HREGPEERO Ry M7= 2390~ area—5F14 04

(WI2e g5 12480066)

SR 12 4 — PR 14 4 BHERIRBEIIS (GHEFR B) (@)

BF R

S 1545 3 A

Wreeflss - . ® B M

(RERE BF - BRI%ER #D

p0. b
TV
. \ja/.f"

VR 12 FE~SERL 14 4B BHERFRSB#HBIE Wi Rgs s
FXFBHERDOR Yy T —210&3 Q- A Pa—F4 04

e (13601406

LA

2 OBBBBEDYIGESWEERBTOL) A L 2E R, FRMDE0HERX
TAEZED T Lz, (2] ol EREIDILERIBHE TR v b7 — 2{b 3 nFHERREIC
Lo TRESR, 20BBOFTTOII—1SVa Y ¥a—T4 73K S EELHRLE
OFREE A, SRy —E AR, MEF— 2R AT TORBEVOBRBILLETLT,
Mk T— 3 LHAEDINLEHE - RO — Y AT THAT S, KRR, F2 M7
~ 7L LB RIC L AMBERR I AF AL B U -V a—T 4 YV TDE
WxE5.)

AR T, BXoRBEITH WY RICRT 2 IR0RE, SNHREEORRICE
TAHME, Fu—SAREHEAF I PV T L OBEOHFNBELR Y, FyL vy
Y RBREISABYE L RASERTRTITVSE I LI, IEMPRCMEICTE
TLIvE Lz FEES, HLOHMRBEIRATTITwET, biof<E Li-2E
AT TE, FLAERFLVIRLFLTBY T, 3EXVEDORED E LT,
KFFEEHETIC I T CORERET T v E L.

AFRBEE, - TURICHEBRREOBMEL B, £ LTEORICKFR OISR
ARBLEZALZNMET AL VIR EoTENT T, XFRIH LV Y2 — 594
I AORRBICALTLRIESETIELHE->TBYET. %8B, FEICIRAADL OXEE
EBBIMLTBY I, TOHE, BINEE-ABETH, KA FI/HEEFEENL
MREAEF o TViozZ e TIRE LIV ERVWE T, (FRETEHE)

MR
K- SUBK BB LB, TR L IRT 2.

MERR

PR 12 4E B 6,000 (FM)
SR 13 4ERE 4,100 (FM)
SERS 14 SEBE 4,200 (FF)
&F 14,300 FM)

PRIEARRE
WroeflEkE HmHE (R B HHTER 3R
WgemiBgE IFAMF-7 T b (BERE BT WRIFR D)
mreesiEE HihEE (RWRT BF - HRIER)
mEBhE vI¥ INFaT (UK B TSR SMEAWRE)

Summary of Research

The advent of open envirenments such as ihe Internet, has brought a new and
very promising way to design software applications: access to the computing ca-
pabilities deployed on the web by various service providers. The Internet can be
regarded as the hardware of a computer with practically unlimited computing
resources. By open programming we perceive the effort to develop applications
which make efficient use of the computing resources of an open environment.
Such an effort must address issues like the transparent discovery and access
of the services needed by the clients, the implementation of a suitable alloca-
tion/deallocation policy of the resources needed to accomplish a certain task,
and the coordination of the agynchronous activities of the distributed resources
in order to achieve the best performance.

We worked on the design and implementation of an open system for col-
laborative constraint solving. The outcome of our efforts is a system called
Open CFLP, which provides support for collaborative constraint functional
logic programming in open environments. The system provides support for

{a) higher-order functional logic programming over constraint domains equip-
ped with specialized solvers. Reasoning over functional logic programs is
realized by specialized solvers based on higher-order lazy narrowing calculi;

(b) transparent access to specialized constraint solvers via the lookup service
of a specialized broker; :

(¢) a collaboration language which enables the user to specify the most com-
mon ways in which constraint solvers should collaborate to achieve the

desired results.

For (a), we have designed and implemented in Mathematica various refinements
of higher-order lazy narrowing which are relevant for programming purposes.
‘These refinements are very important because they reduce the huge search space
for solutions. In [19, 1, 4, 14] we proposed various refinements for higher-order
pattern rewrite systems, and in [10, 2] we have shown how these refinements can
be employed in the implementation of a constraint functional logic programming
system called CFLP.

Although the class of pattern rewrite systems is already very expressive for
functional logic programming, it is desirable to allow conditional rewrite rules
ag well. The effort to identify suitable extensions to the conditional case is still a
hot topic in the functional logic community. We suceseded to identify a subelass
of conditional rewrite systems which we called deterministic conditional rewrite
systems, which seems to be very suitable for programming purposes, and for
which we can refine lazy narrowing to explore a much smaller search space for
solutions [16, 20]. Tt turns out that these refinements can be combined with the
refinements proposed for pattern rewrite systems to yield sound and complete
computational models for functional logic programming with conditional pattern
rewrite systems.

For (b), we have designed and implemented a lookup service that allows
transparent access to constraint solvers advertised by providers in an open en-
vironment such as the Internet. The user asks for a solver characterized by a
certain interface and attributes (e.g., constraint solving domain, solving method,
etc.) and the lookup service yields a proxy to such a remote solver (if available).

A related issue is support for solver inter-operability. It is reasonable to as-
sume that constraint solvers are heterogeneous. Therefore, we provide support
for inter-operability by designing a global language and ontology for communica-
tion. The individual solvers are wrapped into objects equipped with translators
(codecs) between the global language and their specific language.

We have chosen a global language based the MathML vocabulary of XML.
The communication protocol is based on CORBA, and transmits MathML mes-
sages encoded into valuetype objects of XML DOM.

The support for collaboration {c) is motivated by the widely accepted fact
that the design and implementation of a general-purpose constraint solving sys-
tem is not a reasonable task. Instead, it has been recognized that the task of
solving complex problems can be carried out by a coliaboration of specialized
constraint solvers. Since there is a practically unlimited number of specialized
constraint solving methods, the open environment provides the best framework
for the design os a collaborative constraint selving system: whenever the user
needs to apply a specialized constraint solving method, it looks up the open
environment for a service that implements that method. The lookup service of
Open CFLP provides the user with a so called elementary solver which is a
proxy to the constraint solving service requested by the user. Thus, each ele-
mentary solver ¢an be regarded as a black box which eneapsulates a specialized
constraint solving method. The elementary solvers can be put to work Logether
by building solver collaborations. The best way to build solver collaborations is
by providing the user with a programming language for solver collaborations.

We have designed and implemented a solver collaboration language which
provides primitives to describe the most common ways to combine component
solvers into a higher-level constraint solving procedure.

Formally, a collaborative acts on a constraint store, i.e. a set {¢1,...,¢n}
of elementary constraints {e.g., equations or inequalities). Such a store denotes
the logical conjunction G = ¢ A... A¢,. The outeome of applying Coll on a
store (G is disjunction of formulas 3X,.Gy V... v3X,,.G,, where G1,...,Gpy, are
new constraint stores which are existentially quantified over the sets of variables
X1,..., X respectively. Elementary solvers must be sound (i.e., s0l(3X;.G;) €
s0l(G) for all §, where s0l(F) is the set of solutions of a formula F') and complete
{i.e., any solution of G is a solution of some formula IX;.G;). Intuitively, the
result of applying a collaborative Coll to @ is a disjunction of formulas which
are simpler, in the sense that they are more explicit in expressing their set of
solutions, ‘

The meaning of our syntactic constructs for solver collaboration is described
in [22). Collaborations are assumed to be closed under logical disjunction, that
is, Coll{G, V...V Gy) = Coll{G1) V...V Coll(G,). 1t can be shown that
soundness and completeness are preserved by our collaboration primitives.

Since logical disjunctions can be handled independently, we can boost the
performance of our system by solving disjoint constraint stores concurrently.
We have implemented in Java a multi-threaded interpreter for collaboratives
expressed in such a coordination language. Whenever the interpreter encoun-
ters subcomputations which can be performed concurrently (such as disjunctive
constraints), it starts new threads and dispatches these subcomputations to sep-
arate agents which run asynchronously on (possibly different} computers of the
open environment.

References

f1] M. Marin and T. Ida. Cooperative Constraint Funetional Logic Program-
ming. In 9th International Workshop on Functional and Logic Programming
WFLP2000, pages 382-390, Benicassim, Spain, 2000.

f2] M. Marin and T. Ida. Higher-order Lazy Narrowing in Perspective.
" In 9th International Workshop on Functional and Logic Programming
WFLP’2000, pages 238253, Benicassim, Spain, 2000.

{3] M. Marin, T. Ida, and T. Suzuki. Cooperative Constraint Functional Logic
Programming. In T. Katayama, T, Tamai, and N. Yonezaki, editors, In-
ternational Sympesium on Principles of Software Evolution (ISPSE 2000),
pages 223-230, Kanazawa, Japan, November 1-2 2000. IEEE.

[4} M. Marin, T. Ida, and T, Suzuki. Lazy Narrowing Calculi for Pat-
tern Rewrite Systems. In Proceedings of Second Internationel Workshop
on Symbelic and Numeric Algorithms for Scientific Computing (SYNASC
2000), Timigoara, Romania, October 4-6 2000.

[5] Y. Minamide. A New Criterion for Safe Program Transformations. In Pro-
ceedings of the Forth International Workshop on Higher Order Operational
Techniques in Semantics (HOOTS), ENTCS.

[6] Q. Li, Y-K. Guo, T. 1da, and J. Darlington. Minimized Geometric Buch-
berger Algorithm for Integer Programming, Annals of Operations Research,
108:87-109, January 2001.

f7] T.1da, M. Marin, and T. Suzuki. Higher-order lazy narrowing calculus: a
solver for higher-order equations. In Proceedings of the Eight International
Conference on Computer Aided Systems. (EUROCAST £001), LNCS 2178,
pages 19-23, Las Palmas de Gran Canaria, Canary Islands, Spain, February

2001,

[8] T. Ida, N. Kobayashi, and M. Marin. An Open Environment for Coop-
erative Scientific Problem Solving. In Fourth International Mathematical
Symposium (IMS’2001), Chiba, Japan, June 25-27 2001.

[9] T. Ida, M. Marin, and N. Kobayashi. An open environment for cooperative
equational solving. Wuhan Universilty Journal of Natural Science, 6(1-
2):169-174, 2001.

[10] A. Marin, T. Ida, and W. Schreiner. CFLP: A Mathematica Implementa-
tion of a Distributed Constraint Solving System. The Mathematica Journal,
8(2):287-300, 2001.

(11] Y. Minamide. Runtime Behavior of Conversion Interpretation of Subtyping.
In Proceedings of the 13th International Workshop on Implementation of
Funciional Languages, LNCS.

[12] T. Suzuki and A. Middeldorp. A Complete Selection Function for Lazy
Coenditional Narrowing. In Proceedings of the 5th Symposium on Functional
and Logic Programming (FLOPS 2001), LNCS 2024, pages 201215, Tokyo,
2001.

{13} T. Yamada. Confluence and Termination of Simply Typed Term Rewriting
Systems. In Proceedings of the 12th Inlernational Conference on Rewril-
ing Techniques and Applicotions (RTA 2001}, LNCS 2051, pages 338-352,
Utrecht, 2001.

[14] M. Marin, T. Suzuki, and T. Ida. Refinements of Lazy Narrow-
ing for Left-Linear Fully-extened Pattern Rewrite Systems. Techni-
cal Report ISE-TR-01-180, Institute of Information Sciences and Elee-
tronics, University of Tsukuba, Japan, 2001. Also available from
http://wew, score.is.tsukuba,ac. jp/ mmarin/vita/vita_10.html.

[25] 1. Durand and A. Middeldorp. On the Modularity of Deciding Call-by-
Need. In Foundations of Seftware Science and Computation Siructures
{(FOSSACS 2001), LNCS 2030, pages 199-213, Genova, 2002.

[16] M. Marin and A. Middeldorp. New Completeness Results for Lazy Con-
ditional Narrowing. In 6th International Workshop on Unification (UNIF
2002), Copenhagen, Denmark, July 22-26 2002.

{17) N. Kobayashi, M. Marin, T. Ida, and Z. Che. An Open Environment
for Collaborative Constraint Functional Logic Programming. In i1th In-
ternational Workshop on Functional and (Constraint) Logic Programming
(WFLP2002), Grado, ltaly, June 2002.

[18] N.Kobayashi, M. Marin, Z. Che, and 'T. Ida. Open CFLFP: An Open System
for Collaborative Constraint Functional Logic Programming. In &th Intl.
Conf. on Applications of Computer Algebra (ACA 2002), Volos, Greece,
June 25-28 2002,

[19] T.Ida, M. Marin, and T. Suzuki. Reducing Search Space in Solving Higher-
Order Equations. In S. Arikawa and A. Shinohara, editors, Progress in
Discovery Science, Final Report of the Japanese Discovery Seience Project,
volume 2281 of LVAT, pages 10-30. Springer, 2002,

[20] M. Marin. A Deterministic Conditional Lazy Narrowing Caiculus. In Pro-
ceedings of 4th International Workshop on Symbolic and Numeric Algo-
rithms for Scientific Computing (SYNASC 2002), Timisoara, Romania,

October 6-12 2002.

[21] T. Ida. Equational Reasoning in Programming. In Proceedings of the
Tth Asian Technology Conference in Maihematics, pages 22-34, December

2002.

[22] N. Kobayashi, M. Marin, and T. Ida. Collaborative constraint functional
logic programming systern in an open environment. IEJCE Transaections

on Information and Systems, E86-D(1):63-70, January 2003.

Cooperative Constraint Functional Logic Programming

Mircea Marin, Tetsuo Ida
Institute of Information Sciences and Electranics
University of Tsukuba,
1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
mmarin@score.is.tsukuba.ac.jp, ida@score.is.tsukuba.ac.jp

Taro Suzunki
Research Institute of Electric Communication,
Tohoku University, 980-8577 Sendai,Japan
taro @nue, riec.tohokuw.ac . jp

Abstract

We describe the current staius of the development of
CFLP, a system which aims at the integration of the best
features of functional logic progranmning (FLP), cooper-
ative consiraint solving {CCS), and distributed constraini
solving. FLP provides support for defining one's own ab-
siractions {user-defined functions and predicates) over a
constraini domain inr an easy and comfortable way, whereas
CCS is employed to solve systems of mixed constraints by
iterating specialized constraint solving methods in accor-
dance with a well defined strategy.

CFLE is a distribiwted implementation of a coopera-
tive constraint functional Togic programming scheme ob-
tained from the integration of higher-order lazy narrow-
ing for functional logic programming with cooperative con-
stratnt sefving, The implementation 1akes advantage of the
existence of several constraint solving resources located
in a distribied environment, which communicate asyn-
chronously via message passing.

1 Introduction

Integration of declarntive programming paradigms inlo
a unified framework that captures the best features of each
of them has attracted much interest during the last decade,
Of particular interest is the design and implementation of
a system based on a clean combination of functional logic
programming (FLP) with cooperative constraint solving
(CCS).

CFLP [4] is an experimental system which integrates
higher-order functional logic pregramming with coopera-
tive constraint solving. lts computational model combines

higher-order lazy narrowing with the principle of solving
systemis of mixed constraints with a cooperation of con-
straint solvers described by a given cooperation stralegy.
The system is implemented in Mathematica and consists of
an interpreter based on a higher-order lazy narrowing cal-
culus, and a cooperative constraint solving sysiem.

Our paper is structured as follows., In Section 2 we
illustrate the solving capabilities of CFLP. The language
of CFLP-—syntax and semantics—is oullined in Section 3.
Section 4 describes the general architecture of the system
and of #ts main components. Finally, in Seclion 5 we draw
some conclusions and directions of further research.

2 Examples

We describe with two examples the solving capabilitics
of CFLP.

2.1 Electric Circuit Modeling

The first example shows how electric circuit layouts can
be computed with CFLP. This example illustrates the ex-
pressive power of the FLP style extended with higher-order
constructs such as A-abstractions and function variables,
and constraint solving capabilities for differential cquations
and systems of pelynomial equations.

We lirst define a Munction spec which describes the be-
havior in time ¢ of an clectrical component as a functien of
the current €[] and voltage u[f] in the circuit. The CFLP
rules of spec correspond to a recursive definition, where
the base case describes the behavior of elementary circuits
such as resistors, capacitors, and inductors, and the induc-
tive case describes the behavior of serial and parallel con-
nections of electrical components.

The CFLP program is given below., We do not explain
the underlying electronic laws since it should be easy to
read them off from the program,

(* declare the CFLP type ElComp with
associated data constructors
res, ind, cap, serial, par *)
Conskructor[ElComp = res [Float]
| ind [Float]
{cap [Float)
| serial [TyList [ElComp]]
| par [TyList [E1Comp})] ;
(* specify the CFLP program *)
Prog:= {
spec [res () ,v:Float = Float,i] — True
= A{t}, vl =Al{t}r * i(tl},
spec[ind[l] ,v,i:Float — Float] — True
<= AHe) vie)) s A{e}, 1*i0 (2],
spec{cap (e}, ¥:Float —+ Float,i] — True
= AL{E), 31610 = Af{e)}, ervr (e,
spec [serial [{}],A[{t}),0],4i] = True,
spec(serial([comp | comps]], v, i] = True <
[speclcomp,vl,i] = True,
speciserial [comps},v2,1i] = True,
A{e},vitl] = Al{e},vale) +v2(E]}},
spec{par[{}],v:Float -3 Float, A[{t},0]] = True,
specipar [{comp | comps]), v, il -+ True «=
{specicomp,v,il] = True,
spec [par [comps]) ,v, 12] = True,
A{e} irted) s Ar{e}, A10e] +42(t]1}}

The variables and operators can be type annotated, and
a polymorphic type checker is integrated into the sysicm to
verify the type consistency of the CFLP goal and program.
The universally quantilied variables are underlined. Note
ihe usage of the list construct in the recursive specification
of serial and parallel connections of clectrical coraponents.
The CFLPE system recognizes the following list specifica-
lions:

. {f‘la-")trl}:
t];---:tn-

the list consisting of components

» [| d]): CFLE list with head I and tail # in Prolog-
style notation,

Consider the problem of finding the behavior in time ol the
current in a RLC circuit with R = 2, anL = land & =
1/2 {sec Fig. 1), under the restrictions that the voltage is
constant in time and the current was initially sel to 0.

In this case, the goal which we want to solve is

G:= {spec[serial {{res (2], ind[1], cap(1/2]1}],

AL{t},501,1] = True,
il0]l =0}

The logical variable of the goal is 1, and it is overlined. Nole

R=2 L=l C=l/2

i

V=50

Fig. 1. RLC circuit

the usage of the expression A[{t}, 501 for specifying that
the voltage is constant (30 £} in time.
Now we can ask the CFLP system (o solve the problen:

TSolve [G, Rules = Progl

This call is similar to the Solve call of Mathematica, but
TSolve has the specific option Rules which provides the
functional logic program (i.e., conditional rewrite systeimn)
used upon solving the goal G.

The system computes the parametric solution {i — M. —
ke~ tsin(t)) whichis represented in Mathematicaby {1 =
Aft}, -k et sinlt]).

2.2 Program Calculation

This example illustrates the capabilities of a compuling
environment which can perform {full higher-order pattern
unification, and higher-order term rewriting.

Consider the problem of writing a program to check
whether a list of numbers is steep, i.e, il every element of
the list is greater than or equal to the average of the elements
that follow it. A CFLP program that does this is:

pProg:={
steep|{}] = True,
steep(la| z}] - And[u » len(z] > sumfz], steep[z]],
sum({}] = 0, sum({z | 4]] = = + sum{y],
len{{}] = 0, len[[z | 4]] = 1+ len[y]}

Prog is modular and easy to undersiand, but very in-
clficient (quadratic complexity). It is possible—and
desirable—to automatically compute an efficient (linear
complexity} version steepOptimal of the function
steep defined in Prog. To achieve this, we employ the
fusion calculational rule

flel=¢ flgla,ns]] = hla, fns))
flEoldrly, e, ns]] = Eoldr(h, e, ny|

(H

where foldr: (a x # = 8} x @ x TyList[o] = fis
defined as usual;
foldr(g.e,{}] = e
foldrlg,e,in | ns}] = g¢ln, £oldx(g, ¢ ns]).

To sec how this caleulational rule can be employed, we
first obscrve that the compulation of steep[n | ns]] with

Prog requires the computation of 3 additional quantities:
steep[ns], sum[ns] and lengthns]. Thus, Prog actu-
alty specilies the computation of the function

£ = A[{ns}, e3[steep[ns], sunfns], Lengthns]]

where ©3 is a ternary constructor.

Note that £[ng] = £[foldr[g, e, ns]], where g = Cons
and ¢ = {}, From the fusion calculational rule (1} re-
sults that we can compute £ins] efficienly by computing
foldr[h,e’,ns] instead, where h is the solution of the
equation

M{n,ns}, £[gln, ns])] = A[{n, ns}, hn, flus])). (@)
and e’ = f[{}] = c3{True,0,0]. Then:

steepOpt = A[{ns},sel-c3-1[foldx|h,e’, ns])]
3)
where sel-c3-1 is the data selector of the first argument
of a term constructed with c3 (sce Subsect. 3.} for details).
To solve equation (2) with CFLP we perform the following
calls:

(* Declare data constructor ¢3 with
associated type constructor 'Triple’ *)
Constructor [Triple=c3 [Bool ,Float,Float])];

{(* add definition of f to Prog *)
AppendTo[Prog, £[ns] — c3[steep[ns], sumns], len|ns]]);

{* compute h; during the computation
‘Plus','Times’, 'Power', 'GreaterEqual’,’AND’
are regarded as mere constructors *}

TSolve[A[{n, ns}, £[(n | nslj] =

M{n, ns), hln, c3[steep|ns], sum[ns), Lenins]]]],
Constructor —{Plus, Power,
Times,GreaterEqual, And),
Rules — Prog]

CFLP yields the unique solution

{{f— AM{x813, 2814}, c3[
and[x813 sel-c3-3[z§ld] > sel-c3-2[x514]},
sel-e3-1[z§14],
313 + sel-c3-1[2814], 1 + sel-c3-3[z2514]]}}

3 The Language

CFLP is a distributed soliware system for solving sys-
temns ol equations over various constraint domains for which
specialized constraint solvers are available.

3.1 Syntax

The language of CFLP is buill up from the following
symbols:

» Buill-in constant symbols: 2/3,-2912, Pi, etc.’,

» External symbols: 1he elements of a predefined set
-'Fe = {+1‘a*|---};

» Built-in relational symbols:

equational: ~ (unoriented equality), > (oriented
equality), = (unoriented sirict equality) and >
(oriented strict equality)

logical: {-, -+-} (scquential AND), j| (sequential
OR), and V (paralle] OR),

» Built-in type constructors:

~ base types: Ink, Float, Compl, Bool,

- TyList[e] {polymorphic list lype) and {}
(empty list constant),

» Data constructors: the elements of a set & which con-
tains the built-in dala constructors Cons, {} (for lists),
and the data constructors defined with Constructor
declarations,

» Defined function symbols: symbols of a set F4 which
contains:

— the data selectors introduced by the Construc -
tox declarations,

~ the symbols defined by the rewrite rules of a
given program

L]

Variables: symbols of a sel V of Mathematica symbols
with no predefined or given meaning,

The set F = F,. UF, U Fyis called the signature of CFLP.
Next, we build the other syntactic objects of our language:

o Well-typed A-term (or term): Mathematica represen-
tation of an expression built over the signature F and
set of variables 1/, but instead of Function we use
A E.g., M{z,y},c =y} is the A-term for the function
which computes the procuct of its arguments. The set
of terms is denoted by T(F, V).

» Type-annolated symbol: an expression ol the form
v:1 where v is a variable or function symbol and +
is a type expression.

« Equation: an expression of the form s = { where =€
{r2,0>, =, >} and s, ¢ are lerms of the same type.

e Goal: either an equation, or of the form {gy,...,9n}
(sequential AND goal}, ;] ... lgn (sequential OR
goal), or g3 V ... V g, (parallcl OR-goal), where
Gly- .- U are goals,

"These are the constants recognized by Mathemagice

» Rewrite rule: expression of the form f[ly,... 1) —
r <= ¢ where flly,...,I], r are terms of the same
base type, f[l1, . -.,!xs]) is a higher-order pattern, and ¢
is a goal. f is the defined lunction, and ¢ the condition
of the rewrite nule.

e Program: a (possibly cmpty) set of rewrite rules.

A Constructor declaration has the form
Constructor((constr-specy), . .., {consir-spec,}]

where
{constr-specy : : = {nype-specy'="{data-spec Y'|" ...
"Pdata-spec,)
{type-specy : : = {ype-name) | {type-named|ey, . . ., tn]
{data-spec) : : = {iype-constr) | (ivpe-conste)[Ty,. .., Tn)
0y, ..., 08, distinet type variables
Tiy- -« Tn lype expressions

Example 1 ‘We can declare hinary trees with nodes of type
a by:

Constructor [BTree [a] =
BNil|
T2 [ex, BTreel[n] ,BTree{qa])

This declaration introduces the type construclor BTree 0-
gether with ils associaled data constructors

BNil:Va.BTree(a)
T2 : Ve x BTree[n] x BTreen] — BTree|u].

In addition, the data-sclectors sel1-T2-1, 8el-T2-2 and
sel-T2-3 for the data constructor T2 are defined implic-
itly. (]

A Constructor cull extends the set F, of the language
of CFLP wilh the newly declared data construclors, and the
set Fy of defined symbols of the language of CFLP with the
selectors of the non-constant constructors. For example, il
¢ is a newly-declared n-ary data constructor, then the data
seleclors sel -e-1,..., sel-e-n are added 1o Fy.

A program T2 adds the set of symbols

{f I a(f[lll-'-sl:n] =& C) € R]

to the set Fy of defined symbols of the CFLP language.
We denole by Subsi(F, V} the set of subslitutions over a
signature F and sel of variables V, by D{#) the domain of
a substitution &, and by € the emply substitution,

32 Semantics

The semantics of the external symbols in 7, and of the
data construclors in F, is given by a predefined consiraint

domain A" equipped with various solvers for solving sys-
tems of equational constraints.

A CFLP program R extends the language of the con-
straint domain " with symbols defined in a functional-logic
programming style, and to give them a meaning. A program
T induces a rewrite relation ~— y % on ', where pattern
matching is defined modulo the equality relation on A We
define the semantics of the equalional symbols of CFLP ag
follows:

s YYREsmEiI[s —%p Uy p—— ¢ forsome lerm
,

s Y\ RIEspLils —yal

s VVRE s =tifs —%p ulip + tforsome
constructor term u,

o V,R|=s3 tiftisaconstuctortermand s —% 4,
L.

3.3 TheProblem

CFLP is designed to solve problems ol the following
type:

Given a program R and an cquation 5 = § with =€ =,
>, =,).

Compute § € Subst{F,V) such that U, 'R |= s8 = i

We call such a 8 an R-solmtion of 5 = t. This problem is
extended to goals in the natwral way. We denote by I {(G)
the set of R-solutions of a goal G, In gencral, we are inter-
ested to compute R-normalized solutions of a goal G, i.c.
substitutions # € L7 (G) such that X & is R-normalized for
all X € D(6). We denote the set of R-normalized solutions
of G by UR(G).

To solve such prablems, we have designed and imple-
mented a computation mode! which integrates two oper-
ational principles: lazy narrowing for conditional pattern
rewrile systems, and concurrent constraint solving, Lazy
narrowing solves equations conlaining symbols from F, U
Fa, whereas concurrent constraint solving is employed to
solve systems of equations over X',

4 System Structure

The combination of lazy narrowing with CCS is reflected
in the structure of the systeni: it consists ol a functional
logic interpreter based on lazy narrowing, which is inte-
grated with a distributed implementation ol a cooperative
constraint solving system (see helow).

User &> consirainl solver
interface
[Z:l O distributed
nierpreter CIViroIEIICnt
cooperative
constraint solving
Systern

4.1 The Interpreter

The interpreter of CFLP is bascd on a caleulus C which
is an extension of o purc lazy narrowing caleulus K for con-
ditional patlern rewrile systems with inference rules to rec-
ognize and process equations with external symbols. € can
be described by a set of inference rules which act on states
of the Torm {W | (7 | Store) where V¥ is a sel of variables,
G is a CFLP goal, and Store is a set of constraints s
collected so far. A state (I | G' | Store) is interpreied as

1

HW | G| Store)) = {v by € Ur(G),v]w is R-normalized,
and «y € Lip(e) forall e € Siore).

The inference rules of the caleulus C are presented as rela-
tions of the form

(W |G | Store) =g (W' | G | Srore")

where 8 is a substition, called comypruted substitution.
Such a relation is called C-step. The interpreter computes
C-derivations, i.e. scquences

(Wy | Gy | Storeg) =S54, ... =S4 (Wx | G | Steren)
ol C-steps, abbreviated
(Wo | G} Store} =C>E,l___gw(‘[l",\r | Gpe | Stareny.
The C-derivations which are useful in computing a repre-

sentation of L ((7) are the so-called C-refutations. A C-
refutation is a finite C-derivation of maximum lengih

(V(G) | G| (1) =5(W" | G" | Store) (4)

where V() is the set of free variables in . The set of
answers computed by CFLP lor a given goal G is

Answr (G) = { (8,G", S1ore) | 3 C-relwiation
(VIGH G | {1 == (W | G | Store))

The calcwlus C is designed (o satisfy the following two con-
ditions:

soundness: For any {8, G’ Store} € Answg(G) and any
R-solution ¥ of G and Stere, we have v € g ()

completeness: Forany v € UE(G) there is a {8, €, Store}
€ Answr{G) such thal v = 8+' {V(G)] for some R-
solution ' of G' and Siore.

A C-refutation is constructed in two stages:

I. Lazy Narrowing Stage: starting with the state {V(G) |
G| {}), the goal G is narrowed until a goal made of
equations which can not be narrowed anymore. The
equations which can not be narrowed anymore are ci-
ther:

* constraints, i.e. equations over the constraint do-
main &', or

 certain flex/flex equations, i.e. equations hetween
terms of the form

AMfzy, .., xp}, X5, -

with X a free variable,

Remark: The design a calculus 1o solve all
Aex/flex equations is unrealistic, since full
higher-order unification is highly intractable [1].
Our design of C is based on Huét's idea of pre-
unification [3].

|

2. Constraint Selving Stage: the constraints produced
during the lazy narrowing stage are solved with a co-
operative constraint solver.

4.1.1 The Lazy Narrowing Stage
The rules of € which realize this stage are:

V] parallel OR
W1 GIV...VG, | Storey==, (¥
where & € {1,...,n}

(I} sequentiat OR

(W | Gill...|IGn | Store)=S.(0W | Gy | Store)
where k € {1,...,n]}

Gy | Store)

The difference between these rules is thal the nondeter-

nvinistm due to selection of (g is explored by breadth-first

search for [V] and by depth-first search for [|f].

[{-1] sequensial AND

(WG, ..., Cu)|Stored=Ss o (W'|{G}, ..., G" }|Store’)

it (W | Gk | Store) <=5 (W' | GL | Store’) and
Gy= B doralli # k.

[xf] constraint accwnulation
(W] s=1t]|Siore) =So, (W | {}] Store U {s m 1)) if
§ = € is a constraint

[xi} @mitation for external symbols
(W 1 AT, [0 = M{T5). 4 | Store) =,
(W1 A=) sml 2 AM{z5), YalT,ll,
M@} Y]l = M{75). 1] | Stare)
with ¥1, ..., ¥ fresh variables and =€ {r,r~' [7 €
{=, =, >}}if f € F,.

INp] lazy narrowing step

These sieps arc governed by a given lazy narrowing
caleulus K

(W) s =1} Store) s, (W | G| Store”)

ifs o t=,G" isa K- -step and Store’ = {s8 = 18 |
(3 72 1) € Store).

The interpreter of CFLP can make use of different buill-
in lazy narrowing calculi X, depending on he preference
of the user. 'We have designed and implemented sound
and camplete lazy narrowing caleuli for pattern rewrite sys-
tems (PRS for short), left-linear confluent fully-exiended
PRS, and leit-linear construcior fully extended PRS (sce
[57. Moreover, we have extended these caleuli to handle
strict equations and conditional PRSs. Some of these cal-
culi are higher-order generalizations of the deterministic re-
finements of the lazy caleulus LNC [7, 6]

4.1.2 The Constraint Solving Stage

The constraints accumulaied in the constraint store during
the lazy narrowing stage are submitted 1o be solved with a
cooperative constraint solving system. Formally, this stage
can be described by

[cs] eonstraint solve

(W | G | Store) Lo (W' | GO | Store')
ir {8, Store"y € S({{},Store}) (sec next subscction)
and W' are the free variables in {X0 | X ¢ W},

4.2 The Cooperative Constraint Solving Compo-
ncnt

We assume given a constraint domain A" over a signature
Fe of external operators, and a set of specialized consiraint
solvers 8y, ..., CS,. Bach solver is a function

CSi : Eqa™ (Fo, V) 2 Prn Subst(Fe, V) xEqs™ (Fe, V)

where £gs(Fe, V) € Pon(Eq(F, V) is the set of con-
straints that can bw sotved with CSy, Subsi(F,, V) is the set
of idempotent substitulions over F,. The individual solvers
are canonical simplifiers, e, 6 CSR(S) = {{:,53 11 <
t < N}ihen

« 1 is a solution of S ifT y is of the form 8,7, for some
p€ {1,...,N}and solution -y, of 5.

e every S; is a CSy-canonical form, i.c.
CS(S) = {({}, S}

CS; is extended to an operator CS§ on Peo(Subst{Fe, V) x
PinEq(Fe, 1)) defined by

CS ({1 Sy |1 EpsNY=UJ =1{('rk9‘,5”'w.- U S9
S = SN EG M (F, V), 5 = § - S
(.81 € CSu(5.)).

The operational principle of the cooperative constraint solv-
ing component is defined by a methed S which describes
how the computations of CSq, ..., CS, are combined. YWe
call S coaperation strategy, and define S(CS,, ..., CS,) as
the Axed-point of CSY, o --- o CS}. This strategy has been
proposed and extensively investigated by Hong [2] in the
{ramework ol cooperative CLP. Obviously, when defined,
the result of & is a CSg-canonical form forall 1 <k < N.

Example 2 Assume we want to solve

= [Ma(E) = ME (), v(0) = 1, y{2) = 3,p(r) = 5)

in variables y, £, r, by using a cooperation af 3 solvers: a
sobver €8, for differential equations, a solver CSy lor sys-
tems of monomial equations, and a solver CSy lor cquations
with invertible functions. Then

CST(({),) = Sy where Sy = {{{y = Acet'ty e w
1, eet® = 3, ce’® =~ 5])) with ¢ a new vari-
able; CSl(Sl) = Gy where Sy = {({y » e =
1} {5 m 3, e"* m 51 CS5(S2) = Ss where

= {{{y = At et e s 1}, {2 k* =~ log(3),r k* =

log,(a)])} CS5(S3) = 93 C55(53) = 5, where Sy =
{{{y —» AL c‘ 0g(3/2 ¢ vy Lk = —/log(3)/2),
{—r log(3)}/2 =~ log(8)}),{{y = Atet 0BG/ o
Lk = Jlog(3)/2), {r log(3)/2 = log(D)} 1
CS5(8y) = C55(Sy) = Sq; and C84(S,) = Sp where
S = ({{yp v~ Mot EEB2 pn 1 ke -y '—"5,—;-3«1,1- .

Y () (g v At PEOE, oo 1k e

o/ BB oy %‘;i‘g’l}, {1)}. In this example, the solution
Sp of S is computed in 9 steps,

To compute CS(SY we must call OS5, niy times where ny,
is the number of elements in S, and thesc calls can be re-
alized in parailel. To take advantage of this fact, we have
implemented o distributed constraint solving sysiem con-
sisting of

» scveral instances of solvers running on various ma-
chines, and

& ascheduler, which implements the strategy & by fairly
allocaling the constraint solvers available lo eventually
solve each element of S,

The general structure of the distributed constraint solving
subsystem of CFLP is depicted in Fig. 2,

constraints Sl T S(CS0...0CS)< £5>)

Scheduler
(strategy &)

instances

instances ...

of CS|

. insiances

of CSn

instances

of C'SI

of CSr|

machine M) machine M
v

Fig. 2. CFLP: the cooperative constraint solv-
ing component

The current version of CFLP has integrated four types of
constraint solvers:

I[. CS) : solver which can solve algebraic cqualions with
invertible functions, and yields solutions in terms of
formal inverse functions.

2. €Sy : sofves systems of equations between multivari-
ate polynomials over algebraic extensions of the do-
main of complex numbers,

3. CS3 : solver for differential equations over algebraic
extensions of €,

4. CSy : solver for partial differential equations over al-
gebraic extensions of C.

All the components of the cooperative consteaint solv-
ing system—scheduler and constraint solvers—are imple-
mented in Mathematica |8} as MathLink-compatible pro-
cesses which communicale asynchrononsly by message-
passing over MathLink connections,

CFLP makes distinclion belween two types of solving
resources:

1. local constraint solvers: these are solvers which run
locally as sub-processes of a CFLP session,

2. remote constraint solvers: these solvers are started to
run on various machines from outside the CFLP ses-
sion, and can be shared belween different CFLE ses-
sions. The distribution of CFLP provides shell scripts
to start and stop ranning remote constraint solvers.

The user can adjust the computation session by specifying

» the machines My, ..., M, on which to connect Lo the
remote constraint sobvers, and

« the number of local constraint solvers.

5 Conclusion

The system described in this paper is based on a compu-
tational model which integrates lazy narrowing for condi-
tional PRS with CCS.

Currently, only a few theoretical results have been gener-
alized to the conditional case. We will continue our research
Lo design clficient and complete caleuli Tor various classes
of conditional PRS.

The main intention of our system CFLP was to prove the
suitability of our evolvable distributed model for coopera-
Live constraint solving. We didn’t focus yet on the design of
an cfficient implementation.

References

[1] W. Gould. Amatching procedure for w-order lagic. Scientific
Report 4. Air Force Cambridge Research Eaboratories, 1966,

2] H. Hong. Non-linear Constraints Solving over Real Numbers
in Constraint Logic Programming (Introducing RISC-CLP).
Technical Report 92-08, RISC-Linz, Castle of Hagenberg,
Auslria, 1992,

[3] G.Hudt. A Unification Algorithm for Typed A-Calewlus. The-

oretical Computer Science, 1:27-57, 1975,

M. Marin. Functional Logic Programming with Distributed

Constraint Solving. PhD hesis, Research Institute for Sym-

belic Compulation (R1SC-Linz), Johannes Kepler University,

Schloss Hagenberg, April 2000. .

[51 M. Marin, T. Ida, and T, Suzuki. On Reducing the Search

Space of Higher-Order Lazy Narrowing. In A, Middeldomp

and T. Sato, editors, FLOPS'29, volume 1722 ol LNCS, pages

225-240, Springer-Verlag, 1999,

A. Middeldorp and S. Okui. A Deterministic Lazy Narrowing

Caleulus. Journal of Symbolic Computation, 25(6).733-757,

1998,

{71 A. Middeldorp, 8. Okut, and T. Ida. Lazy Narrowing: Strong
Compleieness and Eager Variable Elimination, Theoretical
Compurer Science, 167(1,2):95-130, 1996,

(8] S. Wollram. The Mathematica Book. Third Edition, Wolfram
Media and Cambridge University Press, 1996,

[4

—

[6

Higher-order Lazy Narrowing Calculi in
Perspective

Mircea Marin!, Tetsuo Ida!, and Taro Suzuki?

! Institute of Information Sciences and Electronics
University of Tsukuba, Tsukuba 305-8373, Japan
mmarin@score.is.tsukuba.ac.jp
ida@score. is.tsukuba.ac.jp
2 School of Information Science,

JAIST Hokuriku, 923-1292, Japan
t_suzuki@jaist.ac.jp

Abstract. Higher-order lazy narrowing {HOLN for short) is a compu-
tational model for higher-order functional logic programming. It can be
viewed as an extension of first-order lazy narrowing with inference rules
to solve equations involving A-abstractions and higher-order variables.

A commaon feature of the HOLN caleuli proposed so {ar is the high nonde-
terminism between the inference rules designed to solve equations which
involve higher-order vartables. In this paper we present various refine-
ments of HOLN towards more deterministic versions. The refinements
are defined for classes of higher-order functional logic programs which
are useful for programming purposes. Our work draws on two sources:
the calculus LN for pattern rewrite systems [Pre98] and the first-order
lazy narrowing calculus LNC and its deterministic refinements [MO98].

1 Introduction

Recent years have witnessed a growing interest in extending lazy narrow-
ing with higher-order constructs, in an attempt to improve the expressive
power of functional logic programming (FLP}. The capability io handle
A-abstractions and funclion variables is desirable in FLP, mainly because
one can use the abstraction principle and can quantify over predicale and
function symbols. The cost of such an extension is the high nondetermin-
ism between the inference rules designed Lo solve equations with lunction
variables. This problemn has first been observed in the context ol solv-
ing higher-order cquations in empty equational theories [Gou66], where
it is avoided by adopting the idea of pre-unmification [Hud75] instead of
full higher-order unification. The main idea of pre-unification is to com-
pute pre-uniliers instead of unifiers, by avoiding to solve the problematic
flex/flex equalions.

Compared with higher-order pre-unification, HOLN as operational
principle for higher-order FLP adds one more complication: the high non-
determinism of solving equations where at least one side is a flex term, i.e.
a term of the form AT, X (57) with X a free variable. The nondeterminism
belween the inference rules of HOLN can be reduced by restricting it to
particular classes of higher-order functional logic programs (i.c., higher-
order term rewriting syslems) which guarantee that the resulted calculus
is complete. For programming purposes, the classes of higher-order func-
tional logic programs must be chosen to be expressive enough.

Recently, various specializations of higher-order lazy narrowing to par-
ticular classes of higher-order rewrite systems have been proposed (sce,
c.g. [SNI97 Pre98,MMIY99,MIS99]) in an atiempt to define a suitable
operational model for higher-order FLP.

In the sequet we give a brief account of the higher-order lazy nar-
rowing calenli designed by us for higher-order FLP. Figure 1 illustrates
Lhe higher-order lazy narrowing caleuli which have been proposed so far
and are relevant Lo our research, The arrows indicate design dependencies
between caleuli. Our calculi are displayed in boldfaced font. For the cal-
culi where completeness holds with respecl to a cerlain equation selection
strategy, we have specified the strategy in parentheses iinmediately after
the name of the corresponding calculus.

2 Lazy Narrowing for Applicative Term Algebras

For FLP, the advanlage of applicalive term algebra over first-order term
algebra is the capability to use Munction variables in writing functional
logic programs and goals. Our first investigation of higher-order FLP was
set up in the framework of applicalive term algebras, whore we tried to
modify the applicative version of the first-order lazy narrowing calculus
LNC into a calculus which is more deterministic. The outcome is the cal-
culus LNCA [MMIY99] for applicative term rewriting systems (ATRS for
short). The inference rules of LNC and LNCA are shown in Appendices
A and B.

Compared to LNC, LNCA is more deterministic because of the spe-
cialization [on] of the rule [o]: the seleclion of the rewrite rule(s) in an
[on]-siep is driven by the leftmost innermost symbol instead of the left-
most outermost symbol. As a consequence, the scarch tree for solutions
has (ewer branches. However, LNCA-derivations may be lenger than the
corresponding LN C-derivalion for the same computed solution.

LN %\(Sc) (LN4) | (1): onthogonal PRS

@/ (2): left-linear constructor

LN < full EPRS
8, LN,) (3): equations wilh

@\ I strict semantics

LN,)

LN, (5,,8,)

HLNC LN
simply-typed
RS PRS
A A -calculus
LNCA i
\ applicative
! term algebra
LNC 4
_ Laziness, strategy 1 _____________________ first-order
'''''''''''' . T " term algebra
Narrowing
Rewriting Resolution
(matching) (unification)

Fig.1. Narrowing calculi: dependency diagram

Main result. We have shown [MMIY99) that by adopling the leftmost
equation selection strategy, the calculus LNCA is sound and complete
for the computation of normalized solutions. We expect that a further
analysis of the similarities between LNC and LNCA will enable to define
more deterministic specializations of the calculus LNCA which are sound
and complete for large classes of ATRSs.

3 Lazy Narrowing for Simply-Typed Term Algebras

Simply-typed A-calculus is a fundamental and powerful theory of appli-
cation and abstraction governed by a basic theory of types. The terms of
the simply-typed A-calculus are assumed to satisfy certain rutes, and most
often they are identified modulo the rules &, § and % of the Ad-calculus.
A suitable generalization of first-order lazy narrowing to the algebra of
simply-lyped A-lerms is snpposed Lo take into account these requirements.

For FLP, simply-typed termn algebras are imnuch more powerful than ap-
plicative term algebras mainly because of the mechanisim of A-abstraction,
which provides support for universal quantification.

Various theorctical frameworks for higher-order FLT in algebras of
simply typed A-terms are being determined by how term rewriling is
defined. (Sce, e.g. [MN94,v094,vdP94].) In our framework we use the
notion of higher-order term rewriting with pattern rewrite systems (PRS
for short) proposed by Nipkow [Nip91]. It has the advantage to inherit
many crucial features from first-order equational logic (e.g., higher-order
patlern unification is unitary). This aspect is useful in defining suitable
HOLN calculi for equational theories represented with PRSs.

