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Abstract 

    The infrared (IR) chemiluminescence studies of CO2 formed during steady-state CO oxidation 

over Pd(111), Pt(111), and Rh(111) surfaces were carried out. Analysis of their emission spectra 

indicates that the order of the average vibrational temperature (TV
AV) values of CO2 formed during 

CO oxidation was as follows: Pd(111) > Pt(111) > Rh(111), and the order is coincident with the 

potential energy in the transition state expected by the theoretical calculations. Furthermore, it is 

suggested that the bending vibrational temperature (TV
B) can also be influenced by the angle of 

O−C−O (∠OCO) of the activated complex in the transition state, which has also been proposed by 

the theoretical calculations. 
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1. Introduction 

The catalytic oxidation of carbon monoxide (CO) on platinum group metal surfaces has been 

one of the most widely studied surface-catalyzed reactions [1-17]. The reaction is of practical 

importance for the environmental pollution control. On the other hand, the reaction is also of 

scientific interest because the total reaction can be divided into a few elementary steps and the 

theoretical approaches can be applied to the reaction to describe the kinetics of the 

surface-catalyzed reaction. In contrast, in order to elucidate the dynamics of the surface-catalyzed 

reaction, it is effective to investigate internal (vibrational and rotational) [6-14] and translational 

[15] energy of product molecules. Measurements of the vibrational and rotational states of the 

product CO2 molecules have been performed by infrared chemiluminescence (IR emission) 

technique [6-14]. Analysis of the vibrational states can give the information on the structure of the 

activated CO2 complex (i.e., the dynamics of CO oxidation) from which the gas-phase molecules 

desorbed. 

Coulston and Haller [6] studied the dynamics of CO oxidation on polycrystalline Pd, Pt, and 

Rh surfaces by measuring high-resolution IR emission spectra and reported that the order of the 

apparent vibrational temperatures are as follows: Pd > Pt > Rh. Our group has reported IR emission 

of CO2 from steady-state CO oxidation on single-crystal Pd and Pt surfaces combined with kinetic 

results [9-14]. These suggest that the activated complex of CO2 formation (i.e., the transition state 

of CO2 formation from CO(a) + O(a)) had more bent structure on Pd(111) and less bent structure on 

Pt(111), since the bending mode of CO2 from Pd(111) was more vibrationally excited than that of 

CO2 from Pt(111) [12,13]. Furthermore, we have confirmed that the product CO2 molecules on 

Pd(111) and Pd(110) was also rotationally excited [12]. These results indicate that the IR 
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chemiluminescence method can provide a direct energetic evidence of the reaction mechanism and 

the activated complex of CO2 formation. 

In this article, the dynamics of CO2 formation during the CO oxidation over single-crystal 

Rh(111) surface is reported, and this corresponds to the first presentation of the IR emission studies 

on a single-crystal Rh surface. The obtained results were compared with those on Pd(111) and 

Pt(111), and the tendency was interpreted from the comparison between the experimental results 

and the reported theoretical studies on the transition state of CO oxidation. 

 

 

2. Experimental 

A molecular-beam reaction system, in combination with a FT-IR spectrometer (InSb detector 

Nexus670; Thermo Electron Corp.) was used to measure IR emissions of product CO2 molecules 

just desorbed from metal surfaces during catalytic reactions [10-14]. A UHV chamber (base 

pressure < 1.0 × 10-9 Torr) was equipped with a CaF2 lens, which collected IR emission, an Ar+ ion 

gun for sample cleaning, and a quadrupole mass spectrometer (QMS, QME200; Pfeiffer Vacuum 

