The Main Limit Diagram for the Strong Di¤erence

We would like to �nd out the limit of the following diagram:

(4.1)
U   �� W2

' "
W1

,

where

(4.2) U = R[u1; u2]= < u21; u
2
2; u1u2 >

(4.3) W1 = R[x1; x2]= < x21; x
2
2 >

(4.4) W2 = R[y1; y2]= < y21 ; y
2
2 >

(4.5) '(x1) = u1; '(x2) = u2

(4.6)  (y1) = u1;  (y2) = u2

To this end, it su¢ ces to calculate the equalizer of

(4.7) W1�W2

~'��!��!
~ 

U;

where
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(4.8) W1�W2 = R[x1; x2; y1; y2]= < x21; x
2
2; y

2
1 ; y

2
2 ; x1y1; x1y2,

x2y1; x2y2 >

(4.9) ~'(x1) = u1; ~'(x2) = u2; ~'(y1) = 0; ~'(y2) = 0

(4.10) ~ (x1) = 0; ~ (x2) = 0; ~ (y1) = u1;  (y2) = u2

Let f 2W1�W2, which is of the following form:

(4.11) f = a+ a11x1 + a
1
2x2 + a

1
12x1x2 + a

2
1y1 + a

2
2y2+ a212y1y2

It is easy to see that

(4.12) ~'(f) = a+ a11u1 + a
1
2u2

On the other hand we have

(4.13) ~ (f) = a+ a21u1 + a
2
2u2

Thus we can see that f is in the equalizer of (4.7) i¤ the coe¢ cients of f are
pervious to the following linear equations:

(4.14) a11 = a21 and a
1
2 = a22

Thus we can see that f is in the equalizer of (4.7) i¤ it is a linear combination
of the following linearly independent polynomials:

(4.15) 1

(4.16) x1 + y1

(4.17) x2 + y2

(4.18) x1x2
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(4.19) y1y2

It is easy to see that

(4.20) (4.16)(4.17) = (4.18) + (4.19)

Let�s compute the reduced Gröbner basis of the ideal< x21; x
2
2; y

2
1 ; y

2
2 ; x1y1; x2y1; x1y2; x2y2; x1+

y1�w1; x2+y2�w2; x1x2�w3; y1y2�w4 > in the polynomial algebra R[x1; x2; y1; y2; w1; w2; w3; w4]
with resepct to the lexicographic order y1 > y2 > x1 > x2 > w4 > w3 > w2 >
w1, which goes as follows:

(4.21) G = fw21; w22; w1w3; w2w3; w23; w1w2�w3�w4;�w3+w1x2; w2x2; w3x2; x22;
w1x1;�w3+w2x1; w3x1;�w3+x1x2; x21;�w2+x2+y2;�w1+x1+y1g

Therefore we have

(4.22) G\R[w1; w2; w3; w4] = fw21; w22; w1w3; w2w3; w23; w1w2 � w3 � w4g,

which recon�rms (4.20). The diagram (4.1) is now seen to be completed into
the following limit diagram:

(4.23)

U   �� W2

' " " '1
W1  1 ���

W1

,

where

(4.24) W1 = R[w1; w2; w3]= < w21; w
2
2; w

2
3; w1w3; w2w3 >

(4.25) '1(w1) = x1; '1(w2) = x2, '1(w3) = 0

(4.26)  1(w1) = y1;  1(w2) = y2, 1(w3) = y1y2.
It remains to show that there is no R-algebraic redundance among the gener-

ators w1+I; w2+I and w3+I ofW1, where I is the ideal< w21; w
2
2; w

2
3; w1w3; w2w3 >.

This goes as follows:

(4.27) The reduced Gröbner basis of the ideal < w21; w
2
2; w1w3; w2w3; w

2
3; v1�

w1; v2 � w2; v3 � w3 > in the polynomial algebra R[w1; w2; w3; v1; v2; v3] with
resepct to the lexicographic order w3 > w2 > w1 > v3 > v2 > v1 is G1 =
fv21 ; v22 ; v1v3; v2v3; v23 ; v1 � w1; v2 � w2; v3 � w3g, so that G1 \ R[v1; v2; v3] =
fv21 ; v22 ; v1v3; v2v3; v23g. This means by Theorem 2.1 that w3 + I is not R-
algebraically redundant among w1 + I, w2 + I and w3 + I.

(4.28) The reduced Gröbner basis of the ideal < w21; w
2
2; w1w3; w2w3; w

2
3; v1�

w2; v2 � w3; v3 � w1 > in the polynomial algebra R[w1; w2; w3; v1; v2; v3] with
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resepct to the lexicographic order w3 > w2 > w1 > v3 > v2 > v1 is G2 =
fv21 ; v1v2; v22 ; v2v3; v23 ; v3 � w1; v1 � w2; v2 � w3g, so that G2 \ R[v1; v2; v3] =
fv21 ; v1v2; v22 ; v2v3; v23g. This means by Theorem 2.1 that w1 + I is not R-
algebraically redundant among w1 + I, w2 + I and w3 + I.

(4.29) The reduced Gröbner basis of the ideal < w21; w
2
2; w1w3; w2w3; w

2
3; v1�

w3; v2 � w1; v3 � w2 > in the polynomial algebra R[w1; w2; w3; v1; v2; v3] with
resepct to the lexicographic order w3 > w2 > w1 > v3 > v2 > v1 is G3 =
fv21 ; v1v2; v22 ; v1v3; v23 ; v2 � w1; v3 � w2; v1 � w3g, so that G3 \ R[v1; v2; v3] =
fv21 ; v1v2; v22 ; v1v3; v23g. This means by Theorem 2.1 that w2 + I is not R-
algebraically redundant among w1 + I, w2 + I and w3 + I.

§5. The Main Limit Diagram for the General Jacobi Identity

We would like to �nd out the limit of the following diagram:

(5.1)