Our research of higher-order lazy narrowing [or PRSs draws on two
sources: (a) the higher-order lagy narrowing calculus LN [Pre98] for higher-
order pre-unification in equational Lheories represented with PRS, and
(b) the first-order lazy narrowing calculus LNC and its deterministic re-
finements [MOI96,M008].

3.1 The calculus LNg

A careful analysis of the similariiies between LN and LNC revealed the
possibility to define a suitable higher-order counterpart of the calculus
LNC which we called LNy [MIS99], and to lift to LN g somne of the de-
terministic refinements of LNC proposed in [MO98].

LNy can be regarded as an extension of the calculus LN: whereas
LN is designed Lo solve systems of oviented equations, LNg can solve

both oriented and unoriented eqnations. In addition, LNq can perform
full pattern unification. The inference rules of LNy are displayed below.
We adopted the terminology and notational conventions used in {Pred8].
We employ the relational symbols > for oriented equalily, and = for
unoriented equality. The symbol 2 denotes

Y, or 7! in the inference rules [Ts], [fd], [i), [pl,

,2"1, or &> in the inference rules [del], [d], [on], [ov].

~ T
oy
ot S ™
~ R

It is assumed that = denotes the same relational symbol in the npper and
lower sides of the inference rules of LN .

[del] deletion
G T4 =2 ML, G
G,

(d] decomposition .
G, Az.0(5) & Aiv(l,), G
G, L.s, = AR, &

[i] imitalion o
(G, \E.Hy(37) = XAy, G0

where 0 = {X — X%5.g(Hn (%))} and Hy, are fresh variables.
{p] projection

G, \T.X(5;) & M.t G

(G, AT.5i(H,(37)) 2 AT.L, G0
where | <4 <n, AZ.dis rigid, 0 = {X = Ay (Hp(D)} i 7 — 7,
and Hy, : 1, are fresh variables.
lon} outermost narrowing ot nonvariable position

G, . f(5a) = Az, G’
G, A5, D ATL, AT r = ATL, G

if f(I,) -+ r is a fresh variant of an F-lifted rule.
fov] ounlermost narrowing at variable position
G NX(ER) = AL, G
(G, T Ha(5m) 1 AT Ay, Az 2 Az t, G

il AZ.t is rigid, f(l,) — 7 is a [resh variant of an Z-lifted rule and
8 = {X = AGm . f{Ha(Fm))} with H, fresh variables of appropriate
lypes.

[As] flex/flex same .
G, AE.X(yn) 2 25.X (1), G
(G, G
where 8 = {X v Mjp. H(Z,)} with {7} = {3 | 1 £ ¢ < nandy; = ¥}
{fld] flez/flex different

G OTX(Tm) = NEY (D), 6
(G,G")8

where 8 = (X = M\jm H(7),Y = ML H(Z)) with {7} = (I} N
{vh}.

The equations Mz.s, [> M., generated by Lhe rule [on], and the equa-
lions AT, Hy, (55) > AZ.L, generated by the rule [ov] are called parameter-
possing equations.

In the sequel we will analyze the main properties of LNy and define
possible refinementis towards more deterministic versions. An important
property used in the design of our relinements is whether an oriented
equation is a descendant of {i.e., it is produced from) a parameter-passing
cquation or not. Henceforth, whenever we want to emphasize that an
equation AT.s B> ATt is a descendant of a parameter-passing equation, we
will write it in the form A%.s » AT.2.

In [MIS99] it has been shown thal LNy is incomplete because we have
added the inference rules [ffs] and [Id] for pattern unification. We recover
completeness by adopting a suitable equation selection sirategy Sp. In
our framework, a strategy is a family of equation selection functions de-
termined by a criterion which takes into account the history of the lazy
narrowing derivation [Mar00]. To capture the relevant properties of the
history, we introduced Lhe nolion ol precursor of an equation in a goal. In-
[ormally, an equation has precursor if it descends from an equation which
was selected in an fon]- or [ov]-step; if so, the precursors of that cqualion
are the equations produced from Lhe parameler-passing equalions created
in the first [on]- or [ov]-step with the property mentioned above.

Solving Hex/rigid and rigid/flex equations is highly nondeterministic
because all rules {ov}, [i], [p] have Lo be considered to guarantee complete-
ness. We reduce this nondeterminism by defining a sub-strategy S, of Sp,
i.e. &, C Sp, which delays the selection of such problematic equations as
much as possible.

Main result. LNg with sirategy Sp is sound and complete.

3.2 The Caleulus LN

LN, is a refinement of the calculus LN g. It is defined for confluent PRSs,
and restricts the application of rule [ov] as shown below.

[ov] outermost narrowing al variable position
G, AZ X (5m) & XEL G
(G, AT Hp(55) » ATy, A\Tr =2 AT.E, G0

if
o AT.X(5,) is a flex-pattern only if the equation AT. X (37;) & ME.4
has no precursors,
ATt is a rigid term,
F{1;) = 7 is a fresh variant of an F-lifted rule, and
o 0= {X > X f (T (Tn))} with Hy, fresh variables of appropriate
types.

Main result, The calculus LN with strategy Sy is sound and complete,

3.3 Eager variable elimination

This refinement addresses the possibilily to avoid the application of rule
{on] to certain equations of the form AZ. f(57) > AZ.t with f defined func-
tion symbol, and was inspired by the eager variable climination problem
deseribed in [MOI96] for the calculus LNC. In the first-order case, it has
been shown that for orthogonal term rewriling systems, the application
of the variable elimination rule

Ot X, &7
prior to other applicable inference rules preserves Lhe completeness of
the caleulus, tf the selected cqualion is o descendant of a parameter-
passing equation. It is nol hard to see Lhal the higher-order counterpart
of the eager variable eliminalion problem refers to the possibilily to avoid
applying [on] to descendants of parameter-passing equations. We denote
by C® Lhe calculus resulted from a higher-order lazy narrowing calculus
C by climinating the application of rule [on] to descendants of parameter-
passing cquations.

The orthogonality assumption in the proof of this result is necessary
because it is made use of the standardizalion theorem. We noted thai
the standardization theorem was proved for higher-order PRSs [v0Q986].
By using Lhis result, we suceceeded lo prove that for orthogonal PRSs we
can avoid to apply [on] Lo descendants of parameter-passing cquations
without losing compleleness.

where 8 = {X » t} if X ¢ V(i)

Main result, The calculus LN{” is sound and complete.

3.4 Lazy Narrowing with Elimination of Redundant
Equations

Upon computations of normalized solutions with the calculus LNy with
stralegy S, it may happen to generate new equations which do not con-
tribute to the computation of the final solution. We call such equations
redundant, and propose the following criterion to detect them.

Definition 1 (redundant equation) Let G =% G’ be an LN;-deriva-
tion which respects strategy Sy, and ¢ = AT.5 & ME.X(Y) an equalion in
G’ with V(Aj.s) N {Z} = 0. Then e is redundant if

— ¢ is a descendant of a parameler-passing equalion,
- X ¢ V(') for all cquations ¢ € G'\ {e}, and
- X €V()z.5).

We denote by LNo the caleulus obtained by adding the inference rule

] God
rm G’, G’

i e is redundant.

to the caleulus LNy, and by making [rm] the inference rule with the second
highest priority, after [del}. We denote by S, the slrategy obtained from
Sy by allowing the selection of any redundant equation.

Main result. L.N2 with strategy S is sound and complete.

3.6 Lazy narrowing for left-linear constructor PRSs

The restriction of programs to lefl-linear constructor TRSs is widely ac-
cepted in functional logic programming. The higher-order counterpart of
ihis class of programs are the lefi-lincar fully-extended congtructor PRSs
(LECPRS for short). These are PRSs consisting of rewrite rules of the
form ! -» r with I a fully-extended patlern (see definition below) which
is free of defined function symbols.

Definition 2 (fully-extended pattern) A simply-typed A-fcrm is called
(ully-extended pattern if whenever X () is a subterm of I al posilion p
then §; is the sequence of all distinct bound wveriables in the scope of 1.

For the case of functional logic programs represented by LECPRSs we pro-
posc a new caleulus, which we call LN3. LNj is obtained by modifying the
caleulus LNy to avoid the creation ol descendants of parameier-passing
equations of the form Az.s > AZ.¢ with defined symbols in AT L, in a way
that preserves completeness. As a consequence, the computation with
LN-derivation becomes more deterministic begause we can discard all
LNj-derivations in which occur descendants of parameter-passing equa-
tions of the form AZ.s > AT.¢ with defined symbols in ML
The modification LNg of the calculus LN, is realized by

1. adding a new inference rule [c},

2. giving to the newly added inference rule the highest priority, and

3. discarding the derivations with descendants of parameter-passing cqua-
tions of the form AZ.s > AT.t with defined symbaols in Ax.L,

The [¢]-rule. In the first-order case, a well-known result is thal for loft-
linear constructor term rewriting systems, the completeness is preserved
if we compute only with LN C-refutations where

- the leftmost cquation selection strategy is used, and
— the descendants of parameter-passing equations have constructor terms
to the right-hand side.

An immediate consequence of this observation is that solving descendants
of parameter-passing equations of the form X = { becomes completcly de-
terministic with LNC: the fv]-rule is sufficient for solving such equations.

Unfortunately, the above-mentioned praperty of LNC has no direct
correspondent in the ealeulus LNo. This is so mainly because Lhere is no
higher-order counterpart of the leftmost equation selection strategy. This
fact is illustrated in the example below.

Example 1 Consider the lejl-linear construcior PRS R = {f(X) — X}
and the gool G = f(Y{X)) > a. Then any LNg-derivation which respecls
sirategy S starls with

j(Y(X)) [Cl‘-v:>[o||] G = Y(X) =3 X],X] > a
ov)e={xp= iy} G =Y (X) b SUH), H{X) > X9, X5 0

The application of [ov] in the second inference step introduces the defined
function symbol [in the right-hand side of the leflmost parameter-passing
equation of G'.]

To avoid this behavior of LNy with sirategy S, we add a new rule:

[G, 2z.5(7) » X2.X(7), G, 32 X(1) = 2T, G
G, 2z.s(H) » X2 X(7), G, 2T.5(f) 2 A\Tu, G

if M\T.u is rigid and V(s) N {Z} = 0.

The equation selected by the [c}-rule is AT. X (2) & AZ.u and its descendant
is defined to be AT.s(t) = AT.w. The notions ol precursor and descendant
are carried over to the [c}-rule in the natural way.

The new calculus. We denote by LN;3 the caleulus obtained from LNy
by adding the rule [c] and by applying it instead of [ov] and [i] whenever
possible,

Main result. LNj with strategy S is sound and complete.

3.6 Lazy Narrowing for Equations with Strict Semantics

In first-order functional logic programming, iwo expressions are consid-
ercd Lo be strictly equal if they reduce Lo the same ground constructor
term (sce, e.g. [AEH24,GLMPG1 MOGSSE]).

We propose the [ollowing higher-order counterpart of the notion of
strict solution of an equation.

Definition 3 (strict solution) 4 substitulion @ is a strict solution of
an equation s = {, where =€ {=, >}, if there exists a ground consirucior
term u such that:

- 80 =L uand 10 = u, if =is =,

- 80 uand 8 =u, if =isp.

To accomodate the notion of strict solution into our higher-order FLP
scbbing, we distinguish four types of equalily: unoriented equatity, ori-
ented couality, strich unoriented eguality, and sirict oriented equality.
Correspondingly, we employ the equality symbols =, >, = and 3, and
specialize the calculus LiN2 to a calculus LN4 congisting of four mutually
disjoint subcaleuli:

LNF: inference rules for selected unoriented equalions
LNF: inference rules for selected oriented equations,

LN : inference rules for selected strict unoriented equations,
LN7: inference rules for selected strict oriented equations.

Whereas subcalenli LN and LNY coincide with the corresponding sub-
calculi LN and LNE of LNy, the subealculi LNT and LN behave more
deterministic than LNF and LNE (see Appendices C, D).

Main result. The calculus LN, with strategy S, is sound and complete.

4 Conclusions and Future Work

Various refinements of a higher-order lazy narrowing calculus have been
proposed, in an attempt Lo reduce its high nondeterminism and to make
it suitable as operational model for functional logic programming. All
calculi proposed by us are sound and complete.

A powerful mechanism for FLP is lazy narrowing with conditional
term rewriling sysiems. The extension of lazy narrowing to the condi-
tional term rewriling case has been successfully pursued in the first-order
case, and proposals for higher-order versions of conditional lazy narrow-
ing are already available. (See, c.g. [Pred8].) As future work, we intend
to generalize our framework of higher-order lazy narrowing with PRS to
ihe conditional case, and to find deterministic refinements for classes of
conditional PRS which are useful for programming purposes.

References

[AEH94] S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. In
Proceedings of the 215t ACM Symposium on Principles of Programming
Languages, pages 268-278, Portland, 1994,

[GLMP91] E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel-LEAF: A
Logic plus Functional Language. Journal of Computer and System Sciences,
42(2):138-185, 1991.

[Gou6B] W.E. Gould. A matching procedure for w-order logic. Scientific Reporl 4.
Air Force Cambridge Research Laboratories, 1966.

[Hut75) G. Huit. A Unification Algorithm for Typed A-Calenlus. Theoretical Corn-
puler Science, 1:27-57, 1975,

{Mar00] M. Marin. Functional Logic Programming with Distributed Constraint Solv-
ing. PhD thesis, Research Institute for Symbelic Computation (RISC-Linz),
Johannes Kepler University, Schloss Hagenberg, April 2000.

[M1599] M. Marin, T. Ida, and T. Suzuki. On Reducing the Search Space of Higher-
Order Lazy Narrowing. In A. Middeldorp and T. Sato, editors, FLOPS5'99,
volume 1722 of LNCS, pages 225-240. Springer-Verlag, 1999,

{MMIYG9] M. Marin, A. Middeldorp, T. 1da, and T. Yanagi. LNCA: A Lazy Narrowing
Calcenlus for Applicative Term Rewriting Systems. Technical Report 15E-
TR-092-158, Institute of Information Sciences and Blectronics, University of
Tsukuba, Tsukuba, Japan, 1999.

[MNO4] R. Mayr and T. Nipkow. Higher-order rowrite systems and their confluence.
Technical report, Institute fiir Informatik, TU Minchen, 1994,

[MO98] A. Middeldorp and 8. Okui. A Deterministic Lazy Narrowing Calculus,
Jowrnael of Symbolic Computalion, 25(6):733-757, 1998.

[MOM96] A, Middeldorp, 5. Okui, and T. lda. Lazy Narrowing: Strong Com-
pleteness and Eager Variable Elimination. Theoretical Computer Science,
167(1,2):95-130, 1996.

[Nip91]

[Preds]

[SN197]

(vdPO4]

[v094]

fv096)

T. Nipkow. Higher-order critical pairs. In Proceedings of the Sizth Annual
IEEE Symposium on Logic in Computer Science, pages 342-349, Amster-
dam, the Netherlands, July 1991, IEEE Computer Society Press.

C. Prehofer. Solving Higher-Order Equations. From Logic to Programming.
Foundations of Compnuting. Birkduser Boston, 1998,

T. Suznki, K. Nakagawa, and T. Ida. Higher-Order Lazy Narrowing Calcu-
lus: A Computation Model for a Higher-order Functional Logic Language.
In Proceedings of Sisth International Joint Conference, ALP ‘97 - HOA '9%,
volume 1298 of LNCS, pages 99-113, Seuthampton, 1997,

J. van de Pol. Termination proofs for higher-order rewrite systems. In
J. Heering, K. Meinke, M. Maoller, and T. Nipkow, editors, Higher-Order
Algebra, Lagic and Termn Rewriting, volume 816 of LNCS, pages 305-325.
Springer-Verlag, 1994,

V. van Qostrom. Confluence for Abstract end Higher-Order Rewriting. PhD
thesis, Vrije Universiteit, Amsterdam, 1994,

V. van Qostrom. Higher-order Families. In Inlernational Conference on
Rewriting Technigues and Applications, LNCS, 1996.

A The Calculus LINC

[d] decomposition

—_—

[v

G, /(%) = [(In), G
G sn = 1, G’

variable eliminalion

G X=t1,6G Gi=X,G
(G, G (G,G"

where § = {X > ¢} il X € V(1)
[i] imitation

G fE)~X,G G X=fE)G
(Gsn = X, GO (G, X, = 5, G}

wherc 8 = {X = [(X,)} with X, fresh variables.
[0] outermost narrowing

G, f(5n) = 4, G G,t= f(5), G
Gospmily,r=t, Gsy=ipilerd

if f(I,) — 7 is a fresh varianl of a rewrile rule.
[] trivial equation

Gil=t, G
G, G

B The Calculus LNCA

[of] outermost narrowing for head-function terms

[omiln =G

S = Un, T tn = £, G

if f @y — v is a fresh variant of a rewrite rule
[ov] outermost narrowing for head-variable terms
X smin=t,G
(5 = U, by = 1, Q)8
if there exists a fresh variant f T§ 7;; = r of a rewrite rule, m > 0,
and 8 = {X + fug).
[if] imitation for head-function terms
L~ X w5 G Xig= [55 1, G
(5m = Xy ln B Ua, G) (s = Xonytta = 1, G)O
ifm>0,0={Xw~ fX,)} with X;,..., X,, fresh variables.
[iv] imilation for head-variabie lerms
(5 = Xon, tn = ttn, G0 (5m = Xmytn = 1y, GYo
fm>0X#Y and 8= {X Y E} with Xy,..., X,, fresh

variables.
[df] decomposition Jor head-function lerms

Sp &y, G

[dv] decomposition for head-variable terms
X=Xy, G
Sp ~ i, G
{vf] variable elimination for head-function lerms
J3mln Xy G Xig=f5mi, G
(o~ G0 iy = 1, G0
ifXgV(fsnp)and 0={X — 55}
[vv] wariable climination for head-variable lerms
(tn = g, G)0 (un =y, G)Q
X EVY 5n)and 0 = {X » Y 55}

C The subcalculus LNf

[d] decomposition
G,)z 0(5;) = Moolf), ¢
G, AT.5q = AT.dn, &

if v € . U{7}
[i] imitation
G, z2.X(5;) 2 A \2.9(tm), G
(G, AT Hi(57) & Ay, G0

where =€ {£,=7"Y, g € Fo, 0 = {X = AT5.9(Hm (7))} and Hy, arc
fresh variables.

P

[p] projeciion

G, T X(5;) 2 X3L, G

(G, XE.5¢(H,)(57)) = AT, C")0

where 22¢ {i,é—l}, 1 <i<n, Aztisrigid, 0 = {X = Myi(H, (7))),
Yi : Ty = 7, and Hp : 75 are fresh variables of appropriate types.
[ov] eutermost narrowing al variable position

G, T X (5m) 2 Xzu(il), G’
(G, AT.H,(3m) » AT.In, MT.r 2 AT.0(1), G')0

il =¢ {é_,%”]}, v € {T}UF, f(I,) = ris a fresh variant of an
F-lifted rule, 6 = {X v Mg f(Ho(Tm))} with H, fresh variables of
appropriate types, and 55 are distinct bound variables only il Lhe
selected equation has precursors.

[on] outermost narrowing at nonvariable position

G, NE.f(55) 2 ATt
G AT.5n W ATy, NTr = AT, G

if =€ {=,=7 "} and f(I;) — r is a fresh variant of an Z-lifted rule,
[lls] flex/flex same
G, XX (Tn) = MX(y,), G
(G,G"o

where @ = {X = Mg H(Z}) with (7} = {wi |1 <i<nandy =
!
yi

[td) flex/flex different

G, X (Tm) = MEY (Y1), 67
(G, G0

where 8 = {X = M. H(Z;), Y — Mg H (7))} with {5} = {Fm}n
{va}:
[c] [e}-rule
G, z.s5() » Mz X(@H), G X = AT, G
G, Az.s5(7) w AZ.X([7), G, AZ.s(l) = ATu, GV

if e {=,=7'}, Az.u is rigid and V(s) N{z} = 0.

D The subcalculus LN7

The inference rules [d], [i], [p}, {ilsf, {fid] of the subcalculus LNZ are
obtained from the corrcsponding inference rules of LNf by replacing =
with 3>, The rules [ov], [on] and [c] of LN7 are shown helow.

[ov] oulerrnost narrowing al varieble position

G, AT X (5m) > Azo(t), &
(G, 2B Hp(5m) » AT Ay, ATy > Az 0(1), ()0

it v € Ty UF, f({n) — ris a fresh variant of an Z-lifted rule,
6 = (X = Ngm.f(Ha(Gm))) with H, fresh variables of appropriate
by pes, and F; are distinet bound variables only if the selected equalion
has precursors. :

[on] outermost narrowing al nonvarinble position

GAZ.f(37) > AT, G
GO AT 5, » AT L, ATr 2 AT LG

if f(I,) = 7 is a fresh variant of an F-lifted rule,
[¢] [¢]-rule

G, 2z.8(7) » A2 X(7), G AE X)) > AT, G”
G, Xz2.5() » M2 X(7), G, AZ.s(l) > AT.u, G

0.

il AZ.u is rigid and V(s) N {z}

Cooperative Constraint Functional Logic Programming

Mircea Marin, Tetsuo Ida

Institute of Information Sciences and Electronics
University of Tsukuba,
1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
mmarin@score.is.tsukuba.ac.jp, ida@score.is.tsukuba.ac.jp

Taro Suzuki
Research Institute of Electric Communication,
Tohoku University, 980-8577 Sendai,Japan
taro@nue.riec.tohoku.ac.jp

Abstract

We describe the current states of the development of
CFLP, a system which aims at the integration of the best
Seatures of fimctional logic programming (FLP), cooper-
ative consiraint solving (CCS), and distributed consiraint
solving. FFLP provides support for defining one's own ab-
stractions (user-defined functions and predicates) over a
constraint domain in an easy und comfortable way, whereas
CCS is employed to solve systems of mixed constraints by
iterating specialized constraint solving methods in accor-
dance with a well defined strategy.

CFLP is a distributed implementation of a coopera-
tive constraint functional logic programming scheme ob-
tained jrom the integration of higher-order lazy narrow-
ing for furcctional logic programming with cooperative con-
straint sofving, The implemeniation tekes advantage of the
existence of several constraint solving resonrces located
in a distributed environment, which communicate asyn-
chronoitsly via message passing.

1 Imtroduction

Integration of declarative programming paradigms into
a unified framework that captures the besl features of cach
of them has attracted much interest during the last decade.
Of particular interest is the design and implementation of
a system based on & clean combination of functional logic
programming (FLP) with cooperative constraint solving
{CCS).

CFLP [4] is an experimental system which integrates
higher-order functional logic programming with coopera-
tive constraint solving. Its computational model combines

higher-arder lazy narrowing with the principle of solving
systems of mixed constraints with a cooperation of con-
straint solvers described by a given cooperation strategy.
The system is implemenied in Mathematica and consists of
an interpreter based on a higher-order kazy narrowing cal-
culus, and a cooperalive constraint solving system,

Our paper is structured as follows, I Section 2 we
illustrate the solving capabilities of CFLP. The language
of CFLP—synlax and scmantics—is outhined in Section 3.
Scction 4 describes Ihe general architecture of the sysiem
and of its main components. Finally, in Scction 5 we draw
some conclusions and directions of further research.

2 Examples

We describe with two examples the solving capabilitics
of CFLP.

2.1 ILlectric Circuit Modeling

The first example shows how electric cireuit layouts can
he compuled with CFLP. This example illustrates the ex-
pressive power of the FLP style extended with higher-order
constructs such as A-abstractions and Function variables,
and constraint selving capabilitics for dilferential equations
and systems of polynomial equations.

We first define a function spec which describes the be-
havior in time ¢ of an ¢lectrical component as a function of
the current £[t] ancl voltage »[¢] in the circuit. The CFLP
riles of spec correspond o a recursive definition, where
the base case describes the behavior of elementary circuits
such as resistors, capacitors, and inductors, and the indue-
tive case describes the behavior of serial and parallel con-
nections of electrical components.

The CFLP program is given below. We do not explain
the underlying electronic laws since it should be easy 1o
read them off [rom the program,

{* declare the CFLP type ElComp with
associated data constructors
res, ind, cap, serial, par *)
Constructor{ElComp = res[Float]
| ind [Float]
| cap [Float]
| serial [TyList [ElComp]]
| par [TyList [B1Comp}]] ;
{* specify the CFLP program *)
Prog:= {
spec [res(rl,v:Tloat = Float,i] — True
< Aaf{e),viel) = At} r * Qlel],
spec(ind(l] ,v.,i:Float — Float] — True
= A{r) viel) = A}, %10 [E) T,
spec[cap(c] ,v:Float -+ Float,1] = True
< Ae} irel] = Al{e}, crvr (21D,
specserial [{}1,A{{t},0],1i] = True,
spec|serialfcomp | comps]], v, i] -+ True <
{specicomp,vl,i] = True,
spec [serial {comps] ,v2,i] = True,
Al{e},viel) = Aai{e},v1 il +v2ltll},
spec[par({}].,v:Float — Float, A[{t},0]] — True,
spec|par [(comp | compsi], v, i) = True <
{specicomp,v,i}) = True,
spec [par [comps] , v, i2] = True,
Af{e},i1e)] =A{{c}, i1 e) +i2fcll}]

The variables and operators can be type annotated, and
a polymorphic type checker is integraled into the system to
verily the type consistency of the CFLP goal and program.
The universally quantified variables are uwnderlined. Note
the usage of the list construct in the recursive specification
of scriad and paralle! connections of electrical components.
The CFLP system recognizes the following list specifica-
tions:

. {tl,...,t"}:
tl)"'ytny

the list consisting of components

o [] #]: CFLP list with head i and tail # in Prolog-
style notation,

Consider the problem of finding the behavior in time of the
current in a RLC circuit with R = 2, an L = land € =
1/2 (see Fig. 1), under the restrictions that the voltage is
constant in time and the current was initially set to 0,

In this case, the goal which we want to solve is

G:= {spec[serial [{res[2], ind[1], capll/21]}},

Al{r).501,1] = True,
i{0] = 0}

The logical variable ol the goal is 2, and it is overlined. Note

R=2 L=l C=1/2

|
|
| V=50

Fig. 1. RLC circuit

the usage of the expression A [{t}, 501 for specifying that
the voltage is constant (50) in time.
Now we can ask the CFLP system to solve the problem;

TSolve [G, Rules — Progl

This call is similar o the Salve call of Mathematica, but
TSolve has the specific option Rules which provides the
functional logic program (i.¢., conditional rewrite system)
used upon solving the goal G.

The system computes the parametric soblution {i — A.—
k e *sin(t)} which is represented in Mathematicaby {1 —
Al{e}, -k e~tgin(t]}.

2.2 Program Calculation

This example illustrates the capabilities of a computing
environment which can perform full higher-order pattern
unification, and higher-order term rewriting.

Consider the problem ol writing a program to check
whether a list of numbers is steep, i.e, if every element of
the list is greater than or cqual o the average of the elements
that follow it. A CFLP program that does this is:

Progu={
steep[{}] = True,
steep(la | z]] -+ Andlax len(z] > sumlz], steepz],
sum[{}] = 0, sum([z } y]] = = + sum[y],
len[{}] = 0,1en[z }y]] & 1 + len[y]}

Prog is modular and easy lo understand, but very in-
efficient (quadratic complexity). It is possible—and
desirable—to automatically compute an efficient (linear
complexity) version steepOptimal of the function
steep defined in Prog. To achieve this, we employ the
fusion calculational rule

Jlel =€ [flgle,ns]] = hfa, [[ns])
J[£oldrlg, e, ns]] = foldr([h, ¢, ns|

4y

where foldr : {ax 8 =) x # x TyList|al - (s
defined as usual:

foldr(g,e, {}]
foldrig,e, [n | ns))

It

e,
gle, foldr(g, g, nsj}.

If

To sec how this calculational rule can be employed, we
first observe that the computation of steep|[n | ns]] with

Prog requires the compuiation of 3 additional quantities:
staep(ns], sum[ns| and lengthns). Thus, Prog aciu-
ally speciflies the compulation of the function

£ = A[{ns}, c3[steep|ns], sum[rs], Lengt hins])]

where 2 is a lemary constructor,

Note that £[ns] = £{Eoldx[g, e,ng]], where g = Cons
and & = {). From the fusion calculational rule (1) re-
sults that we can compute £[ns] efficiently by computing
foldrfh,e’,ns] instead, where h is the solution of the
equation

Al{n, ns}, £lgln, nsl]] = A[{n, ns). Hn, flns]]]. (2)
and ¢’ = f[{}] = e3[True,0,0]. Then:

steepOpt = A[{ns},sel-c3-1[foldrh, €, na]
(3)
where sel-c3-1 is the data selcetor of the first argument
of a term constructed with ¢3 (see Subsect. 3.1 for details).
To solve equation (2) with CFLP we perform the following
calls:

{* Declare data censtructor ¢3 with
associated type constructor 'Triple! *)
Constructor [Triple=c3 [Bool,Float ,Float]];

{* add definition of £ to Prog *)
AppendTolProg, f[ns] = c3[steep(ns], sum[ns], Lenfns]]);

{* compute h; during the computation
'Plus’, 'Times'’,’ Power', 'GreatexrEqual’ ,’AND*
are regarded as mere constructors *)
TSolve[Al{n, ns}, £| [n| nal]] =
Al{n, ns}, h[n, c3[st eep[ns], sumfns), Len[ns]]}j,
Consktructor -—){ Plus, Power,
Times,GreaterEqual, And},
Rules — Prog)

CTLP yields the unique solution

[{f—> A[{x813,2814}, 3]
And[z$13 sel-e3-3[x$14] > sel-c3-2[z$14]},
sel-ci-1[z$14],
2813 -+ sel-c3-1{z$14d], 1 + sel-c3-3[x$14]]}}

3 The Language

CPLP is a distributed software system for solving sys-
tlems of equations over various consiraint domains for which
specialized constraint solvers are available,

31 Syntax

The language of CFLP is built up from the following
symbols:

» Buill-in constant symbols: 2/3,-2912, Fi, ete.’,

o External symbols: the elements of a predefined set
‘7:8 = {"')":*!---}r

» Built-in relational symbols:

equational: ~ (unoriented equality), > (oriented
cquality), = (unoriented strict equality) and 3
(oriented strict equality)

logical: {-,---} (sequential AND), || (sequential
OR), and ¥ {paralicl OR),

¢ Built-in type constructors:

~ base types; Int, Float, Compl, Baol,

- TyList{a] (polymorphic list type) and {}
(empty list constant),

» Data constructors: the elements of a set .. which con-
tains the built-in data constructors Cons, {} (forlists),
and the data constructors defined with Constructor
declarations,

» Defined function symbols: symbols of a set F; which
contains:

- the dataselectors introduced by the Construc-
tor declarations,

- the symbols defined by the rewrite rules of a
given program

+ Variables: symbols of a set V' of Mathematica symbols
with no predefined or given meaning.

The sel F = F. UF.UFyis called the sigrature of CFLE,
Next, we build the other syntactic objects of our language:

s Well-typed A-term (or term): Mathematica represen-
tation of an expression buili over the signature F and
seL of variables 1, but instead of Function we use
A Eg., M{2, v}, z x g is the A-term for the function
which computes the product of its arguments. The sct
of terms is denoted by T{F, V).

» Type-annotated symhol: an expression of the form
u:7 where v is a variable or function symbol and 7
is a type expression.

+ Equation: an expression of the form s 2 ¢ where ¢
{=, 0>, =, 2} and 5,1 are terms of the same ype.

+ Goal: either an equation, or of the form {g,,..., s}
(sequentinl AND goal), g41]|...{lgn (sequential OR
goal), or gy VvV ... V gy (parallel OR-goal), where
g1, -, 0n are goals.

IThese are the constants recognized by Mathematica

» Rewrite rule: expression of the form f[ty, ..., 0] —
r < ¢ where f[li,...,I,], = are terms of the same
base type, f[fi,...,[x]) is a higher-erder patiern, and ¢
is a goal. [is the defined function, and ¢ the condition
of the rewrite mile.

s Program: a (possibly empty) set of rewrile rules.

A Constructor declaration has the form
Constructor{(consir-specy},. .., (constr-spec,.)]

where -
{constr-spec) : 1 = {type-spec)’="{data-spec,)
" {data-spec,,)
{nype-specy : = {type-name) | {rype-name)|acy, .. .,]
{data-spec) : : = {type-constr) | {type-constr)[Ty, ..., Ty
oy, ..., 0y distinct type variables
Tiy....Tn lype expressions

”ll)

Example 1 We can declare hinary trees with nodes of type
o by:

Constructor [BTree[a] =
BNil|
T2 [ev, BTree [a] ,BTree [al]

This declaration introduces the type constructor BTree to-
gether with its associaled data constroctors

BNil:Va.BTree [¢]
T2 : Vo x BTreela] x BTree[a] -+ BTree[a].

In addition, the data-selectors sel -T2-1, sel~T2-2 and
sel-T2-3 for the data constructor T2 are delined implic-
ithy. Qo

A Constructor call extends the set 7, of the language
of CFLP with the newly declared dala consiructors, and the
sel Fy of defined symbols of the language of CFLP with the
selectors of the non-constant constructors. For example, il
¢ is a newly-declared n-ary data constructor, then the data
sefcclors sel-e-1,..., sel-e-nare added to Fy.

A program R adds the set of symbols

{1301, . L] 3 r<e)eR)

lo the set Fy of defined symbols of the CFLP {anguage.
We denote by Subst(F, V) the set of substitutions over a
signature F and set of variables ¥, by D(8} the domain of
a substitution 8, and by £ the empty substilution.

3.2 Semantics

The semantics ol the exiernal symbols in F, and of the
dala constructers in JF, is given by a predefined constraint

domain X' equipped with various solvers for solving sys-
tems of equational constraints.

A CFLP program R exlends the language of the con-
straint domain " with symbeols defined in & funclional-logic
programming style, and to give them a meaning. A program
‘R induces a rewrite relation — y g on A, where pattern
matching is defined modulo the equality relation on A", We
define the semantics of the equational symbols of CFLP as
follows:

s V'\REEsmtils —Ypttlpe— tforsometerm
u,

¢ YV REsDLifs =y pt,
e Y\ REs=1tifs D% p uk g+ tfor some
constructor term u,

» X,R|=s» tiftisaconstruclorterm and s — %
t.

3.3 The Problem

CFLP is designed to solve problems of the following
type:

Given a program R and an equalion 8 2 ¢ with =¢ {x,
B, =,

Compule # € Subst(F,V) suchthat ¥, R |= s0 = 6.

We call such a & an R-solurion of s = t. This preblem is
cxlended to goals in the natural way. We denole by i (G)
the set of R-solutions of a goal G, In general, we are inter-
ested o compute R-normalized solulions of a goal G, ie.
substitutions § € Ux {G) such that X @ is ‘R-normalized for
all X € D(f). We denote the set of R-nermalized solutions
of G by UR(G).

To solve such problems, we have designed and imple-
mented a computation mode] which integrates two oper-
ational principles: lazy narrowing for conditional pattern
rewrile systems, and concurrenl constraint solving, Lazy
narrowing solves equations containing symbols from F,. U
Fa, whereas concurrent constraint solving is employed to
solve systems of equations over [V,

4 System Struciure

The combinalion of iazy narrowing with CCS is reflecteq
in the structure of the system: it consists of a functional
logic interpreter based on lazy narrowing, which is inte-
grated with a distributed implementation of a cooperalive
constraint solving system (see below),

User
interface

Interpreter

> distributed

envircnment

cooperive

system

4.1 The Interpreter

The imerpreter of CFLP is based on a calculus ¢ which
is an extension of a pure lazy narrowing calenlus X for con-
ditional pattern rewrile systems with infercnce rules to rec-
ognize and process equations with external symbols, € can
be deseribed by a set of inference rules which act on states
of the form (W | G | Store) where W is a set of variables,
G is a CFLP goal, and Store is a set of constraints § = ¢
collected so far. A state {W | G| Store) is interpreted as

KW | G | Stored) = {7y Iy € Ur(G), 1w is R-normalized,
and 7 € Ur(e) forall e € Store).

The inference rules of the calewlus C are presented as refa-
tions of the form

(W | G | Store) g (W | G* | Srore')

where & is a substitution, called computed substitution.
Such a relation is called C-step. The interpreter compules
C-derivations, i.e. sequences

(Wo | Gy | Storeg) =59, ... =50, (Wn | G | Storen)

of C-sleps, abbreviated

{(Wu | G| Storey wcta;,__gN (Wn | G | Storen).

The C-derivalions which are useful in computing a repre-
sentation of U2 (G) are the so-called C-refutations. A C-
refitation is a finile C-derivation of maximum length

(V(G) 1 G | {1y =55 (W' | G | Store) (4)

where V((7) is the set of free variables in G. The set of
answers computed by CFLP for a given goal G is

Answy (G) = { (0,G", Store) | 3 C-refutation
(V(G) | G | {}) =23’ { G | Stare))

The calculus € is designed Lo satisly the following two con-
ditions:

& consiraint solver

constraint solving

soundness: For any {8, G’ Siore) € Answr(G) and any
R-solution 4 of G* and Store, we have 8 € Ur{G)

completeness: Forany v € LR (G) thereisa (8, G', Store)
€ Answr{G) such that v = &' [W(G)] for some R-
solution ' of G* and Store.

A C-refutation is constructed in two stages:

|. Lazy Narrowing Stage: starting with the state (V{G} |
G | {}), the goal G is narrowed uniil o goal made of
equations which can not be narrowed anymore. The

equations which can not be narrowed anymore are ei-
ther:

» constraints, i.c. equaions over the constraint do-
main &', or

e cerlain flex/flex equations, i.e. equations between
terms of the form

Az, ozp), X150

with X a free variable,

Remark: The design a calculvs to solve all
flex/flex equations is wnrealistic, since full
higher-order unification is highly intractable [1).
Qur design of C is based on Hudl’s idea of pre-
unification [3].

5m]]

2. Constraint Solving Stage: he constrainis produced
during the lazy narrowing stage are solved with a co-
operalive constraint sol ver,

4.1.1 The Lazy Narrowing Stage
The rules of € which realize this stage are:

[v] parallel OR
(W | Gy V...V Gy | Store)=5.(W | G | Store)
where k € {1,...,n}

[l] sequential OR

(W | GAY.. NG | Store)=ss (W | Gy | Store)
wherek € {1,...,n}

The difference belween these rules is that the nendeter-

minism due o selection of G is explored by breadih-first

search for [V] and by depth-first search for {|].

[{-}] sequential AND

(WG, ..., Gy} |Store)=S2 o (W' {G},. .., G",}|Store")

it (W | Gy | Store) ==5(W' | G | Store') and
Gi=GBiloralli # k.

|x[) constraint accumulation
(W 15t Store) =5 (W | {} | Store {s ~ L)) il
s = { is a constraint

[xi) imitation for external symbols
W AT, S5m] = A{E5), 1] | Store) .
W1 ATy} sm] = AT}, Y [5]],
Az} Y[l = M{75} ¢] | Store)
with 11, .., Yy, fresh variables and &€ {r,r~! |7 €
{r, 2,5,)} if f € F..

{p] lazy narrowing step

These steps are governed by a given lazy narrowing
calculus X

(W | s 2 t | Store) =S5 (W | G | Store”)
if s 2 t=5, G"is a K-step and Store’ = {s0 =~ 10|
(8 = t) € Srore).

The interpreter of CFLP can make vse of different built-
in lazy narrowing calculi X, depending on the preference
of the user. We have designed and implemented sound
and complete lazy narrowing caleuli lor pattern rewrite sys-
tems (PRS for short), left-lincar confluent fully-extended
PRS, and left-linear constructor fully extended PRS (seec
{5]). Moreover, we have extended these caleuli to handle
sirict equations and conditional PRSs. Some of these cal-
culi are higher-order generalizations of the deterministic re-
fincments of the lazy calculus LNC [7, 6].

4,1.2 The Constraint Solving Stage

The constraints accumulated in the constraint store during
the lazy narrowing stage are submitied to be solved with a
cooperative constraint solving system. Formally, this stage
can be described by

fcs] constraint solve

(W | G | Storey 5(W' | G8 | Store')
if {8,S1ore’y € S({{},Store}) (see next subsection)
and W' are the frec variables in { X6 | X € W)},

4.2 The Cooperative Constraint Solving Compo-
nent

We assume given a constraint domain X" over a signature
Fe of external operators, and a set of specialized constrainl
solvers CSy,.. ., CS,. Each solveris a function

CSy : £qs ™ Fo, V) = Pin(Subsi(Fo, V)x Eqs 8} (F,, V))

where £qs%)(F,, V} C P (E¢(Fe, V) is the set of con-
straints that can bw solved with CSy, Subst(F, V) is the set
of idempotent substitutions over F . The individual solvers
are canonical simplifiers, i.e. il C53(S) = {{8;,8:) | 1 <
i< N} then

® 7 is & solution of S iff is of the form 8,7y, for some
p€ {1,...,N}andsolulion, of 5.

s gvery S5 is a CSg-canonical form, e,
CSp(5i) = {{{}, 50}

CSy is extended to an operator CS§, on Py (Subst{F,, V) x
PinlEq(Fe, V))) delined by

CSL({(p: $p) | 1 € p < NY = U {8, $" i U S
§' = SN Egs N F,, V), 8" =5 -8,
#,5 ¢ CSk(Sp))-

The operational principle of the cooperative consiraint solv-
ing component is defined by a method S which describes
how the computations of C5y, ..., CS,, are combined. We
call S cooperation strategy, and define §{CS,,...,CS,,) as
the fixed-point of CS% o - o CS5. This strategy has been
proposed and extensively investigated by Hong [2] in the
framework of cooperative CLP. Obviously, when defined,
the result of § i a CSg-canonical form forall1 < k < V.

Example 2 Assume we want 10 solve
S = My () = MEPy(), y(0) = 1, 5(2) ~ 3,y(r) = 5)

in variables y, k, 7, by using a cooperation of 3 solvers: a
solver C8 for differential equations, a solver CSy for sys-
tems ol monomial equations, and a solver CSy for equalions
with invertible functions. Then

CS{{{},8)) = S where Sy = {{{y = M.cet™) {c~
Lee® m 3, ¢ce"® m 5))) with ¢ a new vari-
able; CS5(S51) = Su where §5 = {{{y » &L b
1 {et? = 3, e % m 5]} CS5S:) = Sy where
Syo= {{{y = Me¥lem 1), {2 4% & log(3),r K =
log(5)1}}s €85(S3) = Sz CS5(Ss) = S5 where Sy =
{(Qy = At 108820y 1k v - /log(3)/2),
{-r log(3)/2 = log(5)}) {{y = M.t 10e(3)/2 oy
LE = og(3)/2), {r log(3)/2 = log(5)hH):
CS(54) = CS5(S54) = Sy; and C85(S:) = S; where
Sp = {{{y = Atet 10sBM2 oy 1k —\f@,r -

—2lelhy (), (fy = Aet B2 ¢y 1k e

\/ %ﬁ,r) %‘g’%‘)ﬂ}, {}}}. In this example, the solion

S5 of 5 is computed in 9 steps.

To comipute £55(S) we must calt CSy, 7y limes where ny,
is the pumber of elements in S, and these calls can be re-
alized in paraliel. To take advantage of this fact, we have
implemented a distributed constraint solving system con-
sisting of

v several instances of solvers running on various ma-
chines, and

» ascheduler, which implements the sirategy S by fairly
allocating the constraint solvers available lo eventually
solve cach element of S.

The general structure of the distributed constraint solving
subsystem of CFLP is depicied in Fig. 2.

constraints S S(CSnn...OCSl)(< £5>)

Scheduler
(strategy 8)

instances

of C§

instances ...

aof CSI

. Instances

of CS“

instances

of CSI

machine M \ machine M
P

Fig. 2. CFLP: the cooperative constraint solv-
ing component

The current version of CELP has integrated four types of
constraimt solvers:

1. C8) : solver which can solve algebraic equations with
invertible functions, and yields solutions in terms of
formal inverse functions.

2. Sy : solves sysiems ol equations between multivari-
ale polynomials over algebraic extensions of the do-
main of complex numbers,

3. €Sy : sobver for differential equations over algebraic
extensions of ,

4. C§y : solver for partial differential cquations over al-
gebraic extensions of €.

All the componenls of the cooperative constrainl soly-
ing system-~—schedluler and constraint solvers—are imple-
mented in Mathematica [8] as MathLink-compatible pro-
cesses which communicate asynchronously by message-
passing over MathLink conneclions,

CFLP makes distinction between two types of solving
resources:

§. tocal constraint solvers: thesc are solvers which run
locally as sub-processes of a CFLP session,

2. remote constraint solvers; these solvers are started o
run on various machines from outside the CFLP ses-
sion, and can be shared between different CFLP ses-
sions, The distibution of CFLP provides shell scripts
1o start and slop running remote constraint solvers,

The user can adjust the computation session by specifying

s the machines Afy, ..., Af,, on which to connect to the
remole consiraint solvers, and

» the number of local constraint solvers,
5 Conclusion

The system described in this paper is based on a compu-
tational model which integrates lazy narrowing for condi-
tional PRS with CCS.