Technology AG) with a differential pumping system. Two free-jet molecular-beam nozzles (0.1 mm 

diameter orifice) supplied the reactant gases. The reactant fluxes were controlled using mass flow 

controllers. The CO and O2 gases (total flux of 8.2 × 1018 cm-2 s-1; CO/O2 = 1) were exposed to 

single-crystal surfaces (Pd(111), Pt(111), and Rh(111)). Steady-state CO oxidation was performed at 

temperatures of 400−900 K. Another UHV chamber (base pressure < 2.0 × 10-10 Torr) was used to 

prepare and characterize the clean surfaces. It was equipped with a molecular-beam reaction system, 

an Ar+ ion gun, low energy electron diffraction (LEED), and a QMS. Before the molecular-beam 
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reaction, the single-crystal surfaces were cleaned using a standard procedure (O2 treatment, Ar+ 

bombardment and annealing) [9-14]. After cleaning, the sharp (1×1) LEED pattern was observed. 

The IR emission spectra of the CO2 molecules desorbed from the surface were measured with 

4 cm-1 resolution. At that low resolution, no individual vibration-rotation lines were resolved. The 

IR emission spectra were analyzed based on simulation of model spectra [7,12,13]. The average 

vibrational Boltzmann temperature (TV
AV: an average temperature of the antisymmetric stretching, 

symmetric stretching and bending modes), which was calculated from the degree of the red-shift 

from the fundamental band (2349 cm-1) [7,9-13]. The emission intensity is related to the extent of 

excitation in the antisymmetric stretching of CO2 [11-14]. Therefore, the antisymmetric vibrational 

temperature (TV
AS) can be estimated from the normalized emission intensity [11-14]. Based on TV

AV 

and TV
AS, it is possible to deduce the bending vibrational temperature (TV

B). The relation between 

TV
AV and respective vibrational temperature is represented as 

 TV
AV = (TV

AS + TV
SS + 2 TV

B) / 4, (1) 

where 2TV
B corresponds to the degeneration of the bending vibration. Assuming that TV

B is equal to 

TV
SS because of the Fermi resonance [6,8], TV

B is expected to be (4TV
AV − TV

AS)/3. This assumption 

is plausible on the basis of previous reports [6,8]. It should be added that TV
AV, TV

AS and TV
B were 

used here as parameters to characterize the extent of the vibrational excitation of the product CO2. It 

took about 30−90 min for the measurement of the IR emission spectra with 2000−6000 scans. The 

stable steady-state activity was obtained during the measurement. 
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3. Results and Discussion 

Figure 1(a) shows the rate of CO2 formation in the steady-state CO oxidation on Pd(111), 

Pt(111), and Rh(111) as a function of surface temperature (TS) (CO/O2 = 1). The CO oxidation 

proceeded above 500 K on Pd(111) and Rh(111), and 550 K on Pt(111). The surface temperature 

dependence of the formation rate showed a maximum on all the surfaces. The behavior agrees well 

with the general Langmuir-Hinshelwood (LH) kinetics of CO oxidation on noble metal (Pd 

[1,4,6,12], Pt [2,6,13], and Rh [3,5,6]) surfaces. The temperature at which the highest activity was 

obtained is denoted as TS
max. At temperatures lower than TS

max, the surface coverage of CO is 

known to be high. The rate-determining step is O2 adsorption on the vacant site, which is formed by 

the desorption of CO(a). At temperatures higher than TS
max, the formation rate of CO2 decreased 

gradually with increasing surface temperature. This behavior is attributable to the decreased CO 

coverage. The starting temperatures of reaction and TS
max on Pd(111), Pt(111) and Rh(111), i.e., 650, 