W1

�112 . & �131
V1�V2 V1�V2
�212 " " �331
W2 W3

�223 & . �323
V1�V2

,

where

(5.2) V1 = R[u1; u2; u3]= < u21; u
2
2; u

2
3 >

(5.3) V2 = R[v1; v2; v3]= < v21 ; v
2
2 ; v

2
3 >

(5.4) W1 = R[x1; x2; x3; x4; x5; x6; x7]= < x21; x
2
2; x

2
3; x

2
4; x

2
5; x

2
6; x

2
7,

x2x3; x2x5; x3x4; x4x5; x2x6; x3x6; x4x6; x5x6; x1x7,

x2x7; x3x7; x4x7; x5x7; x6x7 >

(5.5) W2 = R[y1; y2; y3; y4; y5; y6; y7]= < y21 ; y
2
2 ; y

2
3 ; y

2
4 ; y

2
5 ; y

2
6 ; y

2
7 ,

y1y2; y1y5; y2y4; y4y5; y1y6; y2y6; y4y6; y5y6; y1y7,

y2y7; y3y7; y4y7; y5y7; y6y7 >

(5.6) W3 = R[z1; z2; z3; z4; z5; z6; z7]= < z21 ; z
2
2 ; z

2
3 ; z

2
4 ; z

2
5 ; z

2
6 ; z

2
7 ,
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z1z2; z1z4; z2z3; z3z4; z1z6; z2z6; z3z6; z4z6; z1z7,

z2z7; z3z7; z4z7; z5z7; z6z7 >

(5.7) �112(x1) = u1 + v1, �112(x2) = u2, �112(x3) = v2,

�112(x4) = u3, �112(x5) = v3, �112(x6) = u2u3,

�112(x7) = 0

(5.8) �131(x1) = u1 + v1, �131(x2) = v2, �1131(x3) = u2,

�131(x4) = v3, �131(x5) = u3, �131(x6) = u2u3,

�131(x7) = u1u2u3

(5.9) �212(y1) = v1, �212(y2) = u1, �212(y3) = u2 + v2,

�212(y4) = v3, �212(y5) = u3, �212(y6) = u1u3,

�212(y7) = u1u2u3

(5.10) �223(y1) = u1, �223(y2) = v1, �223(y3) = u2 + v2,

�223(y4) = u3, �223(y5) = v3, �223(y6) = u1u3,

�223(y7) = 0

(5.11) �323(z1) = v1, �323(z2) = u1, �323(z3) = v2,
�323(z4) = u2, �323(z5) = u3 + v3, �323(z6) = u1u2,
�323(z7) = u1u2u3

(5.12) �331(z1) = u1, �331(z2) = v1, �331(z3) = u2,

�331(z4) = v2, �331(z5) = u3 + v3, �331(z6) = u1u2,

�331(z7) = 0

To this end, it su¢ ces to compute the equalizer of

(5.13) W1�W2�W3

'��!��!
 

V1�V2�V1�V2�V1�V2,
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where, if �i :W1�W2�W3 !Wi (1 � i � 3) denotes the canonical projection
and �i : V1�V2�V1�V2�V1�V2 ! V1�V2 denotes the canonical projection
to the i-th V1�V2 in V1�V2�V1�V2�V1�V2 (1 � i � 3), then ' and  are
characterized as follows:

(5.14) �1 � ' = �112 � �1, �2 � ' = �223 � �2, and �3 � ' = �331 � �3.
(5.15) �1 �  = �131 � �1, �2 �  = �212 � �2, and �3 �  = �323 � �3.

Let f 2W1�W2�W3, which is of the following form:

(5.16) f = a+ a11x1 + a
1
2x2 + a

1
3x3 + a

1
4x4 + a

1
5x5 + a

1
6x6+

a17x7 + a
1
12x1x2 + a

1
13x1x3 + a

1
14x1x4 + a

1
15x1x5+

a116x1x6 + a
1
24x2x4 + a

1
35x3x5 + a

1
124x1x2x4+

a1135x1x3x5 + a
2
1y1 + a

2
2y2 + a

2
3y3 + a

2
4y4 + a

2
5y5+

a26y6 + a
2
7y7 + a

2
13y1y3 + a

2
14y1y4 + a

2
23y2y3+

a225y2y5 + a
2
34y3y4 + a

2
35y3y5 + a

2
36y3y6+

a2134y1y3y4 + a
2
235y2y3y5 + a

3
1z1 + a

3
2z2 + a

3
3z3+

a34z4 + a
3
5z5 + a

3
6z6 + a

3
7z7 + a

3
13z1z3 + a

3
15z1z5+

a324z2z4 + a
3
25z2z5 + a

3
35z3z5 + a

3
45z4z5+

a356z5z6 + a
3
135z1z3z5 + a

3
245z2z4z5

Let V1�V2�V1�V2�V1�V2 = R[u1; u2; u3; v1; v2; v3; u01; u02; u03; v01; v02; v03;
u001 ; u

00
2 ; u

00
3 ; v

00
1 ; v

00
2 ; v

00
3 ]=(u

2
1; u

2
2; u

2
3; v

2
1 ; v

2
2 ; v

2
3 ; u

02
1 ; u

02
2 ; u

02
3 ; v

02
1 ,

v022 ; v
02
3 ; u

002
1 ; u

002
2 ; u

002
3 ; v

002
1 ; v0022 ; v0023 ; u1v1; u1v2; u1v3; u1u

0
1;

u1u
0
2; u1u

0
3; u1v

0
1; u1v

0
2; u1v

0
3; u1u

00
1 ; u1u

00
2 ; u1u

00
3 ; u1v

00
1 ; u1v

00
2 ; u1v

00
3 ;

u2v1; u2v2; u2v3; u2u
0
1; u2u

0
2; u2u

0
3; u2v

0
1; u2v

0
2; u2v

0
3; u2u

00
1 ; u2u

00
2 ;

u2u
00
3 ; u2v

00
1 ; u2v

00
2 ; u2v

00
3 ; u3v1; u3v2; u3v3; u3u

0
1; u3u

0
2; u3u

0
3; u3v

0
1;

u3v
0
2; u3v

0
3; u3u

00
1 ; u3u

00
2 ; u3u

00
3 ; u3v

00
1 ; u3v

00
2 ; u3v

00
3 ; v1u

0
1; v1u

0
2; v1u

0
3;
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v1v
0
1; v1v

0
2; v1v

0
3; v1u

00
1 ; v1u

00
2 ; v1u

00
3 ; v1v

00
1 ; v1v

00
2 ; v1v

00
3 ; v2u

0
1; v2u

0
2;

v2u
0
3; v2v

0
1; v2v

0
2; v2v

0
3; v2u

00
1 ; v2u

00
2 ; v2u

00
3 ; v2v

00
1 ; v2v

00
2 ; v2v

00
3 ; v3u

0
1;

v3u
0
2; v3u

0
3; v3v

0
1; v3v

0
2; v3v

0
3; v3u

00
1 ; v3u

00
2 ; v3u

00
3 ; v3v

00
1 ; v3v

00
2 ; v3v

00
3 ;

u01v
0
1; u

0
1v
0
2; u

0
1v
0
3; u

0
1u
00
1 ; u

0
1u
00
2 ; u

0
1u
00
3 ; u

0
1v
00
1 ; u

0
1v
00
2 ; u

0
1v
00
3 ; u

0
2v
0
1; u

0
2v
0
2;

u02v
0
3; u

0
2u
00
1 ; u

0
2u
00
2 ; u

0
2u
00
3 ; u

0
2v
00
1 ; u

0
2v
00
2 ; u

0
2v
00
3 ; u

0
3v
0
1; u

0
3v
0
2; u

0
3v
0
3; u

0
3u
00
1 ;