Currently, only a few theoretical resulls have been gener-
alized to the conditional case. We will continue our research
to design efficient and complete caleuli for various classes
of conditional PRS.

The main intention of vur system CFLP was to prove the
suitability of cur evelvable distributed model for coopera-
tive constraint solving., We didn’t focus yel on the design of
an efficient implementalion.

References

[1] W. Gould. A marching procedure for w-order logic. Scientific
Report 4. Air Force Cambridge Research Laboratories, 1960.

[2] H. Hong. Non-lincar Constrainis Sobving over Real Numbess
in Constraint Logic Prograniming (Inroducing RISC-CLP).
Technical Repont 92-08, RISC-Linz, Castle of Hagenberg,
Austria, 1992,

3] G. Hutl A Unification Algorithm for Typed A-Calculus. The-
oretical Computer Science, 1:27-57, 1975,

(4) M. Marin. Functional Logic Programming with Diseributed
Constraint Solving. PhD thesis, Research Institute for Sym-
bolic Computation (RISC-Linz), Johannes Kepler University,
Schloss Hagenberg, April 2000,

[§) M. Marin, T. lda, and T, Suzuki. On Reducing the Search
Space of Higher-Order Lazy Narmrowing. In A. Middeldorp
and T. Sato, editors, FLOPS'99, volume 1722 of LNCS, pages
225-240. Springer-Yerlag, 1999,

{6) A. Middeldorp and 5. Okui. A Deterministic Lazy Norrowing

Calculus. Jowrnal of Symbalic Compumation, 25(6%:733-757,

1998.

A, Middeldorp, 8. Okui, and T, Ida. Lazy Narowing: Sirong

Completeness and Eager Variable Elimination. Theoretical

Campniter Science, 167(1,2):95-130, 1996,

[8] S. Wellram. The Mathemarica Book. Third Edition, Wolfram
Mecdia and Cambridge University Press, 1996,

(7

—

LAZY NARROWING CALCULI FOR
PATTERN REWRITE SYSTEMS

Mircea MARIN
Tetsuo IDA
Institute of Information Sciences and Electronics
University of Tsukuba, Tsukuba 305-8573, Japan
Taro SUZUKI
Institute of Electric Communication
Tohoku University, Sendai 980-8577, Japan

Presented at the 227 International Workshop on
SYMBOLIC AND NUMERIC ALGORITHNMS FOR. SCIENTIFIC COMPUTATION

Timigoara, Qctober 4-6, 2000

Abstract. Higher-order lazy narrowing (HLN for short) is a com-
putational model for higher-order functional logic programming. It
can be viewed as an extension of first-order lazy narrowing with infer-
ence rules to solve equations involving A-abstractions and higher-order
variables.

A common feature of the HLN calculi proposed so far is the high non-
determinism hetween the inference rules designed to solve equations
which involve higher-order variables. In this paper we present various
optimizations of HLN towards more deterministic versions. The opti-
mizations are defined for classes of higher-order functional logic pro-
grams which are useful for programming purposes. Our work draws
on two sources: the caleulus LN for pattern rewrite systems [12] and
the first-order lazy narrowing calculus LNC and its optimizations [7].

AMS Subject Classification: 68N18, 03B15,

Keywords and phrases: higher-order logic, functional logic program-
ming, lazy narrowing

1 INTRODUCTION

Recent years have witnessed a growing interest in extending lazy narrow-
ing with higher-order constructs, in an attempt to improve the expressive
power of functional logic programming (FLP). The capability to handle A-
abstractions and function variables is desirable in FLP, mainly because one
can use the abstraction principle and can quantify over predicate and func-
tion symbols. The cost of such an extension is the high nondeterminism be-
tween the inference rules designed to solve equations with function variables.
This problem has first been observed in the context of solving higher-order
equations in empty equational theories [1], where it is avoided by adopting
the idea of pre-unification [3] instead of full higher-order unification. The
main idea of pre-unification is to compute pre-unifiers instead of unifiers, by
avoiding to solve the problematic flex/flex equations.

Compared with higher-order pre-unification, HLN as operational seman-
tics for higher-order FLP adds one more complication: the high nondeter-
minism of solving equations where at least one side is a flex term, i.e. a term
of the form Axy, ..., 2, X(51,...,8,) with X a [ree variable. The nondeter-
minism between the inference rules of HLN can be reduced by restricting it to
particular clagses of higher-order functional logic programs (i.e., higher-order
rewrite systems) which guarantee that the resulted calculus is complete. For
programming purposes, the classes of higher-order functional logic programs
must be chosen to be expressive enough.

Recently, various specializations of higher-order lazy narrowing to par-
tlicular classes of higher-order rewrite systems have been proposed (see, e.g.
[14, 12, G, 5]) in an attempt to define a suitable operational model for higher-
order FLP.

In the sequel we give a brief account of the higher-order lazy narrowing
calculi designed by us for higher-order FLP. Our theoretical framework are
simply-typed term algebras where functional logic programs are represented
by pattern rewrite systems.

2 PRELIMINARIES

2.0.1 Notions and Notation.

We assume given a set F of operators with associated arities, and a set V of
variables. The set 7(F, V) of terms built with symbols [rom F and variables
from V is defined in the usual way. We denote by Vars(t) the set of variables
which appear in a term ¢, and by Subst(F, V) the set of finite bindings of

variables to terms, We call such bindings substitutions, and denote them with
greek letters. If ¢ is a term and 8 = { Xy > 4;,..., Xi > ty} a substitution,
then £0 is the term obtained by replacing the occurrences of Xi,..., Xy int
with the terms ¢1,...,1, respectively. A fresh variant of a syntactic expres-
sion e (term, equation, goal, rewrite rule, ...) is an expression ef obtained
by applying a fresh variable renaming 8 to all variables in e. A fresh vari-
able renaming is a substitution of the form {X| — Yi,..., X, = Y,} with
¥, ..., Y, distinct variables which didn’t occur in the expressions constructed
so far,

Many problems from mathematics and sciences can be expressed as E-

unification problems, i.e:

Given a finite axiomatization & = {l; = ry,...,l, = 7.} of an equational
theory, and a system of equations G = (s, & 41,..., 8 = 1,5)

Solve G in the theory axiomatized by £. That is, we want to compute
the solutions of G, i.e. bindings £ of variables to terms, such that the

equality sx0 ~ 0 can be proved modulo E for all & € {1,...,n}.
(Notation F + si0 = #:0.) The set of solutions of G is denoted by
Ur(G).

A standard axiomatization of the provability relation E'l- 5 = ¢ is:

l=rec k Dbl s=t Flsst E-i=u
Erler Ebtx=t EbFtwms Frs=u

Ers=t Ersgy=t; ... FFs,=t,
EFsOmtl BEJ(sr, o) 2 [t ta)

1t is often the case that E can be represented as a term rewrite system (TRS
for short), i.e. as a get of oriented equations of the form f(I;,...,l;) —= 7,
abbreviated f(I,) — r, where f(I,) and 7 are terms such that Vars(r) C
Vars(f(l,)). Such equations are called rewrite rules. Functional logic pro-
gramming (FLP for short) is concerned with selving E-unification problems
in theories axiomatized by TRS.

As logic programs are represented by sets of Horn clauses, functional logic
programs are represented by TRSs. In the presence of a TRS, the set F is
split into two disjoint sets: the set Fy = {f | 3f([,) = r € R} of defined
symbols, and the set F, = F — Fy of consiruciors.

A TRS R induces a rewriting relation —gx on T(F,V). Rewriting is
hased on the idea of replacing "equals by equals”, and is defined by: s —¢ {
if there exists a position p in s and a rewrite rule (I = r) € R such that
sy = lo and £ = s[r6]. Among the desirable properties of a TRS we mention

termination: there are no infinite rewrite sequences $; = 32 2% '+,

confluence: if R I- s = ¢ then there exists u such that s =% v and { =% u
(abbr. s |g t). Here, —% denotes the reflexive-transitive closure of
—R

left-linearity if f(I,) = € R then all variables in f{I,) are distinct,

In FLP we are usually interested to compute R-normalized solutions of a
given equational goal (s, = t1,...,8, =~ 1) (abbreviated by s, ~,.), i.c.
substitutions 6 = {X, ~ t1,..., X, = t,} € Ug(G) such that £,,...,¢, are
R-normal forms (i.e. they can not be rewritten). We denote by UR(G) the
set of R-normalized solutions of a goal G.

The most popular operational principle of FLP is narrowing [4]. The FLP
languages available nowadays are based on caleuli which realize the narrowing
principle. These calculi are required to satisfly the following requirements:

Given a FLP program R and an equational goal G = s, = ¢,
Compute a set Ansg(G) C Subst(F, V) such that

Soundness: Ansp(G) C Ur(G),
Completeness: Vy € UR(G).30 € Ansg(G). 8 < v [Vars(G))].

2.1 The Calculus LNC

Of particular interest is the lazy narrowing calculus LNC [8, 7]: it consists
of five inference rules (see Fig. 1} by which we can refute goals, i.e. compute
derivations of the form G ==, 0 where G is a goal consisting of unoriented
equations, @ is a substitution, and O is the empty goal (with no equations).

LNC has the following important properties:

Soundness: If G L:N(i; O then 0 € Ur(G),

Compleﬁeness: Yy € UR(G). 3 G2, 0 such that § < v [Vars(G)).

In addition, LNC can be optimized in several ways |7}, and therefore it is
a suitable computation model for functional logic programming. E.g., com-
pleteness is preserved if we compute only with LNC-derivations which respect
strategy Sien, 1.8. the leftmost equation is always selected.

Thus, il we define Anss¥(G) = {0 | G==3,0} then AnstNC(G) is a
complete subset of UR(G).

~¢ {2, m!
[A) G, f(5) = [(ta), G S G 50 % L, G
[] G, X = f(53), G 0 G8, Xy = 5,0, G0
where ¢ = {X — f(X,)}
[V] Gs X~ t, G' g[iv],ﬂ GH: G'0
where § = {X — } il X ¢ Vars(s)
[t] G,X~X,G L—N—g[tl,g G, G

[o] G, f(3,) ~1t, G g:gf(,]_s Gos,=~l,r~1G

if f(I,) — r is a fresh variant of a rewrite rule in R

Figure 1: LNC: inference rules

Remark 1 The properties of LNC are preserved if we drop the confluence
condition for R and weaken the definition of solution in the following way:

v E Url{s = t) if s7dr by O

2.2 "The Calculus LIN;

One way to extend lazy narrowing to the higher-order case is via the following
generalizations:

term algebra —— simply-typed term algebra,
rewriting with TRS — rewriting with PRS [10, 11].

This approach has been pursued by Prehofer in the design of his caleulus
LN [12]. His framework adopts the following restrictions:

L. terms are identified with their long S8%-normal forms,

2. R consists of relations of the form f(1,) — r where f(f,),r are terms of
the same base type, Vars(f(l,)) 2 Vars(r) and f(i,) is a higher-order
pattern [9]. Herve, Vars(t) denotes the set of free variables in the term
t. Such an R is called pattern rewrite system (PRS),

3. the equational goals consist of oriented equations. To make this dis-
tinction clear, we write an oriented equation in the form s > t, and
define R b s > 1 if 5 —7% L.

o

Also, because solving flex /flex equations is in general intractable, the caleulus
LN does not attempt to solve them.

The inference rules of LN are shown in Fig. 2. We have adopted the
terminology and notational conventions from [12].

In this case, a refutation is a finite LN-derivation of maximum length, i.e.

LN, . . .
a sequence of LN-steps G==}F where F is a flex/Hex goal with no trivial
equations. In this case, the set of answers generated hy LN is

AnstM(G) = {0, F) | 3 LN-refutation G==31"}
Computing with LN-refutations has the following properties:
Soundness: V{0, F') € AnskN(G). ¥y € Ur(F) : Oy € Ur(G),
Completeness: ¥y € Up(G). IO, F) € Ansi?(G). Iy € Up(F): v =
O [Vars(G)).

2.3 I.N versus LNC

The table below shows the similarities and differences between the lazy nar-
rowing calculi LNC and LN.

] Caleulus LNC ! LN

Sound yes yes

Strongly complete | no yes

Complete ves (strategy Sien) yes

Computing power | solves all equs. does not solve Hex/fex equs.
solves unoriented equs. | solves oriented equs.
complete w.r.t. UR{G) | complete w.r.t. Ug(G)

Optimizations [7] [12]

3 THE CALCULUS LN,

LN, is our first proposal of a higher-order lazy narrowing caleulus. LN, is a
generalization of the calculi LNC and LN that allows to extend some of the
important properties of LNC to the higher-order case. LN; generalizes the
calculi LNC and LN in the following way:

1. LN, solves goals consisting of both oriented and unoriented equations,

2. LN; has additional inference rules to solve certain fex/flex equations.
With this extension, LNC and the first-order version of LN, have the
same computing power, if we adopt strategy S (See Subsection 3.1)

3. LN; is designed to compute solutions which are R-normalized with
respect to a given set of variables.

Formally, LN} is designed to solve the following problem

Given a confluent PRS R and a pair (I | G) consisting of a set of variables
W and a goal G

Compute a complete subset of
Ur({WVW | G)) = {v € Ur(G) | ¥|w is R-normalized}
i.e., aset Ansg(G) of pairs (4, F') such that

soundness: 0y € Ur(G) for all v € Up(F), and

completeness: Vy € Up({W] G}). (0, F) € Ansz({IV | G)). 3y €
Ur (F) such that v = By [Vars(G)].

3.0.1 Inference rules.

The inference rules of LLN; are relations of the form
(W | BYy=g(W' | G")

where ¢ is a pattern substitution and W' = Vars(1V#). LN, consists of the
rules [4}, {d], [i], [p], {ffs], [fId], [on], [ov] shown in Fig. 3. Essentially, the
inference rules [t}, [d], [i], [p], [s], [ffd] ave those required to perform full
pattern unification [13], whereas [on] and [ov] are specific to lazy narrowing.

The following comments are intended to clarify some of our notational
conventions., We assume that 2 is a placeholder for

o = =~ > or 71 in inference rules fi], [p],
e ~ 2! or > in inference rules [on], [ov],

1
e = or > in inference rules [t], [d], [fis], [fd].
We also adopt the idea to use marked equations of the form s » { or s »y

{. g » t denotes an oriented equation s > f which is (descendant of a)
parameter-pessing equation. s w g ¢ denotes an oriented equation s > £ which

7

is (descendant of a) parameter-passing equation to which we do not apply [on]
or [ov]. Note that only [i] and [d| can remove the marker d of an equation.

The construct s gy ¢ denotes either the marked equation s =, ¢ or the
unmarked equation s & £,

When used both in the left and the right side of an inference rule, the
placeholder =¢ is assumed to denote the same equational symbol with the
same orientation. We also assume that the marker (d) is preserved.

These markers serve [or particular optimizations, and are ignored when
irrelevant.

Theorem 2 LN, is sound and strongly complete.

3.1 LN; versus LN and LNC

LN, is an extension of the calculus LN. It is more powerlul than LN because
it can solve both oriented and unoriented equations, and also certain flex/flex
equations that LN does not solve. Also, LN, is more deterministic than LN
because rule [ov] is applicable in fewer situations.

The calculus LN; is also a generalization of the calculus LNC. To see
why this is so, let LNC, be the calculus obtained from LNC by replacing
rule {v] with the rule first-order version of rule [ffd]. The calculi LNC and
LINC, have the same computing power because any [v]-step of LNC can be
simulated by a sequence of {i]- and [ffd]-steps of LNC,. We claim that for any
LINC,-refutation which respects strategy S

IT: Gy k_‘Ngm,fh Gy %62,02 < ']:_‘rjgﬂw,ﬂn Gy =0
we can construct a corresponding LN, -refutation
LN LY LN .
' (Vars(G), G) :5(!1,91 (W | G) 2502.92 :1?01\'-9.\’ (Wy | O)

which respects strategy Spn. Our claim is a consequence of the observation
that all leftmost equations ey, in Gy, satisfy the condition V. (ex) C Wy, and
therefore [fId) is always applicable. Thus our lifting of the LNC,-refutation
IT to the LNy-refutation IT" is valid, and we can conclude that LN, with
strategy Sier, has the same computing power as LNC, with strategy Sir.

4 OPTIMIZATIONS

In the sequel we address the problem of reducing the non-determinism of LN,
which is due to the many choices to select the inference rule to be applied

8

to a selected equation. All our optimizations ave defined for rewrite systems
which are left-linear and confluent. The restriction of programs to left-linear
(term or pattern) rewrite systems is widely accepted in functional logic. The
following lemma gives a first glimpse of the structure of LN -refutations when
R is a left-linear PRS. It is similar to Lemma 3.1 [7] for LNC with left-linear
CS.

Lemma 3 Let R be a left-linear PRS and
IT: (W | G) =2 (W' | G}, AT.5 » ATt Gh)

an LN, -derivation. Then
(i) (Vars{G', AT.s) U Vars(G®#)) N Vars{Ai.t} = B,

(it} AZ.t is a linecar patiern.

4.1 Lazy Narrowing with Elimination of Redundant
Equations

Upon computations of normalized solutions with the caleulus N, with strat-
egy S., it may happen to generate new equations which do not contribuie
to the computation of the final solution. We call such equations redundani,
and propose the following criterion to detect them.

Definition 4 (redundant equation) An eguation e is redundant in an
LNy-goal {1V | Gy, e,Ga) if e is of the form AT.s » ATt with Vars(AFT.6) N
Vars(Gy) = 0.

4.1.1 The calculus LN,.

LNy is our first optimization of the calenlus LN,. It is defined lor left-linear
PRS which are fully-ertended (EPRS for short), i.e. consist of rewrite rules
Flly, .o L) = rwith f(), ..., 1) a [ully-extended pattern.

Definition 5 (fully-extended pattern) A simply-typed A-term { is called
fully-extended patlern if whenever X (37) is a subterm of t ai position p then
3n 15 the sequence of all distinel bound variables in the scope of t|,.

For example, Azy,xo. f(X (), 32}, Axg.g{Y{xy, T3, 72))) 1s a fully extended

pattern, whereas Azy, 2o f (X (21, x2), Aza.g(Y (1, 22))) is not.

We define LN; = LN;U{rm]} where the inference rule {rm] defined below
has highest priority:

frm] (W | Gy e, Ga) %[rm],s(w/ | G) if eis redundant in (W | Gy, e, Gy).

Theorem 6 If R is an EPRS then LNy is sound and strongly complete.

4.2 Restricting Lazy Narrowing at Nonvariable Posi-
tion

This optimization is a generalization of the solution to the eager variable
elimination problem proposed in [7] for TRS which satisfy the standardization
theorem (e.g., left-linecar confluent). We prove a similar result for the calculus
LNy if R is a left-linear confluent EPRS then we can drop the application of
[on] to equations of the form AT, f(3) » AZ. X (F) without losing completeness.

Let LNZ” be the calculus obtained from LNy by dropping the application
of fon] to (descendants of) parameter-passing equations of the form AZ. f(3) »
AT.X (7) with f € F,

Theorem 7 If R is a left-linear confluent EPRS then LN is sound and
strongly complete.

4.3 Lazy Narrowing for Left-Linear Constructor EPRS

Our optimization for constructor EPRS (PRS for short) has been inspired by
a similar optimization of the calculus LNC for left-linear CS [7). This opti-
mization addresses the possibility to avoid the generation of {(descendants of)
parameter-passing equations of the form AZ.s » Azt with A\x.t & T(F., V),
when R is a left-linear constructor EPRS. An obvious advantage of this op-
timization is that the nondeterminism between rules [on] and [d] disappears
for selected equations AT.s » AT.L.

Note that in the frst-order case it is suflicient to use the selection strat-
egy Sier, to avoid generating equations AZ.s » AZ.4 with A7t & T(F., V).
Unfortunately, this method can not be generalized to the higher-order case,
because we don’t solve all flex/flex equations. The following example illus-
trates this fact.

Example 1 Consider the left-linear constructor PRS R = {f(X) — X},
the goal G = f(¥Y (X)) > a, and the LNy-derivation

{X Y SV (X)) B)= o= ({X, VY Y () »g X1, X, B a)
2o o (X, Y} G = YX) » f(H), H(X) » X3, X5 1> a)

10

where ¢ = {X; = [f(H)}. The application of [ov] in the second inference
step introduces the defined symbol f in the right-hand side of the leftmost
parameter-passing equation of G'. . 0

To avoid this behavior, we define the calculus LNy = LN, U {fc]} where

[c] (WG, s » X2X(Z), G ATX(F) 2 ATu, G7) =
(W |G, Az.5 » X2.X(2),G', AT.s(t) = AT.u, G")

and give to [c] the highest priority. We also define a suitable equation selec-
tion strategy.

Definition 8 {strategy S.) An equation e € G to which [ov] is applicable
is selected in a goal (W | G) only if all the parameter-passing equations which
precede it are of the form AZ.s » Xa. X (%).

Theorem 9 Let R be o lefi-linear confluent constructor EPRS. Then

(i) LN3 is sound and strongly complete.

(1i) If 11 ¢s an LN;3 derivation which respects stralegy S, then all equations
AT.8 » T4 in IT satisfy the condition A\T.t € T(F,, V).

5 CONCLUSIONS AND FUTURE WORK

Various optimizations of a higher-order lazy narrowing calculus have been
proposed, in an attempt to reduce its high nondeterminism and to make it a
suitable operational semantics for higher-order FLP. All calculi proposed by
us are sound and complete.

A powerful mechanism for FLP is lazy narrowing with conditional rewrite
systems. The extension of lazy narrowing to the conditional term rewriting
case has beeun successful in the first-order case (2], and proposals for higher-
order versions of conditional lazy narrowing are already available. (See, e.g.
[12].) As future work, we intend to generalize our framework of higher-order
lazy narrowing with PRS to the conditional case, and to determine opti-
mizations for classes of conditional PRS which are useful for programming
PUrposes.

References

[1] W. Gould. A matching procedure for w-order logic. Scientific Report 4.
Air Force Cambridge Research Laboratories, 1960,

I

[2] M. Hamada, A. Middeldorp, and T. Suzuki. Completeness Results for
a Lazy Conditional Narrowing Calculus. In DMTCS/CATS’99, pages
217-231, Auckland, 1999. Springer-Verlag Singapore.

[3] G. Huet. A Unification Algorithm for Typed M-Calculus. Theoretical
Computer Science, 1:27-57, 1975,

[4) J.-M. Hullot. Canonical Forms and Unification. In Proceedings of the
5th Conference on Automaled Deduction, volume 87 of LNCS, pages
318-334. Springer, 1980.

[5] M. Marin, T. Ida, and T. Suzuki. On Reducing the Search Space of
Higher-Order Lazy Narrowing. In A. Middeldorp and T. Sato, editors,
FLOPS’99, volume 1722 of LNCS, pages 225-240. Springer-Verlag, 1999,

[6] M. Marin, A. Middeldorp, T. Ida, and T. Yanagi. LNCA: A Lazy Nar-
rowing Calculus for Applicative Term Rewriting Systems. Technical Re-
port ISE-TR-99-158, Institute of Information Sciences and Electronics,
University of Tsukuba, Tsukuba, Japan, 1999,

[7] A. Middeldorp and S. Okui. A Deterministic Lazy Narrowing Calculns.
Journal of Symbolic Computation, 25(6):733-757, 1998.

[8] A. Middeldorp, S. Okui, and T. Ida. Lazy Narrowing: Strong Complete-
ness and Dager Variable Elimination. Theorelical Computer Science,
167(1,2):95-130, 1996,

19] D. Miller. A logic programming language with lambda-abstraction, func-
tion variables, and simple unification. Journal of Logic and Compula-
tion, 1:497-536, 1991.

(10] T. Nipkow. Functional unification of higher-order patterns. In Pro-
ceedings of 8th IEEE Symposium on Logic in Computer Science, pages
G4-74, 1993.

[11] T. Nipkow and C. Prehofer. Higher-order rewriting and equational rea-
soning. In P. S. W. Bibel, editor, Automated Deduction - A Basis for
Applications, volume 1, chapter Formal Models and Semantics, pages
399-430. Kluwer, 1998.

[12] C. Prehofer. Solving Higher-Order Equations. From Logic to Program-
ming. Foundations of Computing. Birkéuser Boston, 1998.

[13] W. Snyder and J. Gallier. Higher-order unification revisited: Complete
sets of transformations. Journal of Symbolic Computation, 8:101-140,
19089,

12

[14] T. Suzuki, K. Nakagawa, and T. Ida. Higher-Order Lazy Narrowing
Calculus: A Computation Model for a Higher-order Functional Logic
Language. In Proceedings of Sizth International Joint Conference, ALP

97 - HOA 97, volume 1298 of LNCS, pages 99-113, Southampton,
1997.

Received: Address
Accepted: ...

13

e {D,Dql}, B(el) € {l><l,l><ld}

[t] removal of trivial equations
G, AT ML, G =2, G, G
[d] decomposition
G AT(55) D MEv(E), G =2 G, AT 5, b ATy, G ifv € FU{T)

[i] smitation

G, AE.X (37) 09 NE.g(Tm), G =29(G, AT H (57) g0y AT b, G)0
where & = {X — AT.9(H (7))} and H,, are fresh variables.
[p] projection
G, AT X (57) by AE, G =2 (G, MT.5; (I, (37)) bgay AT-8, G')0

where 1 <4 < n, AT.1 is rigid, 0 = {X = Al H,@E)) L v T = 7,
and Hy : 7, are fresh variables.

[on] lazy narrowing ot nonvariable
G TS (G) B AL, G =5, G VT f(Fa a AT f (), AT > AT, G
if f(I.) = r is an F-lifted rule.
[ov] outermost narrowing of variable
G OT.X(3) > ML, G =5, N X (5) Dy AT f(ln), \T.r & AT, G

il ATt is rigid, f(ﬁ)_—) r is an T-lifted rule and @ = {X —
M f (Hy (T })} with H, [resh variables of appropriate types.

Figure 2: The lazy narrowing calculus LN: inference rules

14

[t] remaoval of trivial equalions
(W | G, AT 2y ML, G 225 (W | G, G

[d] decomposilion

(W | GAT0(5,) Sy ATv(G), G) == (W | G, AT .5, = ATy, G')
if ve Fu{z}

[t] imitation

(W G, E-X(57) Za) AE-9(Tm), G =210 (W' | (G 0T Hou(57) 2 AT tm, G')0)
where 8 = {X — A\7.g(H,(Z5))} and H,, are [resh variables.

[p] projection
(W | G, 0E.X (57) gy AT, O 2o (W | (G, AT 8:(H(5n)) Zay AT, G1)O)

where 1 < ¢ < n, AT.t is rigid, 0 = {X = A u(H(Ta))), vi T — 7
and I, : 1, are fresh variables.

[[fs] flez/flex same
(W | G, AT X (Tn) Sy AEX (W), G =0 (W' | GO, G'0)
where X € W, 0 ={X = Mg H@Z) L {Z ={vi |l =ui, 1 £i < n}.
(] flex/flex different
(W | G, A X(T) =) \EY (&), G == ma o{W' | GO, G'0)

where 8 = {X = ANg.H(Z),Y = MW.H(E)}, {7} = {H) n{¥},.X e W,
and Y e W if =2 is ~ .

lon] eutermost narrowing at nonvariable position

(W | G,OFf(3n) = AT, G 2o
(W | G, f(57) wa M. (L), AT & AEL, GY)

if f(I,) — r is an T-lifted rule.

lov] outermost narrowing al variable posilion

(W | G, AT.X (Fm) 2 AT, G 25 o)
(W 1 G, XX (5) wg 3. (l), AT = Xmt, G
9]

where A7t is rigid, f(1,) — 7 is an ZT-lifted rule, and A7 X (55) is not
a fex pattern with X € W,

Figure 3: The calculus LN;: inference rules

HOOTS'00 te appear

A New Criterion for Safe Program
Transformations

Yasuhiko Minamide

Institute of Information Sciences and Electronics
University of Tsukuba
and
PRESTO
Japan Science & Technology Corporation

Fmail: minamide@score. is. tsukuba.ac. jp

Abstract

Previous studies on safety of program transformations with respect to performance
considered two criteria: preserving performance within a constant factor and pre-
serving complexity. However, as the requirement of program transformations used
in compilers the former seems too restrictive and the latter scems too loose. We
propose a new safety criterion: a program transformation preserves performance
within a factor proportional to the size of a source program. This criterion seems
natural since several compilation methods have effects on performance proporticnal
to the size of a program. Based on this criterion we have shown that two semantics
formalizing the size of stack space are equivalent. We also discuss the connection
between this criterion and the properties of local program transformations rewriting
parts of a program.

1 Introduction

Recent compilers utilize advanced program transformations to obtain high-
performance executable code. For these advanced program transformations,
it is not so straightforward to guarantee that they are safe with respect to
performance. In fact, some program transformations have been shown to
improve the performance of most programs, while degrading the performance
ol some programs severely [9,12].

‘To remedy this situation, several papers have discussed the safety of pro-
gram transformations based on sernantics formalizing the performance of pro-
grams [7,6,11,2,8]. In those studies, two salety criteria for whole-program
transformations were discussed. However, these criteria do not seem appro-
priate to impose on program transformations used in compilers, for reasons we

This is a preliminary version. The final version can be accessed at
URL: http://www.elsevier.nl/locate/entcs/volume4dl.html

MINAMIDE

discuss below. In this paper we focus on the space requirement of programs in
call-by-value functional languages, but the general framework can be adopted
for other languages and performance metrics.

The first of the above two criteria ensures that a program transformation
preserves space requirement within a constant factor. If a program trans-
formation satisfies this property, we say that the program transformation is
space efficient. Many program transformations seem to satisfy this criterion,
but there are some useful transformations that do not satisfy this criterion.
Furthermore, to show this criterion is satisfied we must formalize the de-
tails of semantics formalizing space requirements. In the study of the CPS
transformation, it was necessary to revise the space profiling semantics of a
call-by-value functional language by Blelloch and Greiner [3], to show that
this transformation satisfies this criterion (8].

The second criterion is space safety: a program transformation is space
safe if it does not raise the complexity of programs. Clearly, program trans-
formations used in a compiler must satisfy this criterion. However, we think
that this criterion is too loose. This criterion does not impose any restric-
tion for programs without inputs. However, showing space safety is simpler
than showing space efficiency, in the sense that it is possible to adopt a sim-
pler profiling semantics that ignores details such as sizes of closures and stack
frames.

In this paper we propose a new criterion that falls between the ahove two
criteria. The new criterion is that a program transformation preserves the
space requirement within a factor proportional to the size of a source program.
Most useful transformations used in a compiler seem to satisfy this criterion.
This criterion seems natural because several compilation methods have effects
on perfermance proportional to the size of a program. Furthermore, we can
show this criterion based on semantics ignoring some details as we show space
safety.

Based on the new criterion we have shown that two sermantics of a simple
call-by-value functional language profiling stack space are equivalent. One
models evaluation by an interpreter and the other models execution based
on compilation. They are not equivalent in the sense of space efficiency, but
they are equivalent in the sense of our new criterion. We also show that A-
normalization preserves stack space modeled by the second semantics. This
backs the claim that the second semantics models stack space required for
execution based on compilation.

The criterion we propose is a property of a whole-program transformation.
On the other hand, some transformations used in compilers are based on local
program transformations. We therefore also study the connection between
the properties of local transformations and the properties of global transfor-
mations. We will show that some restricted class of local transformations
induces whole-program transformations satisfying our new criterion.

MINAMIDE

‘This paper is organized as follows. We begin by reviewing the two safety
criteria discussed in previous studies and discussing why they are not suit-
able as the criterion we impose on the transformations used in a compiler.
In Section 3 we introduce our new safety criterion and the equivalence of se-
mantics on a programming language induced by the criterion. In Section 4,
based on this new safety criterion, we show that two operational semantics
of a call-by-value functional language are equivalent. In Section 5 we discuss
the connection between the properties of local transformations and our new
criterion. I'inally, we give our conclusions and directions for future work.

2 Safety criteria of program transformations

We review the safety criteria of program transformations with respect to per-
formance discussed in previous studies. To formalize safety criteria we must
first develop semantics to formalize performance of programs. We call such
semantics profiling semantics. For a simple programming language, profiling
semantics can be given as a partial function eval (M):

eval(M) = (v, n)

This function gives the computation result v and a non-negative integer n,
which represents such performance values of programs as execution time or
space required for execution.

In this paper, to simplify our discussion, we focus on the space requirement
of a program and ignore the computation result. TFor this purpose we define
space(M) as below:

space(M) = n iff eval(M) = (v, n) for some v

This function is only defined if the evaluation of A terminates. We call
this semantics for specifying space required for execution of a program space
semaniics.

Let us now review two space safety criterin of program transformations
discussed in previous work [1,3,8]. In this paper, we consider a program trans-
formation as a binary relation between programs in a source language and
a target language. Let us consider a program transformation ~» between a
source language and a target language that have space semantics space(M)
and space'(M') respectively: M ~ M’ means that M s translated to M’ by
the program transformation.

The first criterion ensures that a program transformation preserves the
space required for execution of a program within a constant factor.

Definition 2.1 We say that a program transformation ~» is space efficient if
constants k; and ks exist such that:

space(M)=n == space/(M") < kin+ k
3

MINAMIDE

for any programs M and M’ with M ~ M’

We admit constants k; and ko because they seem dependent on the details
of definition of space semantics and not essential. Moreover, there are several
transformations in which &k, > 1 is required to show this property. This
property was first discussed by Blelloch and Greiner for an implementation
of NESL [3]. Minamide also showed that the CPS transformation is space
efficient [8].

'The second criterion is called space safety: a transformation is space safe
if it does not increase the space complexity of programs [{1]. To formalize
this idea we must consider programs with an input; thus we can consider a
programming language with input commands and the semantics space(M, 1),
which formalizes the space required for execution of the program M for the
input 1.

Definition 2.2 We say that a program transformation ~+ is space safe if for
any programs M and M’ such that M ~» M, constants ky and ko exist such
that for any input I the following holds:

space(M,) =n = space’ (M’) < kin + ks

The key difference from space efficiency is that the constants &y and ks
are program-depencent. Space efficiency usually implies space safety because
space efficiency provides the constants k) and ky to show space safety without
depending on programs.

Although many prograin transformations used in compilers seem space
efficient, some useful transformations are not space efficient, but only space
safe. urthermore, to show that a program transformation is space efficient
we must consider too many details of the operational semantics of the source
language. In the study of the CPS transformation it was necessary to revise
the semantics proposed by Blelloch and Greiner [3] to show that the CPS
transformation was space efficient [8].

Code motion is a typical example of a transformation that is space safe,
hut not space eflicient. Consider the following expression where M is a pure
expression that contains the variable n but does not contain a function appli-
cation:

0

fun loop 0 ,
let val x =M in Joop (n - 1) end

| loop n

The value of M is loop-invariant, thus we want to hoist the binding of x as
follows:

val x = M
fun loop 0 = ()
| loop n = loop {(n - 1)

This usually improves the performance of the program. However, if the func-
4

MINAMIDE

tion loop is used only as loop 0 or is not actually used, this transformation
results in extra computation of M. The extra time and space to evaluate M is
not uniformly bounded by a constant, but depends on M.

On the other hand, space safety seems too weak as a requirement of trans-
formations used in compilers. Space safety is trivial for programs without
inputs. Even for programs with inputs, it is impossible to estimate the per-
formance of a program since the constants k; and kg are program-dependent,.
Thus in this paper we propose a new criterion that falls between space effi-
ciency and space safety.

3 A new criterion

In this section, we propose a new safety criterion for program transforma-
tions. First, to simplify our discussion, we compare two space semantics of a
programming language.

Let us consider two space semantics space, (M)} and spacea{ MY} of a pro-
gramming language. As a natural extension of space efficiency, we can consider
the following property: there exists a polynomial f such that

spacer (M) =n == space,(M) < f(n)

However, this property is not suitable as a criterion that space,(A) is safe
with respect to space,(M). By extending the language and the semantics
with inputs, we have the following property:

space (M, 1) =n => spacey(M, 1) < f(n)

Even if this holds, it might happen that for an input of size n space, requires
n space, but space, requires n? space, because f(x) = x?. Thus, this extended
property does not imply safety and is therefore not suitable as a criterion that
space, is sale with respect to space,.

When we consider various semantics of a language, the difference in space
usage often depends on the size of a program. Thus, it is natural to consider
the following relation of semantics.

Definition 3.1 We say that the semantics space, is weakly simulated by
spacey it

space (MY =n == space,(M) < f1{({M])n + fo(|M])

where fi(z) and fo(x) are polynomials with positive coefficients and [M] is
the size of A.

Hereafter in this paper we simply say “a polynomial” for “a polynomial
1 ply)
with positive coefficients.”
This relation induces equivalence of semantics as follows.

5!

MINAMIDE

Definition 3.2 We say that semantics space; is weakly space equivalent to
spacey if space; is weakly simulated by space, and space, is weakly simulated
by space,.

Most reasonably defined semantics of a language seem weakly space equiv-
alent. Moreover, it is possible to define simpler semantics weakly space equiv-
alent to the semantics considered in previous studies.

Example 3.3 Let space, be a semantics of a functional language that ac-
counts for the sizes of closures: the size of a closure with n free variables is
n + 1. Let space, be a semantics where the sizes of closures are ignored: the
sizes of closures are always 1. Then space, and space, are weakly equivalent,
since the sizes of the closures constructed during evaluation of a program are
bhounded by the size of the program.

Example 3.4 Let space; and spacey be a semantics that accounts for the size
of each stack frame and a semantics that ignores the size of each stack frame,
respectively. Then space, and space, are weakly equivalent, since the sizes of
the stack [rames constructed during evaluation of a program are bounded by
Lhe size of the progran.

Although these examples are rather straightforward, they show that we
can aclopt a simple space semantics when we consider weak simulation. We
will also show that two space semantics profiling stack space are equivalent in
Section 4. The proof of this equivalence requires detailed analysis of the space
semantics.

Now we extend weak simulation as a safety criterion [or program transfor-
mations. Consider a program transformation ~» between a source langnage
and a target language that have space semantics space(M) and space’(M'),
respectively, as before,

Definition 3.5 We say that a program transformation ~+ is weakly space
efficient if polynomials fi(z) and fs(z) exist such that:

space(M) =n == space'(M") < L{|M|)n+ fol|M])
for any programs M and M’ with M ~ M’

This criterion clearly falls between space efficiency and space safety. It
admits that a program transformation degrades performance within a factor
dependent on the size of a program. This gives us much more [reedom to
design program transformations used in compilers than is possible with space
efficiency.

To construct a compiler that is a weakly eflicient transformation as a whole,
the composition of transformations must be weakly space eflicient since actual
compilers consist of many phases. To make the composition weakly space

6

MINAMIDE

efficient we should restrict program transformations so that the expansion of
the size of a program is limited by some polynomial.

Definition 3.6 We say that a program transformation M ~+ A’ is polyno-
mial size safe if |A'] < f(|M]) for all programs M where f({z) is a polynomial
of z.

This is a natural restriction because actual compilers already avoid expo-
nential blowup of code size. We can now construct a weakly space efficient
compiler by composing weakly space efficient and polynomial size safe trans-
formations.

Theorem 3.7 Let~»; and~3 be program transformations from Ly to Ly and
from Ly to Ls respectively. If ~1 is weokly space efficient and polynomial size
safe, and ~»y is weakly space efficient, then their composition ~+; o0 ~»q is a
weakly spoce efficient transformation from Ly to Lj.

Proof. Let M ~+; 0 ~s5 N. Then P exists such that M ~»; P and P ~29 N.
By weak space efliciency we have:

spacey{ P) < fH{|M)space, (M) -+ fA(|M])
spacey(N) < fH(|P)space,(P) + f3(| PI)

By polynomial size safety we have |P| < g(|M]). Then:

spaces(N) < [H{g(IMD) (J{(|M])space, (M) + [2(1M1)) + f5 (g(|1M1))

Here, fE{g(z))fi(z) and f2(g(z))fi(z) + fi(g(z)) are clearly polynomials of
x. O

This proof clarifies why we adopted a polynomial instead of a linear funec-
tion in the definition of weakly eflicient transtormation. Even if two trans-
formations are bounded by linear functions of the size of a program, their
composition is not necessarily bounded by some linear function,

4 Weak equivalence on stack space

In this section we consider two space semantics profiling stack space for a
simple call-by-value functional langnage. One semantics models evaluation by
an interpreter and the other models evaluation based on compilation. Both
semantics properly model tail calls. We show that although they allocate
different numbers of stack frames during evaluation, the semantics are weakly
space equivalent. Tfurthermore, it is shown that A-normalization preserves
stack space for the second semantics.

7

MINAMIDE

Etclic Evazl,E(z) EVvAx.M |, {dE z, M)

EFM L {dE 2, M) EFMy|mve Efvafz]bF M |,v
EF MMy | maxge1,ma1,0) ¥

Fig. 1. Operational semantics profiling stack size (interpreter-based)

4.1 Equivalence of two semantics profiling stack space

We consider the following untyped call-by-value A-calculus with a constant ¢:
Mu=zx | e| Ae.M | MM

We define two space semantics space] (M) and spacel(M) by deductive sys-
temms. Tor the definition of the deductive systems, we first define values: a
value v is either a constant ¢ or a closure {cl E,z, M} consisting of an envi-
ronment F mapping variables to values, a variable and an expression.

vus=c | (¢ B,z M)

The space semantics space}(M) models evaluation by an interpreter and is
defined by the deductive system given in I'igure 1.

spacey(M) =n if B+ M |, v

The space semantics spaces(M) models stack space required for execution
based on compilation and is defined by the deductive system given in Figure 2.

spaced{(M) =nif QL M |, v

The deductive system is defined mutually inductively by the following two
judgments: E F, M |, v models execution at tail call positions and E F§
M |, v models execution at non-tail call positions. The application at a tail
call position does not allocate a new stack frame. In the figure, we write
EboM lpvifor EFL M | vand EVE M |, 0.

We have shown that the two semantics space}{M) and spaced(M) are
weakly equivalent.

Theorem 4.1 If@F M Livend DFy M |y v, then ' +1 <4 < |M| (1),

To prove this theorem we must generalize the claim so that non-empty
environments can be treated, To treat non-empty environments we define the

8

MINAMIDE

EFscloe EbpzloE(z) EtyAz.M o {dB,x, M)

Ery My (B2, M) EF3 My lmve Elvgfa]H M |, v
E }_51 1141ﬂd2 j«max(l,m,n-i-l) v

Ery ML (I Bz, M) Ebg My lmvs E'fva/a) by M |y v
E |_% ﬂ’f]ﬂffg ‘I.max(l,m,n) v

Fig. 2. Operational semantics profiling stack size {(compiler-based)

size of a value and an environment as follows:
|C|v = 0
{cl E, Az M)y, = max{|E|.,|M].)
|E|y = e max{|E(z)|y | * € Dom(E)}

Then the theorem is generalized to the following lernma. This lemma is proved
by induction on the derivation of evaluation.

Lemma 4.2 Let K be a constant such that |M| < K and |E|, < K.
() IfEFM livand EVFS M Lpv, theni +1 < < K- (i + 1),
(i) f EF M Jivand EVE M |y v, theni <i < K.+ |M|.

4.2 Preservation of stack space by A-normalization

In this section we show that A-normalization preserves stack space given by
spacey (M) and thus spaced(M) actually models execution based on compi-
lation. This also shows that A-normalization is weakly space efficient with
respect to spacej(M).

We define the syntax of the language of A-normal forms as follows:

Values Voios=o | oM
Expressions M ==V | iV, | let z =WV, in M

The application ViV, represents tail calls and the application in let z =
1V, in M represents non-tail calls.

The semantics of this language is naturally given by the C, £/ Machine
defined in Figure 3 [5]. In this operational semantics continuation clearly

9

MINAMIDE

State S = (M, E,K)
Continuation K = stop | (ar z, M, E, K)

Transition Rules:

(v, E, {arz, M, E', K'Y} — (M, E'[v(v, E) /=], K')
(let z =WV in M, E,K) — (M E'|Va/z], (ar x, M, E, K"))
where v(V1, E) = (c z, M, E")
(ViVa, E, K} — (M", E'[Va/z}, K)
where v(V1, E) = (d z, M', E")

E(x) ifV=ax

YV, E) = _
{cla, M,E) if V = Az.M

Fig. 3. The Cu B Abstract Machine

corresponds to stack. The size of continuation is naturally defined as follows:

size(stop) = 0
size({ar z, M, E, K)) = size(K) + 1

In this definition we ignore the size of each frame because it is bounded by
the size of the program and we discuss weak space efficiency in this paper. To
discuss space efficiency it is natural to count the number of free variables of
M.

The stack space of state (M, E, I{} is defined by size(J<). Then we define
the space semantics of this language as follows: space (M) = n if (M,), stop) —*
(V, ", stop}) and n is the maxiimum size of the states in the transition.