775 and 650 K, respectively, are similar to those on polycrystalline surfaces reported by Coulston 

and Haller [6]. In contrast, the order of production rate of our results (Pd(111) > Rh(111) > Pt(111)) 

at TS
max is different from results of polycrystalline surfaces (Pd > Pt > Rh [6]). Generally, a 

polycrystalline surface consists of low-index planes such as (111), (100) and (110) [17]. It has been 

reported that the maximum production rate was strongly dependent on surface structure. In the case 

of Pd and Rh, the order is Pd(100) > Pd(110) > Pd(111) [9], and Rh(100) ≈ Rh(111) [3]. Therefore, 

it is thought that polycrystalline Pd surface can give higher catalytic activity than Pd(111), and 

polycrystalline Rh surface can be comparable to Rh(111). Unfortunately, there is no report on the 

comparison in catalytic activity on Pt low-index surfaces, however, the different order between the 

polycrystalline and single-crystal surfaces presented here suggests Pt(100) > Pt(111) and Pt(110) > 
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Pt(111). The CO2 formation rate is plotted as a function of inverse surface temperature in the 

Arrhenius form as shown Figure 1(b). From the low temperature range TS = 475−600 K of this plot, 

the apparent activation energy (Eapp) of Pd(111) is estimated as 27.8 kcal/mol, from TS = 550−625 K, 

that of Pt(111) is estimated as 19.0 kcal/mol, and from TS = 550−575 K, that of Rh(111) is estimated 

as 22.2 kcal/mol. These values agree with the value of 28.1 kcal/mol on Pd(111) [4], which was 

obtained by Goodman et al., that of 24.1 kcal/mol on Pt(111) [2], which was obtained by Ertl et al., 

and that of 19.9 kcal/mol on Rh(111) [5], which was obtained by Schmidt et al.. It has been reported 

that the surface is oxidized during the CO oxidation in high reaction pressure (about 10 Torr) or low 

CO/O2 ratio conditions (CO/O2=1/30), especially in the case of Rh surface [3]. However, we think 

that the surface keeps metallic state, because our reaction pressure (∼10-2 Torr) is three orders of 

magnitude lower than their condition, and the pressure ratio is CO/O2=1/1. 

Figure 2 shows IR emission spectra of CO2 molecules produced by the CO oxidation on 

Rh(111) surface at various surface temperatures. The CO2 emission spectra were observed in the 

region of 2400−2220 cm-1, while the emission spectra centered at 2143 cm-1 are due to the IR 

emission of the non-reacted CO molecules, which are scattered from the surface. The CO2 emission 

spectra are considerably red-shifted from 2349 cm-1 (the fundamental band of antisymmetric 

stretch). The degree of the red-shift from the fundamental band, which reflects the average 

vibrational state of the excited CO2 molecules, is not strongly influenced by the surface 

temperatures. The emission intensity is also almost constant under various surface temperatures. 

Figure 3 shows the average vibrational temperature (TV
AV) derived from IR emission spectra of 

CO2 on Pd(111), Pt(111) and Rh(111) surfaces as a function of surface temperature. The TV
AV values 

are much greater than TS, which indicates that the product CO2 is vibrationally excited. It is shown 
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that the order of TV
AV is as follows: Pd(111) > Pt(111) > Rh(111). This tendency agrees well with 

the results of polycrystalline Pd, Pt, and Rh surfaces studied by Coulston and Haller [6]. In addition, 

the TV
AV values on Pd(111) is much more dependent on the TS than those on Pt(111) and Rh(111). 

The reason for different surface temperature dependence on these surfaces is not clear at present. 

Eichler [16] has studied CO oxidation on transition metal surfaces using density functional 

theory (DFT) calculations. He reported that the potential energies of transition state (ETS) and the 

activation energies (Ea) in CO oxidation on Pd(111), Pt(111) and Rh(111) as listed in Table 1, and 

the potential energy diagram is illustrated in Figure 4. He exhibited that the ETS values in CO 

oxidation on Pd(111), Pt(111) and Rh(111) were −0.98, −1.38 and −1.88 eV, respectively [16], that 

is, the transition state on Pd(111) has the highest potential energy and that on Rh(111) is the lowest 

one. IR emission measurements are reflected by the excited energy (Eexcited) of the product CO2, 

which can be distributed to internal (vibrational and rotational) and translational energies of 

desorbed CO2 molecules. Therefore, it is suggested that the excitation level of desorbed CO2 can be 

originated from the height of potential energy of the transition state as shown in Figure 4. 