u03u
00
2 ; u

0
3u
00
3 ; u

0
3v
00
1 ; u

0
3v
00
2 ; u

0
3v
00
3 ; v

0
1u
00
1 ; v

0
1u
00
2 ; v

0
1u
00
3 ; v

0
1v
00
1 ; v

0
1v
00
2 ;

v01v
00
3 ; v

0
2u
00
1 ; v

0
2u
00
2 ; v

0
2u
00
3 ; v

0
2v
00
1 ; v

0
2v
00
2 ; v

0
2v
00
3 ; v

0
3u
00
1 ; v

0
3u
00
2 ; v

0
3u
00
3 ;

v03v
00
1 ; v

0
3v
00
2 ; v

0
3v
00
3 ; u

00
1v
00
1 ; u

00
1v
00
2 ; u

00
1v
00
3 ; u

00
2v
00
1 ; u

00
2v
00
2 ; u

00
2v
00
3 ;

u003v
00
1 ; u

00
3v
00
2 ; u

00
3v
00
3 ):

It is easy to see that

(5.17) '(f)

= a+ a11(u1 + v1) + a
1
2u2 + a

1
3v2 + a

1
4u3 + a

1
5v3+

a16u2u3 + a
1
12(u1 + v1)u2 + a

1
13(u1 + v1)v2+

a114(u1 + v1)u3 + a
1
15(u1 + v1)v3 + a

1
16(u1 + v1)u2u3+

a124u2u3 + a
1
35v2v3 + a

1
124(u1 + v1)u2u3+

a1135(u1 + v1)v2v3 + a
2
1u
0
1 + a

2
2v
0
1 + a

2
3(u

0
2 + v

0
2)+

a24u
0
3 + a

2
5v
0
3 + a

2
6u
0
1u
0
3 + a

2
13u

0
1(u

0
2 + v

0
2) + a

2
14u

0
1u
0
3+

a223v
0
1(u

0
2 + v

0
2)1 + a

2
25v

0
1v
0
3 + a

2
34(u

0
2 + v

0
2)u

0
3+

a235(u
0
2 + v

0
2)v

0
3 + a

2
36(u

0
2 + v

0
2)u

0
1u
0
3 + a

2
134u

0
1(u

0
2 + v

0
2)u

0
3+

a2235v
0
1(u

0
2 + v

0
2)v

0
3 + a

3
1u
00
1 + a

3
2v
00
1 + a

3
3u
00
2+

a34v
00
2 + a

3
5(u

00
3 + v

00
3 ) + a

3
6u
00
1u

00
2 + a

3
13u

00
1u

00
2+

a315u
00
1(u

00
3 + v

00
3 ) + a

3
24v

00
1 v

00
2 + a

3
25v

00
1 (u

00
3 + v

00
3 )+
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a335u
00
2(u

00
3 + v

00
3 ) + a

3
45v

00
2 (u

00
3 + v

00
3 )+

a356(u
00
3 + v

00
3 )u

00
1u

00
2 + a

3
135u

00
1u

00
2(u

00
3 + v

00
3 )+

a3245v
00
1 v

00
2 (u

00
3 + v

00
3 )

= a+ a11u1 + a
1
1v1 + a

1
2u2 + a

1
3v2 + a

1
4u3 + a

1
5v3+

a112u1u2 + a
1
13v1v2 + a

1
14u1u3 + a

1
15v1v3+

(a124 + a
1
6)u2u3 + a

1
35v2v3 + (a

1
16 + a

1
124)u1u2u3+

a1135v1v2v3 + a
2
1u
0
1 + a

2
2v
0
1 + a

2
3u
0
2 + a

2
3v
0
2 + a

2
4u
0
3+

a25v
0
3 + a

2
13u

0
1u
0
2 + a

2
23v

0
1v
0
2 + (a

2
6 + a

2
14)u

0
1u
0
3+

a225v
0
1v
0
3 + a

2
34u

0
2u
0
3 + a

2
35v

0
2v
0
3 + (a

2
36 + a

2
134)u

0
1u
0
2u
0
3+

a2235v
0
1v
0
2v
0
3 + a

3
1u
00
1 + a

3
2v
00
1 + a

3
3u
00
2 + a

3
4v
00
2+

a35u
00
3 + a

3
5v
00
3 + (a

3
13 + a

3
6)u

00
1u

00
2 + a

3
24v

00
1 v

00
2+

a315u
00
1u

00
3 + a

3
25v

00
1 v

00
3 + a

3
35u

00
2u

00
3 + a

3
45v

00
2 v

00
3+

(a356 + a
3
135)u

00
1u

00
2u

00
3 + a

3
245v

00
1 v

00
2 v

00
3

On the other hand we have

(5.18)  (f)

= a+ a11(u1 + v1) + a
1
2v2 + a

1
3u2 + a

1
4v3 + a

1
5u3+

a16u2u3 + a
1
7u1u2u3 + a

1
12(u1 + v1)v2 + a

1
13(u1 + v1)u2+

a114(u1 + v1)v3 + a
1
15(u1 + v1)u3 + a

1
16(u1 + v1)u2u3+

a124v2v3 + a
1
35u2u3 + a

1
124(u1 + v1)v2v3+

a1135(u1 + v1)u2u3 + a
2
1v
0
1 + a

2
2u
0
1 + a

2
3(u

0
2 + v

0
2)+

a24v
0
3 + a

2
5u
0
3 + a

2
6u
0
1u
0
3 + a

2
7u
0
1u
0
2u
0
3 + a

2
13v

0
1(u

0
2 + v

0
2)+

a214v
0
1v
0
3 + a

2
23u

0
1(u

0
2 + v

0
2) + a

2
25u

0
1u
0
3 + a

2
34(u

0
2 + v

0
2)v

0
3+

a235(u
0
2 + v

0
2)u

0
3 + a

2
36(u

0
2 + v

0
2)u

0
1u
0
3 + a

2
134v

0
1(u

0
2 + v

0
2)v

0
3
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a2235u
0
1(u

0
2 + v

0
2)u

0
3 + a

3
1v
00
1 + a

3
2u
00
1 + a

3
3v
00
2+

a34u
00
2 + a

3
5(u

00
3 + v

00
3 ) + a

3
6u
00
1u

00
2 + a

3
7u
00
1u

00
2u

00
3+

a313v
00
1 v

00
2 + a

3
15v

00
1 (u

00
3 + v

00
3 ) + a

3
24u

00
1u

00
2+

a325u
00
1(u

00
3 + v

00
3 ) + a

3
35v

00
2 (u

00
3 + v

00
3 )+

a345u
00
2(u

00
3 + v

00
3 ) + a

3
56(u

00
3 + v

00
3 )u

00
1u

00
2+

a3135v
00
1 v

00
2 (u

00
3 + v

00
3 ) + a

3
245u

00
1u

00
2(u

00
3 + v

00
3 )