A-normalization can be defined as one pass translation [5,4]. In the follow-
ing definition, we use a two-level lambda calculus where X and @ are meta-level
abstraction and application. ||M]|ax translates expressions at non-tail call
positions and |[|M|}, translates expressions at tail call positions. The entire

10

MINAMIDE
program is translated by ||M|},.

|z]a =

Az M| a = Az]| M|

Vilax = £@|V|4
1A Mok = || M| 4Oy || Malla(Aze.let 2z = 33y in 5@z))
lfelly = lv]a

M1 M)y = M| aQuze | Ma)a Az, 2122))

Then it is shown that the stack space required for execution is preserved by
A-normalization.

Theorem 4.3 If spaces(M) = n, then space (M) = n.

This theorem shows that spaces (M) models the stack space required for
execution based on compilation. Furthermore, since spaced(M) is weakly
equivalent to space?{M), it is enough Lo consider space}(M) even when we
consider weak efficiency of program transformations with respect to execution
based on compilation.

5 Local transformations

In this section we discuss the connection between oir new criterion and the
properties of local program transformations. We show that some class of local
transformations induces weakly space efficient transformations.

Based on the classiication of local transformations by Gustavsson and
Sands [7] we define two classes of local transformations.

Definition 5.1 Let R be a relation on terms of a programming language.

(i) We say that R is a strong improvement relation if we have:
space{C[M]) =n = space(C[N]) < n

for all (M,N) € R and all context C}-] producing a whole program for
M and N,

(ii) We say that R is a weak improvement relation if there exists some linear
function f such that the following holds for all (A, N} € Rand all context
C[-] producing a whole program for Al and V.

space(CIM]) =n == space(C[N]) < f(n)
11

MINAMIDE

We should remark that there is one subtle difference in our definition of
weak improvement from that of Gustavsson and Sands. They defined a single
weak improvement rvelation as follows. M > N if some linear function f exists

such that for all contexts C[] the fol]owinE; holds:
space(CIM]) =n = space(C[N]) < f(n)

The relation © is the union of all the weak improvement relations. However,

this relation ¢ itself is not a weak improvement relation in our sense.

To discuss the connection hetween these properties and the properties
of global transformations, we first define the induced global transformation
M ~sp N as follows: M ~sp N if some C[], M’ and N’ exist such that
M = C[M'], N = C[N'], and (M’, N’} € R. Then we immediately obtain the
following theorem.

Theorem 5.2 If R is a weak or strong improvement relation, ~p 1s space
efficient.

On the other hand, the relation > does not induce a space efficient trans-

~

formation. This is because there is no single linear function f such that
space(C[N]) < f(space(C[M])) for all M > N.

The theorem above is still not enough to use a local transformation in a
compiler. In a compiler we usunally apply local transformations n times in one
phase of a compiler where n is proportional to the size of a program. Even
for such composition, a strong improvement relation induces a space efficient
transformation.

Theorem 5.3 If R is a strong tmprovement relation, ~7%, is space efficient.

On the other hand, a weak improvement relation does not necessarily in-
duce a weakly space efficient transformation. Consider the following sequence
of transformations where R is a weak improvement relation with space(C[NV]) <
kspace(C[M]) for all (M, N) € R.

Morog My~ My~ Mg~ ...~ M,
The space requirement of M, can be calculated as follows:

space(My) < kspace(M)

space{My) < kspace(Ms) < k?space(M)
space(My) < k™space(M)
12

MINAMIDE

Then it is clear that there is no single linear function f such that:
space(N) < f(space(A!))

for M ~+5 N. Even if we restrict the number of repetitions to |Mp]|, &™ is not
a polynomial of [Mp|. Thus, it is not even weakly space efficient.

We therefore must consider stricter conditions on local transformations.
In the following definition a local transformation is permitted to add only a
constant amount of extra space.

Definition 5.4 We say that R is a semi-strong improvement relation if some
constant k& exists such that:

spuce(C[M]) =n == space(C[N]) <n+k

for all (M, N) € R and all context C[-] producing a whole program for M and
N.

It can be shown that this class of local transformations induces weakly
space efficient transformations if the number of applications of the transfor-
mation is limited by the size of & source program. We write M —p N il
M ~% N where n < |M]|.

Theorem 5.5 If R i5s a semi-sirong improvement relation, M —gp N is
weakly efficient.

Although this theorem relates a semi-strong improvement relation to weakly
efficient, transformations, semi-strong improvement relations seem too restric-
tive. There are many useful transformations R that are not semi-strong im-
provement retations, but »— » seem weakly space efficient. The following trans-
formation is an exampie.

Arlet y= M in N = let y=M in Az N

We have not shown formally that this transformation is weakly space efficient.
For such proof we think that we require further study on the connections
between global transformations and local transformations.

6 Discussion and future work

We have shown weak efficiency only for stack space for two semantics of a
simple functional language. Tt will not be very diflicult to deal with execution
time or heap space. For example, the proof that the CPS transformation is
space eflicient [8] can easily be modified to show that the CPS transformation
is weakly space efficient with respect to a simpler space semantics of the source
language that ignores the sizes of closures and stack frames.

13

MINAMIDE

We have shown no examples of local program transformations that are
weak Improvement relations or semi-strong improvement relations. We are
planning to show that various optimizations formalized as local program trans-
formations have these kinds of properties. In this area, Gustavsson and Sands
have developed a theory of space improvement relations for call-by-need pro-
gramming languages and have shown that several local transformations are
weak improvements [7]. Their work will be also applicable to call-by-value
languages.

We think that the framework we have developed in this paper requires
further refinement. For example, although intuitively clear, it is not proved
that space safety, weak space efficiency and space efficiency ensure that the
space complexity of programs is preserved. Bakewell and Runciman discussed
these kinds of issues more formally in their study on the comparison of space
usage of lazy evaluators {2]. They modeled lazy evaluators by graph rewriting
systems. This kind of uniform formalization of semantics may help develop a
theory of safe program transformations.

There is an implementation strategy of ML that is not space efficient, but
is space safe. That is the implementation strategy that uses types as param-
eters at runtime [10,13). This is because the extra work and space necessary
for type parameters cannot be bounded by any constant. Iurthermore, this
implementation strategy is not even weakly space eflicient, because the types
appearing in the typing derivation of a program may have a size exponen-
tial to the size of the program. However, if we take the sum of the size of
a program and the maximuin size of types appearing in typing derivation of
the program as the size of the program, this implementation strategy can he
considered weakly space efficient. By choosing the definition of the size of a
program in this way we can control the class of transformations that can be
used in compilers of the language.

Acknowledgement

This work is partially supported by the Ministry of Education, Science, Sports
and Culture, Grant-in-Aid for Encouragement of Young Scientists of Japan
No. 11780216, 1999, We would like to thank anonymous reviewers for their
many helpful comments and suggestions.

References

[1] Appel, A. W., “Compiling with Continuation,” Cambridge University Press,
1992.

[2] Bakewell, A. and C. Runciman, 4 model for comparing the space usoge of
lazy evalualors, in: 2nd Internotional Conference on Principles and Practice
of Declarative Programming (PPDP 2000), 2000.

14

MINAMIDE

[3] Blelloch, G. E. and J, Greiner, A provably lime and space efficient
implementation of NESL, in: Proc. of ACM SIGPLAN International Conference
on Funcltional Programming, 1996, pp. 213-225.

[4] Danvy, Q. and A. Filinski, Representing control: o study of the CPS§
transformation, Mathematical Structures in Computer Science 2 (1992), pp. 361
- 301

[5] Flanagan, C., A. Sabry, B. F. Duba and M. Felleisen, The essence of compiling
with continuations, in: Proc. of ACM SIGPLAN Conference on Programmaing
Language Design and Implemeniation, 1993, pp. 237-247.

[6] Greiner, J. and G. E. Blelloch, A provably iime-efficient parallel implementation
of full speculation, in: Proe. of ACM Symposivm on Principles of Programming
Languages, 1996, pp. 309 - 321,

[7] Gustavsson, J. and D. Sands, A foundalion for space-safe transformalions of
call-by-need programs, in: Proc. of the Third International Workshop on Higher
Order Operational Techniques in Semantics (HOOTS9%), ENTCS 26, 1999.

(8] Minamide, Y., A space-profiling semantics of call-by-value lambde calculus and
the CPS transformalion, in: Proc. of the Third Internalionel Workshop on
Higher Order Operational Techniques in Semantics (HOOTS99), ENTCS 26,
1999.

[9] Minamide, Y. and J. Garrigue, On the runtime complezily of type-direcled
unbozing, in: Proc. of ACM SIGPLAN International Conference on Funcilional
Programming, 1998, pp. 1-12.

[10] Ohori, A. and N. Yoshida, Type inference with rank ! polymorphism for
type-directed compilation of ML, in: Proc. of ACM SIGPLAN International
Conference on Funclionael Programming, 1999, pp. 160- 171,

[11] Santos, A. L., *Compilation by Transformation in Non-strict Functional
Languages,” Ph.ID. thesis, Department of Computing Science, University of
Glasgow {1995).

[12] Shao, Z., Flexible representalion enalysis, in: Proc. of ACM SIGPLAN
International Conference on Functionoal Programming, 1997, pp. 85 - 98.

[13] Tarditi, D., G. Morrisett, P. Cheng, C. Stone, R. Harper and P. Lee, T7L:
A type-directed optimizing compiler for ML, in: Proc. of ACM SIGPLAN
Conference on Programming Language Design and Implementation, 1996, pp.
181-192.

Minimised Geometric Buchberger Algorithm for
Integer Programming

Qiang Li Yi-ke Guo* Tetsuo Ida** John Darlington®

Research Center
PFU Limited, Japan
*Department of Computing
Imperial College, UK.
""Institute of Information Sciences and Electronics

University of Tsukuba, Japan

Abstract

Recently, various algebraic integer programming (IP} solvers have
been proposed based on the theory of Grobner bases. The main dii-
ficulty of these solvers is the size of the Grobner bases generated, In
algorithms proposed so far, large Grobner bases are generated by either
introducing additional variables or by considering the generic IP prob-
lem { P4 ¢. Some improvements have been propesed such as Hosten
and Sturmfels’ method (GRIN) designed to avoid additional variables
and Thomas’ truncated Grobner basis method which computes the re-
duced Grébner basis for a specific IP problem TPy ¢(b) (rather than
its generalisation JP, ¢). In this paper we propose a new algebraic
algorithm for solving 1P problems. The new algorithm, called Min-
imised Geometric Buchberger Algorithm, combines Hosten and Sturm-
fels’ GRIN and Thomas’ truncated Grébner basis method to compute
the fundamental segments of an IP problem /P4 o directly in its origi-
nal space and also the truncated Grobner basis for a specific IP problem
TPy c(b). We have carried out experiments to compare this algorithm
with others such as the geometric Buchberger algorithm, the truncated
geometric Buchberger algorithm and the algorithm in GRIN. These ex-
periments show that the new algorithin offers significant performance
improvement.

1 Introduction

In this paper, we consider the following IP problem:
IP4c(b) = min{Cz : Az = b,z € N"}

where C is an objective vector in R™, A is an m X n matrix of integers, and
b is a vector in Z™. We use I P4 ¢ to denote a generic [P problem where &
is not taken into account.

Recently, the tools of commutative algebra and algebraic geometry have
brought new insights to IP via the theory of Gribner bases [3]. The key
idea is to encode an IP problem into a special ideal associated with the
constraint matrix 4 and the cost (objective) function C'r, An important
property of such an encoding is that its Grébner bases correspond directly
to the test sets of the IP problem. Thus, by employing an algebraic package
such as MACAULAY [6] or MAPLE {1], the test sets of the I[P problem
can be directly computed, Using a proper test set (such as the minimal
test set which corresponds directly to the reduced Grébner basis of the
encoded ideal), the optimal value of the cost [unction can be computed by
constructing a monotonic path from the initial non-optimal solution of the
problem to the optimal solution, Thus, IP problems can be solved in a
similar fashion to the simplex methed for linear programming without using
intensive heuristic searching algorithms.

There are two strategies for encoding an IP problem into a special ideal.

o Indirect encoding: encoding by adding extra variables.
o Direct encoding: encoding without adding extra variables.

The first strategy was originally given by Conti and Traverso [8]. The
scheme involves two encoding mechanisms: encoding the cost funclion of
IP4 ¢ into a linear order and encoding the coefficient matrix into a polyno-
mial ideal. With this translation, IP problems are transformed into solving
the subalgebra membership problems (See section 2.1 in detail).

In {12], Thomas proposed a geometric interpretation of Conti-Traverso
method. The key idea of Thomas’ Geomelric Buchberger Algorithm (GBA)
is to relate the Grobner bases of the encoded polynomial ideal of an IP prob-
lem I P4 ¢ to the notion of test sets for P4 ¢. Each binomial is now directly
interpreted as directed line segments, i.e. vectors, in a lattice of all feasible
solutions ol P4 ¢. The Buchberger algorithm is then directly applied to a
directed graph, where nodes of the graph are lattice points corresponding
Lo feasible solutions of JP4 ¢ and the edges at the beginning correspond

2

to the input basis of the binomial ideal J. Tinding the reduced Grébner
basis amounts to rebuilding the graph such that the edges coirespond to
the members of the reduced Grobner basis of I, which can be geometrically
understood as a test set of the TP problem. Thus, by this graph, an optimal
solution of 7P4 ¢ can be found along the directed path in the graph froma
feasible solution, Thomas’ work provides not enly a succinct understanding
ol an algebraic IP solver but also a practical computational procedure for its
implementation. In particular, this “generate and test” approach provides
great inherent parallelisrn, In [9], we presented a parallel irnplementation
of GBA on a Fujitsu AP1000+. The experiment showed that the algebraic
approach towards 1P provides a very promising mechanism. It also showed
that the new method can be improved in various ways.

In the above strategy, the first problem is that the strategy is applied to
an extended IP (EIP} with additional variables (y), of the form;

min{My + Cz}

subject to Jy+ Az = band (y, z) € Z™*". I is the mXm identity matrix and
M € R™ is a vector whose componernts have large magnitude (it is assumed,
without loss of generality, that all entries in A, (' and b are nonnegative
integers). In practice the additional variables will lead tu a considerable
increase in the space and time requirements of the algorithms considered.

The second problem is that the test set generated by both algorithms
are generic in the sense that it is only determined by A and €' for an IP
problem I Py . Thus, the search space [or computing the reduced Grébner
basis for such a generalised problem is quite large. In [13], Thomas proposed
the “Truncated Gébner basis” method by fixing b to reduce the cardinality
of the reduced Grohner basis, but the size of Grébner basis computed by Lhe
algorithm is still not optimal since the basis is for the BIP w.r.t 1Py (b)),
not for TPy ¢(b) itsell. So, many vectors in the reduced Grobner basis are
needed to move from an initial solution of EIP to an initial solution of IP.

The second strategy was given by Hosten and Sturmfels. In {14}, Hosten
and Sturmfels proposed an algorithm in which a set of fundamental segments
of 1 P4 ¢ can be computed without going through EIP. This algorithm starts
with a basis for the lattice ker(A) and then proceeds to refine this to a set of
fundamental segments for / P4 ¢. But the basis constructed by the algorithm
is not a truncated basis since the vector b is not taken into account. Thus,
the efficiency is still a problem when the method is applied to large scale 1P
problems due to the complexity of the Buchberger algorithm.

In this paper we propose a new algebraic algorithm for solving integer
programming. The new algorithm, called the Minimised Geomelric Buch-

berger Algorithm (MGBA), combines Hosten and Sturmlfels’ method GRIN
and Thomas’ truncated Grébner basis method to compute the fundamental
segments of an IP problem Py ¢ directly in its original space and also the
truncated Grobner basis for the fixed b.

This paper is organized as follows. In section 2 and section 3, we give
a brief sketch of the approaches of strategy 1 and strategy 2, respectively.
Section 4 introduces the idea of the truncated Grébner basis method. In
seclion 5, we present the new Buchberger algorithm to compute a tesi set
for IP. We also show some computational results to compare MGBA with
other algorithms such as the algorithm in GRIN, the geometric Buchberger
algorithm and the truncated geometric Buchberger algorithm in section 6.
Finaily, we draw a conclusion in section 7.

2 Strategy 1: indirect encoding

In this strategy, we first translate IP into the extended IP (EIP) by intro-
ducing additional variables y:

EIP(b) = min{My + Cz : Iy + Az = b, (y,z) € N™*"}

where I is the identity matrix, M € N™ is a vector whose components have
large magnitude, 4 is an m X n mabrix of non-negative integers, and b is a
vector of non-negative integers, We use EIP 4 ¢ to denote the whole family
of these integer programs, with fixed 4 and C, but varying right-hand side
b.

From EIP(b), we can see all of the programs in it are feasible: they
have the obvious solution 2 = 0, ¥ = b. An optimal solution will satisfy
¥ = 0,2 = z, if the TPy (b) is feasible, because the components of M
are sufficiently large comparing to C. If 1 P4 ¢(b) is infeasible, then BIP(b)
has an optimal solution with y > 0. The value of M will not affect the
computation of 2 and y if M is greater than C. So, in actual computation,
we can select any integers for M which are much greater than the raximum
in €\ for instance we assign M=100 which is much greater than the maximum
in €' 3 in example 2.1 and example 2.2.

There are two approaches as follows to solve the EIP(b).

2.1 Algebraic approach

The algebraic approach was proposed by Conti and Traverso [8]. The scheme
involves two encoding mechanisms:

L. Encoding the cost function (M () into a linear order on Z™+", This
can be done by choosing an arbitrary term order, such as lexicographic
order <, and use it as a “tie breaker” on the points that have the same
value under function (M C); That is, we define <5, to encode (M)
as a linear order on Z™m+n;

(M Czy < (M CQes

£ <M, T2 = { (M Chzy = (M Clea 21 <, 22

2. Encoding (I A) inte a polynomial ideal:
I= (yAej —z;rd=1,...,m)

where e; is the jth unit vector on Z".

Actually, Ae; is a projection of jth column of 4. So,

1 n
I:(ya s PR ,’Ua _mn}

where al, ..., a™ are the columns of A.

Let ¢ : k[zy,...,25] — k[y1, ..., ¥n) be the image defined by

zi—)y
So, with this translation, IP problems are transformed into solving the sub-
algebra membership problem for determining whether 3® is in the image of
&,

Let G be the reduced Grdbner basis of I with respect to <arc. Ac-
corcding to Shannon and Sweedler subalgebra membership theorem [15],
g € kiy1,«y¥m] 15 in the image of ¢ il the remainder rg{g) of g on di-
vision by ¢ is in k[z1,...,2,]. Thus, first we compute the reduced Grobner
basis of I. Then we divide ¥* by G. If »g(y®} € k[21,..., 2] then the re-
mainder is a monomial whose exponent vector is the optimal solution to the
problem TPy ¢{b), Otherwise 7Py ¢ (b) has no feasible solution.

Example 2.1
IP: min{=z) + 23 : 3z + 229 = 6, (21,29 € N)}
Firstly, we translate it into extended IP:

EIP : min{100y + 2, + 22 ¥+ 321+ 223 =6, (y, 21,22 € N)}

Encoding (I A) into the polynomial ideal:
I= (y(s 2L 0T _ ml,y(s 290)7 _ £9) = (y3 . m,yz — 2)
Computing the reduced Grobner basis:
G = {y? - g, yos — 21, y2) — 23, 25 — 21}
Computing the optimal solution of P4 ¢(b}:
rg(y°) =2

So, the optimal solution is: z; = 2,22 = 0.

2.2 (Geometric approach

The Geometric Buchberger Algorithm (GBA), proposed by Thomas [12], is
based on a geometric interpretation of above algebraic approach, The key
idea is to relate the Grobner basis of encoded polynomial ideal to the notion
of test sct of TP, A test set for an IP problem I P ¢ is a set of vectors in Z"
such that for each non-optimal solution u to a problem in this family, there
is at least ane element g in this set such thal v — g has an improved cost
value as compared to w.

Definition 2.1 A test set of TP4¢, G C ker(A) N N™ such that for every
feasible solution u of P4 ¢(b) either u is the optimal solulion of TPy (b)
or there exists g € G such that 4 — g is also the solution and Cu > C'(u ~ g).

Thus, a test set for 7Py ¢ provides an obvious algorithm to find the optimal
solution of a feasible problem P4 ¢(b). That is, starting an initial feasible
solution %, a better solution can be found by moving from v a unit step
along -g in the test set until the optimal is reached.

By the theorem in {12], the unique minimal test set of EIP is the reduced
Grébner basis Gy o of the polynomial ideal I = {y#% —2;: 7 =1,..,n).
Thus, the optimal solution of P4 ¢r(b) can be therefore computed by using
Gar,c to improve the obvious feasible solution {b,0) to optimum (0,v) of
EIP(b), Here, we are really dealing with this algorithin operating on lattice
veclors,

Segment vector ; Geometric Polynomial Tach binomial in the ideal
can be interpreted as a directed line segment, i.e. a vector by reading off
its exponents, For example, we translate 22z32f — 232422 directly into the

vector {(2,0,1,0,3,0),(0,3,0,1,0,2)]. For a vector d = [a, 8], o, F € N™H7,
the tail d® = a of the vector is more expensive than the head d" = 3
according to the order <ps ¢ defined as follow:

B(M C)T < a(M C)T
pmee = { G Gr S OF 5<.a

The generating set of the ideal I, which is called fundamenial segment, can
be easily constructed by translating each binomial y?”,...,yfn"” —z; of I
into a vector d;.

S-Vector : Geometric S-Polynomial The geometric correspondence
of 5-Polynomial is called S-vector of two segment vectors dj, dy, which is
computed as the difference of the heads of two vectors yielded by translated
dy,dy into a fiber on which their tails meet. Here a fiber is defined as a set
of feasible solutions to an IP problem. Specially, given a right-hand side
vector b, the set of feasible solutions to P4 ¢(b) is identified as é-fiber (refer
to [12] for the detailed definition). The computation of S-vector is shown in
Fig.2.1. Here the fiber is 3-fiber.

tramslule the veclor 1o
Lhe X-fiber

b

Sevectnr(d 3 dy)

Figure 2.1: Computing S-Vector

Geometric Reduction: A vector f is reduced by a set of vectors {f;}.
If the tail of f can be reduced by f; (f} < f*), then translate f; so that ff
meets f* and replace f by f joining f and f# of translated f; directed {rom
the expensive to cheap end; if the head of f can be reduced by f; (f} < f“),
then translate f; so that f} meets f* and replace f by f joining f* and fh
of translated f; directed from the expensive to cheap end. Repeat this pro-
cedure until there exists no such f;. Actually, the geometric interpretation

of reducing a vector f by a set of vectors {f;} is constructing a path from
the tail of [to the head of f, as in Fig.2.2.

ft f2

2

Figure 2.2: Geometric Reduction

Algorithm 2.1 Geometric Buchberger Algorithm:
The algorithmm computes the reduced Grébner basis of the ideal T with
the term order <p7 ¢,

First Step: Counstruct a Grobner basis

INPUT F = {di,..,d,}, the fundamental segments of EIP(b) directed
according to <ar ¢

SET Guai=0,6:=F

REPEAT While G,y # G, repeat the following steps
Gold := G
(S-vector) construct the pair g := d; — d;

(reduction} reduce the vector g by the vectors in Ggog. I § # 0, set
G:=gu{g}

Second Step: Construct a minimal Grobner basis

REPEAT If for some g € G the Lail g* can be reduced by some g’ € §\{g},
then delete g from G.

Third Step: Construct the reduced Grobner basis

REPEAT Ifforsome g € § the head g" can be reduced by some ¢’ € ¢\{4},
then replace g by the corresponding reduced vector: § := ¢\{g} U j.

ouTPUT Gred = g.

Example 2.2 (The same as Example 2.1)

EIP : min{100y + 2; -+ 22 : v+ 32y + 220 = 6, (y,21,25 € N)}
Computing fundamental segments by interpreting binomials of I geometri-
cally,

T= (5 — 21,5% = 22) = (yPaad - y02lad, 7200 — 0alal)

So, the fundamental segments are:

di = [(3,0,0),(0,1,0)],d2 = [(2,0,0), (0,60, 1)]

Computing reduced Grobner basis G ¢

a1 = [(21 0, 0): (0: 0, 1—)]1 g2 = [(11 0, 1)| (01 1, U)]1

3 = [(11 1, 0)1 (03 0, 2)}1 4 = [(01 0, 3)| (0| 2, 0)]'

Deriving the optimal solution of IP4 ¢ (b} from the feasible solution (6,0,0)
by using Gps,c, we obtain the optimal solution: #, = 2,2y = 0, as in Fig.2.3.

\e 7N

Elerenta in redueed Grobnor basls

optimal selution

Figure 2.3: Example 2.2

3 Strategy 2: direct encoding

A typical approach of this strategy is the GRIN method. GRIN (GR&bner
basis for INteger programming) is an experimental software system devel-
oped by Serkan Hosten and Bernd Sturmfels for computing the Grébner
basis of a taric ideal, in particular, for solving an IP problem using Grébner
bases, The algorithm in GRIN introduces a new methed for computing
the reduced Grébner basis of the toric ideal which operales entirely in
k[e1, ..., Zn] rather than in the auxiliary polynomial ring k[y1, 11y ¥m, T1y -0y Tn-
In GRIN, two algorithms are implemented. Here we discuss only one.
First we give a definition of the toric ideal.

Definition 3.1 The toric ideal 1,4 is a binomial ideal constructed from ma-
trix A:

Ij={z"-z"1uy,v e N"u-ve ker(A))

The algorithm in GRIN works in three stages: stage 1 encodes an IP
problem P, ¢ into a subideal of the toric ideal I4; stage 2 computes the
toric ideal T4 from the subideal; stage 3 computes the reduced Grobner basis
of T4 with respect to cost function Cz.

Stages 1 and 3 are easy. We can encode 4 into a subideal of the toric ideal
I, by finding an arbitrary lattice basis for ker(A) with some methods such
as Hermit normal form algorithrn [7] or Smith normal form algorithm [2].
After we get the toric ideal T4, we can use Buchberger algorithm to compute
the reduced Grobner basis for 74. Here we focus on stage 2 computing the
toric ideal T4 from a subideal.

Definition 3.2 If { is a polynomial in k[z,...,2,} and J C k[zy,...,2,] is
ant ideal, then the [ollowing two subsets of kfz),...,z,] are again ideals:

(J:f):‘{g < k{El:--wwn] 1 fg € J}:

(J:f®)={g €klzr,..,zn]: ffg€J for some rc N}

A basic formula involving ideal quotients is (F : fg) = (I : f) 1 g). A
general method for computing Grobner bases of the ideals from generators
of J can be found in [5]. Il J is a homogeneous ideal and f is one of the
variables, say, f = a,,, then the algorithm for computing the Grobner basis
of the ideal from J is provided by the following lemma in [4].

Pirst we give a definition of the graded reverse lexicographic order.

10

Definition 3.3 {Graded Reverse Lexicographic Order > .0,z)
Let o, 3 € N", we say o >gpevter 3 if

lo| =375 o > 18] = L Biy or of =B8] and & > epres B
where >,y is the reverse lexicographic order (5].

We call this order graded reverse lexicographic order.
Lemma 3.1 Fix the graded reverse lexicographic order induced by z; >

. > 2n, and let § be the reduced Grébner basis of a homogeneous ideal
J C KE[zy, ..., zy]. Then the set

G'={f € §: e, does not divide f}U{f/z,: [€ G and z,, divides f}

is a Grobner basis of (J :). A Grobner basis of (J : f°°) is obtained by
dividing each element f € G by the highest power of z,, that divides f.

The term order used in Lemma 3.1 makes sense whenever the ideal J is
homogeneous with respect to some positive grading deg(x;) = d; > 0. By
iterating the Grébner basis computation n times with respect to diflerent
graded reverse lexicographic orders, that is, by applying Lemma 3.1 one
variable at a time, one can compute the ideal quotient

(J:{zizg- o 2n)®) = {{- (Jr21™) 22%) 0) 1 2,%)

So, il we find the relationship between the toric ideal Iy and ideal
guotient, we can compuate I4 and the reduced Grobner basis of 4. Let
B C ker(A), we associale a subicleal of I4:

Jp = (:t:""’ - 2" :vE B)

where v = vt — ¥~ is the usual decomposition into positive and negative
part. '
We have the following lemma whose proof is in [4].

Lernmma 3.2 A subset B spans the lattice ker(A) if and only if
(Jp:(ey-2n)T) =1y
From Lemma 3.1 and Lernma 3.3, we can prove the following proposition.

Proposition 3.1 Let Jo = (z*" —2¥" tv € Byand Jy = (Jioy 1 2,°) (i =
1,..m) with the graded reverse lexicographic order by making z; the reverse
lexicographically cheapest variable. Then Jy, is the toric ideal Z4.

11

The lemmas and proposition stated above give the following algorithm
which computes a Grobner basis of a toric ideal.

Algorithm 3.1 Algorithm 1 in GRIN

1.

Find any lattice basis B for ker(A).

{Optional) Replace B by a reduced lattice basis Bieq.

+

. Let Jg = (%" - g% 1 u € Bra).

Fori=1,..,n: Compute J; ;= (J;i— : ;) using Lemma 3.1, that is,
by making x; the reverse lexicographically cheapest variable.

Compute the reduced Grdbner basis of J, = I for the desired term
arder. If the term order is obtained from an ohjective function Ce,
then the computed reduced Grébner basis is the minimal test set of
IPsc.

Example 3.1 Let d = 4, n = 8 and constder the matrix A

e L0 b
a7)
| i N o
[I ST e
[=2 Y~V .
[b L R O
— 2 T
& = o oon

STEP 1 and STEP 2 :
Compute basis for the lattice ker(A), In this case we get the reduced
basis B,.q as Tollows.

o1 0 1 0 -1 06 -1
B0l 0 -3 0 0 0 2
=110 1 0 -1 0 -1 0

20 -2 0 ~1 0 1 0

Here the basis for ker(A) is expressed as a matrix whose every row is in
ker(A). In the new algorithm Minimised Geometric Buchberger Algorithm
in section 5, we will give another expression of a basis for ker(A) which is
better than this one,

12

STEP 3:
By splitling the vectors of B,.; into positive and negative parts, we get
the binomial ideal Jo associated with Breq :

2 3 2 2
JU = (312:1!4 — TgiLy, Lelg — T4, &1Ly — LTy, T1T7 — :1333:5)

STEP 4:

In this step, we need to make eight Grobner basis computations with
respect to certain graded reverse lexicographic orders, starting with Jp. Af-
ter each Grébner basis computation we need te divide out certain variables.
What we get after these eight Grébner bases computations is a generating
set of Ia,

Entering the loop in this step, we first compute the reduced Groébner
basis for Jg with respect to the graded reverse lexicographic order that makes
z1 the cheapest variable. Here is 27 < 20 < 23 < 24 < @5 < 25 < 27 < 28,
The result is

Co = {zfey — 22ef, 23 - 2dus, osnl — 27zl w25 — wawy, ws2e — aaz2}
Next we divide each binomial in Gy by =1 whenever possible, So for example
ez - «z? when divided by =, gives 23 — 22z, and none of the other can
be divided by z{the cheapest variable in the above order),

Then we get a new set J; which consists of all the binomials in Gg divided
by x, whenever possible.

Ji = (2d — 22ey, 23 — 2lwa, sl - zowl, wezs — wawy, wEs — Taka)

Now we compute the reduced Grébner basis &) for J; by using the
graded reverse lexicographic order that makes zg the cheapest variable. For
example we use the order 2y > ®g > 7 > Tg > 25 > T4 > o3 > &2 The
result is

Gy = {23 — zwq, ayes — T123, X3P — B4T2, 2123 — 23,

elwq — wgel, edzy — elel}
Dividing each binomial in Gy by =, whenever possible, we get Jg:

Jy = (@3 — 2deg, wywg — zyg, wewg — wawe, T12f — 23,

2iny — w23, iy - zled
Then we can repeat the process, each lime computing the reduced Gribner
basis Gy for J; by using the graded reverse lexicographic order Lhat makes
z;41 the cheapest variable and then dividing each binomial in G; by =iy, to
get J;y1. Finally we get Jg, that is the generating set of the toric ideal 4.

3 omZ
Jg = (e} — 2dws, 2} — 2dz;, zazy — zows, TG — v2oy,

. 2 3 .
zpzl — woe}, wlzg — 2f, 26z} — vizs, alzs - 2, wows - zarg)

13

STEP 5:

Now, we can use Jg as a generating set to compute the reduced Gréhner
basis of T4 with a fixed term order, Here, the reduced Grobner basis of T4
with respect to the lexicographic term order given by =y > x5 > 23 > 24 >
zg > T > @7 > zg equals

G = {2} — wazd, 2daq; — 2lzg, ziwy — w52y, 2123 - 2,

:L'g - :Eqw%, :E%l'g — 1'32:6, L9l4q — Tglsg, .'1:2'.1!% - IE%,
T4 - TETS, T] — TR}

4 Truncated Grobner bases

The computation of the entire reduced Grobner basis assoctated with the
family of programs TP, ¢, is often expensive or infeasible. In practice, we
are often interested in solving JP, ¢(b) for a fixed right hand side vector b,
which typleally requires only a subsel of the entire Grobner basis. In [13],
Thomas proposed a truncated Buchberger algorithm called b-Buchberger
algorithm for toric ideals that finds a sufficient test set for 1 P4 o(b). This
set is a proper subset of the reduced Grobner basis of T4, with respect to C.
So, by the algorithm, we can produce a minimal test set for 7Py ¢ whose
right hand side vector is smaller than or equal to b in a specific sense, which
greatly improves the computation.

Let Crn(A4) = {30, mia; : m; € N}, where a; is the ith column of the
matrix A (i = 1,..,n). Then Cy(4) is a monoid and the 1P, ¢(b) is feasible
if and only if b lies in C(A). We have the following lermma:

Lemma 4.1 The toric ideal 14 = @gecyya) 14 (B) where T4(8) is the vector
space spanned by the binomials {z* - 2V : Au = Av = f,u,v € N*}.

Let M denote the set of all monomials in kfz] = k[z},...,2,] where k is
a field. The monoids M and N" are isomorphie via the usual identification
of a monomial &% with iis exponent vector. Under this identification, the
monoid homomorphism 7 4 induces a multivariate grading of M and hence
k[z), where w4-degree of 2% is denoted by mg(z*) = wa{u) = du € Cn(4).
Let M(f) denote the monomials in a polynomial f € kfz].

Definition 4.1 A polynomial 0 # f € k[z] is said to be 7 4-homogeneous if
ma(s) = w4(t) for all monomials s,t € M(f). The m4-degree of a homoge-
neous polynomial f, denoted w4(f), equals the m4-degree of any monomial

in M{f).

With ahove L,emma 4.1 and Definition 4.1, we have the following lemma:

14

Lemma 4.2 The toric ideal 4 is homogeneous with respect to the grading
induced by 4.

Associated with the monoid Cy(A) there is a “natural” partial order
7 such that for by, by € Cy(A), & = by if and only if by — by € Cy(A).
Notice that when Cp{A) = N™, the partial order > coincides with the
componentwise partial order >,

Based on the above lemmas, we give b-Buchberger algorithm as follows.
Let NF(g 5 1(9) denote the normal form of a binomial g, modulo a set of
binomials G with term order >. and S-bin(g1,g2) denote the S-binomial of
two binomials g; and g».

Algorithm 4.1 b-Buchberger algorithm for toric ideals:

Input: A finite homogeneous binomnial basis ' of 4 and the term order
e

Output: A truncated {with respect to b) Grébner basis of I,4.

1= -1

Gop=F

Repeat
t=141

Giz1 = Gi U ({NFyg, 53 (S-binl(gi,92)) : 91,92 € Giywa(S-bin(gy, g2)} < b}\{0})
until G,'.|.1 = G,‘
Reduce G;;) modulo the leading monomials of its elements.

The algorithm 4.1 considers an S-binomial g = z* — 2" for reduction if
and only if m4(g) = Au = Av < b This amounts to checking feasibility if
the system {z € N*: Az = b — Au} which is as hard as solving the original
IP problem IP4c(b). Therefore, in order to implement the algorithm in
practice, Thomas proposed two relaxations of the above check. Consider
the S-binomial g = 2* — 2" € I4 {or reduction if

o b~ Au€ C(A) where C(4) = {4z : = ¢ R}, i.e., check feasibility of
the linear programming relaxation of the original check.

o b— Aue C{AYN ZA where ZA = {Az:z ¢ Z"}. This is a relaxation
of the original check since in general, Cy(A} is strictly contained in
C{AYN ZA.

15

In our implementation, we use the second check by introducing the Her-
mite normal form, see the Minimised Buchberger Geometric Algorithm in
section 5. When Op(A) = N™, we just use b — Au > 0, as the (ollowing
example,

Example 4.1 (continue with Example 3.1)

Consider Example 3.1 in section 3. Suppose we are interested only in
right hand side vector b = (ny, ng, ng,n4) which satisfies n; < 8 and ny <
8. According to the condition, the truncated Grébner basis equals {z3 ~
232}, 2123 - 527, To2yg — kg). Decause here Cy(A) = N4, the degree Au
of these three binomials are (3,6,9,12), (4,6,4,6) and (6,4,6,4), which satisfy
b — Au > 0, while for the other seven binomials, b — Au < (. Thus, they lie
outside of Cp{A).

5 The Minimised Geometric Buchberger Algorithm

Combining the GRIN method, the truncated Grébner bases and geomet-
ric Buchberger algorithm together, we propose a new Buchberger algorithm
called Minimised Geometric Buchberger Algorithm (MGBA) for IP prob-
lems. The idea hehind the new algorithm is that for a special IP problem
I P4 ¢(b) with fixed b, its minimal test set corresponds to a truncated reduced
Gribner basis of the toric ideal J4. We encode 1Py ¢(b) into a subideal of
1, first, and then compute T4 using GRIN method, finally compute the
truncated reduced Grobner basis of 7,4 with b-Buchberger algorithm. We
formulate the algorithm in the original space of IP4 ¢ without introducing
any additional variables and interpret all steps of the algorithm geometri-
cally. This truncated reduced Grébner basis, i.e., the minimal test set for
IP, ¢ (b) that we obtained is a subset of the test set for TPy o. So, with the
new algorithm, we can achieve consicderable improvements in the efficiency
and applicability of the Grobner basis technique for IP.

Belore giving the description of the algorithm, we need to introduce the
Hermile normal form 7] from which we compute the lattice basis of ker(4).

Definition 5.1 Let H be an m X m nonsingular integer matrix and h;; € H
fori=1,,.,m and j = 1,...,m. H is said to be in Hermite normal form il

(a) hij =0for i< j,
(b) hi > 0fori=1,..,m, and

(¢} hij €0 and |hi;| < by for i > 3.

16

Definition 5.2 Let R be a nonsingular integer matrix. Then R is called
unimodular if' R has determinant 1.

Theorem 5.1 1f 4 is an m X n integer matrix with rank{A)=m, then there
exists an n X n unimodular matrix R such that:

{a) AR = (H,0) and H is in Hermite normal form, and

(b) H~1'A is an integer matrix.

(H,0) is called the Hermite normal form of A. In 7], is shown a polynomial-
time algorithm, called Hermite Normal Form Algorithm for finding R and
H which serves as a constructive proof of Theorem 5.1, It also can he shown
that H is unique. We have the following theorem in [7].

Theorem 5.2 Let S ={z € Z" : Az = b} and let H and R = (R, R3) be

as in Theorem 5.1, with B; an n X m matrix and Ry an 2 X (n —m) matrix.
(a) S5 Bifand only if H-1b € Z™.
(b) If S 3# 0, every solution of S is of the form

2= Ry H Y+ Roz, 2 2™ ™

From Theorem 5.2, we have a computation of a basis for ker(A) as stated
in the following theorem:

Theorem 5.3 Lel B be a basis for ker(A4) and let H and R = (R, Ry}
be as in Theorem 5.2. Then B = {» : r; is the ith column of A2 and
i=1,.,mn —m}

Proof: Supposec 2 € ker(A). Then Az = 0. From Theorem 5.2, we
have
T = RL.H_IU 4 Rotws = Raws
where w9 is an arbitrary (n — m)-vector of integers.
Thus,
t-m

£ = E YT

=1

where r; is the ith column of Ry and v € Z, ¢ = 1,..,n ~ m2,
Therefore, B = {r; : #; is the ith column of Ry and i=1,.,n - m}, 0

17

So, by the Hermite Normal Form Algorithm [7], we can compute J and
R = (R, Ry) for a matrix A, as well as a basis for ker{A).

Now we are ready to describe our new algorithm MGBA. In this algo-
rithm, the segment vector is slightly different from one in the geometric
Buchberger algorithm. For a vector d = [, 8] in our algorithm, o, 8 € N™
and o is more expensive than 8 according to the term order <, defined as
follow:

g < et < aC?
c® =) BOT =aCT and B <o

where <, is encoded from the objective function Cz of IP4 ¢ and <, is the
lexicographic order. The fundamental segments in MGBA are constructed
by interpreting the binomials of toric ideal I = (2%" — 2*” : u € ker(A))
geometrically.

Algorithm 5.1 Minimised Buchberger Geometric Algorithm

1. Compute lattice basis B for ker(A)

(1.1) Use the Hermite normal form algorithm in [7] to compute H
and R = (R, Ry).

(1.2) Compute the basis B:
B = {7; : r; is the ith column of By and i =1,..,n - m}
2. Reduce B into reduced lattice basis B,.4

Here we use Reduced Basis Algorithm in [7] Lo compute the reduced
lattice basis Breq. The purpose of this step is to make smaller some
big numbers in A so that we can speed up the [ollowing computation
by using the simplified (reduced) basis,

3., Compute toric ideal 14

(3.1) Compute a subideal of T4 based on B,.4
Jg = (m“'F ~ 2% 1 U € Bued)

Then interpret each binomial in Jy as a vector by reading off its
exponents. Here we can directly translate an element of B,.q4 into
a vector of Jy. For example, let u € B,.q and u = (1,2, -1, -2),
then the translated vector v = [(1, 2,0,0),(0,0,1, 2)].

18

{3.2) Fori=1,2,..,n: Compute J; := (Ji_1 : 2;°°) geometrically by
making z; the reverse lexicographically cheapest variable. Here
each J; is in geometric term, i.e, its elements are all vectors.
So, we use Geometric Buchberger Algorithm (Algorithm 2.1) to
compute the reduced Grébner basis for each J;, i = 1,..., n.

4. Compute the truncated Grébner basis G (b) of T4 with order <,

Input: generating set J, of toric ideal T4 and term order <,
Output: truncated reduced Grober basis G (b)

{4.1) Construct a Gribner hasis
In the first step of Algorithm 2.1 (Geometric Buchberger algo-
rithm) we add a related check of the truncated Grobner basis
into the computation of S-vector :

b—Aue C(AYNZA where ZA = {Az: z € Z"}

we check whether there exists a feasible solution for § = {z ¢
Z™: Az = b — Au} by (a) of Theorem 5.2 stated as follow:

S is not empty if and only if A=Y (b - Au) € Z™

{4.2) Construct a minimal Grdbner basis
This step is the same as the second step of Algorithm 2.1,

(4.8) Construct the reduced Grébner basis
This step is the same as the third step of Algorithm 2.1.

We illustrate the whole procedure of the above algorithm by the {ollowing
example.

Example 5.1 We consider the following 1P problem I P4 ¢ (b):
minimise z}-+8zy + 823 - 1624 - 225 + 226 + 227 -+ 2zg subject to
zy + 229 + 3zg + 4y + wg + 427+ Sz =7,
22y + 32 + dug -+ 24+ 25 Az ber =7,
e+ dxqy + 23 - 234 -+ dzy -+ brg |- 2g = 13,
By 22y - 323 4zyq - Gag + 26 + 227 -+ dzg = 17,

19

We have the coeflicient matrix A, vector C and b as [ollows.

1 23401 4°%5
A 2 3411450
"1 34124501
5 2 3461 265

C=(1,8,8,16,2,2,2,2) b=(7,7,13,17)

STEP 1.1: We use the Hermite normal form algorithm to compute H
and R for A and obtain a basis B for ker(A4) as follows.

1 0 0 0 00D 0D
0 1 0 0 0000
H=1 1 9 2 00000
~11 -12 -2 22 0 0 0 O
-3 -3 -2 7 -3 0 -4 0
2 1 1 -3 0 -3 0 -4
0o 0 0 0 1 0 0 0
Rl 0 0 0 0 0 1 0 0
1o o 1 -1 2 ¢ 3 0
0 1 -0 -1 0 2 0 3
0 0 0 0 0 0 1 0
o 0 0 0 0 0 0 1
Then,
[-3 0 -4 0
0 -3 0 -4
1 0 0 0
0 1 0 0
B=| 49 o 3 o
0 2 0 3
0 0 1 0
\0 o0 0 1

From R we can get the basis B for ker(A):
B = {(—3,0,1,0,2,0,0,0),(0,-3,0,1,U,2,0,0),(-4,0,0,0,3,0,1,0),(0,—4,0,0,0,3,0,1)}
STEP 2: We compute the reduced basis B,.q for ker(A)} and get:

20

B,eq = {(-1,0,-1,0,1,0,1,0),(0,-1,0,-1,0,1,0,1},(-2,0,2,0,1,0,-1,0),(0,-2,0,2,0,1,0,-
1)}

STEP 3.1: We interpret each element ol B, .4 as a vector. For example,
(-1,0,-1,0,1,0,1,0) is translated to the vector [(0,0,0,0,1,0,1,0), (1, 0,1,0,0,0,0,0)].
So, we obtain a subideal of J4 as follow.