Figure 5 shows the bending vibrational temperature (TV
B) and the antisymmetric vibrational 

temperature (TV
AS) obtained from the IR emission intensity of CO2 as a function of surface 

temperature. The TV
B values are higher than those of TV

AS on each surface, which means that the 

bending vibrational mode is more excited than the antisymmetric vibrational mode on each surface. 

However, the bending vibrational temperature at TS = 800 K is much higher on Pd(111) (TV
B = 2200 

K) than on Pt(111) (TV
B = 1750 K) and Rh(111) (TV

B = 1400 K) as shown in Fig. 5(a). The higher 

vibrational temperatures on Pd(111), compared to Pt(111) or Rh(111), are in good agreement with 

the polycrystalline results of Coulston and Haller [6]. They argued that the excess bending 
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excitation in the case of Pd might be due to the higher density of states at Fermi level compared to 

Pt or Rh. In fact, the antisymmetric vibrational temperature on Pd(111) was also rather high, and 

this can be corresponded to higher potential energy of the transition state (Table 1). Regarding 

Pt(111) and Rh(111), the bending vibrational temperature of Pt(111) was higher than that of Rh(111) 

and this can be related to the angle of O−C−O (∠OCO) in the transition state. Eichler [16] has also 

reported that the ∠OCO in the transition states on Pt(111) and Rh(111) were 109° and 112°, 

respectively, as shown in Table 1. In addition, the smaller the ∠OCO at the transition state, the larger 

the energy amount in the bending vibrational mode of desorbed CO2 molecules. This can be explain 

the difference in the bending vibrational temperature on Pt(111) and Rh(111). On the other hand, in 

the case of Pd(111), the angle is relatively large like Rh(111). However, the product CO2 molecules 

on Pd(111) are much more excited in both bending and antisymmetric vibrations than those on 

Pt(111) and Rh(111). At present, it is interpreted that the vibrational excited states on Pd(111) can be 

controlled mainly by the large excited energy (Eexcited) than by the angle of activated complex in the 

transition state. 

 

 

4. Conclusions 

We measured the steady-state activity of CO oxidation over Pd(111), Pt(111), and Rh(111) 

surfaces in the temperature range of 400−900 K. Measurements and analyses of IR 

chemiluminescence of CO2 formed during the steady-state CO oxidation supplied the vibrational 

energy states of CO2, as the average vibrational temperature (TV
AV), antisymmetric vibrational 

temperature (TV
AS), and bending vibrational temperature (TV

B). The order of the TV
AV values of CO2 
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formed during CO oxidation was as follows: Pd(111) > Pt(111) > Rh(111). It is suggested that the 

order corresponds to the potential energy of the transition state expected from the theoretical studies. 

The TV
B values are higher than those of TV

AS on each surface, which means that the bending 

vibrational mode is more excited than the antisymmetric vibrational mode. The order of the TV
B was 

as follows: Pd(111) > Pt(111) > Rh(111), and this can be influenced by both the angle of the 

activated complex (∠OCO) and Eexcited. 
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Figure Captions 

Figure 1.  (a) The formation rate of CO2 during CO oxidation on Pd(111), Pt(111), and Rh(111), 

and (b) the Arrhenius plot obtained from Fig. 1(a). The total flux of reactants of (CO + O2) was 8.2 

× 1018 cm-2 s-1 at the CO/O2 = 1. The values of Pd(111) and Pt(111) are taken from Ref. [12,13]. 

 

Figure 2.  IR emission spectra of CO2 desorbed by CO oxidation on Rh(111). The surface 

temperature (TS) was 575−800 K. The flux conditions are as descried in Figure 1. The emission 

intensity was normalized per unit of CO2 yield. 