= a+ a11u1 + a
1
1v1 + a

1
3u2 + a

1
2v2 + a

1
5u3 + a

1
4v3+

a113u1u2 + a
1
12v1v2 + a

1
15u1u3 + a

1
14v1v3+

(a16 + a
1
35)u2u3 + a

1
24v2v3 + (a

1
7 + a

1
16 + a

1
135)u1u2u3+

a1124v1v2v3 + a
2
2u
0
1 + a

2
1v
0
1 + a

2
3u
0
2 + a

2
3v
0
2 + a

2
5u
0
3+

a24v
0
3 + a

2
23u

0
1u
0
2 + a

2
13v

0
1v
0
2 + (a

2
6 + a

2
25)u

0
1u
0
2+

a214v
0
1v
0
3 + a

2
35u

0
2u
0
3 + a

2
34v

0
2v
0
3 + (a

2
7 + a

2
36 + a

2
235)u

0
1u
0
2u
0
3+

a2134v
0
1v
0
2v
0
3 + a

3
2u
00
1 + a

3
1v
00
1 + a

3
4u
00
2 + a

3
3v
00
2+

a35u
00
3 + a

3
5v
00
3 + (a

3
6 + a

3
24)u

00
1u

00
2 + a

3
13v

00
1 v

00
2+

a325u
00
1u

00
3 + a

3
15v

00
1 v

00
3 + a

3
45u

00
2u

00
3 + a

3
35v

00
2 v

00
3+

(a37 + a
3
56 + a

3
245)u

00
1u

00
2u

00
3 + a

3
135v

00
1 v

00
2 v

00
3

Therefore f is in the equalizer of (5.13) i¤ the coe¢ cients of f acquiesce in the
following linear equations:

(5.19) a11 = a21 = a22 = a31 = a32

(5.20) a12 = a13 = a23 = a33 = a34

(5.21) a14 = a15 = a24 = a25 = a35

(5.22) a124 = a135 = a234 = a345

(5.23) a114 = a214 = a225 = a315
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(5.24) a112 = a223 = a313 = a324

(5.25) a113 = a213

(5.26) a114 = a325

(5.27) a235 = a335

(5.28) a16 = a335 � a135 = a235 � a124

(5.29) a26 = a325 � a214 = a114 � a225

(5.30) a36 = a113 � a313 = a213 � a324

(5.31) a1124 + a
1
16 = a2235 + a

2
36 + a

2
7

(5.32) a2134 + a
2
36 = a3245 + a

3
56 + a

3
7

(5.33) a3135 + a
3
56 = a1135 + a

1
16 + a

1
7

(5.34) a1135 = a2134

(5.35) a2235 = a3135

(5.36) a3245 = a1124

Thus we see that f is in the equalizer of (3.16) i¤ it is a linear combination of
the following linearly independent polynomials.

(5.37)1

(5.38) x1 + y1 + y2 + z1 + z2

(5.39) x2 + x3 + y3 + z3 + z4

(5.40) x4 + x5 + y4 + y5 + z5

(5.41) x6 + y3y5 + z3z5

(5.42) y6 + x1x4 + z2z5

(5.43) z6 + x1x3 + y1y3

(5.44) x6 � x2x4 � x3x5 � y3y4 � z4z5
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(5.45) y6 � x1x5 � y1y4 � y2y5 � z1z5

(5.46) z6 � x1x2 � y2y3 � z1z3 � z2z4

(5.47) x7 � y7 � x1x6

(5.48) y7 � z7 � y3y6

(5.49) z7 � x7 � z5z6

(5.50) x7 � y7 + y2y3y5 + z1z3z5

(5.51) y7 � z7 + x1x2x4 + z2z4z5

(5.52) z7 � x7 + x1x3x5 + y1y3y4

By writing out the multiplication table for (5.37)-(5.52), it is easy to see that

(5.53) (5.38)(5.39) = (5.43) � (5.46)
(5.54) (5.38)(5.40) = (5.42) � (5.45)
(5.55) (5.39)(5.40) = (5.41) � (5.44)
(5.56) (5.38)(5.39)(5.40) = (5.50) + (5.51) + (5.52)
(5.57) (5.38)(5.41) = (5.50) � (5.47)
(5.58) (5.39)(5.42) = (5.51) � (5.48)
(5.59) (5.40)(5.43) = (5.52) � (5.49)

Let�s compute the reduced Gröbner basis of the ideal< x21; x
2
2; x

2
3; x

2
4; x

2
5; x

2
6; x

2
7; x2x3; x2x5; x3x4; x4x5; x2x6; x3x6; x4x6; x5x6; x1x7; x2x7;

x3x7; x4x7; x5x7; x6x7; y
2
1 ; y

2
2 ; y

2
3 ; y

2
4 ; y

2
5 ; y

2
6 ; y

2
7 ; y1y2; y1y5; y2y4; y4y5; y1y6; y2y6;

y4y6; y5y6; y1y7; y2y7; y3y7; y4y7; y5y7; y6y7; z
2
1 ; z

2
2 ; z

2
3 ; z

2
4 ; z

2
5 ; z

2
6 ; z

2
7 ; z1z2; z1z4; z2z3;