Jo={((0,0,0,0,1,0,1,0),(1,0,1,6,0,0,0,0)}, (0,0, 0,0,0,1,0, 1),(0,1,0,1,0, 0,0, 0)],
[(0,0,2,0,1,9,0,0),(2,0,0,0,0,0,1,0)],[(0,0,0,2,0,1,0,0),(0,2,0,0,0,0,0, 1))

STEP 3.2: We compute the toric ideal f4. First we use Algorithm
2.1 to compute the reduced Grdbner basis for Jp with respect to graded
reverse lexicographic order that makes z; the cheapest variable. Here is
7)< 2y <23 < g <@g < 25 < Ty < xg. The result is

GU: {[(0’010) 0!13 01110)!(1)01 1103 0! 0! 01 U)]![(Ol O: OIOI 0111011)1(0111 L] !010101 0)
[(0!0!2! 0113 01010)l (2?01010! 0! 0? 1‘) 0)]![(010!0!21 01 11010)|(012I] 103010| 1)
[(1,9,3,0,0,0,0,0), (2,0,0,0,0,0,2,0)],[(0, 1,0, 3,0,0,0,0},(0,2,0,0,0,0,0, 2)

L
]]
1}
Next we divide each vector in Gy by =y whenever possible, removing
the common factor z, from two mmonomials, For example {(1,0,3,0,0,0,0,0),
(2,0,0,0,0,0,2,0)} when divided by =, gives|(0, 0, 3,0,0,0,0,0), (1,0,0,0,0,0,2,0)]
and none of the other can be divided by =; (the cheapest variable in the
above order).
Then we get a new set J; which consists of all the vectors in 7y divided
by z; whenever possible,

JJ. = ({(Ov 0,0,0,1,0,1,0), (11- 0,1,0,0,0,0,0)] [(0:0) 0$0r01 1!0))m {0:1) 01110101010)]1
[(0,0,2,0,1,0,0,0), (2,0,0, 0,0,0,1,0)],[(0,0,0,2,0,1,0,0), (0,2,0,0,0,0,0,1)],
[(0,0,3,0,0,0,8,0), (1,0,0,0,0,0,2,0)],[(0,1,0,3,0,0,0, 0), (0,2,0,0,0,0,0,2)])

Now we compute reduced Grobner basis G for Jy by using the graded
reverse lexicographic order that makes =, the cheapest variable. The order
iszy > 2g > 27> eg D> @p > T4 > £3 > T3, LThe result is

Gy = {[(0,0,9,0,1,0,1,0), (1,0, 1,0,0,0,0,0)],[(6,0,0,0,0, 1,0,1), {
[(2,0,0,0,0,0,1,0),(0,0,2,0,1,0,0,0)], (0, 0,0,2,0,1,0,0), (
[(1,0,0,0,0,0,2,0),(0,0,3,0,0,0,0,0)},{(0, 1,0, 3,0,0,0,0),
[(3,0,1,0,0,0,0,0),(0,0,2,0,2,0,0,0)]}

LB B |

Dividing each binomial in G| by xs whenever possible, we get Jy:

J» = {[(0,0,0,0,1,0,1,0), (1,0,1,0,0,0,0,0)],{(0,0,0,9,0,1,0, 1), (0, 1,0, 1,0,0,0,0],
(2,0,0,0,0,0,1,0),(0,0,2,0,1,0,0,0)],{(0,0,0,2,0,1,0,0), (0, 2,0, 0,0,0,0,1)],
[(1,0,0,0,0,0,2,0),(0,0,3,0,0,0,0,0)],((0,0,0,3,0,0,0, 0), (0, 1,0, 0,0, 0,0, 2}],
[(3,0,1,0,0,0,0,0), (0,0,2,0,2,0,0, 0)]}

21

Then we can repeat the process, each time computing reduced Grobner
basis G; for J; by using graded reverse lexicographic order that makes z;;
the cheapest variable and then dividing each vector in G; by 2, to get
Ji1- Finally we get Jg, that is the the toric ideal T4,

Jy = ({(0,0,0,0,1,0,1,0),(1,0,1,0,0,0,0,0)], [(0,1,0,1,0,0,0,0,(0,0,0,0,0,1,0,1)],
[(0,0,2,0,1,0,0,0,(2,0,0,0,0,0,1,0)], [(0,0,0,2,0,1,0,0),{0,2,0,0,0,0,0,1)],
[(0,0,3,0,0,0,0,0),(1,0,0,0,0,0,2,0)], [(0,0,0,3,0,0,0,0),(0,1,0,0,0,0,0,2}],
[(0,0,1,0,2,0,0,0),(3,0,0,0,0,0,0,0], [(6,0,0,1,0,2,0,0),(0,3,8,0,0,0,0,0)],
[(0?41010!0!(]?0]0),(0)010101013!011)])

STEP 4: In this step, we can use Jg as the fundamental segments to
compute truncated reduced Grobner basis of T4 with fixed right hand side b
and cost function C'z. The test set for 1Py (), i.e., the truncated reduced
Grobner basis is:

g>:(b) - {[(1,0,1,0,0,0,0‘0)1(0,0,0,0,1,0‘1,0)]‘ [(0,1,0,1.0,0,0,0),(0,0,0,0,0,1,0,1)],
[(0,0,2,0,1,0,0,0),(2,0,0,0,0,0,1,0)], [{0,0,0,2,0,1,0,0),(0,2,0,0,0,0,0,1}},
[(0,0,3,0,0,0,0,0),(1,0,0,0,0,0,2,0)}, [(0,0,0,3,0,0,0,0),(0,1,0,0,0,0,0,2)],
[(0,0,1,0,2,0,0,0),(3,0,0,0,0,0,0,0)], [(0,3,0,0,0,0,0,0),(0,0,0,1,0,2,0,0)]}

For any feasible solution of the problem IP4 o(b), we can derive an
optimal solution by using the above test set to reduce this feasible solution,
For example, we have a feasible solution:

t=lzy=1e3=0,za=125=1,2=0, 2 =0, zg =0
Then we can gel an optimal solution:
ep=12p=0,e3=0, 24=0, z5 =1, tg=1 27 =0, 2g3=1

Theorem 5.4 The algorithm MGBA terminates after a finite number of
steps and its output is the unique minimal test set for TPy ¢ (b).

Proof: TFiniteness of the algorithm is clear since the Hermite normal form
algorithm, the Buchberger algorithm and b-Buchberger algorithm all termi-
nate in finitely many steps,

By Proposition 3.1, we obtain the toric ideal 74 in step 3. Because
the generating set of the toric ideal T4 is a set of fundamental segments
for /P4 ¢, the geometric Buchberger algerithm and b-Buchberger algorithm

22

guarantee that we can obtain the truncated reduced Grébner basis G (b)
for I Py c(b) with the term order <, in step 4. Now, we study G (b) from a
completely geometric point of view. With G, (b), we can build a connected,
directed graph for only one fiber (b-fiber) of IP4¢(d). The nodes of the
graph are all the lattice points in the fiber and the edges are the translatjons
of elements in G, (b) by nonnegative integral vectors. By Theorem 2.1.8.
in [12], the graph has a unique sink at the unigue optimum in this fiber.
In this graph, there exists a directed path from every nonoptimal point to
the unique optimum. So, the reduced Grobner basis G (b} is a test set for
IP4c(b). By Corollary 2,1.10. in {12}, we can prove G, (b) is the unique
minimal test set for P4 ¢(b), depending on 4, < and b.]

6 Implementation, Experiment and Comparison

We have implemented the Minimised Geomnetric Buchberger Algorithm in
the language C and developed a solver, called MGBS (Minimised Geometric
Buchberger Solver) for IP on a Sun Ultra Enterprise 3000. MGBS works
in two stages: the first stage is to compute a test set (reduced Grdbner
basis} G4 (b) for TPy ¢(b) based on MGBA, the second is to find a feasible
solution and derive the optimal sclution for TPy ¢(b) by using G (b) to
reduce the feasible solution, MGBS is connected via MathLink and CGI to
the modelling IP system TIP [10]. When MGBS is called in Web page with
an IP model (an objective function and a set of constraints), MGBS will
solve the 1P model and send the result (an optimal solution or a message
“no feasible solution”) to the Web page via CGI.

The main difficulty with MGBS is the computation of Grébner bases.
MGBS uses conventional Grobner basis techniques to speed up this com-
putation whenever this is suitable. For example, we make effective use of
criteria to cul down the number of S-pairs, which is a bottleneck during
the computations, However, the criteria which proved to be inefficient lor
the binomial case, such as Gebauer’s B-criterion [11], are “switched off™.
It is a common strategy to keep the set of binomials throughout the entire
Gribner basis computation as reduced as possible. We implemented this
idea by doing global reductions periodically (whenever new elements of the
size of a fixed percentage of the current basis are created) as opposed to
doing it every time a new binomial is added. Another important strategy is
the extraclion of common monomial {actors in every newly created S-pair,
This extraction is justified by the fact that the toric ideal 14 is a prime ideal
not containing any common monomials. The above idea proved to be very

23

effective, leading to reductions as much as 40-50% in execution time,

We have implemented the Geometric Buchberger Algorithm (GBA), the
Truncated Geometric Buchberger Algorithm (TGBA) and the algorithm in
GRIN, simply called GRIN by language C respectively on the Sun Ultra
Enterprise 3000. We have carried out experiments by running MGBS on
randomly generated matrices A of various sizes (ranging from 3x 7 to 8 x 16)
with nonnegative entries in a range between 0 and 20. We generate random
right hand sides b to compute truncated Grébner basis G_(b). For each test
instance (A,C,b) three comparisons are made with GBA, TGBA and GRIN.

Table 1: Experimental Result

Probleins | Entries MGBA GRIN TGBA GBA
Size | Time | Size | Time | Size] Time Size | Time
Al3x7.1 0-20 17 0.34 31 0.55 212 68.84 245 420.90
Adx7.2 0-20 20 2.26 69 4,64 236 78.68 345 1129.26
A3x7.3 (-20 26 3.88 72 5.42 237 79.88 723 4746.13
Adx8.1 0-20 21 4.30 95 40,29 823 8476.86 { 3390 | 35118.24
Adx8.2 0-20 25 17.72 | 1063 | 116.40 847 991319 | 3831 | 39426.20
Adx8.3 0-20 33 92.37 | 124 | 217.30 949 | 12118.89 | 4814 | 42042.16
Abx10.1 0-4 55 65.72 86 | 70.57 1143 826.27 1766 | 11887.24
Abx10.2 0-4 Y4 65.89 92 73.18 1171 806.76 1830 | 11995.97
A5x10.3 0-4 65 66.42 | 102 73.38 1284 930.23 2014 | 12207.70
Abxi2.1 0-3 100 | 112.29 | 181 | 256.54 | 1300 [1569.63 { 2353 | 18600.83
Abx12.2 0-3 153 | 189.87 | 418 | 1348.34 | 3304 | 3671.52 | 5026 | 24189.12
Abx12.3 -3 267 | 358.39 | 709 | 3119.38 | 7872 | 85h93.21] 9590 | 35870.38
A8x16.1 0-1 11 6.76 20 7.46 48 13.89 63 15.67
A8x16.2 0-1 18 | 210,78 | 26 215.72 136 267.36 702 6385.31
A8x16.3 0-1 19 1 212,60 [30 215,77 167 313.45 928 8250.13

The result of the comparisons is summarised in Table 1, The first column

of the table indicates IP problemns with their coeflicient matrix A. For
example, A3x7.1 represents No.l TP problem with 3 x 7 integer matrix A.
The range of the entries used in the problems are given in the second column,
The third and fourth columns give the size of the truncated reduced Grébner
hasis and the execution time for computing it for each problem with MGBA.

24

The fifth and sixth columns give two kinds of data (size and execution time)
for GRIN. The seventh and eighth columns are for TGBA. The last two
columns are for GBA. The timings are in CPU seconds on the Sun Ultra
Enterprise 3000.

From Table 1, we can see the reduced Grébner basis in GBA is the
biggest one ameng the all algorithms because of the introduction of addi-
tional variables. Also the execution time is longest. For TGBA, because the
algorithm computes the reduced Grobner basis by fixing b, we can see the
size of the reduced Grobner basis in TGBA is less than that in GBA. But
it is greater than that in GRIN and MGBA, because TGBA still introduces
the additional variables to compute the reduced Grobner basis. The size of
the reduced Gréobner basis generated by MGBA is much less than those in
the other three algorithms and alse the performance in MGBA is the best.

7 Conclusions

We have proposed a new algorithm called Minimised Geometric Buchberger
Algorithm for integer programming. It combines the GRIN method and
the truncated Grobner bases method to compute a generating set of the
Grdbner bases in the original space and then refine it into a minimal test set
i.e. atruncated reduced Grobner basis of T Py ¢ (b) with fixed right hand side.
Our preliminary experiments indicate that the algorithm is much faster than
others such as the geometric Buchberger algorithm, the truncated geometric
Buchberger algorithm and the algorithm in GRIN.

At present, the application of our algorithm MGBA is confined to small
and middie size of 1P prablems. The prototype MGBS is not competitive in
computing speed to popular commercial software such as CPLEX. However,
we clearly see a new direction of research in solving IP problem using the
theory of Grébner bases. We would like to emphasize the importance of the
symbolic methods of applying Grébner basis technique for solving IP prob-
lems. Bspecially MGBA becomes mare attractive when we tackle stochastic
IP problems in [16]. The property of Grébner basis corresponding directly
to the test set of the IP problem does seem particularly useful for solving the
classes of stochastic problems where some or all variables are integer valued
which the general numerical methods can not handle. In this context, com-
puting the Gribner basis is still the main difficulty. So, with our algorithm
for the test set of IP, we can provide an efficient method for solving the
stochastic TP problems in [16). Future research will be parallelisation of our
algorithm and the application of the algorithm to stochastic IP problems.

25

References

[1]

2]

(3]

(5]

[6]

A Heck, Introduction to Maple, ¢ compuler algebre syslem. Springer-
Verlag, 1993.

A. Schrijver, Theory of Linear and Integer Programming . John Wiley
& Sons Ltd, 1986.

B. Buchberger, Grébner bases: an algorithm method in polynomial ideal
theory. in Multidimensional Systems Theory (N.K.Bose ed.), Reidel,
Dordrecht, pp. 184-232, 1985.

B. Sturmlels, Gribner Bases and Convez Polytopes. American Mathe-
matical Society, volume 8. 1996.

D. Cox, J. Little and D. O’Shea, Ideals, varieties and algorithms,
Springer, New York, 1992,

Daniel R. Grayson and Michael E. Stillman, Macaulay 2, a
software system for research in algebraic geomelry. Available at
http://www.math.uiuc.edu/Macaulay2,

G. L. Nemhauser and L. A. Wolsey, Integer and combinatorial optimiza-
tion. Wiley-Interscience Series in Discrete Mathematics and Optimiza-
tion, New York, 1688,

P. Conti and C,Traverso, Buchberger algorithm and integer programming.
Proceedings AAECC-9, New Orleans, pp. 130-139, LNCS 539 Springer-
Verlag.

Q.Li, Y.K.Guo and T.Ida, A parallel algebraic approach towards in-
teger programming. Proceedings ol the IASTED International Confer-
ence on Parallel and Distributed Computing and Systems, Washing-
ton,D.C,,U.3.A. , pp. 59-64, 1997,

(10] Q.Li, Y.K.Guo and 'T\lda, Madelling integer programming with logic:

Language and implementation. IEICE Trans. Fundamentals of Electron-
ics, Communications and Computer Sciences, to appear.

[t1] R. Gebauer and H. M. Méller, On an tnstallation of Buchberger’s algo-

rithm. Journal of Symbolic Conmputation 6:275-286, 1988.

(t2] R. R. Thomas, A geometric Buchberger algorithm for integer program-

ming. Mathematics of Operations Research 20:864-884, 1995,

26

[13] R. R. Thomas and R. Weismantel, Truncated Gribner buses for infeger
programming. Applicable Algebra in Engineering, Communication and
Computing 8:241-257, 1997,

(14] S. Hosten and B. Sturmfels, Grin: An implementation of Grébner bases
for integer programming. In Balas, E., Clausen, J., editors, Integer Pro-
gramming and Combinatorial Optimization, pp. 207-276, LNCS 920
Springer-Verlag,

[15] W. W. Adams and P. Loustaunau, An Inlreduction to Grébner bases.
American Mathematical Society, volume 3, 1994.

[16] S. R. Tayur, R. R. Thomas and N. R. Natrj, An algebruic geoinetry
algorithm for scheduling in presence of setups and correluled demands.
Mathematical Programming 69:369-401, 1995,

27

Higher-order Lazy Narrowing Calculus: a Solver
for Higher-order Equations

Tetsuo Idal, Mircea Marin!, and Taro Suzuki?

! Institute of Information Sciences and Electronics
University of Tsnkuba, Tsukuba 305-8573, Japan
{mmarin,ida}@score.is.tsukuba.ac.jp
? Department of Computer Software
Universily of Aizu, Aizu Wakamatsu 965-8580, Japan
tarcQu-aizu.ac. jp

Abstract. This paper introduces a higher-order lazy narrowing ealen-
lus (HOLN for short) that solves higher-order equations over the do-
main of simply typed A-terms. HOLN is an extension and refinement of
Prehofer's higher-order narrowing calewins LN using the techniques de-
veloped in the refinement of a first-order lazy narrowing caleulus LNC.
HOLN is defined to deal with both unoriented and oriented equations.
It keeps track of the variables which are to be bound to normalized an-
swers. We discuss the operating principle of HOLN, its main properties,
i.e. soundness and completeness, and its further refinements. The solving
capability of HOLN is iHustrated with an example of program calcula-
tion.

1 Introduction

Proving, solving and computing are the essence of mathematicians® activities [2].
Correspondiingly, modern prograimmers’ role can be thought of as automating
proving, solving and computing by delining specifications called programs. Tra-
ditionally, computing is the main concern of many prograwmmers, and relatively
smaller emphasis has been placed on the other two aspects of our activities. As
compitber science has become matored and demand for clarity and rigor is ever
increasing as information technologies penetrate into our daily lile, more and
more programmers become concerned with proving and solving,

In this paper, we are concerned with the solving aspect of programming and
present a solver which is a camputation model for a prograimming language buili
upon the notion of equational solving, Let us start with fimctional programming,.
In Tunctional prograwmming we are interested in specifying a set R of rewrite rules
as a program and then compute the normal forms of a teym ¢, if the normal form
exists. Formally, the problem stalement is to prove the following formula:

dst —p s and s is a normal form,

Usually, R is assumed to be confluent, and hence s is unique.

Proving the above statement is easy since all we have to do is to rewrite
the term ¢ vepeatedly hy applying the rewrite rules in R until it no longer gets
rewritten. So the main concern here is not how to prove the statement, but how
Lo rewrite the term ¢ efficiently to its normal form il the normal form exists. The
problem is generalized as [ollows.

Let ¢t and ¢ be terins that may contain multiple free occurrences of a variable
X. Prove 3X.t % 1" such thal X is a normal form.

Proving an existentially quantified forimula by presenting a value that in-
stantiates X is called selving. In particular, when an equality is defined as the
reflexive, transitive and symmetric closure of —x as above, we call this equational
solving {with respect to R}. Solving an equation is significantly difficult since
(i} rewriting is nol uni-directional, and (ii) we have to find & value for X heiore
we perlorin rewriting. Indeed, various specialized methods have been developed
for solving equations defined over specific domains, e.g. Gaussian elimination for
solving a system of linear equations defined over reals.

In this paper we are primarily interested in solving equations over purely
syntactic domains consisting of terms of simply Lyped A-calculus. It is a domain
ol choice when we are reasoning about programs. Therelore the main theme of
our paper is to show a method for solving high-order equations.

Tu the Arst-order setting where the domain is the Herbrand universe, methoels
for solving equatiens called paramaoculaiion and narrowing are known. Narrow-
ing is an E-unification procedure (F for Equational theory), and hence il can be
nalurally specified as a set of inference rules extending the rule-based specifica-
tion of the unification algorithm [7}. The inference rules are used to recursively
transform an equation into (hopefully} simpler equations.

There are pioneering works on extending narrowing to the higher-order case.
A first systematic study of higher-order narrowing appeared in Prehofer's the-
sis [10]. It presents o higher-order lazy narrowing caleulus thal can be imple-
mented relatively easily. It also has been shown that higher-order lazy narrowing
is highly nondeterministic. Wherens various refinements have heen developed to
rednee the search space lor solutions of first-order narrowing, the situation is
much more complicated and difficult in the higher-order case.

With these obscrvations in mind, we will first present a higher-order lazy
narrowing caleuius to be called HOLN in a general setting in order to expose ils
essential ingredients, as well as to enable [urther systematic refinements.

The rest of this paper is organized as follows. In Sect. 2 we introduce our main
notions and notations. In Sect. 3 we define our main calculus HOLN and outline
its properties. In Sect. 4 we describe the refinements of HOLN towards more
deterministic computation. In Sect. 6 we illustrate by an example the solving
capabitities of HOLN. Finally, in Sect, 7 we draw some conclusions and outline
cirections of further research,

2 Preliminaries

We use a slightly modified framework of simply typed A-terims proposed in {10},
The main ingredients of our framework are:

— the set of all types T generated by a fixed set of base types ancd the function
space construetor —,

— an algebra T(F,V) of simply typed Mterms generated from a set F of
T-typed constants and a set ¥V ol T-typed variables. We denote terms by
the letters s,¢,!, 7, u possibly with a subscript. Instead of Az ... Azx,.5 we
write ATn.s, where the z; are assumed to be distinct. Similarly, instead ol
(... (s t)...) ty we write 8({,). The subscript n will be omitlect when irrel-
evant. The set of free variables in a term ¢ is denoted by vars(t).

- afully extended pattern rewrite system (EPRS for short} R, which is a finite
set of pairs | — 7 such that

o ! and r are A-terms of the same base type,

o vars(r) C vars(l),

o 1is of the form f(I,), where f € F and ly,.... 1, are fully crtended
patierns. A patbern is a term such that all its {ree variable ocourrences
have distinct bound variables as arguments. A fully crtended paltern is
a pattern such that all its free variable occurrences take as arguments
all the variables that are A-abstraclted above its position.

Given an EPRS R, we regard F as a disjoint union Fy @ F,, where Fy =
{f € F|AS(Ia) = 7) € R) is the set of defined symbols, and F,. = F\ Fy
is the set of consiructors.

— equalions e, ey, es,. .., which are pairs of terms of the same type. We distin-
guish oriented equations denoted by s 1> ¢ and unoriented equations denoted
by s = t. A equational goal {goal for short}) is a pair Elw where £ is a
sequence of equations ¢y, ..., e,, abbreviated &;, and W is a set of free vari-
ables. The elements of W are called Lhe solution variables of the given poal.

Unoriented equations are the usual equations used in everyday mathematics,
and oriented equations were introduced in our formulation of narrowing Lo wark
equations generated in the process of solving equations. Although the latter can
be confined intermediate, we rather give them a first-class stalus by allowing
oriented equations in an initial goal. Having boih oriented and inoriented equa-
Lions os syntactically distinct objects of study gives ns more [reedom for writing
equational programs and also facilitates the understanding of the solving process.

We regard a goal as a pair consisting of a sequence of equations which denotes
the existential closure of their logical conjunction, and a set of variables that we
want to have bound o R-normalized solutions. The reasons for this notion of
goal are (i) that we are only mterested in computing R-normalized solutious,
and (ii) that it allows us to keep track of the free variables Lhat have 1o be
instanliated to R-normalized tenns, as we will see later.

We use the following naming conventions: X, Y, Z, H. possibly primed or with
a subscript, denote free variables; x,y, z, possibly primed or with a subseript,

denote bound variables; and v denotes a constant or a bound variable. A sequence
of syntactic objecks ob, ..., 0by where n 2 {) is nbbreviated oby,.
We identify any A-termn ¢ with its so called long By-normal form delined by

1% = (L),

where t| g denotes the g-normal form ol ¢, and 117 the 5-expanded normal form of
L. The transformation of ¢ to t}} is assumed to be implicit. With this convention,
every A-term ¢ can be uniguely written as AT,.a(%,,) where « is either a constant,
bound variable, or free variable. The symbol a is called the head of ¢ and is
denoted by head(i). A term { is flex if head{t) € vars(t}, and rigid olherwise. To
simplily the notation, we will often relax the convention mentioned above and
represent Lerms by their g-normal form.

An EPRS R induces a rewrite relation —x as usual. In cach step of rowriting
we employ an T-lifted rewrile rule instenad of a rewrite rule {10]. From now on
we assiine that R is an EPRS.

The size | of a term ¢ is the mumber of symbols occurring in ¢, nol eounting
A-binders. In the case of an equation e, its size |e| is Lhe sum ol the sizes of the
terms of both sides. For a sequence &, of equations, its size is L1, |e;].

A substitution is & mapping v : V — T(F, V) such that its domain Dom({~)
is finite, where Dom{~) is the set {X € V| (X) # X}. When Dom(y) =
{X1,--., Xn). we mny write v as {X; — (X)), ..., X0 — (X0} The empty
substitution ¢ is the substitution with empty domain. The homomorphic exten-
sion ol a substitution is defined as usual, and we abuse the notation and use -
[or s homomorphic extension. We denote by i the image of a lerm £ via the
homomorphic extension of a substitution .

A substitution - is R-normalized iff 4(X) is an —g-normal form for all
X € Dom(v). Given a finite set ol free variables V, we define the resiriction of
yioV by yiv(X)=4X)I X eV, and yv(X)= X il X € V\ V. We define
the relation v < 2 [V] as I0,¥X €V . Xya = X 0.

A snbstitution v is a selution of an equation e, notation R + ev, if there
exists o rewrite derivation [of the form (i) sy =% tv, if e = s & [, and (ii)
&7 o by, i e = 5 =~ 1. Buch an R is called a rewrite proof thal v is a solution
of e. v is & sofution of a goal |y, notation v € Solg (g7 |w), if vlw is an R-
normalized substitution and R F egy for all 1 <k < n. Given v € Solp (Ehw),
a rewrite proof of v € Solg (Flw) is a mapping p which maps every equation ¢
of £ to a rewrite prool that v is a solution of e. We denote by {72] the length of
a rewrile derivation K.

3 The Calculus HOLN

Now we are ready to lormulate our problem.

Narrowing problem. Given an FPRSR and a goal Elyy, find a sel Ansz(E|w)
C Selp (Elw) such thal for any solulion v of Elw there exists @ € Ansg(Elw)
and § < 5 [vars(IF)].

HOLN (Higher-Order Lazy Narrowing calculus) is designed to give an answer to
this narrowing problem.

3.1 Inference rules of HOLN

HOLN consists of three groups of inference rules: preunification rules, narrowing
rules, and removal rules of flex equations. The inference rules are relations of
the lorm
(E1 e, Ep) lw=>ae (10, E, Exl) |w

where ¢ is the labe] of the inference rule, € is the selected equation, & is the
substitution computed in this inference step, W’ = | Jy oy vars(X9), and E is
a sequence of equations called the descendants of e. We aclopt the tollowing
notational conventions: s B> ¢ stands for s = for L = s or s > ¢; and s = ¢ stands
for either s = ¢, { = 5, s > t or L [» 5. We agsume that the usage of the symbols
I and & in both sides of an inference rule preserves the orientation of equations.
Whenever used, H, Hy, Ha, ... are assumed to be fresh variables.

Preunification rules
[i} Tmitation.
If g € F then

(E\, AT.X(5m) 2 MAT.9(Tn), o)l = pe (B, AT Ha(F) = XE da, E2)0lwer
where 8 = {X — AT 0(Ha (T) }-

[p] Projection.
I A%t is rigid then

(E1, AT X(5m) 2 AT Ea) lw =g (£1, XX (5n) 2 AT.L, E7) 8w

where 0 = {X — A 4l Hn([T))}
[d] Decomposition.

(£, NEu(F) & AT (), Bl =) (B, AT.8, & ATy, o) Live

Lazy narrowing rules
[on] Outermost narrowing at nonvariable posttion.
If f{l.) — 7 is an F-lifted rewrite rule of K then
(Ey, AT S(30) B AT, Ba) lw=> (o) (B1, AT 80 > AT AT & ATL, I52) Loy
[ov] Qutermost narrowing al variable position,
AT X (F5) is not a pattern
If £(1,.) — is an B-lifted rewrite rule of R and ¢ or
XgW

then

(B, VEX(Fm) B AL E2) Aw= oo (10, N Hu(sul) = N,
AT.r B /\Tf.g. Egﬂ) lun

where # = {X — AT J{(Hn (T D}

Removal rules
A flex equation is an equation both sides of which are flex terms.

{t] Trivial equations.
(Ey, AEX(8) = AT.X(3), Exllw =, (£1, B2}l

[fs] Flex-same. .
If AZ.X (7)) and AT.X(y,) are patterns, and X € W then

(B, AT X(70) & ATX (), B2)lw = (e (Er, E2)0lw

where 0 = {X — Agn. ()} with {2} = {gilm=wi, 1 Si g0}
|id] Flex-chflerent.
— XeWandYeWilt is =
II N7, X {3) and AT.Y (y') arc patlerns, and {X z W an]if > :: >
then

(£, AT.X(7) B ARY (1), S22) hw =)0 (£,)0
where § = {X = M.H(Z), Y = Ay H(Z)} with {Z} = {7} 0 {v'}.

3.2 Main Property
Au HOLN-refulation is a sequence of HOLN-stops
}-—':IH" = Eﬂlll]. =’\ﬂ| 0y El ll|"| aals =2 ey En lH’,,

such that there is no HOLN-step starting with the goal B, lw, . We abbreviate
this sequence by £y, =25 I Ly, where = 0 ... 0,. The set of partial answers
computed with HOUN for & goal Efyy is

PreAnsOE¥ (B0) = {0, E'[1} | 3 HOLN-refutation Ely =+ E' |y},

and the sel af answers of HOLN is

AnsfOEN (B Ly Y = {07 Tvarsizy | (0, E hwerd € PrednsiO N (Elyy) and
¥ € Solp(E'|w)}

HOLN is destgned not to solve all equations: most of the flex equalions are not
transformed hy HOLN-refutations. The reasons for not solving all flex equations
are (i) that a flex equalion abways has a solntion, ancl {ii) thal in general there
is no minima) complete set of unifiers lor a llex equation, Therefore, the result
of an HOLN-relutation is a pair {0, 'l) where B is a sequence of unsolvable
flex equations, This design decision is similar to the one which anderlies Huet's
higher-order preunification procedure, where flex equations are kept unsolved [3).

HOLN enjoys the following properties:

soundness; ."1rr.sﬁ()1‘N(E|‘|r) C Solg{Flw)

completeness: for any v € Selp (Ew) there exists § € Ansgo‘LN(E‘Lw) such
that @ < v {vars()]

Soundhuess follows easily [rom an inductive proof hy case distinction on the in-
ference rule used in the first step of the HOLN-refutation.
The main ideas of owr completeness proof of HOLN are:

{a) We define the set Cfg of tuples of the lormy {E]y, 7, o} with p a rewrite proof
of v € Solg (£). Such tuples are called configurations.

(b) We identify a well founded ordering »C Cfg x Cfg such that whenever
{Elw,v,p) € Ctg and ¢ € F can be selected in an IOLN-step, then
there exists a pair {m, {E [\, ")} with # an HOLN-step of the form
Elw =vo Elwe, (Elw, v, p} = (E'lwe, v, p), and v = 87/ |vars(E}).

We can define such > for HOLN as the lexicographic combination of the orderings
=a. 7 To where

- (b:ln—-r)‘.p) A E w0y Eeeplplen)) = Zoeplp' (2™,

= (Elw.v, 0 = (E'lw, 77, 00 T {IXA] | X € Dom{v)} Zmwm {|X'Y|| X' €
Dam{~"},

- (Eh\‘ﬁvvl)) bale] (E'luf',’}", pf) ilf |E’Y| Zomnul IE"’)”'[

The resiriclion > of > is obviously well-lounded, and its existence implies the
completeness of HOLN.

HOLN can be regarded as an extension of the first-order lazy narrowing cal-
culus LNC [&, 9] to higher-order one in the framework of EPRSs. This ramework
was first used by Prehofer [10] in the design of his higher-arder lazy narrowing
caleulus LN Tor solving goals consisting of directed equations. HOLN can also be
viewed as an extension of LN using the techniqgues developed in the refinements
ol LNC.

There are three sources of nondeterminism in computations with MOLN-
derivations: the cholee of the equation in the current goal, the choice ol the
inference rule of HOLN, and the choice of the rewrite rule of R when narrowing
steps are performed. The completeness prool outlined above reveals a stronger
result: HOLN is strongly complete, i.e., completeness is independent of the choice
ol the equation in the current goal.

In the sequel we witl investigaie the posgibility to reduce the nondeterminism
of computations with HOLN-derivations by reducing the choices of inference
rules applicable to a given goal.

4 Refinements of HOLN

The main source of nondeterminism with HOLN-derivations is due to the many
choices of solving an equation between a rigid term and a flex term, We call such
an equation o flex/rigid equation. For example, to solve an equation of the form
AT X(5) » AT where AR §s & rigid term, we have to consider all possible
applications of rules lov|, [p|, (i} (if head(t) ¢ {T}) and [on] (il head{t) € Fy,.).

Also, the application of rule [ov] is a source of high nondeterminism, as long as
we have large freedom to choose the delined symbols whose inference rules are
employed in performing the [ovl-step.

In the sequel we describe two refinements of HOLN towards more deter-
ministic versions, by restricting the narrowing problem to particular classes of
EPRSs.

4,1 HOLN;: Refinement for Left-Linear EPRSs

The restriction of programs to left-linear TRSs is widely accepted in the declara-
tive programming commmily. It is well known that for lefl-linear confluent TRSs
the standardizalion thearem holds {11]. This result allows to avoid the applica-
tion of the outerinost narrowing at nonvariable position Lo certain parameter-
passing descendants in the case of Lhe first-order lazy narrowing caleulus LNC,
without losing completeness [J]. As a consequence, the search space of LNC is
redueed when the given TRS s lefi-linear and conflnent.

In this subsection we show that a similar refinement is possible for confluent
LEPRSs. This result is bagsed on the fact that the standardization theorem holds
for confluent LEPRSs as well. In the sequel we assuine that ‘R is an LEPRS,

To explain our result, we need some more definitions. A parameler-passing
equation of a goal I’ |- in an HOLN-derivation /T : Elw =5 E'|w is either

{a) an equation AZ.sk > XT.Ag (1 < k < n) if the lost step of /7 is of the form:
(B, NE.[{80) © NEL Ea)lw =anpe (Frs MEin B s N1 2 AT, B) 11
{h) an equation AF.Hy(5,,0) &> Ml (1 < k < n) if the last step of [T is of the

form:

(B1, AT X () B ATL, Ey)hw =2 (ov0
(B0, XE. Hn (50} 1> MLy, ATv 1 AT0, E0) | 1ye-

A parameter-passing descendant of n goal E'lwe in an HOLN-derivation /7 :
Elw =4 E'l1w is either a parameter-passing equalion or a descendant of a
parameter-passing equation. Nole that parameter-passing descendants are al-
ways oriented equations. To distinguish them from the other oriented equations,
we will write s » ¢ instead of s> t.

Positions in Mtenms are sequences ol natural mumbers which define the path
to a subterm of a A-term. We denote by ¢ the empty sequence, by i-p the sequence
p appended Lo an element ¢, and by p 4+ p' the concalenation of sequences p and
. A position p is above a position p’, notation p < p', il there exists g # ¢ such
that p' = p+ q. The sublerm of s ab position p, written s|p, is defined as

- 3|e = &, 'U(t_;)li-p = fi|p i1 <i<n, (A:T’n_l-i)ll-p = {Ahxq .. .m,".i)lp,
~ undefined atherwise.

The set of positions of a term ¢ is denoted by Pos(t). p is a patlern posifion of a
term ¢, notation p € Pat(t), it p € Pos(t) and head(t],) & vars(L) for all ¢ < p.

A rewrite preof pof v € Solg (F|w)} is oulside-in if the following condilions
are satisfied for all equations e ol £:

(a) pley) is an outside-in reduction derivation, that is, il plevy) rewrites at posi-
tous P, ..., e with the Z-lifted rewrite rules I, — vy, ... I, — 7, respec-
tively, then the following condition is satisfied for all 1 <1 < nn — 1: il there
exists j with ¢ < j such that p; = p;-+q¢ then g € Paf(l;) for the least such j.

(b) I[f e = s » ¢ € £ and p{ey) has a rewrite step at position 1-p such that no
later rewrite sleps take place above position 1-p then p € Palt).

The [ollowing theorem can bhe proved using the the standardization theorem for
confluent LEPRSs [12]:

Theorem 1 Let R be a confluent LEPRS and v € Solp(L|w). Then there
exials an oulside-in rewrite proof of v € Selg (£ |w).

Theorem} with its constructive proof states that for any rewrite proof v we can
construck an outside-in rewrite proof. Recall the prool sketch of completeness of
HOLN. Bven il we consider only configurations of the form (&, vy,) with p
an outside-in rewrite proof of v € Solr(Fiw), the proot of strong completeness
of HOLN remains valid when R is restricted to a confluent LEPRS. This implies
that the HOLN-relutations considered in the proof do not contain [on]-steps
applied to equations of the form

AT (50} » AT X(F) where [€ Fy. ()

Now we design HOLN; as follows.
IHOLN; is the same as HOLN except that the inference rule [on] is not applied
to the (selected) equation of lorm (1).

For HOLN,, we have the following main result.

Main result: HOLN, is sound and strong complete tor confluent LEPRSs (6],

4.2 HOLN,: Refinement for Constructor LEPRSs

['his refinement is inspired by a similar refinement, of LNC with leltinost equation
selection strategy lor left-linear constructor TRSs [8]. 1t addresses the possibility
to avoild the generation of parameter-passing descendants of the form s » | with
t & T(Fe, V). The effect ol this behavior is that the nondeterminism between
the inference rules [on] and [d} disappears for parameter-passing descendants.
In the Arst-order case, it is shown that LNC with lefimost equation selection
strategy Sien does not generate parameler-passing descendants s » { with 1 &
T{F: V). Unfortunately, this property is lost in the higher-order case mainly
because the leftmost equation may be a flex equation to which no inference rule
is applicable. Therefore, Siere can not be adepted, Ta restore this property, we
need to modily HOLN and 1o introduce a new equation selection strategy.

We define a new calculus HOLN, as the caleulus consisting of all the inference
rules of HOLN; and of the inference rule [¢] defined as follows.

[c] Constructor propagation.
1635 » AT, . X(¥s) € [y and & = Ay, . 5(T,) then

(E1, AT X (1) & AT, B) lw =(o)e (B1,AT8'(1a) & AZu, Ea)iwe. (2)
We give to [¢] the highest priority.

Note that the application of [¢} replaces the outermost occurrence of X in the
selected equation by Ag..s(Fy).
We deline a strategy S; as follows. Let e be a selected equation of the form

NEX (D) B AT
in a goal (&), e, Ea)|ww. An HOLNo-step
(Er,e Bl =g (F1, E, Ey)01y (3)

respects strategy S if the inference step {3} is enabled only when all the parameter-
passing descendants s » { in E) have t as a flex term.
We can easily prove the following lemma [6].

Lemma 1 Lel R be a confluent constructor LEPRS and IT be an HOLN,-deri-
vation that respeels strategy S,. All the equations s w £ in I satisfy the property
e T{F V).

We have the following result for HOTLN,,

Main result: HOLN, with strategy S, is sound and complete for confluent
constructor LEPRSs.

Soundness [ollows from the fact that both rule [c] and the inference rules
of HOLN are sound when siralegy S is obeyed. The completeness prool works
along the sane lines as the completeness proof of HOLN;, but the definition of
the ordering between configurations is much more involved than the definition
of > [6].

5 Extensions of the Computational Model of HOLN

Many applications from the area of scientific compuling require capabilities for
solving constraints such as systems of linear equations, polynomial equations, or
differential equations. Since HOLN can solve equations only over the domain of
simply typed A-lerms, we investigated the possibilily to extend HOLN to solve
equalions over some specilic constraint. domains equipped with well known solv-
ing methods. The resulls of our investigation are incorporated in our system
CFLP (Constraint Functional Logic Programming system) [5]. CFLP is a dis-
tributed constraint solving system implemented in Mathematica, which extends
the solving power of HOLN with methods to solve:

— systems of limear equations and equations with invertille hinctions,
— systems of multivariate polynomials, using Buchberger algorithm,
— systems of differential and partial differential equations.

The computationa) capabilities of CFLP go beyond the gnarantee of our con-
pleteness results. This naturally points to the area ol further research, namely
Lhe stucdy of completeness of HOLN combined with complete external solvers.

G Application

We will explain by an exaniple how CFLF employs HOLN to compute solutions
of problems formalized in higher-order cquational programs.

Program Calculation. This example was briefly discussed in [5] 1o give a fla-
vor to the capability of CFLI. Here we describe how HOLN works to compute
elficient lunctional programs from less efficient bnl easily understandable ones.
Such derivations are typical commputations of higher-order equational program-
ming,

We pose a question in a lorm of a goal that involves a higher-order variable.
Then HOLN operates on the goal and transforms it successively into subgoals
that are in turn solved. The computation is completed when HOLN finds no
more subgoals to solve. HOLN delivers o substitution in which the higher-order
variable is bound to the desived program.

Consider the problem of writing a prograin to check whether a list of numbers
is steep. We say a list is steep i each element is grealer than or equal to the
average of the clements thal lollow it. By default, the empty list is steep.

With CFLD, such a test can be done hy Lthe function steep defined via the
program Prog given below:

Prog = {steep[{}]->True,
steeplla| £]1]1—> (a+ len[x] > sum|z]) A steep(x],
sun[{}]1— 0. sum{ [z | 1] — r + sumiy],
len[{}]— G, len(la | 1] — 1 + len[yl,
tupling [x)—c3[sum{r] ,lenlz],steeplrll};

where

— the underlined symbols denote [ree variables,
~ {} denotes the emply fist and [# | 7} denotes a list with head H and &ail T,
— ¢31s a daba constructor defimed by

TypeConstructor [Tuple = c3[Float,Float,Float]};

This command defines the type constructor Tuple with associated data. con-
structor ¢3 of type Float x Float x Float — Tuple, and the corresponding

dala selectors sel-c3-1, sel.c3.2, sel.c3-3. CFLP assumes that, for a given
constructor ¢a, the following axioms hold for any @, zy,..., 3 and 1 £ &k < n:

cu(sel-c, - Ha), selcy,n(r)) =z, sel-cy-kicy{ry, ..., z,)) = xy,

CIFLP implements partially these axioms via the [ollowing addilional infer-
ence rule:

(n

Flattening.
if Azx.¢ is rigid then

(El , AE’X(T,,,’,c(t_,;), 'l‘.l.p) 2 AT.L, fﬁ)ﬂ[w ﬁln]?_
(10, X2L,0 = XEL(F), AT H (80, Ho(B), 1,0) 22 AT A0, Ea0) |y

where 0 = {X v AT, 0. 5. H (T sel-cn (1), 55))
In nddition, CFLP replaces antomalically by t all the terms of the form
cp{sel-c,-1(f}, ..., sel-c,-n{l)).

Prog is modular and easy to understand, but it is rather inefficient becanse the
computation of steep for a given list has quadratic camplexity. It is desirable
to have a means to automatically compute the efficient version of the function
steep defined above. Such a computation can be described via the so called
fusion calculational rule shown below:

fley=1¢ f(foldr{g,[n | ns])) = hin, f{ns))
flfaldr{g, e, ns}) = fatdr{h, e’ ns)

(4)

where foldr is the usual fold function on lists.

In (4}, the expression f(foldr(g,e,ns)) describes Lhe ineflicient compnta-
tion, and foldr{h, ' ns) is its efficient version. In our particular case, the in-
efficient, computation of steep([n | ns]) is described by sel-c3-3(tupling([n |
ns]}). To find its efficient version, we employ rule (4) with f = tupling and
g = Cons Lo the ineflicient compulation tupling([n | ns}) and compute an ap-
propriate answer for the higher-order variable H Lo describe its efficient version
H(n, tupling(ns)):

TSolve|
M{n,ns}, tuplingl{n | ns]} & A[{n,ns}, H[n, c3[sum|ns], lenjns|, steep|ns]]]],
), 4},
DefinedSymbol — {
steep : Tylist|Float] — Bool,sum: TyList[Float] — Float,
len : TyList|Float] — Float, tupling : TyList[Float] — Tuple},
EnableSelectors — True,
Rules — Prog|;

Type checking program ...
Type checking goal ..
{H — A{=$§1865, 51866},

c34z$1865 + sel-c3-1[z51866),
1 + se1-¢3-2[x51866},
(81865 sel-c3-2[x$1866] > sel-c3-1[x§1866]) A sel-c3-3[=$1866}j]}

The TSolve call of CFLP expects three arguments: the list of equations to be
solved, the list of variables for which we want to compute normalized vakues, and
the list of other variables. The computation performed during the execution of
TSolve call can be controlled via the following options:

— Rules: specifies the LEPRS,

— DefinedSymbol: specifies the list of pessibly typed-annotated defined sym-
bols,

- EmableSelectors: specifies whether to enable or disable the usage ol data
selectors in the solving process.