 

Figure 3.  Surface temperature dependence of average vibrational temperature (TV
AV) of CO2 

formed in CO oxidation on Pd(111), Pt(111) and Rh(111). The flux conditions are as described in 

Figure 1. The values of Pd(111) and Pt(111) are taken from Ref. [12,13]. 

 

Figure 4.  Potential energy diagram for the CO oxidation on noble metal surfaces (Pd, Pt, Rh). The 

Eini and ETS are the potential energies in the initial and transition states, respectively. The Ea and 

Eexcited are the activation energy in CO oxidation and the excited energy of the product CO2, 

respectively (see Table 1). 

 

Figure 5.  Surface temperature dependence of (a) bending vibrational temperature (TV
B) and (b) 

antisymmetric vibrational temperature (TV
AS) of CO2 formed in CO oxidation on Pd(111) ( , ), 

Pt(111) ( , ) and Rh(111) ( , ). The flux conditions are as described in Figure 1. The values of 

Pd(111) and Pt(111) are taken from Ref. [12,13]. 
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Table 1  Potential energies in the initial (Eini) and the transition (ETS) states, the activation energies 

(Ea) and O−C−O angle (∠OCO) at the transition states for the CO oxidation over Pd(111), Pt(111) 

and Rh(111) surfaces taken from Ref. [16] a. 

 Pd(111) Pt(111) Rh(111) 

Eini
 b / eV −2.38 −2.12 −2.91 

ETS / eV −0.98 −1.38 −1.88 

Ea
 c / eV 1.40 0.74 1.03 

∠OCO 112° 109° 112° 

a The zero of potential energies based on the free molecules (CO + 1/2O2). 

b The initial states means the states of CO and O adsorbed on surfaces. 

c Ea = ETS − Eini 
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Figure 1.  (a) The formation rate of CO2 during CO oxidation on Pd(111), Pt(111), and Rh(111), 

and (b) the Arrhenius plot obtained from Fig. 1(a). The total flux of reactants of (CO+O2) was 8.2 × 

1018 cm-2 s-1 at the CO/O2 = 1. The values of Pd(111) and Pt(111) are taken from Ref. [12,13]. 

1 1.5 2
32

34

36

38

40

42

1000/TS / K-1

ln
 (C

O
2 

ra
te

 / 
10

16
 c

m
-2

 s
ec

-1
)

○: Pd(111)
△: Pt(111)
□: Rh(111)

400 500 600 700 800 900
0

10

20

30

40

50

Surface temperature [TS] / K

C
O

2 
ra

te
 / 

10
16

 c
m

-2
 s

ec
-1 Pd(111)

Pt(111)
Rh(111)

CO/O2=1



 15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  IR emission spectra of CO2 desorbed by CO oxidation on Rh(111). The surface 

temperature (TS) was 575−800 K. The flux conditions are as described in Figure 1. The emission 

intensity was normalized per unit of CO2 yield. 
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Figure 3.  Surface temperature dependence of average vibrational temperature (TV
AV) of CO2 

formed in CO oxidation on Pd(111), Pt(111) and Rh(111). The flux conditions are as described in 

Figure 1. The values of Pd(111) and Pt(111) are taken from Ref. [12,13]. 
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Figure 4.  Potential energy diagram for the CO oxidation on noble metal surfaces (Pd, Pt, Rh). The 

Eini and ETS are the potential energies in the initial and transition states, respectively. The Ea and 

Eexcited are the activation energy in CO oxidation and the excited energy of the product CO2, 

respectively (see Table 1). 
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Figure 5.  Surface temperature dependence of (a) bending vibrational temperature (TV
B) and (b) 

antisymmetric vibrational temperature (TV
AS) of CO2 formed in CO oxidation on Pd(111) ( , ), 

Pt(111) ( , ) and Rh(111) ( , ). The flux conditions are as described in Figure 1. The values of 

Pd(111) and Pt(111) are taken from Ref. [12,13]. 
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