z3z4; z1z6; z2z6; z3z6; z4z6; z1z7; z2z7; z3z7; z4z7; z5z7; z6z7; x1y1; x1y2; x1y3; x1y4; x1y5;
x1y6; x1y7; x2y1; x2y2; x2y3; x2y4; x2y5; x2y6; x2y7; x3y1; x3y2; x3y3; x3y4; x3y5; x3y6; x3y7;
x4y1; x4y2; x4y3; x4y4; x4y5; x4y6; x4y7; x5y1; x5y2; x5y3; x5y4; x5y5; x5y6; x5y7; x6y1;
x6y2; x6y3; x6y4; x6y5; x6y6; x6y7; x7y1; x7y2; x7y3; x7y4; x7y5; x7y6; x7y7; y1z1; y1z2;
y1z3; y1z4; y1z5; y1z6; y1z7; y2z1; y2z2; y2z3; y2z4; y2z5; y2z6; y2z7; y3z1; y3z2; y3z3;
y3z4; y3z5; y3z6; y3z7; y4z1; y4z2; y4z3; y4z4; y4z5; y4z6; y4z7; y5z1; y5z2; y5z3; y5z4;
y5z5; y5z6; y5z7; y6z1; y6z2; y6z3; y6z4; y6z5; y6z6; y6z7; y7z1; y7z2; y7z3; y7z4; y7z5;
y7z6; y7z7; x1z1; x1z2; x1z3; x1z4; x1z5; x1z6; x1z7; x2z1; x2z2; x2z3; x2z4; x2z5;
x2z6; x2z7; x3z1; x3z2; x3z3; x3z4; x3z5; x3z6; x3z7; x4z1; x4z2; x4z3; x4z4; x4z5;
x4z6; x4z7; x5z1; x5z2; x5z3; x5z4; x5z5; x5z6; x5z7; x6z1; x6z2; x6z3; x6z4; x6z5;
x6z6; x6z7; x7z1; x7z2; x7z3; x7z4; x7z5; x7z6; x7z7; x1+ y1+ y2+ z1+ z2�w1;
x2+x3+ y3+ z3+ z4�w2; x4+x5+ y4+ y5+ z5�w3; x6+ y3y5+ z3z5�w4;
y6+x1x4+z2z5�w5; z6+x1x3+y1y3�w6; x7�y7�x1x6�w7; y7�z7�y3y6�w8;
z7 � x7 � z5z6 � w9; x6 � x2x4 � x3x5 � y3y4 � z4z5 � w10;
y6 � x1x5 � y1y4 � y2y5 � z1z5 � w11; z6 � x1x2 � y2y3 � z1z3 � z2z4 � w12;
x7 � y7 + y2y3y5 + z1z3z5 � w13; y7 � z7 + x1x2x4 + z2z4z5 � w14;
z7�x7+x1x3x5+y1y3y4�w15 > in the polynomial algebra R[x1; x2; x3; x4; x5; x6; x7; y1; y2; y3; y4; y5; y6; y7; z1; z2; z3; z4; z5; z6; z7; w1; w2; w3; w4; w5;
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w6; w7; w8; w9; w10; w11; w12; w13; w14; w15] with resepct to the lexicographic
order z1 > z2 > z3 > z4 > z5 > z6 > z7 > y1 > y2 > y3 > y4 > y5 > y6 > y7 >
x1 > x2 >

x3 > x4 > x5 > x6 > x7 > w15 > w14 > w13 > w12 > w11 > w10 > w9 >
w8 >

w7 > w6 > w5 > w4 > w3 > w2 > w1, which goes as follows:

(5.60) G =fw21; w22; w23; w2w4; w3w4; w24; w1w5; w3w5; w4w5; w25; w1w6; w2w6; w4w6;
w5w6; w

2
6; w1w7; w2w7; w3w7; w4w7; w5w7; w6w7; w

2
7; w1w8; w2w8; w3w8; w4w8;

w5w8; w6w8; w7w8; w
2
8;�w1w2w3 + w1w4 + w2w5 + w3w6 + w7 + w8 + w9;

w2w3 �w4 +w10;�w1w3 +w5 �w11; w1w2 �w6 +w12;�w1w4 �w7 +w13;
w2w5+w8�w14; w1w2w3�w1w4�w2w5�w7�w8�w15; w1x7; w2x7; w3x7;
w4x7; w5x7; w6x7; w7x7; w8x7; x

2
7; w2x6; w3x6; w4x6; w5x6; w6x6; w7x6; w8x6; x6x7;

x26; w3x5; w4x5; w5x5;�w1w2x5+w6x5; w7x5; w8x5; x5x7; x5x6; x25; w3x4; w4x4;
w5x4; w6x4; w7x4; w8x4; x4x7; x4x6; x4x5; x

2
4; w2x3; w3x3�w2x5; w4x3; w5x3; w6x3;

w7x3; w8x3; x3x7; x3x6; w2x5�x3x5; x3x4; x23; w2x2; w3x2�w2x4; w4x2; w5x2�
w1w2x4;

w6x2; w7x2; w8x2; x2x7; x2x6; x2x5; w2x4�x2x4; x2x3; x22; w1x1; w2x1�w1x2�
w1x3;

w3x1�w1x4�w1x5; w4x1�w1x6; w5x1; w6x1; w7x1; w8x1; x1x7; w1x6�x1x6;
w1x5�x1x5;�w1x4+x1x4; w1x3�x1x3;�w1x2+x1x2; x21; w7+w1x6�x7+y7;
w1y6; w3y6; w4y6; w5y6; w6y6; w7y6; w8y6; x7y6; x6y6; x5y6; x4y6; x3y6; x2y6; x1y6; y

2
6 ;

w3y5; w4y5; w5y5; w6y5; w7y5; w8y5; x7y5; x6y5; x5y5; x4y5; x3y5; x2y5; x1y5; y5y6; y
2
5 ;

�w1w2w3+w1w4+w2w5+w1w2x5�w1x6+w1w2y4�w2y6; w3y4; w4y4; w5y4;
�w1w2w3+w1w4+w2w5+w1w2x5�w1x6+w6y4�w2y6; w7y4; w8y4; x7y4; x6y4;
x5y4; x4y4; x3y4; x2y4; x1y4; y4y6; y4y5; y

2
4 ; w2y3; w3y3 � w2y4 � w2y5; w4y3;

w5y3�w2y6; w6y3; w7y3; w8y3; x7y3; x6y3; x5y3; x4y3; x3y3; x2y3; x1y3; w2y6�
y3y6;

w2y5�y3y5;�w2y4+y3y4; y23 ; w1y2; w3y2�w1y5;�w4y2+w1w2y5; w5y2; w6y2;
w7y2; w8y2; x7y2; x6y2; x5y2; x4y2; x3y2; x2y2; x1y2; y2y6; w1y5 � y2y5; y2y4;
w2y2 � y2y3; y22 ; w1y1;�w2y1 � w2y2 + w1y3; w3y1 � w1y4; w4y1; w5y1; w6y1;
w7y1; w8y1; x7y1; x6y1; x5y1; x4y1; x3y1; x2y1; x1y1; y1y6; y1y5; w1y4 � y1y4;
w2y2 � w1y3 + y1y3; y1y2; y21 ;�w7 � w8 � w1x6 + x7 � w2y6 � z7;
w6 � w1x3 + w2y2 � w1y3 � z6;�w3 + x4 + x5 + y4 + y5 + z5; w2z4;
w2w3�w4�w2x4�w2x5+x6�w2y4�w3z4; w4z4; w2w5�w1w2x4�w2y6�

w5z4;
w6z4; w7z4; w8z4; x7z4; x6z4; x5z4; x4z4; x3z4; x2z4; x1z4; y6z4; y5z4; y4z4; y3z4; y2z4;
y1z4; z

2
4 ;�w2 + x2 + x3 + y3 + z3 + z4; w1z2;�w2z2 + w1z4;�w5 + w1x4 +

y6 + w3z2;
w4z2; w5z2; w6z2; w7z2; w8z2; x7z2; x6z2; x5z2; x4z2; x3z2; x2z2; x1z2; y6z2; y5z2; y4z2; y3z2;
y2z2; y1z2; w1z4 � z2z4; z22 ;�w1 + x1 + y1 + y2 + z1 + z2g