In this case, the goal submitted to the underlying calculus of CFLP is
An,ns.tupling([n | ns]) = M, ns.H{n, c3(sum{ns), len(ns), steep(ns))} iu}.
To compute the binding for H, CIFLP performs the ollowing derivation:

An, ns.tupling((n [ns|) = I, ns H{n, c3(sum{ns), len(ns), steepins))) fon
U[on]
(An,ns.[n | ns] » An,ns. X(n,ns),
An,ns.e3(sum(X (n,ns)), len{ X(n, ns)), steep(X(n, ns)}) =
An,ns.H(n, c3(sum{ns), len(ns), steep{ns)))} | pny
UTXr—»An.ns.lnIns]}
An, ns.c3(sum([n | ns|), len(|n | ns]), steep(|n | ng))) =
An, nsH(n, c3{sum{ns), len(ns), steep(ns)))
U’[il],[lb—-)\z,y.}h(.r,sel-c!l-l(y),sal-cS-?{yy},sel‘cﬁra{y))}
(An,ns.sum{ns) & An, ns. X (n,ns),
An,ns.len(ns) > An, ns.Xa(n, ns),
An,ns.steep(ns) > A, ns. Xa(n, ns),
An,ns.c3(sum({n | nsl), Len{[n | ns]),steep([n | ng)) =
Anyns fHy(n, Xi(n, ns), Xa(n, ns), Xaln, ns)))L{H,}
U‘[.\',t—~An.nsAsum(ns).Xgn—c)m,ns,]en(ns},X;;--u\n.ns,stuap{ns)}
An,ns.c3(som([n | ns]), 2en{|n | ns]),steep{[n | ng})} =
An, ns FHi(n, sum(ns}, Len(ns), steep(rns)) |l n,)
Y14 1o AT c3(Ha (Z2), Ha (Z7), Ha (FT))
{An,ns.sum([n | ns]) = An, ns.Hy(n, sum(ns), len{ns), steep(ns)),
An,nslen([n | ns|) = An,ns. Hy(n, sum(ns}, Llen(ns), steep(ns)),
An, ns.steep([n | ns]} = An,ns.Ha(n, sun(ns), 1en(ns), steep(rns))) | sy, 14, 02,)
U-"
G = {An, ns.n -+ sum{ns) = An, ns. Hy(n, sun(ns), len(ns), steep(ns)),
Amyns.] + len(ns) = An, ns Hy{n, sum{ns), len{ns), steep(ns}).
An, ns.(n + len{ns) > sum(ns)) A steep{ns))
=2 M ns.fly(n, sun(ns), len(ns), steep(ns)) 1y, 10y 110}

Finally, CFLP solves the goal G produced by the derivation depicted above by
employing the inference rules [i], [p), [d], [ls], and [fd] of HOLN to compute the
unifier {Hy — ATq.) + 2o, Ha — AT7.1 + @3, Hy = AT5((21 * 23 2 T2) A 2y)}
of the equational part of G.

In this way CFLP compules the answer

{H v An,ns.c3(n+sel-c3-1(ns),
1 + sel-c3-2(ns),
n#sel.c3-2(ns) > sel-c31{ns) A sel-c3-3(ns)}}

wlich corresponds to the Mathematica representation of the answer produced
by CFLP.

7 Conclusions and Future Work

Wo llave presented o new lazy narrowing calculus TTOLN for EPRS designed to
compute solutions which are normalized with respect Lo a given sel of variables,
and Lhen have presented two refinements Lo reduce its nondeterminism. Those
refinements result in two caleuli which are sound and complete.

The results presented in Lhis paper owe largely to o now formalism in which
we treat a goal as a pair consisting of a sequence of equations and a set of
varinbles for which we want to compute normalized answers, This Tormulation
ol narrowing has the following advanLages:

~ it clarifies probilems and locates points [or optimization during the refutation
process of goals,

— it siimplifies the soundness and completeness prools of the calculi,

- it simplifies and systematizes the implementation of the lazy narrowing caleu-
Ins as & compmtational mode] of a higher-order lunctional logic programming
system,

All the caleuli given in this paper have been implemented as part of our
distributed constraing lunctional Jogic system CFLP[L, 4, 5].

An interesting direction of research is to extend HOLN to conditional IEPRSs.
A program specification using conditions is much more expressive hecause il
allows the user to impose equational conditions under which rewrite steps are
allowed. Such an extension is quite straightforward to design, bul it introduces
many complexities for proving completeness.

Acknowledgements, The work reported in this paper has been supported in
part by the Ministry of Education, Culture, Sports, Science and Techuology,
Grimt-in-Aid for Scientific Research (B) 12480066, 2000-2002. Mircea Marin has
been supported by JSPS postdoe lellowship 00096, 2000-2001.

References

10.

11.

. htip.//uwv.score.is.tsukuba, ac. jp/reporys/cilp/systen/.

BE. Buchberger. Proving, Solving, Computing. A Language Environiment Based on

Mathematica, Technical Report 97-20, Research Institute for Symbelic Computa-

tton {RISC-Linz), Johannes Kepler University, Ling, June 1997,

G. Huét. Résolulion d’équations dans les langunges d’ordre 1,2,. . .w. PhD thesis,

University Paris-7, 1976.

. M. Marin, T. lda, and W, Schreiner. CFLP: a Mathematica Implementation of
a Distributed Constraint Sobving System. In Third International Mathematical
Symposium (IMS5'99), Hagenberg, Austria, August 23-25 1999,

. M. Marin, T. lda, and T, Suzuki. Cooperative Constraint Functional Logic Pro-
gramming. In T. Katayama, T. Tamai, and N. Yonezaki, edilors, International
Sympostum on Principles of Suftwere Evolulion ({SPSE 2000}, pages 123-230,
November 1-2 2000.

. M. Marin, T\ Suzuki, and T. Ida. Relinements of lazy narrowing for left-linear

fulty extened pattern rewrite systems. Technical Report ISE-TR-01-180, Institute
of Information Sciences and Electronics, University of Tsukuba, Japan, 2001. To
appear.
. AL Martelli and U. Montanari. An Efficient Unification Algorithm, In ACM Trans-
actions on Programming Lanpunges and Systems, volume 4, pages 258-282, 1982,
A, Middeldorp and 8. Okui. A deterministic lazy narrowing calewlus. Jowrnal of
Symbolie Cowmpulelion, 25(6):733-757, 1008,
A, Middeldorp, 8. Okui, and T. lda. Lazy narrowing: Strong completeness and
eager variable elimination. Theoretieal Compuler Scienee, 167(1,2):95--130, 1996.
C. Preholer. Solving Higher-Order Equations. From Logic (o Programming. Foun-
dations of Computing, Birkhduser Boston, 1948,
T. Suzuki. Standardization theorem revisited. In Proceedings of the Fifth Inler-
nalional Conference on Algebraic and Logic Proyramming, volume 1139 of LNCS,
pages 122-134, Aachen, Germany, 1994
. V. van Oostrom. Personal communication,

An Open Environment for Cooperative Equational Solving

Tetsuo Ida, Mircea Marin and Norio Kobayashi
Institute of Information Sciences and Electronics
1-1-1 Tennoudai, Tsukuba 305-8573, Japan

ida, mmarin, nori @score.is.lsukuba.ac.jp

ABSTRACT

We describe a sysiem called CELP which aims at the integration
of the best features of functional logic programming (FLP), coop-
erative constraint solving {CCS), and distributed computing., FLP
provides support for defining one’s own abstractions over a con-
strainl domain in an easy and comfortable way, whereas CCS is
employed 1o solve systems of mixed constraints by iteraling spe-
cinlized constraint solving methods in accordance with o well de-
fined strategy. ‘The system is a distributed implementation of a
cooperative constraint functional logic programming scheme that
comnbines higher-erder lazy narrowing with cooperative constraint
solving., The model takes advantage of the existence of several con-
straint solving resources located in a distributed eavironment (e.g.,
a newwork ol computers), which communicate asynchronously via
message passing. To increase the openness of the system, we are
redesigning CFLP based on CORBA. We discuss some design and
implementation issues of the system.

1. INTRODUCTION

Many important problems from engineering and sciences can be
reduced to selving systems of equations over various constraint do-
mains. 11is generally accepted that a general-purpose solver ean not
solve efficiently such problems. A promising alternative is 10 focus
on ihe design of 2 cooperative constraint solver, The main idea isto
integrate in o coheren way the capabilities of various specialized
constraint solvers and produce a system capable of solving systems
of equations that none of the individual solvers can handle alone,
In this view, it is desirable (o create an open system, whose expres-
sive power {i.c., the language of constraints) and salving capabil-
itics (i.e., the constraint methods solving used by the cooperation)
can be improved by appropriate addition of new constraint solvers,
The design of such a system is challenging, at least because of the
following reasons:

1. The system shoubd allow to define and interpret one’s own
abstrictions (i.c., user-defined symbols). Higher-order func-
tional Jogic programming is a very powerful mechanism for
defining such abstractions, but the design of efficient opera-

tional models is a difficult 1ask [7].

2. Termination is a fundamental property of a constraint solver
which can be easily lost during solver integration. This prob-
lem becomes even more challenging when designing an open
equational environment.

Our goal is 1o design and implement a system capable of solving
problems of the lfollowing type:

Given (a) a domain Al and a signawre F, of external operators
defined over A, together with a collection of associnted
constraind solvers,

(b) aset 7, ol data consrructors,

{c) a program R over AU 7 that introcuces a set 7, of
wser-defined function symbols, where T is a syntactic
domain formed by the formation rules of programs and

{d) a sequence G of equations that may contain & sel of
variables,

find the solutions of G in the equational theory defined by A and
.

R and G are defined by the user, and are respectively called user
program, and the goal of the program. The program R is a condi-
tional paitern rewrite system, a higher-order rewrite system defined
over the simply-type A terms modulo £ and long i [9). The selivion
of (7 is a substitution & for the variables in & such that the formula
G holds in the theory defined %. [6]

2. SYSTEM ARCHITECTURE

We have designed and implemented a distributed sofbwire system
called CrLP [6] whose computational model integrates lazy nar-
rowing for ¢onditional pattern rewrite systems with cooperative
consiraint selving {CCS). We employ lazy narrowing to solve sys-
iems of equations containing symbeols defined by conditional pat-
tern rewrite rules |7, 8], and CCS to suppori {he integration of vari-
ous external constraint solvers so as to preduce a generic constraint
solver.,

The architecwire of our system is shown in Fig. 1. The syslem
consists of?

. an interpreter which solves gouls by a mechanism which
combines lazy narrowing steps with steps that collect con-
strainls into a constraim store and dispatch them o the coop-
erative constraini solving system, and

User > constraint solver
inlerface

Enterpreter

O distributed
environment

cooperative

Coe—wGC eculer

d’ conslraint solving

syslem

Figure i: Architecture of CFLP

2. adiswributed implememation of a cooperative constraint solv-
cr, consisting of

(a) a scheduler which reccives the constraints sent by the
interpreter and dispatches them to specialized solvers
in accordance with a given ceoperalion stralegy, and

(b) specialized solvers, which are resources located in a
distributed environment and can be shared by many us-
s,

Our choice for a distributed implementation of the cooperative con-
straint solver of CFLEP was determined hy the lollowing observa-
tions. TFirsi, constraint solving resources are expensive; therefore
they are best maintained at a developing server site and shared ina
distributed environment. Secondly, our computing environment is
beeoming more and more nat-centric; therefore insicad of copying
soflware at user side, we will in the luture reccive services of con-
straint solbvers (i.e. obtain solutions) provided by constraint solvers
via network.

3. MAIN FEATURES

Currently, CFLP has the (ollowing leatures:

» All system components are processes thal communicate asyn-
chronously over MathLink connections [10).

The computation of the CCS is driven by a buill-in cooper-
ation stralegy that has been proposed for cooperative con-
straint logic programming [5].

The constraint solvers integrated in CFLE are built on top
of the solving capabilitics of Mathematica, We have defined
and implemented solvers for

systems of linear equations,

equations with invertible functions,

systems of multivariaie polynomial equations, and

1

differential equations.

-

To improve the efficiency of the computalion of the inter-
preter, we have integraled in CFLP all the deterministic re-
finements of lazy narrowing proposed by us so far [7, 8], The
user can choose the underlying calculus of the interpreter.

-

The user can actjust the cooperative constraint solver of CFLP
by specifying the number and tecation of the specialized solv-
ers.

4. APPLICATIONS

We describe with two examples the solving capabilitics of CFLP,

4.1 Electric Circuit Modeling

The first example shows how electric circuit layouts can be com-
puted with CFLP. This example illustrates the expressive nower of
the FLP style programming extended with

» higher-order construcis such as A-abstractions and function
variables, and

= constraint solving capabilities lor differential equations, lin-
ear equations, and systems of polynomial equations,

We first define a function spec which describes the behavior i
time ¢ of an clectrical component as a function of the curremt itr]
and voltage v{¢] in the circuit, The CFLP rules of spec correspond
o arecursive definition, where the base cuse describes the behavior
of clementary circuits such as resistors, capacitors, and inductors,
and the inductive case describes the behavior of serial and parallel
connections of electrical companents.

The CFLP program is given below. We do not explain the under-
lying electronic laws since it should be easy 1o read them off from
the program.

Infl}:= Progs= {
specres[x], A[{t}), vit]], A[{t}, £[t]]] »
True = {A[{t), v[E]] =A[{t}, zi{t)]),
speclind[l}, A[{t}, v{t1]}, A[{t}, i[L]1]}~
True « A[{t), vI[t]] = A[{t}, Li’'[t]}],
spac[caplel, A[{t}, v[t]1], Al{E}, 2[L]]] ~
True e A[{t}, i[k]] = A[{t}, cv [t]],
spec[serial[{}], A[{t}, 0], i] = True,
spec[serial [[comp|T]], v, 1] » True &

{spec[comp, ¥1, i] = True,

spec[serial [T], v2, i] = True,

AL{t), vIEI) = AL(E), vI[E] +v2[E]]},
spec[parallel[{}], v, X[{t}, 0] = True,
spec[parallel[[comp|T)), v, 1] = True &

{spac{comp, v, il] = True,
spec{parallel[T], v, i2] » True,

AL{t}, i[t}] = A[(t), i1[t] +i2[t]]}};

The universally quantified variables are undertined. Note the us-
age of the list construct in the recursive speeification of serial and
parallel connections of electrical components. The CFLP sysiem
recognizes the lollowing list specifications:

* {ty, .. 1, list consisting of components 1), ..., ¢

nr

s | Al d] CELP list with head /r and il #f in Prolog-style
notation,

Consider the problem of finding the behavior in time of the current
ina RLC circuit withR = 2, L = | and C = 1/2 (sce Fig. 2}, under
the restrictions that the voltage is 50V and the current was initially
set o 0.

In CFLP this problem is reduced 1o solving the system of equations:

In{2]:= Problem=
{spec([serial{{res[2], ind[1l]}, cap(1/2]}].
Al{t}, 501, i] = True,
i[0] =0},

Figure 2;: RLC circuit

The variable which we want to compute is j, and it is overlined.
Note the usage of the expression Al },] for specifying that the
voltage is constant (30 V) in time.

To solve this problem, we call:

Inf3):= TSolve[Problem,
Constructor »+ {V, res, ind, cap,
serial, parallel},
Rules - Prog]
add rule TR specires(r}, v, i] -» True &«
Af{t}, vt =A[{t), rilt]]
Add xule v, 4 spec{ind|[l}, v, i] » True &
At vt]) =A[{t}, 14 [E]]
Add rule :V(C'if”specicap[c], v, 1] 2 True =
Af{t)y, i)} = Af{e}, ev'(t]]
Add rule :v ;,spec|seriat({}], Al{t}, 0], i] = True
Add rule :V(cnrr.P.T,v'l.v?!, i,vi

vy

speciserial[|comp|T}),v,i] » True e
spec|[comp, v1, i} =~ True,
spec(serial|T], v2, 1} = True,
Affe}, vie]l = Al{c), vi[e] +v2|t})
Add rule :v spec{parallel({}], v, A{{t)},0]] » True
Add rule :v
speciparallel|[comp|TY], v, i] » True e

{comp, i,11,12.7T,v}

spec(comp, v, il] = True,
spec|[parallel [T], v, i2] = True,
Af{e}, i[e]]) = Al{e}, i1(t] +i2]e]]
{i=A[{t}, -c1862e® Sin|t]]
Out {3]= {{i>A[(t}, -cl52e % Sin|t]]}}

This call is similar to the Solve call of Maithematica, bul TSolve
has the specific options

« Rules: provides the functional logic program (i.c., condi-
tional rewrite system) used during solving the goal,

* Constructor: specifies the data construetors used in the
specification of the program and of the goal.

The system computes the parametric solution
lisA—= § ¢ sin(n)
which is represented in Matheniatica by

= - § ¢ sinlt)lh

4.2 Program Calculation

This example illusirates the capabilities of & computing environ-
mem which can perform Tull higher-order pattern unification and
higher-order term rewriting,

Consider the problem of writing a program to check whether a list
of numbers is sreep, e, if every element of the list is greater than

or equal to the average of the elements that follow it. A CFLP
program that does this is:

In{d4]:= Prog={
steap({}] -» True,
steepl[alx])] - And[a » len(x] 2 sum[x],
steep[x]],
sum{{}] =+ 0, sum[[x]¥]] » x + sum(y],
len[{}]~0,len{[x]y]]l » 1 + len[yl}:

Prog is modular and easy (o understand, but it is inefficient (qua-
dratic complexity). ¢ is desirable to compute the efficient version
steepOpt of steep. For doing this, we employ the fusion caleuda-
tional rule:

Slel=¢" flgla, Jl=Hafl]l
flfoldrlg e, 1] = foldt[h, &,]

where [oldr is defined recursively by

loldr{g, ¢, [}] = e, Toldr|g, e, {nlns]] = g|n, foldrlg, e, us}].

The inefficient computation is ITfoldrfg,e,ns]), and its eflficient ver-
sion is foldrfh,e’,ns]. Finding the efficient version amounts to find-
ing h such that f{gla,ns]]=h|a,[Tns]].

To use the fusion calculational rale, we first formalize the the com-
putation of steep as f{foldr{g,e,ns]}. It is easy (0 see that

sicep[af=sel-c3- 1 [n]= sel-¢3- I[f[foldr| g, e, n}}],

where [n)=c3[steep[n],sumind,len[n]], g=Cons and e=|]. Here,
sel-c3-i denctes the first data selector associated of the data con-
strictor 3. This implies that the following relation holds tor any
valid arguments x, v, 2

scl-e3-1[e3]x, y, z]] = x

I we succeed 1o find h, then
steepOptla] = sel-c3-1{f]foldr]h, €, n][}
where e’=M{e]=¢3[True,0,0].

To compute h, we solve the equation fig[a,ns] }=h[a,{[ns]], i.e. the
goal

In{5}:= Problem= A[{n,ns)}, £[[n|ns)]] =
Al{n, ns},
h[n, ¢3[steep[ns], sum[ns], len(nsl]]];

In{é]:= Constructor[Triple = c3[Bocl, Floatk, Float]];

in{?7]:= TSolve{Problem,
Constructor -
{Plus, Power, Timas, GreaterEqual, And},
Rules -+ Progl
{£[ns] = c3{steep[ns], sum[ns], len[ns]]}]
Add rule :V:ns,f[nsl - c3isteep[ns], sum[ns], len[ns]|]
Addrule :¥y, alen{[x]y]} -1+ lenly]
Addrule :len[{}] = 0

Add rule :v,, .,steep|(afx]] - alen[x] = sum[x]&isteep|x]

Addrule :steepl{}] » Trug
Addrule :V(mylsum[[xiy]]nax v sum(y]
Add rule ;sumf{}] -0
{th- Af{x523, X524},
c3[x523sel.c3-3[x524) 2 sel c3-2{r524]4¢&
sel.c3.1[=524], #523 + sel-c3-2[{n$24],
1+8el-c3:-3(x524]]1}
out7)= {{(h-A[(x523, %524}, c3(
%523 sel-c3.3[x524) =2 5el-c3-2([x$2475¢
sel-c3-1(x524],
%523 4+ sel.c3-2[x$24],
l+sel-c3-3[x524)]111})

Note that CFLP handles the operatars + (Plus), Power, * {Times),
and = (GreaterBqual) as external operaters, that is, operators used
in constraint specifications, As a conseguence, the cquations buill
with these operators are handled by defautt as constraints and sent
10 be solved by the constraint solver. In this example we override
the default specification of these operators by declaring them as
mere constructors in the Constructor optien of the TSolve
call, As a consequence, CFLP gives up using constrainl solvers for
solving equations built with the operalors mentioned above, and
enables the interpreler to solve then.

43 Other Applications

We have investigaied several other preblems from physics and found
that they can be solved with CFLP by reducing them to sysiems ol
constraints that can be handled by a cooperation between the spe-
cialized solvers of CFLP.

5. CORBA-BASED OPEN ENVIRONMENT

We are currently working on redesigning the scheduler to accept
different cooperation strategies provided by the user.

The work includes the replacement of the modules that rely on
MathLink by more versatile protocols. We nse CORBA [1] in the
new implementation beeause it is the standardized software tech-
nology for distribuied computing and it fits well with the objective
of our open environment for equational solving. CORBA facilitates

(a) to get uniform access to various applications (such as special-
ized solvers) written in dilTerent languages, via objeet mod-
eling, when they have a commen interface specified in OMG
IDL,

(b) to locate transparently solving resources in distributed envi-
ronments, and

(c) to plug them in whenever their capabilities are needed 1o
solve a problem.

As CORBA provides the framework for cooperative constraint solv-
ers and low-level protocols {for communication among ohjects, our
task is 10 define higher-level protocols for communicating among
distribuied solvers.

51 MAXCOR

We have designed MAXCOR (MALh cXchange for CORBA), a
framework for exchanging mathematical expressions lor CORBA.
MAXCOR contain three ingredients:

1. the language for mathematical formulas o be used in con-
junction with OMG IDL,

2. the common interface definition in OMG 1DL for all objects
in MAXCOR,

3. CORBA object wrappers for binding MAXCOR and existing
applications,

As for point 1., we adopted MathML [3], the subset of XML. In
a simply-minded implementation, MathML documenits could be
passed as arguments of steing type in OMG 1DL, However, this
would require translation of object-1o-string and vice versa on both
client and server sides. Instead for efficiency reasons, we employ
XML DOM {Document Object Model) and DOM-to-valuetype map-
ping [2]. XML DOM is standardized by W3C and its implementa-
tion is available as an APl Furthermore, DOM-lo-valuetype map-
ping is being specified by OMG and is a part of XML-to-valuetype
mapping, DOM-to-valuetype mapping is entirely defined in OMG
IDL.. Thus our design is platform-independent,

As for point 2., we show below a simplified version of the MAX-
COR module declaration. Here the server is a solver and the elient
i5 the scheduler that calls the solver.

finclude™value_dom.idl"

module MAXCOR |
struct threadID {
sequence<oclLet> passwd;
// passwerd for this thread
long number;
// thread number identifying the thread
// in which the solver runs
Vi
exception mException{
string reasaon;

}i

interface MAXCORObject ({
threadID init(in string parameter)
raises{mException);
void deinit(
in threadiD id, in string parameter}
raises {mException);
Document execute(
in threadlID id, in string command,
in Document expr} raises (mException);
Document serviceSpec{in string command}
raises (mException});
string usage(in string parameter};
i
Vi

{n the above program, value_dom. idl is the declaration file of
XML-to-valuetype mapping and Document is the valuetype of
DOM object. Type definition of threadID is self-explanatory.
Operations init, deinit and execute do the real work, Op-
eration init ereates new threads lor running the server, initializes
the running environment and establishes the session with its client.
Operation deinit dismantles the server process when the server
completes the service, Operation execute invokes the program

of the solver. The argumens of execute are a siring of command
name, and an expression which will be evalualed by 1he server,

Operalions serviceSpec and usage are auxiliary and provide
information to the client. Operation usage returns the help mes-
sage related tothe service of the solver. Operation serviceSpec
in our present version returns specification of the argument of the
solver.

5.2 Implementation

We have implemented the following APls: DOM to valuetype map-
ping in C++ and Java, CORBA object wrappers for Mathemalica in
C-++and Java and for CPLEX [4] in C++, CPLEX is an application
package lor integer programming and its wrapped APl is used as
one of the solvers for CFLP. The sclvers that the present version
of CELP are using are all writien in Mathematica with the inter-
face complied with MathLink. This imerface will be replaced by
CORBA object wrappers. We will use MAXCOR for communi-
cation between a scheduler and solvers in CFLP. Currently we are
working for the full deployment of solvers wrapped as CORBA ob-
jects that cooperace with the scheduler of CFLP.

6. CONCLUSION

We introduced an open environment for equational solving. The
core of the environment is CFLP system which supports equational
reasoning over variety of domains. We showed main features of
the system by giving examples that exploits the style of equational
reasoning. We further discussed a new implementation of the open
environment which is under way based on CORBA lechnology.

7. ACKNOWLEDGMENTS

This work is supported in part by the Ministry of Education, Cul-
ture, Sports, Science and Technology, Grant-in-Aid for Scientific
Research (B} 12480066, 2000 and Mircea Marin is supporied by
ISPS postdoc fellowship,

8. REFERENCES
[1] hetp://www.corba.org.

{2) http://www.omg.org/techprocess/meetings/
schedule/XML.Value RFP.html.

[3] herp://www.w3,0rg/Math/,

[4) Using the CPLEX Callable Library. CPLEX Optimization,
Inc., USA, 1995,

(5] H. Hong, CLP(CF): Constraint Logic Programming over
Complex Functions. Technical Report 94-09, RISC-Linz,
Castle of Hagenberg, Austria, 1992,

(6} M. Marin. Fumnctional Logic Programming with Distributed
Constraint Selving. PhD thesis, Institwe RISC-Linz,
Johannes Kepler University, Castle of Hagenberg, Austria,
2000,

7

e

M. Marin, T, 1da, and T, Suzuki. On Redueing the Search
Space of Higher-Order Lazy Narrowing. In A_ Middeldorp
and T. Salo, editors, FLOPS'99, volume 1722 of LNCS,
pages 225-240. Springer-Verlag, 1999,

[8

-

M. Marin, T. Ida, and T. Suzuki, Lazy Narrowing Calculi in
Perspective. In Proceedings of ihe Dth Iniernational
Workshop on Funciional and Logic Programming, pages
238-252, Benisassim, Spain, 2000,

[9] T. Nipkow. Functional wnification of higher-order patterns. In
Proceedings of 8cth {EEE Sympositan on Logic in Computer
Science, puges 64-74, 1993,

[10] S. Wolfram. The Mathematica Book. Fourth Edition,
Wolfram Media Inc. Champaign, Itlinios, USA, and
Cambridge University Press, 1999,

An Open Environment for Cooperative Equational Solving

Tetsuo Ida, Mircea Marin and Norio Kobayashi
Institute of Information Seiences and Electronics
1-1-1 Tennoudai, Tsukuba 305-8573, Japan

{ida, mmarin, nori) @score.is.1sukuba.ac.jp

ABSTRACT

We describe a system called CFLP which aims at the integration
of the best features of functional logic programming (FLP), coop-
eralive consiraint solving {CCS), and distributed computing. FL.P
provides support For defining one’s own abstractions over a con-
straint domain in an easy and comforiable way, whereas CCS is
employed 1o solve systems of mixed consteaints by iterating spe-
cialized constraint solving methods in accordance with a well de-
fined strategy. The system is a distributed implementation of a
cooperative constraint functional logic programming scheme that
combines higher-order lazy narrowing with coeperative consteaint
solving. The model takes advantage of the existence of several con-
straint solving resources located in a distribuled environment (e.g.,
a network of computers), which communicale asynchronously via
message passing. To increase the openness of the system, we are
redesigning CFLP based on CORBA. We discuss some desigh and
implernentation issues of the system.

1. INTRODUCTION

Many important problems from engineering and sciences can be
reduced to solving systems of equalions over various constraint do-
mmins. Itis generally accepted that a general-purpose solver can not
sobve efficiently such prablems. A promising alternative is to focus
on the design of a cooperative constraint solver. The main iden is 1o
imegrate in a coherent way the capabilities of various specialized
constraint solvers and produce a system capable of solving systems
of equations that nene of the individual solvers can handle alone.
In this view, it is desirable 1o create an open syslem, whose expees-
sive power (i.e., the language of consiraints) and solving capabil-
ities {i.c., the constraint methods solving used by the cooperation)
can be improved by appropriste addition of new constraint solvers.
The design of such a system is challenging, at least because of the
following reasons:

1. The sysiem should allow te define and interpret one’s own
abstractions (i.e., user-defined symbols), Higher-order func-
tonal logic programming is a very powerful mechanism for
defining such abstractions, but the design of efficient opera-

tional models is a difficult task (7].

2. Termination is a fundamental property of a constraint solver
which can be easily lost during solver integration. This prab-
lem becomes even more challenging when designing an open
equational environment.

Our geal is to design and implement a system capable of solving
problems of the following type:

Given (a) a domain A and a signature F, of external operators
defined gver 71, together with a collection of associated
constraint solvers,

(b} aset F_of data eonstrucrors,

{c) a program R over J1 U 7 that introduces a set 7, of
user-defined function symbols, where 77 is a syntactic
domain formed by the formation rules of programs and

() a sequence 7 of equations that may contain a set of
variables,

find the solutions of G in the equational theory defined by A and
R.

R and G are defined by the user, and are respeclively called user
program, and the goal of the program. The program R is a condi-
tional patiern rewrite system, a higher-order rewrite sysiem defined
over the simply-type A terms modulo 8 and long 5 [9). The solution
of G is a substitution # for the variables in G such thal the formula
G0 holds in the theory defined R. 16]

2. SYSTEM ARCHITECTURE

We have designed and implemented a distributed sofiware system
called CFLP [6] whose computational model integrates lazy nar-
towing for conditional patiern rewrite systems with cooperative
constraint solving (CCS). We employ lazy narrowing 1o solve sys-
tems of equations containing symbols defined by conditional pat-
tern rewrite rules [7, 8], and CCS to support the integration of vari-
ous external constraint solvers so as Lo produce a generic constraint
solver.

The architecture of our system is shown in Fig. 1. The system
consists ol

1. an interpreter which solves goals by a mechanism which
combines lnzy narrowing steps with steps that collect con-
straints into & constraint store and dispatch them to the coop-
erative constraint solving system, and

User €3 conslenint solver
interface

D distribued
environment

Interpreter

coeperalive
constraing solving
system

Figure 1: Architecture of CFLP

2. adistributed implememation of a cooperative constraint solv-
ar, consisting of

(a) @ schecitler which reccives the constraints sent by the
interpreter and dispatches them 1o specialized solvers
in accorctance with a given cooperation sirategy, and

(b} specialized solvers, which are resources located in a
distributed environment and can be shared by many us-
ers.

Our choice For a distribuled implementation of the cocperative con-
straint solver of CFLP was determined by the following observa-
tions. First, constraint solving resources are expensive; therelore
they are best maintained at a developing server site and shared in a
distributed environmenlt. Secondly, our compuling environment is
becoming enore anc more net-centric; therefore instead of copying
seltware at user side, we will in the fulure receive services of con-
straint solvers (i.c. obtain solutions) provided by constraint solvers
via network,

3. MAIN FEATURES

Currently, CFLP has the following features:

+ All syslem compenents are processes thal communicate asyn-
chroncusly over MathLink connections [10}.

-

The compwation of the CCS is driven by a buill-in cooper-
ation strategy thal has been proposed for cooperative con-
siraint logic programming [5).

.

The constraint solvers integrated in CFLP are built on top
of the solving capabilities of Mathematica. We have defined
and implemented solvers for

systems of linear equations,

cquations with invertible funciions,

systems of multivariate polynomial equations, and

differential equations.

To improve the cfficicney of the computation of the inter-
peeler, we have integrated in CFLP all the deterministic re-
finements of Jazy narrowing proposed by us so [ar [7, 8], The
user can choose the onderlying calculus of the interpreter.

-

The user can adjust the cooperative constraint solver of CFLP
by specifying the number and location of the specialized solv-
ers,

4. APPLICATIONS

We describe with two examples the solving capabilities of CFLP,

4.1 Electric Circuit Modeling

The first example shows how electric circuit layouts can be com-
puted with CFLP, This example illustrates the expressive power of
the FLP style programiming extended with

+ higher-order constructs such as A-abstractions and lunction
variables, and

« constraint solving capabilities for differential equations, lin-
ear equations, and systems ol polynomial equations.

We first define a function spec which describes the behavior in
time s of an electrical component as a function of the current {[¢)
and voltage v|r] in the circuit. The CFLP rules of spec correspond
to a recursive definition, where the base case describes the behavier
of elemeniary circaits such as resistors, capacitors, and inductors,
and the inductive case describes the behavior of serial and parallel
connections of electrical components.

The CFLP program is given below, We do not explain the under-
lying electronic laws since il should be easy to read them off from
the program.

Inf{l):= Prog={
spec[res(r], A[{t}, ¥[t}] . A[(t}, i[t]]1]~
True & {A[{t}, v[E)] = A[{t), ri(Ed]},
spec(ind[1], AL{t}, w[€1], AL{t]}, [t)]]
True & A[{t}, v[t)]) = A[(t], 1di"[t]],
specleap(el, A[{t}, ¥(t]1].A[{t), i(E]]] ~
True e A[{t), 1[E]] m A[(t}, ev' [t}],
spec{sexial [{}], A[{t}, 0],1] =+ Txue,
spec{serial[[comp|T]]). ¥, i] » True =

{spec{comp, v1, 1] = Trua,
specfwerial [T],¥2, i] = True,

AL(E}, vIE]] = AT{t}, vi[t] +v2([E]))},
spec[parallel{{}], v, ALl{t}, 0}] «» True,
spec(parallel|[cowp|T]]), ¥, 1] -+ True &

[specfcomp, v, il] = True,
spec (parallel(T]), v, 12] = True,
AL{t},i1t]] = A[{e},11[e] +12{t]1}}]};

The universally quantified variables are underlined. Note the us-
age of the list construct in the recursive specification of serial and
parailel connections of electrical components. The CFLP system
recognizes the following list specifications:

Aty ...) list consisting of components 1, ..., f

« { b1 1]; CFLP list with head A and tail ## in Prolog-style
notation.

Consider the problem of finding the behavior in time of the current
ina RLC circuit withR = 2, L. =] and C = 1/2 (see Fig. 2), under
the restrictions that the vallage is 50V and the current was initially
set 10 0,

In CFLP this problem is reduced 1o solving the system of equations:

Inf2}:= Problem=
fepec{serial[{res(2], ind[1], capll1/21)],
A[{€},50},1] = Txue,

i[0] = 0};

R=2 L=1 C=lf2

T
A

V=50

Figure 2: RLC circuit

The variable which we want to compute is i, and it is overlined,
Note the usage of the expression A[{t}, 50] for specifying that the
vollage is constant (50 V) in time.

To solve this problem, we call:

In{3}]:= TSclve[Problemn,
Constructox - {V, res, ind, cap,
serial, parallel},
Rules -+ Prog)
Addrule :v . ; spec(res(r], v, i] » True =
Af{e), vl =al{tt, rifc]}
Add rule YL specl[ind[l], v, i] 2+ True«
A}, v[e])= A1{t), 1if{e]]
Addrule :V(, ; ,,8pec(cap(¢], v, i] 2 Truee
Al{e], E[e]] =A{{t}.cvit]]
Addrule :V“]spec[s«ariau {31, A{(t},0),1] »True
Add rule ¥ comn pov1,v2, 4,
spec|[seriali[compiT|], v, i] » True
spec|comp, v1, i] = True,
spec[aerial [T], v2, i] = True,

M), vie)] = Al{ed, vile) » vz[e])
Addrule :Vw}spec[parallell(]], v, A[{t}, 01} -2 True
Add rule :V(comp,i,il,iE,T,v}

gpec|parallel| (comp|T]], v, i] » True
spec|comp, v, i1] = True,
spec[parallel[T], v, i2] = True,

Af{e}, ife)] = af{e}, i1t} +izfr])
13-+ Af(t), ~e1$2 e F sin(t})

Out3]= {[i-A[{t], -c152&°" Sin[t]]}}

This call is similar to the Solve call of Mathematica, but TSolve
has the specific options

« Rules: provides the fonctionnl logic program (.., condi-
tional rewrite system) used during solving the goal,

+ Constructor: specilies the data constructors used in the
specilication of the program and of the goal.

The system compules the parametric solution
{i— M.—c1$2 ¢ sin()
which s represented in Maothenarica by

(i~ A{t), ~¢1$2 ™ sin[]]}.

4.2 Program Calculation

This example illustrates the capabilities of a computing environ-
ment which ¢an perform full higher-order pattern unification and
higher-order term rewriling.

Consider the problem of writing a program to check whether a list
of numbers is sieep, i.e, il every clement of the list is greater than

or equal 1o the average of the elements that follow it. A CFLP
program that does this Is:

Inf{d4]:= Prog={
steep[{}] -» True,
mteep[[a|x]] -» And[a » Ten[x] 2 swn[x].
eceep(x]],
sum{{}] - 0, sum[[x{y]] - x + sum{y],
len{{}] =0, len[{xly]l] »1+len{yl};

Prog is modular and easy to understand, but it is inefficient (qua-
dratic complexity). It is desirable 1o compute the efficient version
steepOpt of steep. For daing this, we emnploy the fision calcula-
tional rile:

flel =€ flgla, nall = hia, flns])
Slfoldr[g, e. ns]) = foldr{h, €. ns)

where foldr is defined recursively by

foldrlg, e, {]] = e foldrlg, e, [nlns]] = gln, foldrlg, e, ns))

" The inefficieni computation is Mfolde[g.e,ns]], and its efficient ver-

sien s foldrih,e’ ,ns). Finding the efficient versian amounts 10 find-
ing b such that flg[a.nsf]=h[a,[fns]].

To use the fusion caleulational rule, we first formalize the the com-
putation of steep as f[foldrg.c,ns]]. It is casy to see that

steep[ni=sel-c3-1[n]= sel-c3-1[[{foldrg e, n]]l.

where fin]=c3[sieep(n],sumln],len[n]}, g=Cons and e={]. Here,
sel-c3-1 denotes the first data selector associnted of the data con-
structor ¢3, This irnplies that the following relation holds for any
valid arguments x, 3, z:

selc3 1{c3fx v 2]l = x.

11 we succeed to find h, then
steepOptinl = sel-c3- Hfifokdrlh, ¢, nll}
where e'=f[e]=c3[True,0.0].

To compute h, we solve the equaiion {{g{a,ns]]=h[a.fIns}], i.e. the
goal

Inf5]:= Problem= A[{n,na), £[[n|nel]] =
Al{n,n8),
hin, c3[ateep[ns), sum[nsj, lenins]ll};

Inf6]):= Constructor{Triple = ¢3|Bool, Float, Float])y

Inf7}:= TSolwve|Problem,
Conatructor -
{Plus, Power, Times, GreaterBqual, And},
Rules + Progl
{£[ns) » c3[steep[ns], sumins], lenins]}}]
Addrule ;¥ ., fins| » c3{steep[ns], sun[ns], len[ns}]
Add rule :v(x.y]len[Ixlyy] =1+ len|y}
Add rule :len{ (]}l 20

Add rule : ¥, . 5teep|(alx]] »alen(x] = sum{x] &&steep(x)

Add rule :steep[[}] -» True
Add rule :V(x‘},,sum[[Zly]] = x+ aum{y]
Add rule ssumi{}] -0
{h-» A[(2523, x$24),
c3[x$23sel-03-3{x524] > sel.03-2{x824]&&
sel-c3.1[x524], x523 + sel-c3.2[x524],
L+eel.c3.-3]x524]1]]}
Out [7)= {{h- X[{x523, x524), ¢3(
%823 gel.c3-3[x524) 2 sel-c3-2(x$24] &&
sel-c3-1{x$24],
x523 +8el.c3-2[x§24],
1+sel-c3-3[x524]}1}}

Note that CFLP handles the operators + (Plus), Power, ¥ (Times),
and = (GrealerEquat) as external operators, that is, operators used
in constraini specifications. As a consequence, the equations built
with these operators are handled by defaull as consiraints and sent
10 be solved by the constraint solver. In this example we override
the default specification of these operators by declaring them as
mere consiructors in the Congtructor option of the TSolve
call. As o consequence, CFLP gives up using constraint solvers for
solving equations built with the operators memioned above, and
enables the inlerpreter to solve them.

4.3 Other Applications

We have investigated several other problems from physics and found
that they can be solved with CFLP by reducing them lo systems of
constraints that can be handled by a cooperation between the spe-
cialized solvers of CFLP.

5. CORBA-BASED OPEN ENVIRONMENT

We are currently working on redesigning the scheduler to accept
differen) cooperation strategies provided by the user.

The work includes the replncement of the modules that rely on
MathLink by more versatile protocols. We use CORBA [1] in the
new implementaddion because it is the standardized software tech-
nology for distributed computing and it fits well with the objective
of our open environment for equational solving. CORBA facilitates

(a) to getuniform aceess o various applications (such as special-
ized solvers) wiitlen in different languages, via object mod-
eling, when they have a comman interface specified in OMG
IDL,

(b} to locate transparently solving resources in distributed envi-
ronments, and

(c) to plug them in whenever their capabilities are needed to
salve a problem.

As CORBA provides the framework for coopernative constraim solv-
ers and low-level protocols for communication among objects, our
task is te define higher-level protocols for communicaling among
dlistributed solvers.

5.1 MAXCOR

We have designed MAXCOR (MAth eXchange for CORBA), a
framework for exchanging mathematical expressions for CORBA.
MAXCOR contain three ingrediens:

1. the language for mathematical formulas 10 be used in con-
Junction with OMG DL,

2, the commen interface definition in OMG 1DL. for all objecis
in MAXCOR,

3, CORBA object wrappers for binding MAXCOR and cxistin'g
applications.

As for point 1., we adopled MathML [3], the subset of XML. In
a simply-minded implementation, MathML documents could be
passed as arguments of string type in OMG 1DL. However, this
would require translation ol object-to-string and vice versa on both
client and server sides. Instead for efficiency reasons, we employ
XML DOM (Document Object Model) and DOM-10-valuetype map-
ping [2]. XML DOM is standardized by W3C and is implementa-
tion is available as an APl Furthermore, DOM-to-valuetype map-
ping is being specified by OMG and is a part of XML-to-valuetype
mapping. DOM-lo-valuelype mapping is cntirely defined in OMG
IDL. Thus our design is platform-independent,

As for point 2., we show below a simplified version of the MAX-
COR module declaration, Here the server is o solver and the client
is the scheduler thal calls the solver,

#include"value_dom.idl"

module MAXCOR {
struct threadID {
sequencecoctet> passwd;
// password for this thread
long number;
// thread number identifying the thread
// in which the solver runs
b
exception mException{
string reason;

IR

interface MAXCORObject
threadID init{in string parameter)
raises (mException) ;
void deinit {
in threadID id, in string parameter)
raises {mException) ;
Document execute {
in threadID id, in string command,
in Document expr) raises(mBxception);
Document serviceSpec(in string command)
raises (mException) ;
string usage{in string parameter);
)
‘

In the above program, value.dom. idl is the declaration file off
XML-to-valuelype mapping and Document is the valuetype of
DOM object, Type definition of threadlD is seil-explanatory.
Operations init, deinit and execute do the real work, Op-
eralion init creates new threads for running the server, initializes
the running environment and establishes the session with its client.
Operation deinit dismantles the server process when the server
completes the service. Operation execute invokes the program

of the solver. The arguments of execute are a string of command
name, and an expression which will be evaluated by the server.

Operations sexviceSpec and usage are auxiliary and provide
information to the clientl, Operation usage returns the help mes-
sage related 1o the service of the solver. Operalion serviceSpec
in our present version returns specification of the arsument of the
solver.

52 Implementation

We have implemented the following APIs: DOM to valuctype map-
ping in C++ and Java, CORBA object wrappers for Mathematica in
C++ and Java and for CPLEX [4] in C++. CPLEX is an application
package Tor integer programming and ks wrapped APl is used as
one of the solvers lor CFLP. The solvers that the present version
of CFLP are using are all written in Mathesnatica with the inter-
face complied with MathLink. This imerface will be replaced by
CORBA object wrappers. We will use MAXCOR for communi-
cation between a scheduler and selvers in CFLP. Currently we arc
working for the full deployment of solvers wrapped as CORBA ob-
jecis that cooperate with the scheduler of CFLP.

6. CONCLUSION

We introduced an open environment for equational solving. The
core of the environment is CFLP system which suppons equational
reasoning over variety of domains, We showed main features of
the system by giving examples that exploits the style of equational
reasoning. We further discussed a new implementation of the open
environment which is under way based on CORBA technology.