Therefore we have

(5.61) G\R[w1; w2; w3; w4; w5; w6; w7; w8; w9; w10; w11; w12; w13; w14; w15]
= fw21; w22; w23; w2w4; w3w4; w24; w1w5; w3w5; w4w5; w25; w1w6; w2w6; w4w6;
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w5w6; w
2
6; w1w7; w2w7; w3w7; w4w7; w5w7; w6w7; w

2
7; w1w8; w2w8; w3w8; w4w8;

w5w8; w6w8; w7w8; w
2
8;�w1w2w3 + w1w4 + w2w5 + w3w6 + w7 + w8 + w9;

w2w3 �w4 +w10;�w1w3 +w5 �w11; w1w2 �w6 +w12;�w1w4 �w7 +w13;
w2w5 + w8 � w14; w1w2w3 � w1w4 � w2w5 � w7 � w8 � w15g,

which shows clearly that the variables w9; w10; w11; w12; w13; w14; w15 are R-
algebraically redundant. The diagram (5.1) is now seen to be completed into
the following limit diagram:

(5.62)

W1

�112 . " '1 & �131
V1�V2 V1�V2
�212 " W1 " �331

'2 . & '3
W2 W3

�223 & . �323
V1�V2

,

where

(5.63) W1 = R[w1; w2; w3; w4; w5; w6; w7; w8]= < w21; w
2
2; w

2
3; w

2
4; w

2
5; w

2
6,

w27; w
2
8; w1w5; w1w6; w2w4; w2w6; w3w4; w3w5; w4w5; w4w6,

w5w6; w1w7; w1w8; w2w7; w2w8; w3w7; w3w8; w4w7; w4w8,

w5w7; w5w8; w6w7; w6w8; w7w8 >

(5.64) '1(w1) = x1, '1(w2) = x2 + x3, '1(w3) = x4 + x5,

'1(w4) = x6, '1(w5) = x1x4, '1(w6) = x1x3,

'1(w7) = x7 � x1x6, '1(w8) = 0

(5.65) '2(w1) = y1 + y2, '2(w2) = y3, '2(w3) = y4 + y5,

'2(w4) = y3y5, '2(w5) = y6, '2(w6) = y1y3,

'2(w7) = �y7, '2(w8) = y7 � y3y6

(5.66) '3(w1) = z1 + z2, '3(w2) = z3 + z4, '3(w3) = z5,

'3(w4) = z3z5, '3(w5) = z2z5, '3(w6) = z6,
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'3(w7) = 0, '3(w8) = �z7.

It remains to show that there is no R-algebraic redundance among the gener-
ators w1+I; w2+I; w3+I; w4+I; w5+I; w6+I; w7+I;and w8+I ofW1, where I
is the ideal< w21; w

2
2; w

2
3; w

2
4; w

2
5; w

2
6w

2
7; w

2
8; w1w5; w1w6; w2w4; w2w6; w3w4; w3w5; w4w5; w4ww5w6;

w1w7; w1w8; w2w7; w2w8; w3w7; w3w8; w4w7; w4w8,w5w7; w5w8; w6w7; w6w8; w7w8 >.
This goes as follows:

(5.67) The reduced Gröbner basis of the ideal< w21; w
2
2; w

2
3; w2w4; w3w4; w

2
4; w1w5; w3w5; w4w5; w

2
5; w1w6; w2w6; w4w6; w5w6; w

2
6;

w1w7; w2w7; w3w7; w4w7; w5w7; w6w7; w
2
7; w1w8; w2w8; w3w8; w4w8; w5w8; w6w8; w7w8;

w28; v1�w1; v2�w2; v3�w3; v4�w4; v5�w5; v6�w6; v7�w7; v8�w8 > in the
polynomial algebra R[w1; w2; w3; w4; w5; w6; w7; w8; v1; v2; v3; v4; v5; v6; v7; v8] with
resepct to the lexicographic order w8 > w7 > w6 > w5 > w4 > w3 > w2 > w1 >
v8 > v7 > v6 > v5 > v4 > v3 > v2

> v1 is G1 = fv21 ; v22 ; v23 ; v2v4; v3v4; v24 ; v1v5; v3v5; v4v5; v25 ; v1v6; v2v6; v4v6; v5v6; v26 ; v1v7;
v2v7; v3v7; v4v7; v5v7; v6v7; v

2
7 ; v1v8; v2v8; v3v8; v4v8; v5v8; v6v8; v7v8; v

2
8 ; v1�w1;

v2 � w2; v3 � w3; v4 � w4; v5 � w5; v6 � w6; v7 � w7; v8 � w8g, so that G1 \
R[v1; v2; v3; v4; v5; v6; v7; v8] = fv21 ; v22 ; v23 ; v2v4; v3v4; v24 ; v1v5; v3v5; v4v5; v25 ; v1v6;

v2v6; v4v6; v5v6; v
2
6 ; v1v7; v2v7; v3v7; v4v7; v5v7; v6v7; v

2
7 ; v1v8; v2v8; v3v8; v4v8; v5v8;

v6v8; v7v8; v
2
8g. This means by Theorem 2.1 that w8+I is not R-algebraically

redundant among w1+I; w2+I; w3+I; w4+I; w5+I; w6+I; w7+I and w8+I.

(5.68) The reduced Gröbner basis of the ideal< w21; w
2
2; w

2
3; w2w4; w3w4; w

2
4; w1w5; w3w5; w4w5; w

2
5; w1w6; w2w6; w4w6; w5w6; w

2
6;

w1w7; w2w7; w3w7; w4w7; w5w7; w6w7; w
2
7; w1w8; w2w8; w3w8; w4w8; w5w8; w6w8; w7w8;

w28; v1�w2; v2�w3; v3�w4; v4�w5; v5�w6; v6�w7; v7�w8; v8�w1 > in the
polynomial algebra R[w1; w2; w3; w4; w5; w6; w7; w8; v1; v2; v3; v4; v5; v6; v7; v8] with
resepct to the lexicographic order w8 > w7 > w6 > w5 > w4 > w3 > w2 > w1 >
v8 > v7 > v6 > v5 > v4 > v3 > v2

> v1 is G2 = fv21 ; v22 ; v1v3; v2v3; v23 ; v2v4; v3v4; v24 ; v1v5; v3v5; v4v5; v25 ; v1v6; v2v6; v3v6;
v4v6; v5v6; v

2
6 ; v1v7; v2v7; v3v7; v4v7; v5v7; v6v7; v

2
7 ; v4v8; v5v8; v6v8; v7v8; v

2
8 ;

v8�w1; v1�w2; v2�w3; v3�w4; v4�w5; v5�w6; v6�w7; v7�w8g, so that G2\
R[v1; v2; v3; v4; v5; v6; v7; v8] = fv21 ; v22 ; v1v3; v2v3; v23 ; v2v4; v3v4; v24 ; v1v5; v3v5; v4v5;

v25 ; v1v6; v2v6; v3v6; v4v6; v5v6; v
2
6 ; v1v7; v2v7; v3v7; v4v7; v5v7; v6v7; v

2
7 ; v4v8; v5v8; v6v8;

v7v8; v
2
8g. This means by Theorem 2.1 that w1 + I is not R-algebraically

redundant among w1+I; w2+I; w3+I; w4+I; w5+I; w6+I; w7+I and w8+I.

(5.69) The reduced Gröbner basis of the ideal< w21; w
2
2; w

2
3; w2w4; w3w4; w

2
4; w1w5; w3w5; w4w5; w

2
5; w1w6; w2w6; w4w6; w5w6; w

2
6;

w1w7; w2w7; w3w7; w4w7; w5w7; w6w7; w
2
7; w1w8; w2w8; w3w8; w4w8; w5w8; w6w8; w7w8;

w28; v1�w3; v2�w4; v3�w5; v4�w6; v5�w7; v6�w8; v7�w1; v8�w2 > in the
polynomial algebra R[w1; w2; w3; w4; w5; w6; w7; w8; v1; v2; v3; v4; v5; v6; v7; v8] with
resepct to the lexicographic order w8 > w7 > w6 > w5 > w4 > w3 > w2 > w1 >
v8 > v7 > v6 > v5 > v4 > v3 > v2

> v1 is G3 = fv21 ; v1v2; v22 ; v1v3; v2v3; v23 ; v2v4; v3v4; v24 ; v1v5; v2v5; v3v5; v4v5; v25 ; v1v6;
v2v6; v3v6; v4v6; v5v6; v

2
6 ; v3v7; v4v7; v5v7; v6v7; v

2
7 ; v2v8; v4v8; v5v8; v6v8; v

2
8 ;
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v7�w1; v8�w2; v1�w3; v2�w4; v3�w5; v4�w6; v5�w7; v6�w8g, so that G3\
R[v1; v2; v3; v4; v5; v6; v7; v8] = fv21 ; v1v2; v22 ; v1v3; v2v3; v23 ; v2v4; v3v4; v24 ; v1v5; v2v5; v3v5; v4v5; v25 ; v1v6; v2v6;

v3v6; v4v6; v5v6; v
2
6 ; v3v7; v4v7; v5v7; v6v7; v

2
7 ; v2v8; v4v8; v5v8; v6v8; v

2
8g. This

means by Theorem 2.1 that w2 + I is not R-algebraically redundant among
w1 + I; w2 + I; w3 + I; w4 + I; w5 + I; w6 + I; w7 + I and w8 + I.

(5.70) The reduced Gröbner basis of the ideal< w21; w
2
2; w

2
3; w2w4; w3w4; w

2
4; w1w5; w3w5; w4w5; w

2
5; w1w6; w2w6; w4w6; w5w6;

w26; w1w7; w2w7; w3w7; w4w7; w5w7; w6w7; w
2
7; w1w8; w2w8; w3w8; w4w8; w5w8; w6w8;

w7w8; w
2
8; v1�w4; v2�w5; v3�w6; v4�w7; v5�w8; v6�w1; v7�w2; v8�w3 > in

the polynomial algebra R[w1; w2; w3; w4; w5; w6; w7; w8; v1; v2; v3; v4; v5; v6; v7; v8]
with resepct to the lexicographic order w8 > w7 > w6 > w5 > w4 > w3 > w2 >
w1 > v8 > v7 > v6 > v5 > v4 > v3 > v2

> v1 is G4 = fv21 ; v1v2; v22 ; v1v3; v2v3; v23 ; v1v4; v2v4; v3v4; v24 ; v1v5; v2v5; v3v5; v4v5; v25 ; v2v6;
v3v6; v4v6; v5v6; v

2
6 ; v1v7; v3v7; v4v7; v5v7; v

2
7 ; v1v8; v2v8; v4v8; v5v8; v

2
8 ; v6�w1;

v7 � w2; v8 � w3; v1 � w4; v2 � w5; v3 � w6; v4 � w7; v5 � w8g, so that G4 \
R[v1; v2; v3; v4; v5; v6; v7; v8] = fv21 ; v1v2; v22 ; v1v3; v2v3; v23 ; v1v4; v2v4; v3v4; v24 ; v1v5; v2v5; v3v5; v4v5; v25 ; v2v6;

v3v6; v4v6; v5v6; v
2
6 ; v1v7; v3v7; v4v7; v5v7; v

2
7 ; v1v8; v2v8; v4v8; v5v8; v

2
8g. This

means by Theorem 2.1 that w3 + I is not R-algebraically redundant among
w1 + I; w2 + I; w3 + I; w4 + I; w5 + I; w6 + I; w7 + I and w8 + I.

(5.71) The reduced Gröbner basis of the ideal< w21; w
2
2; w

2
3; w2w4; w3w4; w

2
4; w1w5; w3w5; w4w5; w

2
5; w1w6; w2w6; w4w6; w5w6; w

2
6;

w1w7; w2w7; w3w7; w4w7; w5w7; w6w7; w
2
7; w1w8; w2w8; w3w8; w4w8; w5w8; w6w8; w7w8;

w28; v1�w5; v2�w6; v3�w7; v4�w8; v5�w1; v6�w2; v7�w3; v8�w4 > in the
polynomial algebra R[w1; w2; w3; w4; w5; w6; w7; w8; v1; v2; v3; v4; v5; v6; v7; v8] with
resepct to the lexicographic order w8 > w7 > w6 > w5 > w4 > w3 > w2 > w1 >
v8 > v7 > v6 > v5 > v4 > v3 > v2

> v1 is G5 = fv21 ; v1v2; v22 ; v1v3; v2v3; v23 ; v1v4; v2v4; v3v4; v24 ; v1v5; v2v5; v3v5; v4v5; v25 ; v2v6;
v3v6; v4v6; v

2
6 ; v1v7; v3v7; v4v7; v

2
7 ; v1v8; v2v8; v3v8; v4v8; v6v8; v7v8; v

2
8 ; v5�w1;

v6 � w2; v7 � w3; v8 � w4; v1 � w5; v2 � w6; v3 � w7; v4 � w8g, so that G5 \
R[v1; v2; v3; v4; v5; v6; v7; v8] = fv21 ; v1v2; v22 ; v1v3; v2v3; v23 ; v1v4; v2v4; v3v4; v24 ; v1v5; v2v5; v3v5; v4v5; v25 ; v2v6;

v3v6; v4v6; v
2
6 ; v1v7; v3v7; v4v7; v

2
7 ; v1v8; v2v8; v3v8; v4v8; v6v8; v7v8; v

2
8g. This

means by Theorem 2.1 that w4 + I is not R-algebraically redundant among
w1 + I; w2 + I; w3 + I; w4 + I; w5 + I; w6 + I; w7 + I and w8 + I.