7. ACKNOWLEDGMENTS

This work is supported in part by the Minisiry of Education, Cul-
ture, Sports, Science and Technology, Gramt-in-Aid fur Scientific
Research (B) 12480066, 2000 and Mircea Marin is supported by
JSPS postdoc fellowship,

8. REFERENCES

{11 http://www. carba.org,

[2] http://www.omg.org/techprocess/meetings/
schedule/XML.Value RFP html.

13} http://www.wl . org/Math/.

[4] Using the CPLEX Callable Library. CPLEX Optimization,
Enc., USA, 1995,

{5} H. Hong. CLP(CF): Consiraint Logic Programming over
Complex Functions. Technical Report 94-09, RISC-Linz,
Castlc of Hagenberg, Aumiria, 1992,

[6) M. Marin, Funcrional Logic Progranming with Disiributed
Constraint Spiving. PhD thesis, Institute RISC-Linz,
Johannes Kepler University, Castle of Hagenberg, Ausiria,
2000,

[7] M. Martn, T. Ida, amd T. Suzuki. On Reducing the Search
Space of Higher-Order Lazy Narrowing. In A. Middeldorp
and T, Sata, editors, FLOPS™99, volume 1722 of LNCS,
pages 225-240. Springer- Verlag, 1999,

{8] M. Marin, T. 1da, and T. Suzuki. Lazy Narrowing Calculi in
Perspective, In Proceedings of the 9th International
Workshop on Functional and Logic Programming, pages
238-752, Benisassim, Spain, 2000

{91 T Nipkow. Functional wnificatian of higher-order patterns. in
Proceedings of 8th {EEE Sympasium on Logic in Computer
Science, pages 64—74, 1993,

10} 8. Wolfram. The Marthematica Book. Fourth Edition,
Wolfram Media Inc. Champaign, lllinios, USA, and
Cambeidge University Press, (999,

CELP: A Mathematica

[mplementation of a
Distributed Constraint
Solving System

Mircea Marin, Tetsvo Ida

Institute of Information Sciences and Electronics
University of Tsukuba
Trukuba Ibaraki 305-8573, Japan

snarin@score.is. tsuknba.acjp, ida@score.is. tsuknha.ac.jp

Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC-Linz)
Jobannes Kepler University

A-4040 Linz, Anstria

Wolfgang. Schreiner@risc.uni-tinz.ac.ot

The need for combining and making various constraint solvers cooperate
is widely recognized. Such an integrated system would allow solving
problems that cannot be solved by a singlc solver.

CFLP (Constraint Functional Logic Programming System) is a distributed
software system consisting of a functional logic programming interpreter
running on one machine and a number of constraint-solving engines
running on other machines. The interpreter is based on a deterministic
version of a lazy narrowing calculus which was extended in two main
directions: (2) the possibility to specify explicit OR-parallelism, and (b) the
possibility to specify constraints over various domains. The OR-parallel
features of the interpreter allow the decomposition of the solution space
into different subspaces denoted by various sets of constraints; the individ-

Originally presented at the Third International Mathenatica Symposium (Hagenberg,
Austria, August 23-25, 1999).

The Mothemalica Journal 8:2 {2001) @ 2001 Wolfram Media, Inc.

290 Mircea Marin, Tetsuo lda, and Wolfgang Schreiner

fa-

1 1i1ir 11 1
25m+n+p+q+§(—18m—3q——-~—~2 +—2—(-24m+r))+z(8m—4p—6q-
11r 11
7I‘+7(-24m+r)+2(18m+3q+——-§——7(—24m+r))),

1
b o (-Butap+6qe7r-7 (-2n+r)-

11r 11
2(18m+3q+T By (—24m+r))),
c- il (18m+3q+ Hr -1—1 (—24m+r)),
3 2

d- -24m+r}

25m+n+p+ +1(18 3 11r+11 (—24m+r))+—1-
owig- {{a»2men+prqr < (-18m-3q- o+

1l1r 11
(8m-4p-6g-7r+7(-2am+r)+2(18m+3q+ = "T(—24m+r))),
1
b (-8Bm+dp+6q+7r-7(-24m+x) -

1tr 11
2(18m+3q+ T (-24m+1)}),
11r 11

c- —; (18m+3q+ - T3 (—-24m+r)), d->-—24m+r}}

The equational symbol = denotes strict equality, that is, the fact that the values of
the two sides of the equation coincide. We identify the value of an expression
with the result of rewriting it to an expression without defined symbols.

The syntax call of TSolve is similar to the syntax call of Solve. The first three
arguments specify the goal to be solved, the main variables of the goal, and the
eliminatable variables of the goal, respectively. In addidon, the user of CFLP can
control the behavior of the computation through various TSolve options. In this
example, the following options are used.

DefinedSymbol the list of type-annotated symbols defined by the user

Rules the list of definitions for the user-defined symbols
(the functional logic program)

Constructor the list of type-annotated data constructors

The constant coefficients of f are given as data constructors, and the unknown
cocfficients of g are given as main variables.

A TSolve call may yield an infinite number of solutions. In this case it cannot
produce an output with the list of all solutions but it prints them out incremen-
tally, as soon as they are computed. TSolve calls can be interrupted via a palette
which is provided for the user convenience.

CFLP: A Mathematica buplementation of a Distributed Constraint Solving System 291

In this example, CFLP returns the unique solution

«[d—)-—24m+r,
T 3
¢c—2>15m+7n- 5 (60m+6n)+3p—5 (60m+12n~2(60m+6n) +2p) +q,

1 1
b—>5 (50m+12n~-2(60m+6n)+2p), a— r3 (60m+6n)}

which is printed out as soon as it is computed, and collected in the output of the
TSolve call.

Note the use of higher-order variables and A-abstractions in the specification of
the goal and functional logic program. CFLP is able to handle equations involv-
ing operators defined outside the functional logic program. Furthermore, the
computed answer is parametric, since 7 is a variable.

0 Electrical Circvits

This example illustrates the expressive power of the functional logic program-
ming style extended with higher-order constructs (function variables and A-
abstractions) and capabilities to solve differential equations, linear equations, and
systems of polynomial equations. We consider the problem of modeling the
behavior in time of electrical circuits built from serial and parallel connections of
elementary components such as resistors, inductors, and capacitors.

First we introduce a new type constructor E1Comp with associated data types res,
ind, cap, serial, and parallel to specify the characteristics of the electrical
circuits. Thus, a resistor with resistance R =2 is specified as res[2]}, a serial
connection of two resistors R1 and R2 is specified as serial[{res[R1],
res[R21}], and a parallel connection of a capacitor C and an inductor L. is
specified as parallel[{cap{C], ind{L1}]. The keyword TyList is the CFLP-
type constructor for [ists.

mi4)= TypeConstructor{ElComp =res[Float] | ind[Float] | cap[Float] |
serial [TyList{E1Comp]}] | parallel[TyList[E1lComp]l]];

Next, we define a function spec which describes the behavior in dme t of an
electrical component as a function of current i[t] and voltage v[t] in the
circuit. The CFLP definition of spec is recursive, where the base case describes
the behavior in time of the elementary circuits (resistor, inductor, capacitor), and
the inductive case describes the behavior in time of serial and parallel connec-
tions of electrical components.

The CFLP program is given below. We do not explain the underlying electronic
laws since it should be easy to read them off from the program.

292 Mircea Marin, Tetsuo Ida, and Wolfgang Schreiner

f3}= Prog=
{5pec [res[r], v: Float*»Float, i : Float Float] -
True & {A[{t}, v[t]] = A[{t}, rilt]]},
spec[ind[1], v.: Float % Float, i : Float » Float] -
True < A[{t}, v[t]] = A[{t}, 11’ {t]],
specicaplcl, y: Float » Float, i : Float 2 Float] -
True ¢ A[{t}, i[t]] = Al{t}, c v'[t]],
spec[serial [{}], A[{t}, 0], i: Float » Float] - True,
spec[serial[[m | '_1_‘]] ,
v :Float > Float, i : Float Float] - True &
{spec[comp, ¥1, i] = True,
spec[serial [T], ¥v2, il = True,
AL{t}, v[t1] == A[{t}, vi[t] +v2(t]ll},
spec [parallel[{}], v, A[{t}, 0]] - True,
spec [parallel[[m] :I"]] , ¥, 1] - True &
{spec(comp, ¥, i1}l = True,
spec [parallel[T], v, i2] = True,
ALt}, i[t)] == a[{t}, i1t +i2{t]]}};

Consider the problem of finding the behavior in time of the current in an RLC
circuit, under the restriction that the voltage is constant in time and the current

was initially set to 0.
In this case, the goal which we want to solve (in variable 1} is

mjef= G=4{i[0] == 0, spec[serial[{res[R0], ind[LO], cap[CO]}]1,
ALt : Float)}, V], A{{t : Float}, i[t]1]] = True};

RO, L0, €O, and V are data constructors which denote arbitrary but fixed character-
istic values for the resistor, inductor, capacitor, and voltage of the circuit. Now
we can ask CFLP to solve the problem.

inf7}= TSolvelG, {i: Float + Float}, {},
Rules - Prog, _
Constructoxr =+ {RO : Float, L0 : Float, CO : Float, V : Float},
DefinedSymbol = {spec ; ElCoﬁpx {Float ® Float) « (Float > Float) > Booll}]

Type checking program ...

Type checking goal ...

(-0 mo--11ercone? Y
e 29 io (-vco RO+\/*4LO+COR02)012
+
2+/CO L0

{1~ a[tee1}, co|~

(- posf -arorcone? Yoo
e 2eo 1o (—\/CO RO+\/~4LO+COR02)012]}
2+/C0 LO

CFLP: A Mathematica Implemnentation of a Distvibuted Constraint Selving System 293

{-VT0 no--a1aicore? Jent

e 2Veo Lo -\/ER0+\/-4L0+COR02 c1
Culf7}= {‘[i“)]([{t-j_}’ col- (2 ——) 2 N

(—ﬁnm\/—d 10+CORDZ } 1oy
e 2@ o (-V/T0 RO+ +f-41.0+ CORO?) C1,

ST hj;

The system computes the parametric solution

(<o ra-y-4 Loscoro?)e (-yco Rosy-4 Loscomal)y
{5 A€ 1o Lo Ci, —e " 2o o Ci,

which is represented in Mathematica by

(-v@ oy -aLorcono?) e (- naqf-_qm)t
-[i—)_l[{t}, e 20 Lo Cl, -e 34/C0 Lo Cll]}

Note the usage of type annotations in the goal, list of variables, and options of
the TSolve call. CFLP has integrated a polymorphic type checker to verify the
type consistency of the program and goal provided by the user.

A Problem Involving Solver Cooperution
Consider the following program

fs}= Needs ["TSolve'"]
9l= Prog= -[:f [X : Compl] = g(Y: Compl] & (X+¥=3VYX*-Y== 9)};
in complex variables X, Y, and the goal

mirop= G = {£[X] = gl¥], g[¥?] = g(2® - 1],
Al{x : Compl}, H' [x]] == A[{x : Compl}, Zx7], K’'[1]) == 4};

with indeterminates X, H, Y, Z, In this example, the aperator V denotes logical
disjunction, and can be used in goals and conditional parts of rewrite rules to
express alternative solutions.

Solving this goal requires a cooperation among solvers for linear, polynomial,
and differential equations over the domain of complex numbers. To solve G, we
call

mii}= TSolvelG, {X, H, Y, Z}, {J},
Rules = Prog,
DefinedSymbol ~ {f : Compl + Compl},
Constructor = {g : Compl + Compll}]

Type checking program ...

294 Mircea Marin, Tetsuo Ida, and Wolfgang Schreiner

Type checking goal ...

Enabling distributed constraint solving subsystem ...

Axe1tVIE

{x-3+v15, Y-8, 24, Ho A[{xe1], —I«:Tig——wlz]}

4xe1tVE

{X—)B—‘\/TS—, Y-%\/I_E‘, Z-4, H-)).[{X'l}, —1":—"\/—1_?4'014]}

. 1-+/15

fxo-yo-15, v -V15, 2 4, Hwa,x[{x-i}, %wh]}
xe1V1E

{x—»—x/9+\/1_5—,v—>\/T§, Z-4, H-Uk[{x'i}, 41—+—\/—1_5—+01a]}

4x-11’m

fx>o-Vis , ¥>-4/15, 204, K- 2[{x1}, By +Clyo) }

[x~ m Yo V15, 254, HoA[{x+1}, %}%1:/;‘1—‘/:5”:1”]}
o {{x-3+Vi5, ¥ -15, 254, Ko a[{xe1}, E%%erg]},
[x>3-+18, Y= Vi5, 24, Ho2[{x-1}, %x—%ﬂm]},
[x+-v/o-VI5 , Y5 -VI5, 24, Roa[txe1}, %—_l_i—?—wu]},
{x>49-VIE , Y> VI8, 24, B=2[xe13, 4::1\1[_:{_:— +c1] |,
4 x5

{X—)W, Y-A/15, 24, H—»l[{x'i}, m*“ﬂ]}}

In this case, the solutions computed by CFLP are parametric, and the system has
generated the auxiliary variables C1,, Clg, Cly, Clyg, Clyy, Cly; to express
them. It is not hard to see that these are all the solutions of G.

CELP: A Mathemation buplenentation of a Distributed Conseraing Solving Sysien 245

m The Structure of the System

CEEP is o distributed software system [or solving systeis of cquationat goals in
theories that can be represented as sets of condtiional rewrite rales over a term
algebra whose signature s extended with external operators. The external
operators are uscd tor expressing constraints over various domains,

The system consists of three commponents:

o an iterpreter based on a ghee-order lazy nacrowing calealus €

® a cooperalive constraint solver consisting of
= scheduler which implements a strategy S for solver cooperation
— vartous specialized constraint solvers

The general architeeture of the system is depicted below.

Cooperative constraint sotver

Distributed envirenment

m(ij} are constraint solving methods in M, for ail i j

Figure 1. The oarchilecture of CFLP.

C

The Interpreter

The CFLP interpreter is designed to solve systems of equations between siomply-
ryped A-terms in theories axiomatized by finite sets of conditonal rewrire rules
ol a cevtan kand, called parters rewvite vules.

Roughly speaking, simply-typed U-terms are analogeus to the Function con-

steuct of Marbemutica, modulo the following ditferences.

. The keyword Funetion is replaced with the keyword A,

296 Mircea Marin, Tetsuo Ida, and Wolfgang Schreiner

2. Each such construct (which we will henceforth call a A-termn) should be
well-typed, that is, a type can be inferred from the types of its base
components {variables, constants, and function symbols).

The current version of CFLP recognizes the following base types:

Type Literals

Int Integer literals of Mathematica
Float Real literals of Mathematica
Compl Complex literals of Mathematica
String String literals of Mathematica
Bool True, False

and the following constructed types:

T % XTyPT type of functions with n arguments of types t;,...,t,
and result of type t

TyList[r] type of lists with elements of type ¢

For lists, we have adopted both the Mathematica notation {4y, ..., 4, } to repre-
sent a list with elements 4, ..., 4,, and the Prolog-like notation [HIT] to
represent a list with head H and rail T.

The CFLP interpreter is based on a higher-order lazy narrowing calculus C for
pattern rewrite systems [3] extended to handle also conditional pattern rewrite
systems [4]. ‘The underlying caleulus essendally consists of the unification rules
of higher-order patterns [5] and the lazy narrowing rules. Since the search space
of such a calculus is extremely large, we have implemented a couple of refine-
ments with smaller search space for solutions, which are sound and complete for
classes of functional logic programs and of practical interest.

We have extended these calculi in two main directions:

1. the possibility to specify constraints, that is, equations that cannot be
solved by narrowing, but for which specialized solvers are available; and

2. the possibility to specify explicit OR-parallelism.

The interpreter successively decomposes the goal toward an answer substitation
by applying the inference steps of the underlying lazy narrowing calculus. The
only equations that cannot be solved in this way arc the constraints. The con-
straints generated npon derivations are collected and sent to be solved by special-
ized constraint solvers via the component called the scheduler (see Figure 1).

Note that the nondeterministic selection of a rewrite rule for a defined symbol
and the explicit OR-formulas cause the initial goal to be reduced to disjoint sets

CELP: A Mathematica Implementation of a Distributed Constraint Solving System 297

of constraints that can be solved in parallel. Thus, in the last illustrative example,
the reduction of the initial goal

fIX1~ gin), g V] ~ g[Z* - 1],
Al : Compl), H'[a]] ~ A[{x : Compl}, Za¥ | H11==4

involves the decomposition of the equation f[X]~ g[¥] into simpler equations.
The transformation step performed by our lazy narrowing calculus is

fIX]= glV] = X~ X0, g[Y0] ~ g(V], (X0 + Y0 =3 VX0’ ~Y0=9} (2
where X0, Y0 are new variables. In this step we have used the fresh variant
f1X0] - g[Y0] & (X0+ Y0 =3V X0° - Y0 =9)
of the rewrite rule which defines f.

During step (2), an OR-subgoal is produced and as a result the initial goal is
finally decomposed into two disjoint sets of constraints. These sets of constraints
are sent to be solved to the scheduler.

The Scheduler

The scheduler coordinates the process of solving the systems of constraints
received from the interpreter. In order to solve these sets of constraints, the
constraint scheduler maintains a dynamic data structure called a comstraint tree.
The nodes of the constraint tree are pairs of the form (0, &) where 8 is a substitu-
tion and ¢ is a set of constraints.

Whenever a set of constraints ¢s is received from the interpreter, the scheduler
adds a new son (g, o5} to the root of the constraint tree. Here € stands for the
empty substitation. The scheduler expands this tree by applying constraint-
solving methods in parallel to its leaf nodes.

A leaf node (6, &) is expanded with respect to a method 7 as follows.

1. o is decomposed into a set cs; of constraints to which method # can be
applied, and a setcs; of other constraints.

2. sy is sent to be solved to a constraint solver which implements method 7.
We call such a solver an mz-solver.

3. If the m-solver detects ¢s; inconsistent, then the node (@, ¢s) is marked as
inconsistent. Otherwise the m-solver returns (g, cs} if it cannot reduce ¢s ,
or it computes a finite sequence of pairs (&, c5)), ..., (Gp, cs:p) with the
property that 8 is a solution of ¢ if and only if there exists a solution o; of

some ¢s; (1 <7< p), such thac0 =6, o;.

4. If the sequence {0,), ..., (GP, cs;,) is computed by the m-solver, then
the nodes {#6;, ¢, 6; U ¢s!) (1 =i = p) areadded to the constraint tree as
sons of the node (@, ¢s).

A node (8, ¢5) is final if it cannot be reduced by any mz-solver which is available.

298 Mircea Marin, Tetsuo Ida, and Wolfgang Schreiner

The implementation of the scheduling algorithm is inspired by the work of
Hong {6]. The scheduler can be regarded as a component parameterized with a
list M = {m,, ..., m;} of constraint-solving methods. The scheduler implements
a cooperation strategy S, which repeatedly applies the sequence =y, ..., m, of
methods to the leaves of the constraint tree until they become either final or
inconsistent. As soon as a final node is generated, it is made accessible to the
interpreter.

The Constraint Solvers

The constraint solvers are implementations of the constraint-solving methods
specified to the scheduler through the list M. The current implementation of
CFLP provides constraint solvers, which implement the following methods for
solving constraints over the domains of real and complex numbers.

Linear a method for solving systems of linear equations
and systems of equations with invertible functions

Polynomial a method for solving systems of polynomial equations
Derivative a method for solving derivative equations

PartialDerivative amethod for solving partial derivative equations

These methods are tried in the order presented.

All solvers are implemented by separate Mathematica processes executing in
parailel and communicating with the constraint scheduler via MathLink connec-
tions. There are two types of constraint solvers in CFLP.

1. Local constraint solvers that run as subsidiary Mathematica processes of
the CFLP constraint scheduler.

2. Shared constraint solvers are started from outside a CFLP session and can
be connected later to more CFLP schedulers, which may run on a differ-
ent machine.

The user can adjust the distributed constraint-solving component of the system
by specifying the number of local constraint solvers that are started at system
initialization, and the remote machines on which to look for shared constraint
solvers.

The communication mechanism between scheduler and constraint solvers is
implemented completely in MathLink (7). Therefore, CFLP is a platform-
independent software system and can be used in heterogeneous networks.

Condusions and Future Work

CFLP is a software system consisting of a functional logic interpreter and a
distributed constraint-solving system, which provides support for solving systems

CFLP: A Mathematica Implementation of a Distributed Constraint Solving System 299

of equations over various constraint domains. The functional logic component
allows the user to define his own abstractions in an easy and comfortable way. In
the current implementation we have integrated solvers for linear equations and
equations with invertible functions, polynomial equations, differential equations,
“and partial differential equations. The constraint solvers are all implemented on
top of the constraint-solving capabilities of Mathematica.

We intend to further develop the system by integrating more constraint-solving
capabilities. The constraint solvers may act either on disjoint sets of constraints
or on overlapping subsystems. Currently, the constraint solvers are not allowed
to act simultaneously on a leaf node of the constraint tree. An optimization
would be to act simultaneously with more solvers on the same node in situations
when the sabsystems of equations are non-overlapping.

Because of the higher-order extensions of the functional logic programming
framework (function variables and A-abstractions), the search space of lazy
narrowing is very large. We have identified and implemented various refine-
ments of a lazy narrowing calculus that perform a more deterministic search for
solutions for classes of functional logic programs of practical interest. We intend
to continue our research and identify better refinements.

The system is intended to be used by researchers in functional and logic program-
ming languages, and by researchers in constraint solving who are willing to make
use of its expressive and computational power.

m References

(1]). laffar and 1A lassez, Consiraint logic Programming, Technical Report 86-74,
Department of Compuler Science, Monash University, Clayton, 1986.

[2] M. Marin, T. Ida, ond W. Schreiner, “A Disliibuled System for Solving Equational
Constraints based on Lazy Narrowing Caleuli,” in JSSST Workshop on Programming and
Progromming Languages {PPL '99}, Atagawa, Japan, March 17-19, 1999 pp. 67-78.

[3] M. Marin, T. ida, and T. Suzuki, “On Reducing the Search Space of Higher-Order lazy
Narrowing,” in Proceedings of the 4ih Fuji International Symposium on Functional and
logic Progromming, FLOPS ‘99, INCS 1722, {A. Middeldorp, T. Sato, eds.), Berlin ond
Heidelberg: SpringerVerlag, 1999 pp. 319-334.

[4] C. Prehofer, Solving Higherorder Equations. From logic to Progromming, Boslon:
Birkhéuser, 1998.

[5] T. Nipkow, “Functional Unification of Higher-order Patterns,” in Proceedings of the 8th
IEEE Symposium on logic in Computer Science, Los Alamito, CA: IEEE Compuler Society
Press, 1993 pp. 64-74.

[6] H. Hong, “RISC-CLPICF): Constraint Logic Programming over Complex Funclions,” in
Proceedings of the Sth Infernational Conference on logic Programming and Automated
Reasoning, LPAR ‘94, [F. Plennig ed.), Berlin Heidelberg: Springer-Verlag, 1994 pp.
99-113.

[7]1S. Wollram, The Mathemalica Book, 3rd ed., Champaign: Wolkkam Media and Cam-
bridge: Caombridge University Press, 1996.

300 Mircea Mavin, Tetsuo Ida, and Wolfgang Sthreiner

m Additional Material

Available at www.mathematica-journal.com.

cflp.tar.gz

See also www.score.is.tsukuba.ac jp/software/ CFLP

About the Authors

Doctor Mircea Marin is a JSPS postdoctoral fellow af the Institule of Information Sci-
ences ond Elecironics, University of Tsukuba, Jopan. His recent work includes the
design and implementation of distributed systems for solving systems of constraints in a
higher-order setting by using CORBA middleware, mathematical librories, and com-
puter algebra systems, such as Mathematica. For details on his recent work, see
www. score.is.Isukuba.ac.jp/~mmarin.

Doctor Tetsuo Ida is a professor ot the Insfitute of Informalion Sciences and Elecironics,
University of Tsukuba, Japan, where he leads o research group on symbolic computa-
tion. For many years he has worked on various aspects of symbolic computation, such
as rewrite theories, parallel hashing algorithms, and Lisp Machine for symbolic computo-
tion. He is an edilor of the Journal of Symbolic Computation, For delails on his recent
work, see www.score.is.isukuba.ac.jp/~ida.

Doctor Wolfgang Schreiner is an assistant professor for the Research Institute for
Symbolic Computation (RISC-Linz) af the Johannes Kepler University in linz, Ausiria. He
has worked for several years on parallel and disiributed syslems for symbolic and
algebraic compulation using various declorative languages, mathemalical libraries, and
computer algebra systems. For details on his recent work, see
wwwe.risc.unilinz.ac.at/people/schreine.

The Mathematica Journol 8:2 (2001} @ 2001 Wolfram Medio, Inc.

Runtime Behavior of Conversion Interpretation
of Subtyping

Yasuhiko Minamicle

Institute of Information Sciences and Electronics
University of Tsukuba
and
PRESTO, JST'

minamide@is. tsukuba.ac. jp |

Abstract, A programming language with subtyping can be translated
into a language without subtyping by inserting conversion funclions. Pre-
vious studies of this interpretation showed only the extensional correct-
ness of the transtation. We study runtime behavior of translated pro-
grams and show that this translalion preserves execution time and stack
space within a factor determined by the types in a program. Both the
proofs on execution time and stack space are based on the method of log-
ical relations where relations are extended with the factor of slowdown
or increase of stack space.

1 Introduction

A programming language with subtyping can be translated into a language with-
out sublyping by inserting conversion functions. Previous studies of this Interpre-
tation showed only the extensional correctness of the translation (3, 13]. In this
paper, we study runtime behavior of the conversion interpretation of subtyping
in call-by-value evaluation. We show that this translation preserves execution
time and stack space within a factor determined hy the types in a program, if
subtyping relation is a partial order.

The translation of conversion interpretation changes the runtime behavior of
programs in several respects. It inserts conversion functions and may increase
the total number of closures allocated during execution. It translates tail-calls
into non-tail-calls and, therefore, it may increase stack space usage. Albthough
the translation causes these changes of runtime behavior, execution time and
stack space usage arc preserved asymptotically. This contrasts with type-directed
unbexing of Leroy where both time and space complexity are not preservec [11].

Type systems with subtyping can be used to express information obtained by
various program analyses such as control flow analyses |7]. One strategy of utiliz-
ing types ebtained by program analysis is to adopt conversion interpretation of
the subtyping. For example, it is possible to choose an optimized representation
of values based on types and to insert conversion functions as type-directed un-
boxing of polymorphic languages [8]. In order to adopt this compilation method

we need to show that the conversion interpretation is safe with respect to per-
Formance. The results in this paper ensure safety with respect to execution time
and stack space.

Both the safety proofs on execution time and stack space are based on the
method of logical relations. The method of logical relations has been used for
correctness proofs of many type-directed program transformations [8, 14, 12| and
was extended to prove time safety of unboxing by Minamide and Garrigue {11].
One motivation of this work is to show that the method of logical relations can be
extended to prove safety with respect to stack space. The structure of the proof
we obtained for stack space is almost the same as that for the execution time,
This is because the operational semantics profiling stack space can be formalized
in the same manner as the semantics profiling execution time. We believe this is
the first proof concerning stack space based on the method of logical relations.

We believe that the conversion interpretation is also safe with respect to
heap space. However, it seems that it is difficull to extend the method of logical
relations for heap space. We would like to study safety with respect to heap
space in future work.

This paper is organized as follows. We start with a review of conversion inter-
pretation and runtime behavior of translated programs. In Section 3 we define
the language we will use in the rest of the paper and formally introduce con-
version interpretation. We prove that conversion interpretation preserves stack
space and execution time in Section 4 and Section 5. Finally we review related
work and presents the conclusions.

2 Review of Conversion Interpretation

‘We review conversion interpretation of subtyping and intuitively explain that the
interpretation preserves stack space and execution time if the subtyping relation
is a partial order. Since the subtyping relation is transitive and reflexive, the
subtyping refation is a partial order if it contains no equivalent Eypes.

The conversion interpretation is a translation from a language with subtyping
into a simply typed language without subtyping. The iden is to insert a conver-
sion function (or coercion) where the subsumption rule is used. If the following
subsumption rule is used in the typing derivation,

'-M:7 720
F-AM:a

the conversion function coerce, <4 of type 7 — @ is inserted and we obtain the
following term.

coercer<q (M)

Coercion coerce, <, is inductively defined on structure of types. If there are two
base types bigint and int for integers where int is a subtype of bigint, we need to

have a coercion primitive int2bigint of type int — bigint. A conversion function
on function types is constructed as follows.

Af.Az.coercer, <o, (f(colrce,, <5, (x)))

This is a coercion from 17 = 1 to ¢ — 3.

We show that this interpretation of subtyping is safe with respect to execution
time and stack space if the subtyping relation is a partial order. Intuitively, this
holds because only a finite number of coercions can be applied to any value. If
a subtyping relation is not a partial order, i.e., there exist two types 7 and o
such that 7 < ¢ and o < 7, we can easily construct counter examples [or both
execution time and stack space. A counter example for execution time is the
following translation of term M of type T,

coerceq<r(coerce <, (... (coerce, <, (coerce; <, (M)

where 7 < ¢ and ¢ £ 7. The execution time to evaluate the coercions in the
translation depends on the number of the coercions and cannot be bounded by a
constant. It may be possible to avoid this silly translation, but it will be difficult
to avoid this problem in general if we have equivalent types.

The econversion interpretation translates tail-call applications into non-tail-
call applications. Let us consider the [ollowing translation of application .

coerce, <o (2 y)

Even il @y is originally ab a tail-call position, after translation it is not at a
tail-call position. Therefore, it is not straightforward to show the conversion
interpretation preserves stack space asymptotically. In fact, if we have equivalent
types, we can demonstrate a counter example. Let us consider the following
program where types A and B are equivalent,

fun £ (0, x : A) = x (* £f: int * A ~-> A *)
| £ (n, x ¢+ AY = g (n-1, %)
and g (n, x : A) = f (n, x} : B (* g: int * A ~> B *)

We have a type annotation £ (n, x) : B in the body of g and thus g has type
A -> B. This program contains only tail-calls, and thus requires only constant
stack space. By inserting conversion functions we obtain the following program:

fun £ (0, x : &)
| £ (n, x : A)
and g (n, x : A)

x
B2A (g (n-1, X))
A2B (f (n, x))

I

where A2B and B2A are coercions between A and B. For this program, evaluation
of £ n requires stack space proportional to n since both the applications of £
and g are not tail-calls.

In order to preserve time and stack space complexity, it is essential that
the subtyping relation is a partial order. This ensures that there is no infinite
subtyping chain of types if we consider only structural subtyping. Thus only a
finite number of conversions can be applied to any value if the subtyping relation
is a partial order.

3 Language and Conversion Interpretation

In this section we introduce a call-by-value functional language with subtyping
and its conversion interpretation. We consider a call-by-value functional language
with the following syntax,

Vousz|i|i| deM | fix* . \y. M
Mu=V|MM|let z=M in M

There are two families of integers: 7 and i are integer values of types bigint
and int respectively. The language includes bounded recursive functions where
fix™ x Ay M is expanded ab most n times [4]. Any closed program with usual
recursive functions can be simulated by bounded recursive functions.

For this language we consider a simple type system extended with subtyping.
The types of the language are defined as follows.

7 u=bigint}int |7 — 7

We consider two base types bigint and int where int is a subtype of bigint. A
metavariable ¢ is also used to denote a type. The subtyping relation n) < 7y is
ziven by the following three rules.

gy 5T T2 S 02

TET int < bigint TL— T2 X g ~ Oz

The rule for transiiivity is not included here because it can be derived from the
other rules for this subtyping relation. We write 7 < g if r < g and 7 # o. It
is clear that the subtyping relation is a partial order, The typing judgment has
the following form:

'k M:r

where I is a type assignment of the form xy:m,. .., &7, The rules of the type
system are defined as follows.

I+ &:bigint T | gint
nrel PEMim—m T Man
I'ar 't My Moo
Nam - M PFMe o7
' Az My — o ' M

Doypm — m,om B M 'k My Naom b Mo
' fix" g z.Mim o~ 1 I'klet = M, in My:r

Note that let-expressions do not introduce polymorphic types. They are used
to simplify definition of coercions.

We consider a standard natural semantics for this language. A judgment has
the following form: M | V. The rules are given as follows.

My Vi MaVij/al BV
ViV let @ =My in MR V

MM My Ve M|Va/z] UV
MV V

My Y fixk y A M Mp } Ve Mifix* y o M/y)[Va/z) BV
My LV

When the recursive function fix®*+1y, Az, Af is applied, the bound of the recursive
function is decremented.

To formalize the conversion interpretation we need to introduce a target
language without subtyping that includes a coercion primitive, We consider the
following target language. The only extension is the coercion primitive int2bigint
from int into bigint.

Woo=alili] e N £ix™ 2 y.N
Na=W/|NNllet =N in N|int2bigint{N)
The operational sernantics and type system of the language are almost the same

as those of the source language. The rule of subsumption is excluded from the
type system. The typing rule and evaluation of coercion are defined as follows.

NIi I Niint
int2bigint(N) Il I" I int2bigint{V):bigint

The canversion interpretation is defined inductively on structure of the typing
derivation of a program: the translation C{I" - M:7] below gives a term of the
target language.

Clrtar)==a
Cir v dx. M —] = Ax.Cl o = M)
ClrF £ix® g A Mimy — 7o = £ix™ y Az.CUN iy — 1o, imy b M
CIF - MiMym)) = CII v My — w]Cl0 V- My]
ClIF M:7] = coerces <. (CII F Miol)
Cirtlet == M) in Myl =1let 2 =C[I'F Mpn] in C[IMF My

The coercion used in the translation is defined inductively on structure of deriva-
tion of subtyping as follows 1.

coerce < (M) = M
COGrCEimeigim(ﬁi{) = int2bigin€(ﬁvf)

COICE s, —ry<ay—oy (M) = 1ot @ = M in Ay.coercer,<q,(z(coerceq, <r, (y)))

Note that coerce,<. (M) must be not only extensionally equivalent to M, but
also intensionally equivalent to M. If we adopt (Aa.z) M for coerce,<, (M), we
have the same problem when we have equivalent types, and thus execution time
and stack space are not preserved.

We define two measures, |7] and [7], of types as follows.

Lint] =0 [int] =1
{bigint] =1 [bigint] =0
In =) =[nl+|n] In-omnl=|nl+nl

It is clear that ¢ < 7 implies |¢] < |7 and [o] > [7]. Since |7| and [7] are
non-negative integers, we also obtain the following properties.

Ta<..<n < = |m]<...<|n)<in] = n<|n

H<TI <. < = [n]>n]>...>[m] = n<nl

From the property we can estimate the maximum number of conversions applied
a value of 7g. In the following program, we know that n < {rp] by the property.

coercer, <, (... (coercer<r (V})

Intuitively, this is the property that ensures that conversion interpretation pre-
serves execution time and stack within a factor determined by types in a pro-
gram.

4 Preservation of Stack Space

We show that coercion interpretation of sublyping preserves stack space within a
factor determined by types occurring in a program, Strictly speaking, the factor
is detenmined by the types ocowrring iu the typing derivation used in translation
ol a program. We prove this property by the method of logical relations.

First we extend the operational semantics to profile stack space usage. The
extended judgment has the form Af J* V where n models the size of stack space
required to evaluate A to V. The following are the extended rules.

My U™V Mp[Vi/a) 4 v
vily let z = A in M, fmax{m+la)y

! We assume thal 73 — 72 € 7p — 73 Is nol derived from 11 € 7 and 2 < 72, but
from the axiom.

My da M Mp U™ Ve M[Vajz]d* V
Af{] ﬂ’fg umax(l—}-l mt1n) 1%

My [fix g da M My Y Vo M(fix¥ g a M/y|[Va/z) 1m V
A,I] AJQ ‘U‘max(l-l-l,m+l,n) v

This semantics is considered to model evaluation by an interpreter: A1 * V
means that a standard interpreter requires n stack frames to evaluate M to V.
In the rule of application, evaluation of Af; and M, are considered as non-tail-
calls and evaluation of the body of the function is considered as a tail-call. This
is the reason that the number of stack frames used to evaluate the application
is max(l + 1,m - 1,n).

This semantics and the correspondence to a semantics modeling evaluation
after compilation is discussed in [10]: the ratio to the stack space used by com-
piled executable code is bounded by the size of a program.

By the rule for values, a value V is evaluated to itsell with 1 stack frame.
Instead, you can choose V |J? V as the rule for values. This choice does not
matter much because the difference cavsed by the choice is always only 1 stack
frame. We have chosen our rule to simplify our proofs.

We write e | if e ™ v for some v and e L= if e J™ for some m < n.

The main result of this section is that the conversion interpretation preserves
stack space within a [actor determined by the sizes of types appearing in a
prograim.

Theorem 1. Let Cﬂ@ b Mt = N and let C be an integer such that C > |o| 43
for all ¢ appearing in the derivation of 8 F M. If M " V then N Y= W
for some W.

Let us consider the following translation where the type of Az.1 is obtained
by subsumption for int — int < int — bigint.

Cl(Az.1)2] = (Llet y = Azl in Az.int2bigint(y 2))2
The source programn is evaluated with 2 stack frames.
(Az.1)2 0% 1
On the other hand, the translation is evaluated with 4 stack frames.

(Az.D20*1
vty 29'2 int2bigint((Az.1)2) 43 1
Azl U Azl (Az.int2bigint{(Az.1)2)) 24 1
(let y = Az.1 in Az.int2bigint(y z})2 3 1

where V = Az.int2bigint(({Az.1) z). In this case, the factor of increase is 3/2.
We prove the main theorem by the method of logical relations. Before defining
the logical relations we define the auxiliary relation ¥} V2 |* V defined as follows.

MVafz] Y V M|Va/z)[f1xF y. Az My 4 V
(Az. M)V "V (FixF Ty e M)V ™ V

By using this relation we can combine the two rules for the evaluation of the
application into the following rule.

MV, Myy™ve WV, |"V
Plfflﬁ/fg Umax(f-l-l.m+].n) Vv

This reformulation simplifies the definition of the logical relations and our prool.
We define logical relations V =€ W indexed by a type 7 and a positive integer
C' as follows.

IRl -
Vi VooV
vl gy [TorallVimG W, VI, MV,
Tnom then Wy |SCnHIm+3 17, and Vo mE W)

We implicitly assume that ¥ and W have type 7 for V =& W. The parameter '
corresponds to the Factor of increase of stack space usage. Note that the increase
of stack space usage depends on only the range type 2 of a [unction type nn — 7.
This is explained by checking the following translation of a function f of Lype
T T2 2.

COBKCRy) gy —a2 (f) = hy.coercer,<q, (f coerces, <7, (1))

In this translation, only the coercion coerce,, <4, causes increase of stack space
nsage.

We first show that a conversion from 7 to o behaves well with respect to the
logical relations.

Lemma 1. If 7 < o and V =& W then coercer<g (W) 42 W' and V ~C W for
some W',

Proof. By induction on derivation of v < o,

Case: int < bigint. By the definition of V =& W, both V and W must be £ for
some . Since coerceini<igint(1) = int2bigint(¢), we have int2bigint(i} 4* ¢ and
l‘ zggint L

Case: 7 =1 — 79 and ¢ = 0] — 09 where o) < 71 and 7 € g3, There are two
subcases: T2 < ga and T2 = 7q. We show the former case here. The proof the
latter case is similar,

coerce, <o (W) U2 My.coercer, <o, (W{coerces, <, (1))
Let Vp ~C W and V¥ |™ V5, By induction hypothesis,
COBrCE,, <r, (Wo) 122w
and Vg 'Nv,‘,:; 1V, for some W;. By definition of the logical relations
Wi, lscm+[mJ+3 Wy

2 Sirictly speaking, it is let @ = [in Ay.coercer, <o, { coerces, < (¢)).

and Vg 'zg W3 for some Wy, Then we obtain the followin g evaluation.

W W coerceq, <z, (Wo) 452 W, W, |SOmtln]+3 Wa
W (coerce,, <, (Wp)) YSma23.Cmtlr[43) 1y,

where max(2,3,Cm+ |7 | + 3) = Cm + || + 3.
By induction hypothesis,

COBICR, <gp (Wa) | Wa

and Vo = W, for some Wa, Then
az

CORICer, < 4, (W {coercey, < , (Wy))) SC™HLI2I+1 1y,

where C'm + |79} +4 < Cm + |o2] + 3
0

The next lemma indicates that we can choose a constant C such that the
evaluation of a source program and its translation are related by C. For p and p'
two enviromments with the same domain, p =% p’ means that they are pointwise
related. The main theorem is obtained by restricting this lemma to 7 = 0 and
taking C such that ¢ > || + 3 for all o appearing in the typing derivation.

Lemma 2. Let C be an integer such thet C > |of for all ¢ appearing in the
derivation of '+ M. Let C[I + M:7]) = N and p =§ ¢/,
If p(M)Y BV then p(N) JECHITIE W oand V =8 W for some W.

Proof. By lexicographic induction on derivation of I' + M:7 and the sum of
bounds of recursive functions in Af.

Case: I' + M:o is derived from "' F M7 and 7 < ¢. We assume v < . The
case of 7 = ¢ is trivial. By delinition, /¥ must be coerce;<,(IVg} for some
Ny and C[I" - M : 7] = Ng. By induction hypothesis,

pI(ND) USCN-I—I_TJ-{-?, I’V[]

and ¥V =% Wy for some Wy, By Lemma 1,

p(coerce, <, (Np)) JSOHLTIFEHL
and V a$ W for some W. The proof of this case completes since Cn+ 7]+
3+1<Cn+ o] +3.

Case: I' b MMy is derived from I = My — 1 and I' - Mg, By the
definition of the translation N = N, Ny for some Ny and Ns.
pl M1 My) B2+ V s derived from p(My) ! Vi and p(My) Y™ V and Vi V3 |®
V where | < k, m <k and n € k -+ 1. By induction hypothesis for Ay,

P’(-N"l) UC(I—IH’[TI —rz | +3 H/}

and V) =€ W, for some W;. Then we have p/(N7) JS¢HH2 W, because

T1—T2

|11 — 2] + 1 < C. By induction hypothesis for Ma,
p’(N‘Z) UC(1TL—~1}+ lr1]+3 va

and V, ~:C 1, for some Wa. Then we also have o (N) §26m+2 W, because
|71] +1 < C. By definition of the logical relations

Wy W LSC(H—I}HT:H:S W
and V %f‘; W for some W. We have the following inequality.
max(Cl+2+1,Cm+24+1,C(n—1)+ {12 + 3) < Ck -+ |72] +3

Hence,
p.' (jV] NQ) uS Ch+|m2]+3 W

Case: I" + fix®H y 2. M1y — 1y is derived from I'yyimy — 1o, 207 + Aimo.
By definition, C[I yrry — . mm B Mon] = N for some N.
We have the following evaluation.

p(Eix™ gy e ALY I p(£ix* ! Az M)

Ptix®H y e NY B P (E1xH Az N)

Let V =5 W and p(M)[V/z]|[p{fix® y. v . M) /y] §7+1 V7,
By induction hypothesis,

AEix® g e M) mg oy A {E1X% Y AT N)

Let po = p[V/z]|p(fix®* y.Az.M)/y] and py = p'[W/a][p'(fix® y. Az N) fy].
We have pg =8 . pp. By induction hypothesis,

pa(jv) U_Cn-[—[‘rgj+3 H,r!
and V' "ruf; W', Hence, p{fix®t! y. . M) =C p{fixvH gy Az N).

=T

5 Preservation of Execution Time

We introduce the operational semantics profiling execution time and outline
the proof that the coercion interpretation of subtyping is also safe with respect
to execution time. The operational semantics for execution time is a simple
extension of the standard semantics as that for stack space. As the previous
section, we [irst extend judgment of operational semantics to the following form:

M"YV

where n represents execution time to evaluate M to V. For the rule of application
we use an auxiliary relation: V1 V5 |™ V as before. The rules are given as follows.

My™ Vi Ma(Vi/falr V
Vitv let 7= M in M,)Pty

MV My)m Ve VitV
My My _U_l+m+n+1 vV

MVa/z) 4* V M{Va/x)|£ixF gy o My U0 V
(Az. M)V, |* V (fix*H y Az MY, MV
All the rules are a straightforward extension of the standard rules.

Then it is shown that the conversion interpretation preserves execution time
within a factor determined by the types appearing in a program,

Theorem 2. Let C[@F M :+] = N and let C be an integer such that C > 7|o}
for all @ eppearing in the derivation of @& M : 7. If M ™ V then N S0 W
for some W,

The factor of slowdown 7|o| is bigger than the factor of increase of stack space
|o]. To prove this theorem, w use the method of logical relations which are
indexed by a slowdown factor as well as a type. The relations V =& IV are
defined as follows.

V’.Nvl?i'gint?' V=i0rV=;
V =C w for all V), =€ Wy, if V4 {™H Vs
then WW, |EntTln=ml+l W, and Vy =8 W,

The important difference from the relations for stack space is that slowdown of
the applications depends on the domain type 7 as well as the range type 7 of
a function type m — 9.

With this definition, the main theorem is proved in the same manner as the
proof for stack space. It is shown that a conversion function behaves well with
respect. to the logical relations as before. Then the generalization of the main
theorem is proved by induction on the derivation of the conversion interpretation
of a program.