(5.72) The reduced Gröbner basis of the ideal< w21; w
2
2; w

2
3; w2w4; w3w4; w

2
4; w1w5; w3w5; w4w5; w

2
5; w1w6; w2w6; w4w6; w5w6; w

2
6;

w1w7; w2w7; w3w7; w4w7; w5w7; w6w7; w
2
7; w1w8; w2w8; w3w8; w4w8; w5w8; w6w8;

w7w8; w
2
8; v1�w6; v2�w7; v3�w8; v4�w1; v5�w2; v6�w3; v7�w4; v8�w5 > in

the polynomial algebra R[w1; w2; w3; w4; w5; w6; w7; w8; v1; v2; v3; v4; v5; v6; v7; v8]
with resepct to the lexicographic order w8 > w7 > w6 > w5 > w4 > w3 > w2 >
w1 > v8 > v7 > v6 > v5 > v4 > v3 > v2

> v1 is G6 = fv21 ; v1v2; v22 ; v1v3; v2v3; v23 ; v1v4; v2v4; v3v4; v24 ; v1v5; v2v5; v3v5; v25 ; v2v6; v3v6;
v26 ; v1v7; v2v7; v3v7; v5v7; v6v7; v

2
7 ; v1v8; v2v8; v3v8; v4v8; v6v8; v7v8; v

2
8 ; v4�w1;

v5 � w2; v6 � w3; v7 � w4; v8 � w5; v1 � w6; v2 � w7; v3 � w8g, so that G6 \
R[v1; v2; v3; v4; v5; v6; v7; v8] = fv21 ; v1v2; v22 ; v1v3; v2v3; v23 ; v1v4; v2v4; v3v4; v24 ; v1v5; v2v5; v3v5; v25 ; v2v6; v3v6;

v26 ; v1v7; v2v7; v3v7; v5v7; v6v7; v
2
7 ; v1v8; v2v8; v3v8; v4v8; v6v8; v7v8; v

2
8g. This

means by Theorem 2.1 that w5 + I is not R-algebraically redundant among

25



w1 + I; w2 + I; w3 + I; w4 + I; w5 + I; w6 + I; w7 + I and w8 + I.

(5.73) The reduced Gröbner basis of the ideal< w21; w
2
2; w

2
3; w2w4; w3w4; w

2
4; w1w5; w3w5; w4w5; w

2
5; w1w6; w2w6; w4w6; w5w6; w

2
6;

w1w7; w2w7; w3w7; w4w7; w5w7; w6w7; w
2
7; w1w8; w2w8; w3w8; w4w8; w5w8; w6w8; w7w8;

w28; v1�w7; v2�w8; v3�w1; v4�w2; v5�w3; v6�w4; v7�w5; v8�w6 > in the
polynomial algebra R[w1; w2; w3; w4; w5; w6; w7; w8; v1; v2; v3; v4; v5; v6; v7; v8] with
resepct to the lexicographic order w8 > w7 > w6 > w5 > w4 > w3 > w2 > w1 >
v8 > v7 > v6 > v5 > v4 > v3 > v2

> v1 is G7 = fv21 ; v1v2; v22 ; v1v3; v2v3; v23 ; v1v4; v2v4; v24 ; v1v5; v2v5; v25 ; v1v6; v2v6; v4v6;
v5v6; v

2
6 ; v1v7; v2v7; v3v7; v5v7; v6v7; v

2
7 ; v1v8; v2v8; v3v8; v4v8; v6v8; v7v8; v

2
8 ;

v3�w1; v4�w2; v5�w3; v6�w4; v7�w5; v8�w6; v1�w7; v2�w8g, so that G7\
R[v1; v2; v3; v4; v5; v6; v7; v8] = fv21 ; v1v2; v22 ; v1v3; v2v3; v23 ; v1v4; v2v4; v24 ; v1v5; v2v5; v25 ; v1v6; v2v6; v4v6; v5v6;

v26 ; v1v7; v2v7; v3v7; v5v7; v6v7; v
2
7 ; v1v8; v2v8; v3v8; v4v8; v6v8; v7v8; v

2
8g. This

means by Theorem 2.1 that w6 + I is not R-algebraically redundant among
w1 + I; w2 + I; w3 + I; w4 + I; w5 + I; w6 + I; w7 + I and w8 + I.

(5.74) The reduced Gröbner basis of the ideal< w21; w
2
2; w

2
3; w2w4; w3w4; w

2
4; w1w5; w3w5; w4w5; w

2
5; w1w6; w2w6; w4w6; w5w6; w

2
6;

w1w7; w2w7; w3w7; w4w7; w5w7; w6w7; w
2
7; w1w8; w2w8; w3w8; w4w8; w5w8; w6w8; w7w8;

w28; v1�w8; v2�w1; v3�w2; v4�w3; v5�w4; v6�w5; v7�w6; v8�w7 > in the
polynomial algebra R[w1; w2; w3; w4; w5; w6; w7; w8; v1; v2; v3; v4; v5; v6; v7; v8] with
resepct to the lexicographic order w8 > w7 > w6 > w5 > w4 > w3 > w2 > w1 >
v8 > v7 > v6 > v5 > v4 > v3 > v2

> v1 is G8 = fv21 ; v1v2; v22 ; v1v3; v23 ; v1v4; v24 ; v1v5; v3v5; v4v5; v25 ; v1v6; v2v6; v4v6; v5v6; v26 ; v1v7;
v2v7; v3v7; v5v7; v6v7; v

2
7 ; v1v8; v2v8; v3v8; v4v8; v5v8; v6v8; v7v8; v

2
8 ; v2�w1; v3�

w2;
v4�w3; v5�w4; v6�w5; v7�w6; v8�w7; v1�w8g, so that G8\R[v1; v2; v3; v4; v5; v6; v7; v8] =

fv21 ; v1v2; v22 ; v1v3; v23 ; v1v4; v24 ; v1v5; v3v5; v4v5; v25 ; v1v6; v2v6; v4v6; v5v6; v26 ; v1v7;
v2v7; v3v7; v5v7; v6v7; v

2
7 ; v1v8; v2v8; v3v8; v4v8; v5v8; v6v8; v7v8; v

2
8g. This means

by Theorem 2.1 that w7+I is not R-algebraically redundant among w1+I; w2+
I; w3 + I; w4 + I; w5 + I; w6 + I; w7 + I and w8 + I.
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