6 Conclusions and Related Work

We have shown that conversion interpretation of subtyping preserves execution
time and stack space within a factor determined by the types in a program if
the subtyping relation is a partial order. Type-directed unboxing of Leroy is
a translation similar to conversion interpretation of sublyping, but it does not
preserve execution time and stack space. This is because conversions of equivalent
types appear in type-directed unboxing.

We have considered only a very simple type system which does not include
product types and recursive types. We believe the results in this paper can be
easily extended for product types. However, our results cannot be extended for
recursive types. If we consider recursive types, cost of one application of coercion
cannot be bounded by a constant as Leroy discussed in his work on type-directed
unboxing for polymorphic languages (8]. Thus the conversion interpretation does
not preserve execution time nor stack space usage in the presence of subtyping
on recursive types.

We have shown that the conversion interpretation is safe with respect to time
and stack space by the method of logical relations. We believe the conversion
interpretation is also safe with respect to heap space, but it will be difficult to
adopt the same method for heap space. We have no idea how to formalize logical
relations for heap space hecause the semantics profiling heap space is much more
complicated than those for time and stack space.

In the rest of this section I review other proof methods to show safety of
program transformations with respect to performance.

David Sands studied time safety of translormations for call-by-name lan-
guages |16, 15]. In his study he extended applicative bisimulation and its con-
text lemma to account execution time. Applicative bisimulation with the context
lemma greatly simplifies safety proofs of many program transformations, As with
the method of logical relations, it will be difficult to extend this method if we
consider heap space or various extensions of languages.

Another approach is to analyze states of evaluation more directly, where
proofs are often based on induction ou length of evaluation. Blelloch and Greiner
showed that an implementation of NESL based on an abstract machine preserves
execution time and space within a constant factor based on this approach [2}. Mi-
namide showed that the CPS transformation preserves space within a constant
factor {9]. Gustavsson and Sands developed a theory of o epace improvement re-
lation for a call-by-need programming language [5, 6). They clarified their proofs
by considering evaluation of programs with holes based on a context calculus [17].
Bakewell and Runciman proposed an operational model for lazy functional pro-
gramming langnages based on graph rewriting [1]. As a proof method for the
model they considered an extension of hisimulation.

Acknowledgments

This work is partially supported by Japan Society for the Promotion of Science,
Grant-in-Aid for Enconragement of Young Scientists of Japan, No. 13780193,
2001.

References

(1] A, Bakewell and C. Runciman, A model for comparing the space usage of lazy
evaluators. In Proceedings of the 2nd International ACM SIGPLAN Conference
on Principles and Practice of Declorative Programming, pages 151-162, 2000.

2]

3

[6]

[7)

8]

9]

[20]

(11}

(12)

[13]
[14]
[15]
{16]

[¥7]

G. E. Blelloch and J. Greiner. A provably time and space elficient implementation
of NESL. In Proceedings of the ACM SIGPLAN Internetional Conference on
FPunetional Programming, pages 213-225, 1996.

V. Breazu-Tannen, C. A, Gunter, and A, Scedrov. Computing with coercions. In
Proceedings of the 1990 ACM Conference on LISP and Punctional prograrmming,
pages 44-60, 1990.

C. A. Gunter. Semantics of Programming Languages, chapter 4. The MIT Press,
1092,

J. Gustavsson and D. Sands. A foundation for space-safe translormations of call-
by-need programs. In Proceedings of the Third International Workshop on Higher
Order Operational Technigues in Semantics (100T589), volume 26 of ENTCS,
1999.

J. Gustavsson and D. Sands. Possibilities and limitations of call-by-need space im-
provement. In Proceedings of the Sizth ACM SIGPLAN International Conference
on Functional Pregramrming, pages 265-276, 2001.

N. Heintze. Control-flow analysis and type systems. 1n Proceedings of the 1995
International Slatic Analysis Symposium, volmne 983 of LNCS, pages 189-206,
1995.

X. Leroy. Unboxed objects and polymorphic typing. In the J9th ACM SIGPLAN-
SIGACT Sympostum on Principles of Programming Languages, pages 177-188,
1992,

Y. Minamide. A space-profiling semantics of call-by-value lambda calculus and
the CPS transformation. In Proceedings of the Thind International Workshop on
Higher Order Operalional Technigues in Semantics (HOOTSY9), volmne 26 of
ENTCS, 1999,

Y. Minamide. A new criterion for safe program transformations. In Proceedings
of the Forth International Workshop on Higher Order Operational Techniques in
Semantics (HOOTS), volume 41(3) of ENTCS, Montreal, 2000.

Y. Minamide and J. Garrigue. On the runtime complexity of type-directed un-
boxing. In Proceedings of the Third ACM SIGPLAN International Conference on
Funetional programming, pages 1-12, 1998,

Y. Minamide, G, Morrisett, and R. Harper. Typed closure conversion. In Pro-
ceeding of the ACM Sympogsium on Principles of Prograrnming Languages, pages
271-283, 1996.

J. C. Mitchell. Foundations for Programming Longuages, chapter 10, The MIT
Press, 1996,

A. Ohori. A polymorphic record caleulus and its compilation. ACM Transaclion
on Programming Languages and Systems, 17(6):844-895, 1995,

D. Sands. A naive time analysis and its theory of cost equivalence. Journal of
Logic and Computation, 5(41):495-5]1, 1995.

D. Sands. Proving the correctness of recursion-based antomatic program trans-
formations. Theoretical Computer Science, 167(1&2):193-233, 1996.

D. Sands. Computing with conlexts: A simple approach. In Proceedings of the
Second Workshop en Higher- Order Operational Techniques in Semantics (HOOTS
i1}, volume 10 of ENTCS, 1998.

Complete Selection Functions for a Lazy
Conditional Narrowing Calculus

Aart Middeldorp

Institute of Information Sciences and Electronics
University of Tsukuba, Tsukuba 305-8573, Japan
ami@is.tsukuba.ac. jp

Taro Suzuki

Department of Computer Software
University of Aizu, Aizu-Wakamatsu 965-8580, Japan
taro@u-aizu.ac.jp

Mohamed Hamada

Department of Computer Software
University of Aizu, Aizu-Wakamatsu 965-8580, Japan
hamada@u-aizu.ac.jp

Abstract

In this paper we extend the lazy narrowing calculus LNC of Middel-
dorp, Okui, and Ida [26] to conditional rewrite systems. The resulting
lazy conditional narrowing calculus LONC is highly nonr-deterministic.
We investigate for which classes of conditional rewrite systems the
completeness of LCNC is ensured. In order to improve the efficiency of
the caleulus, we pay special attention to the removal of non-determinism
due to the selection of equations in goals by fixing a selection strategy.

1 Introduction

Narrowing (Fay [7], Hullot [19]) was originally invented as a general method
for solving unification problems in equational theories that are presented
by confluent term rewriting systems (TRSs for short). More recently, nar-
rowing was proposed as the computational mechanism of several functional-
logic programming languages (FHanus [16]) and several new completeness re-
sults concerning the completeness of various narrowing strategies and cal-
culi have been obtained in the past few years. Here completeness means
that for every solution to a given goal a solution that is at least as gen-
eral is computed by the narrowing strategy. Since narrowing is a compli-
cated operation, numerous calculi consisting of a small mimber of more el-
ementary inference rules that simulate narrowing have heen proposed (e.g.
(8, 18, 23, 30, 17, 26, 10, 29, 22, 11]).

Completeness issues for the lazy narrowing calculus LNC—which is based
on the caleulus TRANS of Holldobler [18]—have been extensively studied in
[26] and [25}). In [26] Middeldorp et al. prove that LNC is strongly com-
plete whenever basic narrowing (Hullot [19]) is complete. Strong complete-
ness means that the choice of the equation in goals can be made don’t care
non-deterministic, resulting in a huge reduction of the search space as well
as easing implementations, For the completeness of basic narrowing sev-
eral sufficient conditions are known, inciuding termination. It is also shown
in [26] that LNC is complete for arbitrary confluent TRSs and normalized
solutions with respect to the selection function Sy that selects the leftmost
equation in every goal. (For this general class of TRSs, LNC is not strongly
complete [26, Counterexample 10].) Based on the latter result Middeldorp
and Okui [25] present restrictions on the participating TRSs and solutions
which guarantee that all non-determinism due to the choice of inference rules
of LNC is removed. The resulting deterministic calculus LNCy satisfies the op-
timality property that different derivations compute incomparable solutions
for a class of TRSs that properly includes the class of TRSs for which a sim-
ilar result was obtained by Antoy et al. in the setting of needed narrowing
[1].

In this paper we extend LNC to deal with conditional TRSs (CTRSs for
short). We present three main completeness results:

e LONC with Sy is complete with respect to normalizable solutions
for the class of confluent but not necessarily terminating conditional

rewrite systems without so-called extra variables in the conditional
parts of the rewrite rules.

e LCNCis strongly complete whenever basic conditional narrowing is com-
plete. The latter is known for decreasing and confluent CTRSs with-
out extra variables in the rewrite rules (Middeldorp and Hamoen [24]),
for level-complete CTRSs with extra variables in the conditions only
(Giovannetti and Moiso [9], Middeldorp and Hamoen [24]), and for

terminating and shallow-confluent normal CTRSs with extra variables
(Werner [33]).

e LONC is complete for the class of terminating and level-confluent con-
ditional rewrite systems without any restrictions on the distribution of
variables in the rewrite rules. Unlike the previous two results, the proof
of this last result does not provide any complete selection strategy. Asa
matter of fact, the selection strategy used in the proof is not effective in
that it refers to the rewrite sequence that shows that the solution that
we want to approximate with LONC is actually a solution. It is an open
question whether this result can be strengthened to completeness with
respect to a fixed selection function or even to strong completeness.

The first two results generalize two of the three main results of [26} to the con-
cditional case. The third result has no counterpart in the unconditional case.
We stress that without a complete selection function, in implementations we
need to backtrack over the choice of equations in goals in order to guarantee
that all solutions are enumerated. This complicates implementations and,
worse, leads to a dramatic increase in the search space, even more so since
in conditional narrowing (whether presented as a single inference rule or in
the form of a calculus like LeNC) the conditions of the applied rewrite rule
are added to the current goal after every narrowing step.

The remainder of the paper is organized as follows. In the next section
we recall some definitions pertaining to conditional rewriting and we present
the calculus LCNC. Sections 3, 4, and 5 are devoted to the prools of our three
completeness results. We make some concluding remarks and list several open
problems in Section 6. The Appendix contains the proofs of two technical
lemmata in Section 4.

The results presented in this paper previously appeared in {14, 15, 12, 31].

2 Preliminaries

We assume familiarity with the basics of (conditional) term rewriting and
narrowing. Surveys can be found in [2, 4, 21, 24]. We just recall some basic
definitions in order to fix our notation and terminology.

A conditional term rewriting system (CTRS) over a signature F is a set
R of (conditional) rewrite rules of the form [— r <= ¢ where the conditional
part ¢ is a (possibly empty) sequence sy = ty,..., 8, = {, of equations. All
terms [, 7,81, ..., 8n, t1,. .., tn must belong to 7 (F, V) and we require that [is
not a variable. Here V denotes a countably infinite set of variables. Following
[24], CTRSs are classified according to the distribution of variables in rewrite
rules. A 1I-CTRS contains no extra variables (i.e., Var(r,c) C Var(l) for all
rewrite rules [- 7 <= ¢), a 2-CTRS may contain extra variables in the
conditions only (Var(r) € Var(l) lor all rewrite rules I — r <= ¢}, and
a 3-CTRS may also have extra variables in the right-hand sides provided
these occur in the corresponding conditions {Var(r) € Var(l, ¢} for all rewrite
rules | — 7 < ¢), Extra variables enable a more natural style of writing
specifications of programs. For instance, using extra variables we can easily
write the following specification of the efficient computation of Fibonacci
numbers:

O4+y — ¥
s{z) +y — s{z+7y)
fib(0) — {0,s(0))
fib(s(z)) — (s,y+2) « fib(a) = {y,2)

However, the presence of extra variables comes with a price. For instance,
completeness results for narrowing that hold for arbitrary confluent TRSs
and 1-CTRSs typically do not carry over to 2-CTRSs and 3-CTRSs without
requiring some kind of termination assumption.

We assume that every CTRS contains the rewrite rule z =~ = — true.
Here = and true arve function symbols that do not occur in the other rewrite
rules. These symbols may only occur at the root position of terms. Let R be
a CTRS. We inductively define unconditional TRSs R, for n 2 0 as follows:

Ro = {zmz > true},
Rppp = {0 —-r0|l—=7r<ceRandcld—5% T}

Here T stands for any sequence of trues. We define s —p t if and only if
there exists an n = 0 such that s —y, . We abbreviate —x, to —, and

4

—r to — if the CTRS R can be inferred from the context. Our CTRS are
known as join CTRSs in the term rewriting literature,
A CTRS R is level-confluent (Giovannetti and Moiso [9]) if every R, is

*

confluent, ie., e -} C —% . *« for all n 2 0, and shallow-confluent
if pe= =5 © -} - 2 for all m,n 2 0. Shallow-confluent CTRSs are
level-confluent but the reverse is not true. A CTRS R is level-terminating if
every R, is terminating. Level-termination is a weaker ([24}) property than
termination. A level-complete CTRS R is both level-confluent and level-
terminating. A CTRS R over a signature F is decreasing {Dershowitz et
al. [6]) if there exists a well-founded order > on T (F,V) with the following
three properties: - contains —g, = has the subterm property (i.e., > C >
where s > t if and only if ¢ is proper subterm of s), and 0 > s8,t0 for
every rewrite rule ! — 7 < ¢ of R, every equation s = ¢ in ¢, and every
substitution f. Note that according to this definition 2-CTRSs and 3-CTRSs
are never decreasing. Decreasing CTRSs are terminating and, when there
are finitely many rewrite rules, have a decidable vewrite relation. Suflicient
syntactic conditions for level-confluence of 3-CTRSs are presented in Suzuki
et al. [32].

An equation is a term of the forin s = {. The constant true is also
viewed as an equation. A goal is a sequence of equations. A substitution & is
a (R-)solution of a goal G if s§ <7}, 0 for every equation s = ¢ in G. This is
equivalent to validity of the equations in G in all models of the underlying
conditional equational system of R (Kaplan [20]) and for confluent R to
G —% T. We abbreviate the latter to R - G0O. A normalized solution
satisfies the additional property that variables are mapped to normal forms
with respect to R.

For a substitution # and a set of variables W, we denote (W \ D(#)) U
Z(01w) by Varw(8). Here D(0) = {z € V | 8(z) # z} denotes the domain
of 8, which is always assumed to be finite, and Z(0 1) = U, epigymw Var(z6)
the set of variables introduced by the restriction of 8 to W.

The lazy conditional narrowing calculus LCNC consists of the following
five inference rules:

[o] outermost narrowing

G, F(s1,. . 8n) 2 8, G"

G'sysly, o syl rat e, GY

if there exists a fresh variant f(l;,.... 1) — r < c of a rewrite rule in

3

R,

[i] imitation
GI’I(SI) L ')Sn) ~ .’L‘,G”
(G’1 81 RF Ty, ...y 8 = Iy, G'”)()

if @ ={z— f(z1,...,2,)} with zy,..., 2z, fresh variables,

[d] decomposition

G’,f(Sl,.-.,Sn) zf(tla'-')tTL)wG"’I
G’,Slﬁt],...,Snztn,GH ,

[v] wariable elimination
G'seex, G
(G, G0

if © ¢ Var(s) and 8 = {z — s},

[t} removal of trivial equations

G axr~z G
i I
GG

In the rules [o], [i], and [v], s = ¢ stands for s = { or { = s. (Since the inference
rules never produce the equation true, we assume that LCNC deals only with
goals that do not contain true.) Note that the outermost narrowing rule
is applicable as soon as the root symbol of one side s of an equation equals
the root symbol of the left-hand side { of a rewrite rule. The parameter-
passing equations s, = {y,..., 8, & [, code the problem of unifying s and
l. Further note that unlike higher-order narrowing caleuli (e.g. [29, 22]) we
do not permit outermost narrowing at variable positions. This makes the
task of proving completeness (much) more challenging but results in a much
simaller search space.

The only difference between LeNC and the calenlus LNC of [26] is in the
outermost narrowing rule; In LCNC we add the conditional part of the applied
rewrite rule to the new goal,

If G and G' are the upper and lower goal in the inference rule [a] (o €
{0,i,d,v,t}), we write G =(a} G- This is called an LCNC-step. The applied
rewrite rule or substitution may be supplied as subscript, that is, we write
things like G =g jmre=e G’ and G =, G'. A finite LCNC-derivation G| =,
+++ =>g,_, Gy may be abbreviated to Gy =} G, where # is the composition
Oy - Opy of the substitutions é,...,0,-, computed along its steps. An
LCNC-refutation is an LCNC-derivation ending in the empty goal 0.

Example 2.1 Consider the CTRS R for computing Fibonacci numbers from
the introduction. The gool fib(z) =~ (z,z) admits the solution {z — s(0)}
because of the following rewrite sequence:

fib(s(0)) — (s(0),0+5(0)) — (s(0),s(0))

In the first step the rewrite rule fib(s(z)) — (z,y + 2z} <« fib(z) ~ (y,z) is
applied with substitution {x — 0,y — 0, z — s(0)}; the instantialed condition
is satisfied because of the rewrite rule fib(0) — (0,s(0)). The following LCNC-
derivation ends in the unsolvable goal s(0) == 0:

fib(z) =~ (z,z)
V1o, fib(0) - (0,5(0))
z %0, (0,5(0)) = (x,)
Yl {z - 0}
(0,5(0)) = (0,0)

The underlined equations arc sclected in each step. Note that none of the
inference rules of LCNC are applicable to s{0) = 0. In the first step of the
above derivation the rewrite rule fib(0) — {0,5(0)) is chosen. If we choose
the rule fib(s{z)) — {z,y+2) <= fib(z) = (y, z) instead, LCNC is able lo solve
the goal fib(z) =~ (z,x):

fib(z) =~ {z,)

o), fib(s(zs)) = (21,3 + =) < fib(zy) ~ {1, 21)

7

T~

€T/

5(3:1)1 (Zl,y] -+ ZI) ~ (.’L‘,:E), flb(’E]) =~ (ryllz‘l)
)

s(z), 2 =2,y + 2 =, fible) = (4, 21)
bl, {210 2)

r 7 5(xq), 1+~ fib(z) = ()
Yol fib(0) - (0,5(0))

zrs(zy), i +x A, 10, (0,5(0)) ~ (g,)

V), {21 0)
T~ 5(0)1 n +x =, (015(0)) ~ <’y1,.’L’)
Yaj
zrs(0), ptrazmz, 0=y, s(0) =
Y, {y1 -0
rms(0),0+z~zx s(0) =
V), {z - s(0)}
0+ s(0) = 5(0), s(0) =~ s(0)
by
0+s(0) = s(0), 0= 0

)
0 + s(0) ~ 5(0)
Yo, 02 — 12
0= 0: 5(0) A3y Yo N2 S(O)
Y, {g2 -~ s(0)}
00, s(0) =~ s(0)
bay
s(0) = s(0)

Yy

0~0
Yy
[l

The solution computed by this refutation is obtained by composing the substi-
tutions {z; — x}, {21 = 0}, {;1 — 0}, {z — s(0)}, {y2 — s(0)} employed
in the = y-steps, and restricting the resulting substitulion to the variable =
in the initial goal, which yields {x — s(0)}.

The following lemma states the soundness of LCNG. The routine incduction
proof is omitted.

Lemma 2.2 Let'R be o CTRS and G a goal. If G =5 Q then 8]y () is an
R-solution of G. 0

3 Leftmost Selection

This section contains our first main result, the completeness of LCNC for
arbitrary confluent 1-CTRSs with respect to normalized solutions and the
leftmost selection function S, So we assume throughout this section that
the sequence G’ of equations to the left of the selected equation in the infer-
ence rules of LONC is empty.

In Middeldorp et al. [26] the same result is proved for unconditional TRSs
by means of a complicated inductive transformation process that operates on
narrowing sequences. In the proof presented in this section we use conditional
rewrite sequences instead. The advantage of rewriting is that rewrite steps
applied to different parts of a goal or equation can be swapped at will, which
greatly facilitates a proof of completeness with respect to a particular selec-
tion strategy. In the proof below we use the variant of conditional rewriting
in which the list of instantiated conditions of the applied rewrite rule is ex-
plicitly added to the goal alter every rewrite step. Formally, we use the
relation »— defined as follows: G — G' il G = Gy,e,Gy, e — ¢’ by applying
the conditional rewrite rule { — 7 <= ¢ with substitution 8 (so ¢’ = e[ra], for
some position p in e and R b ¢o), and G' = G, ¢, co, Gy, Tt is well-known
({3, 24]) that R I G if and only if G »~* T. We assume without loss of gen-
erality that in a rewrite proof G »—* T always the leftmost equation different
from true is selected.

Below we define a couple of basic transformations on rewrite proofs IL: G'¢
»—* T. In order to make the completeness prool work, we need to keep track
of a number of variables along the transformation process. Since these vari-
ables cannot be inferred from the current rewrite proof IT, together with G
and @, we need to enrich rewrite proofs. This is the reason why we consider

9

quadruples, calied states, of the form (G, 8,1, X'} where G is a goal, # a solu-
tion of G, II: GO —* T a rewrite proof of G#, and X a finite set of variables
associated to I[. Variables in X are said to be of interest and variables in
G bhut not in X are called intermediate. In order to avoid confusion, we
occasionally write X-intermediate or even [I-intermediate (when comparing
different states with the same X).

We require that the properties defined below are satisfied.

Definition 3.1 A state Il = (G, 0,11, X} is called normal if 8]y is normal-
ized. We say that [satisfies the variable condition if for every equation
se=tin G =G, st Gy the following Lhree conditions hold:

VC1 all intermediate variables in s oceur in G or all intermediatle variables
int occur in Gy,

VC2 if s is rewritten in I then all intermediate variables in s occur in Gy,
VC3 if tf is rewritten in I1 then oll intermediate variables in t occur in G.

A normal state with the variable condition is called admissible.

Example 3.2 Consider the confluent 1-CTRS consisting of the rewrite rules

flz,y) — gly) < z~a
- b
g(b) — b

and the goal G = f(z,y) ~ g(y),glely)) = a. We delermine 8, 11, and
X such that I = (G, 0,11, X) is admissible. First of all, since the variable
y occurs in both sides of the leftmost equation f(z,y) = g(y), it must be a
variable of interest for otherunse VC1 is violaled. So y € X and hence, to
satisfy normality, 0(y) should be a normal form. The only normal form that
satisfies the second equation of G is b, with associated rewrite proof

g{g(b))~a — gb)~a »» bma — bmb > true.

Since g{gly)) =~ a does not contain intermediate variables, it satisfies VC1,
VC2, and VC3. Likewise, since g(y) lacks intermediate variebles, f(z,y) ~
gly) satisfies VC3. The only way to solve this equation is by applying the
first rewrite rule to its (instantiated) left-hand side. Hence, to satisfy VC2,

10

x cannol be an intermediate variable. Consequently, © € X and thus to
conclude that I1 is admissible it only remains to show that we can substitute
a normal form for x such that the equation f(x,b) =~ g(b) s solvable. It
i5 easy to see that we should again take the normal form b, with associated
rewrite proof

f(b,b) ~g(b} — g(b) ~g(b),b~a »» true,bxa

— true,b=b — T.

An example of a goal without admissible states is f(x) = x with respect to the
TRS consisting of the rule a — f(a). Nole that f(z) = z has no normalized
solutions.

Lemma 3.3 Let Il = (G, 0,11, X) be an admissible stale with G = s~ ¢, H.

1. If 80 is rewritten in Tl then s is not a veriable and does not include
intermediate variables.

2. If t0 is rewrilten in Il then t is not a variable and does not inchede
intermediate variables.

Proof We prove the first statement. Suppose the left-hand side of 30 =~ 0
is rewritten in II. By VC2 all intermediate variables in s should occur in
the equations to the left of s &~ ¢ in G. Since s =~ ¢ is the leftmost equation,
there cannot be intermediate variables in s. Hence, il s is a variable then
it must be a variable of interest and thus sf is a normal form because I1 is
normal. This however contradicts the assumption that s is rewritten in II.
The second statement, is proved in exactly the same way (with VC3 instead
of VC2). a

In the following transformation lemmata II denotes an admissible state
(G,0,T1, X) such that G = s = t, H and, in Lemmata 3.4, 3.5, and 3.7, W/
denotes a finite set of variables such that Var(G) € W. Recall our earlier
assumption that II respects Sir. In particular, in the first step of Il the
equation s =t is selected.

Lemma 3.4 Let s = f(s1,...,s,) and suppose that a reduct of s ~ 10 n
I is rewritten at position 1. If I — r <= ¢ is the employed rewrite rule in the
first such step then there exists an admissible state ¢q(Il) = (G", 0,11, X)
with G' = s~ 1,7 =~ t,¢c, H such that 8 =0 [W].

11

Proof The given rewrite proof II is of the form
GO " lr=t! C HO — rr =t er,C HO " T.

Here C are the instantiated conditions of the rewrite rules applied in the
rewrite sequence from sf = tf to Ir = . Without loss of generality we
assume that Var(l = r <)N (X UW) = @ and D(1)} = Var(l — r < ¢).
Hence the substitution ¢ = ¢ U 7 is well-defined. Since D(r) N W = @&,
§ = @ [W]. We have G'¢' = s = I, r7 = (0, cr, Hf. The first part of 1T can
be transformed into

G =t rxlr, Cyrrstler, HO —* It =Ir,Cy,r7 = t',Cy, cr, HE
— true, O, rr & ', Cy, o1, HE.

Here C, Co and C consist of the same equations in possibly different order.
Hence by rearranging the steps in the remaining part of II we obtain

true, Cy,r7 = ', Cy, e, HO —* T.

Conecatenating these two derivations yields the rewrite proof TI'. It re-
mains to show that the state ¢(II) = (G',&,1I', X} is admissible. Since
1y =0lx Urly = 0[x, dg(Il) inherits normality from II. For the variable
condition we need some more effort. Below we make tacit use of the obser-
vation that a variable z € Var(s s ¢, H) is [-intermediate in G' if and only
if x is ¢p(I1)-intermediate in G’. First consider the equation s = [. Since
50" is rewritten in IT', we obtain from Lemma 3.3(1) that s does not contain
intermediate variables. Hence VC1 and VC2 are trivially satisfied. By con-
struction, the right-hand side of sf' =~ [# is never rewritten in II'. Hence
VC3 holds vacuously, Next consider the equations in r & ¢, c. Because we
deal with CTRSs without extra variables, all variables in » and ¢ occur in [
and hence the three variable conditions are true for the equations in ¢ and
r = t satisfies VC1 and VC2. Suppose the right-hand side of &’ =~ tf/ is
rewritten in IT'. By construction of IT', this is only possible if the right-hand
side of 80 ~ tf is rewritten in IT. According to Lemma 3.3(2) ¢ does not con-
tain intermediate variables and thus the equation r ~ ¢ in G’ satisfies VC3.
Finally, consider an equation 8 = ' in H = Hy,s = ¢/, Hy. Let V| be the
set of intermediate variables in s and V4 the set of intermediate variables in
t'. Since [T is admissible, V) € Var(s = t, Hy) or V5 € Var(s =~ ¢, Hy). Hence
also Vi € Var(s = |,r = {,H;) or V3 C Var(s =~ [,r = ¢, Hy). This proves
VC1. The proof of VC2 is just as easy: If s’V is rewritten in IT' then s'¢

12

is rewritten in I1 and thus all intermediate variables in s’ occur in s = ¢, A,
and therefore also in s = [, 7 = ¢, H,. Finally, VC3 is proved in exactly the
saIme way. O

Note that the above proof breaks down if we admit extra variables in the
conditional rewrite rules. IFurther note that the proof remains valid if we
would put the equation r & ¢t after the conditions ¢ in ¢7.

Lemma 3.5 Let 8 = f(s1,...,8,) and t € V. Ifroot{td) = [then there
exists an admissible state ¢ (I1) = (G, &, 11, X'} with G’ = Gaoy such that
o =0 [W]. Here oy = {t — [(zy,...,2a)} withzy, ..., 20 ¢ W.

Proof Write 0 = f(t,,...,tn) and define & = 86U {z; — t; | 1 < i < n}.
One easily verifies that o, = 0 [W]. We have G'0' = G 8 = G# and thus
IT is a rewrite proof of G'#. We define X' = Ugex Var(zo,). Equivalently,

Xf:{(X\{t})u{ml,...,xn} i€ X,

X otherwise.

It remains to show that ¢p)(II) is admissible. [irst we show that 8'[y, is
normalized. We consider two cases. If ¢ € X then 0'[yr = 8y U {21 v
t; | 1 <4 < n}. The substitution 0[x\(,y is normalized because 8y is
normalized. Furthermore, since every ¢; is a subterim of t6 and tf is a normal
form because 11 is normal and t € X, {z; — t; | 1 €1 € n} is normalized as
well. If t ¢ X then [y, =]y is normalized by assumption. Next we show
that every equation in G satisfies the variable condition. Again we consider
two cases.

1. Suppose that t € X. Then zy,...,x, belong to X’ and thus the right-
haud side toy = f(z1,...,x,) of the leftmost equation so; ~ toy in G’
does not contain X'-intermediate variables. Hence so; ~ toy satisfies
VCI1 and VC3. Suppose so¢ is rewritten in II. Then, as I is admis-
sible, s does not contain X-intermediate variables. We have to show
that so; does not contain X’-intermediale variables. Since the vari-
ables x,,..., T, are of interest, it follows that every X’-intermediate
variable in so; is X-intermediate in s. Therelore soq = toy satisfies
V(3.

Next consider an equation s'oy & t'ey in Hoy = (Hy,8 = ¥/, Hy)o,.
Let V] be the set of X'-intermediate variables in s'o; and V3 the set of

13

X'-intermediate variables in t'¢y. Since the variables z4, ..., z, are not
X’-intermediate and ¢ is not X-intermediate, Vi (V2) coincides with
the set of X-intermediate variables in ' (#'). Since Il is admissible,
Vi € Var(s = ¢, Hy) or Vo C Var(s = ¢, H). Because t ¢ V7 U Vp,
Vi C Var((s =~ t, Hi)oy) or Vy C Var({s = {, H1)o1). This concludes
the proof of VC1. Next we prove VC2. If s’y = 5’0 is rewritten in
T then V) C Var{s ~t, H)) and as t ¢ V; also V; C Var((s = t, Hy)o).
The proof of VC3 is just as casy.

. Suppose that ¢+ ¢ X. Then t is H-intermediate and q,...,x, are
épj(I1)-intermediate. First consider the equation soy ~ to;. Since ¢t is
intermediate, s cannot contain intermediate variables. In particular, £
does not occur in s and therelore soy = 5. So sg, & to, satisfies VC1
and VC2. Since t is a variable, to, 8" = t# cannot be rewricten in I as
a consequence of Lemma 3.3(2) and hence VC3 is satisfied too.

Next consicdler an equation s'ay =2 t'ey in Hoy = (Hy, ¢’ = t/, [y)oy. Let
VI (Vy) be the set of ¢y (IT)-intermediate variables in s’y (o) and let
Vi (V4) be the set of [i-intermediate variables in &’ (¢'). We have

Ve {(Vi\{‘ﬁ})U{rcx,---,mn} ift € Var(s),

1 .
Vi otherwise,

and
v {(Vg\{t})U{ﬂ:1,...,mn} if t € Var(t)),
-

Vo otherwise,

Because II is admissible, Vi C Vax(s ~ t, H1) or Vo € Var(s =~ t, H,).
We consider the former. To conclude VC1 it is sufficient to show that
VI C Var((s = t, Hy)oy). We distinguish two cases. If ¢ € Var(s') then
t € Vi and thus z1,..., 2, € Var((s ~ ¢, Hy)o1}. Since we also have the
inclusion Vi \ {¢} € Var((s = t, H1)oy), V] € Var((s = t, H,)a,) holds.
Ift ¢ Var(s') then t ¢ V) and thus V] = Vi C Var((s =~ ¢, H,)o,).
This proves VC1. For VC2 we reason as follows. Suppose s'c16' = s'f)
is rewritten in II. This implies that V; C Var(s =~ ¢, H;) and hence
Vi € Var((s = t, Hy)a;) by using similar arguments as before. The
proof of VC3 is again very similar.

W

14

Lemma 3.6 Let s = f(s1,...,8), t = f(t1,...,tn), and suppose that no
reduct of s§ = t0 in II is rewritlen al position 1 or 2. There exists an
admissible state ¢iq(I1) = (G', 0,11, X) with &' = 51 = ¢y, ..., 80 ~ ty, H.

Proof The given rewrite proof II is of the form
GO —* flur,... un) =~ f(uy,...,u),C, HO — true C, HO —* T.

Here ¢ arve the instantiated conditions of the rewrite rules applied in the
rewrite sequence from sf = t0 to f(uy,...,ua) & f(u1,...,u,). The first
part of Il can be transformed into

G0 =" ug mouy, Cr,y ey & 1y, Oy, HO
' true,,. .., true, C,, HE.

Here Ch,...,C, and C consist of the same equations in possibly different
order. Hence by rearranging the steps in the latter part of I1 we obtain

true, Cf, ..., true,), HE —* T.

Concatenating these two derivations yields the rewrite proof I of G'6. It
remains to show that the state ¢g(II) = (G',0,II', X} is admissible. Since
II has the same 8 and X, normality is obvious. Because II satisfies condition
VC1, s or ¢t does not contain intermediate variables. Hence there are no
intermediate variables in s1,...,s, or in 4,...,¢,. Consequently, the equa-
tions &) = {1,...,8, = &, in G’ satisfy VC1. The conditions VC2 and VC3
are also easily verified. For instance, suppose that ;6 is rewritten in IT.
Then, by coustruction of IT', ¢8 is rewritten in II. According to Lemnma 3.3, ¢
does not contain intermediate variables and since ¢; is a subterm of ¢, 1; also
lacks intermediate variables. By using similar arguments one easily verifies
that the equations in H satisfy the three conditions. O

Lemma 3.7 Lett € V, s £ t, and suppose that in the first siep of T sf) = {0
is rewritten at the root position. There exists an admissible state ¢(I1) =
(G 8,11, X"y with G' = Hoy such that 016 = 8 (W], Here oy = {t — s}.

Proof Since sf = t# is rewritten to true by the rule 2 = 1 — true, we
must have s@ = 20. Hence to,# = s = t8. For variables y different from ¢ we

have yo,80 = y0. Hence 0,0 = 8 [W]. Since Var(H) C W, G'0 = Ho 8 = HO

15

and thus from the tail of the rewrite proof II: G — true, Hfs—* T we can
extract a rewrite proof I' of G'¢0. We define X' = U,e x Var(za,). Clearly

X o (X \{t}) UVar(s) ifte X,
- X otherwise,

It remains to show that ¢py(I1) is admissible. First we show that 6] s 18
normalized. We consider two cases. If ¢ € X then 8], = 1 x\it}uvars)- The
substitution &[yy(,; is normalized because f[x is normalized. If z € Var(s)
then zf is a subterm of s¢ = tf. Since t¢ is a normal form by the nermality of
II, so is z8. Hence 8]y, is normalized as well. If ¢ @& X then 8], = 0] is
normalized by assumption. Next we show that every equation in G satisfies
the variable condition. Let s'oy = 'y be an equation in Hoy = (H),s' ~
', Ha)or. Let VY (V) be the set of X’-intermediate variables in s'oy (t'oy)
and let V7 (V2) be the set of intermediate variables in s’ (#). We consider
two cases.

1. Suppose that t € X. Then Var(s) € X’. So the variables in Var(s)
are not X’-intermediate and ¢ is not X-intermediate. It follows that
Vi = Vi and V§ = V4. Since I1 is admissible, V1 C Var(H,) or V, C
Var(H,}. Becauset ¢ Vi UV,, V] C Var(Hyo1) or Vi C Var(Hyo)).
This concludes the proof of VC1, The proofs of VG2 and VC3 also
easily follow from the identities V{ = V] and V)] = V; and the fact that
té ViUV,

2. Suppose that ¢t ¢ X. Then ¢ is [I-intermediate and all variables in
Var(s) are ¢ (I1)-intermediate. We have

V= (Vi\ {t}uVar(s) ilte Var(s'),
] " otherwise,

and

Vs otherwise.

Vi {(Vg\{t})ul)ar(s) ift € Var(t'),

Because 11 is admissible, V; C Var(H,) or V; € Var(H;). We consider
the latter. To conclude VC1 it is therefore sufficient to show that
Vi C Var(H o). We distinguish two cases. If £ € Var(t') then t €

and thus Var(s) C Var(H,a,). Since the inclusion V3 \ {t} C Var(H,0,)

16

also holds, Vy C Var(H,o0,) as desived. I ¢ ¢ Var(t') then ¢ ¢ V, and
thus V) = V, C Var(#Hy01). This completes the proof of VC1. The
proofs of VC2 and VC3 are based on similar arguments and omitted.

O

Lemma 3.8 Lett €V, s =t, and suppose that in the first step of I1 58 =~ £

is rewrttten at the roof position. There exists an admissible state ¢y(Il) =
(G0, TV, X} with G’ = H.

Proof The given rewrite proof I has the form Gé >— true, Hf —* T. From
the tail of Il we extract a rewrite proof I of G’'8 = H. It is easy to show
that ¢y (Il) is admissible. .|

Lemma 3.9 There exisis an admissible state dowap(Il) = (G, 0, TV, X) with
G'=tm~s H.

Proof The given rewrite proof 1I: (s = ¢, F)f —* T is transformed into
a rewrite proof I' of (1 = s, H)# by simply swapping the two sides of ev-
ery reduct of sff = t§. This clearly does not affect normality and since the
variable condition is symmetric with respect the two sides of an equation it
follows that ¢gw.p,(I1) is admissible. O

We want to stress that swapping different equations (as opposed to the
two sides of a single equation as in the preceding lemma) does not preserve
the variable condition. This makes a lot of sense, since if it would preserve
the variable condition then we could prove strong completeness of LGNG but
from [26] we already know that the LNC is not strongly complete (for the
class of confluent TIRSs with respect to normalized solutions).

In the proof of the main theorem below, we use induction on admissible
states with respect to the well-founded order defined below. This order is
essentially the same as the one used in the completeness proofs of [26].

Definition 3.10 The complexity |Il] of a state II = (G, 8,11, X} is defined
as the triple consisting of (1) the number of rewrile steps in I1 at non-root
positions, (2) the multiset |MVar(G)8|, and (3) the number of oceurrences
of symbols different from = and true in G. Here MVar(G) denotes the

17

multiset of variable occurrences in G, and for any multiset M = {t;,...,t}
of terms, M0 and |M| denote the multisels {46, ..., t.0} and {|t1],. .., [ta]},
respectively. The well-founded order > on states is defined as follows: 11y >
Iy if |TL | lex(>, > g, >) |Ta). Here > denotes the standard order on natural
numbers and > mul denotes the multiset extension of >, ie., M >pa N for
finite multisets M, N if and only if there cxist multisets X and Y such that
@#XCM N=(M-X)wY, and for every y € Y there exists an
z € X with x > y; with — and W denoting multiset difference and sum.
Furthermore, lex(>, >nu, >) denotes the lexicographic product of >, >mul,
and >.

From [5] we know that >y inherits well-foundedness from >. Conse-
quently, the lexicographic product of >, >4, and > is a well-founded order
and hence >3 is a well-founded order on states.

Lemma 3.11 Let I1 be o state and a € {o,i,d,v,t}, We have I1 > ¢ (I1)
whenever the latter is defined. Moreover, |II] = |dewap(IL)].

Proof Basically the same as the proof of Lemma 20 in [26]. For o = o we
observe a decrease in the first component of [II]. Here it is essential that we
work with »— instead of the ordinary rewrite relation —; in this way steps
that take place in the conditional part of the applied rewrite rule are already
acconnted for in |II}. For a € {i,d, v,t} the munber of rewrite steps at non-
root positions remains the same. For a € {i,v,t} the second component of
{T1| decreases. For e = d the second component remains the same while the
thitd component of |[{| decreases. O

Theorem 3.12 Let R be a confluent CTRS without extra variables and G
a goal. For every normalized solution 8 of G there exists an LCNC-refutation
G =} O respecting Sy, such that o < 0 [Var(G)).

Proof Because R is confluent, G& admits a rewrite proof II. Consider the
state II == (G, 8,11, X) with X = Var(G). By assumption #], is normalized.
Since all variables of G are of interest, ¢ does not contain intermediate
variables and hence the variable condition is trivially satisfied. Therefore I1
is admissible. We use induction on the complexity of II. In order to make the
induction work we prove o < & [W] for a finite set of variables W that includes
Var(G). The base case is trivial since G must be the empty goal {and thus we

18

can take o = g, the empty substitution}). For the induction step we proceed as
follows. We prove the existence of an LONC-step ¥): G =, G’ thal respects
Sien and an admissible state Il = (G, ¢, II', X'} such that 0,6/ = @ [IV].
Let G = s =~ {,H. We distinguish the {ollowing cases, depending on what
happens to sf = tf in II.

1. Suppose no reduct of s ~ £ is rewritten at position 1 or 2. We
distinguish five further cases.

(a)

Suppose s,t ¢ V. We may write s = fls1,...,8,) and t =
Sty ... t2). From Lemma 3.6 we obtain an admissible state
Py(Il) = (G0, T, X") with G' = s, =~ t1,...,8, =~ i, H,
" =46, and X' = X. We have ¥: G = &' Take oy = ¢
and _Ili = (,b[(]](ﬂ).

Suppose £ € V and s = t. According to Lemma 3.3 no s6 and
t0 are not rewritten and hence in the first step of 1 s8 =~ &9
is rewritben at the root position. Hence Lemma 3.8 is applicable,
yielding an admissible state ¢y (I} = (G7, &', T, X’) with G' = H,
& =0, and X' = X. We have ¥,: G =y G’ Take) = £ and
= Cb[t] (ﬂ)

Suppose ¢t € V, ¢ #£ ¢, and a reduct of s = t is rewritten at
a non-root position. From Lemma 3.3 we infer that s is not a
variable and moreover that ¢4 is not rewritten in IT. Hence we may
write 8 = f(s1,...,s,) and we have root{18) = f. Consequently,
Lemma 3.5 is applicable, yielding an admnissible state ¢p(ll) =
(G", 0", 11", X") with G" = Goy, II" = I, and o 0" = 0§ [W]
for the substitution o = {t — f(z1,...,x,}}. We have G" =
(f(s1,...,80) = f(z1,...,za), H)op. By assumption no reduct
of soft” =~ tof” is rewritten at position 1 or 2. Hence we can
apply Lermma 3.6. This yields an admissible state dna) (i (ID)) =
(G0 TV, X7 with G = (s = o,. .., 8, &= a2, H)y, 0 = §”, and
X'=X". We have W: G =4, G and o8 = 018" = ¢ [W].
Take IT' = ¢yq (g {11)).

Suppose t € V, s # t, and the first rewrite step takes place at
the root position of s =~ t. Lemma 3.7 yields an admissible state
dwI) = (G, 0" ', X'} with G’ = Go, II' =11, and 16’ = 6 [¥]
for the substitution oy = {£ — s}. We have Wy: G =y, G
Take IT" = ¢y (11).

19

(e) In the remaining case we have ¢t ¢ V and s € V. This case reduces
to case 1(c) or 1{d) by an appeal to Lemma 3.9,

2. Suppose a reduct of s = {8 is rewritten at position 1. Let { =
fll, ... 1y) = 7 < ¢ be the employed rewrite rule the first time this
happens. From Lemma 3.4 we obtain an admissible state ¢p(II) =
(G", 0" 11", X"y with G = s= l,r = {,c, H, X" = X, and 8" = ¢ [W],
According to Lemma 3.3, s cannot be a variable. Hence we may write
s= f(sy,...,8,). Let G' =35 = ;,...,8, =, r=1{c H We have
Uy: G =g G". Note that Lemma 3.6 is applicable to ¢q){l1} since
by construction no reduct of s8” =~ [#” is rewritten at position 1 and
2. This results in an admissible state d(dIl)) = (G711, X7)
with & = 8" and X' = X. Clearly ¢ = 0 [WW]. Take oy = ¢ and
I = djay (e (1I)).

3. Suppose a reduct of s == {8 is rewritten at position 2. This case reduces
to the previous one by an appeal to Lemma 3.9.

In all cases we obtain I’ from II by applying one or two transformation steps
Blo)s Dpiys Plap Ppvpy Ppy together with an additional application of @gyap in case
1(e) and 3. According to Lemma 3.11 [I’ has smaller complexity than [I. Let
W' = Varw (o1} U Var(G'). We have Var(G') C W and thus we can apply
the induction hypothesis to II'. This yields an LONC-refutation ¥': &' =*, O
respecting S, such that o’ < 8" [W’]. Define ¢ = 010’ From 0,6 =8 [W],
o' < 0 {W'], and Vary (0,) € W' we infer that ¢ < ¢ [W]. Concatenating the
LCNC-step ¥y and the Loeng-refutation ¥ yields the desired LONC-refutation
. 0

An immediate corollary of Theorem 3.12 is the comple